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Abstract Understanding the efficacy of a method requires ablation experiments. Current Machine

Learning (ML) workflows emphasize the vertical scaling of large models with paradigms such

as ‘data-parallelism’ or ‘model-parallelism’. As a consequence, there is a lack of methods

for horizontal scaling of multiple experimental trials. Horizontal scaling is labor intensive

when different tools are used for different experiment stages, such as for hyper-parameter

optimization, distributed execution, or the consolidation of artifacts. We identify that errors

in earlier stages of experimentation propagate to the analysis. Based on our observations,

experimental results, and the current literature, we provide recommendations on best prac-

tices to prevent errors. To reduce the effort required to perform an accurate analysis and

address common errors when scaling the execution of multiple experiments, we introduce

ABLATOR. Our framework uses a stateful experiment design paradigm that provides experi-

ment persistence and is robust to errors. Our actionable analysis artifacts are automatically

produced by the experiment state and reduce the time to evaluate a hypothesis. We evaluate

ABLATOR with ablation studies on a Transformer model, ‘Tablator’, where we study the effect

of 6 architectural components, 8 model hyperparameters, 3 training hyperparameters, and

4 dataset preprocessing methodologies on 11 tabular datasets. We performed the largest

ablation experiment for tabular data on Transformer models to date, evaluating 2,337 models

in total. Finally, we open source ABLATOR; https://github.com/fostiropoulos/ablator

1 Introduction

Machine Learning (ML) research has been criticized for an inability to explain the reasons a method

provides an improvement on a specific benchmark. It can be unclear whether a novel component is

responsible for the improvement or result of a statistical outlier [35].

Ablation is used to understand how the hyperparameters and architectural components con-

tribute to the performance of a method. This is in contrast to Hyper-Parameter Optimization (HPO)

or Neural Architecture Search (NAS) where the objective is to search for the single best performing

configuration. As the complexity of ML models increases so does the number of components and

parameters that need to be ablated, which increases the search space of possible configurations.

Therefore, efficient horizontal-scaling of multiple parallel experimental trials is necessary.
There are lack of available frameworks for horizontal scaling of ablation experiments. Currently,

ML practitioners manually perform horizontal scaling for experiments, such as for hyperparameter

selection, distributed execution, consolidation, and analysis of artifacts [10]. Additionally, current

frameworks [31] for distributed execution do not provide native support for maintaining the

state of an experiment and resuming the execution of multiple trials, referred to as experiment
persistence. We find that errors in the early stages of experiments can propagate to the analysis

and lead to misleading conclusions. Possible errors may be introduced from sampling bias in the

hyperparameter selection strategy or the distributed execution fault-intolerance, survival bias.
The execution of randomized control trials is necessary to determine causal effects [23, 20]. We

identify several sources of errors that can influence the results. We categorize them as Analysis,

Execution, and Implementation errors. Analysis errors can result from the hyperparameter selection
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Figure 1: Left is the rapid prototyping process when using ABLATOR where only the method implemen-

tation and the configuration is required to RUN() the study and provide ANALAYSIS(). ABLATOR handles
the horizontal scaling of experimental trials on a cluster of nodes and is fault tolerant, where trials can

be continued on the same or different node due to the Persistence provided by ABLATOR. Right is the
process without ABLATOR where the user must use different Libraries or manually perform, ‘HPO Selec-

tion’, ‘Resource Allocation’, ‘Analysis’. Additional Manual Effort will be required to integrate between

the libraries, where errors between different steps propagate to the analysis that will be erroneous.

ABLATOR provides automation by removing boiler-plate code and managing errors internally.

sampling bias. Nonrandom effects during experiment execution can introduce analysis errors. For

example, inconclusive trials due to out-of-memory errors caused by a larger model footprint would

introduce survival bias to the analysis that will favor smaller models. Implementation errors are

mistakes made by users caused by the increased code complexity of ablating multiple method

components while maintaining different code bases. We discuss the details of our analysis in

Section 3.2.

To aid in error-free horizontal scaling of multiple experiments in ML community, we propose a

stateful experiment paradigm where we unify all experiment stages under a single framework. A

stateful experiment is initialized by the configuration and code implementation of a method. Our

frameworkmaintains the state of each experimental trial and provides experiment persistence, where
the experiment can continue the execution agnostic to the execution environment. The analysis

artifacts are produced automatically by the experiment state for faster prototyping. Our paradigm

is implemented in our tool ABLATOR with support for PyTorch [33] model development. We present

an analysis of the sources of errors and provide recommendations that can be useful beyond our

framework. We use our framework to study the effect of multiple training and model components

on the performance of a Transformer model for tabular dataset ‘Tablator’ where we perform a

large scale ablation study of 2,337 trials. Our contributions can be summarized: First; We provide a

formalization of a stateful experiment design paradigm that we use to address common errors in the

execution of ML experiments. Second; ABLATOR, a framework that implements our paradigm and

facilitate the automated execution and analysis of a model implementation given a configuration.

Third; We identify sources of error in ML ablation studies and provide recommendations for

mitigating them. Fourth; We perform the largest to date ablation study of Deep Learning model on

Tabular dataset and provide analysis that can be useful to the research community.

We first introduce the features of ABLATOR relevant to horizontal scaling of experiments. Next,

we evaluate the main features of our tool in a case study demonstrating the horizontal scaling

capabilities of ABLATOR. We present our results using three research questions Sections 3.1 to 3.3.
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2 Methods

To implement ABLATOR and address common issues in horizontal scaling of experiments, it is

necessary to introduce the formalism of a ‘stateful experiment design’ paradigm. In this section,

we introduce our paradigm and in Section 2.4 the implementation of ABLATOR. We identify three

stages of an experiment, the design, execution, and analysis (Sections 2.1 to 2.3).

2.1 Experiment Design

During the design phase of an ML ablation study, a hypothesis is defined as an experiment on
the improvement that an architectural component, such as Residual Connections, provides to

the performance of the model. The search-space of our hypothesis can be defined as Residual =

[True, False]. The methodology of our experiment is defined by the implementation of the model.

Multiple experimental trials are required to improve the statistical power of a test [20] that

require randomly sampling from the search-space. An experimental trial can be described as a

stochastic process that produces a performance metric. The stochasticity can be observed when

performance differs significantly with identical initial conditions, such as re-running the same

experiment but obtaining different results.

Thus, to define a trial, we maintain two states to describe the system at any given point. The

initial conditions (Sections 2.1.1 and 2.1.2) and the current state (Section 2.2). The initial conditions

of a trial are defined by the sampled hyper-parameters and the implementation.

distributed.yaml

total_trials: 2000

optim_metrics: [[val_loss , min]]

tune:

train_config.

optimizer_config.

name: ["adam", ....

train_config.dataset: ["year","yahoo","helena", ...

model_config.mask_type: ["mix","global","full","random "]

model_config.residual: [True , False]

model_config.random_mask_alpha: [0.5, 1]

prototyping.yaml

train_config:

dataset: adult

optimizer_config:

name: adam

model_config:

mask_type: random

1 @configclass

2 class TablatorConfig(ModelConfig):

3 residual: bool = True

4 d_out: Derived[ty.Optional[int]] = None

5 mask_type: MaskType = MaskType("random")

6

7 @configclass

8 class RunConfig(ParallelConfig):

9 experiment_dir: Stateless[Optional[str]] = None

10 model_config: ModelConfig

11 train_config: TrainConfig

Figure 2: ABLATOR provides a configuration system specific to ML experiments, where it has to encom-

pass multiple trials in a compact definition and be unambiguous. On left, is an illustration of the config-
uration for distributed execution (distributed.yaml) and method prototyping (prototyping.yaml).
On the right, the configuration is type checked by the ABLATOR library. The library provides flexible

type definitions (red) that are resolved during run-time. The configuration is compact and unambigu-

ous at initialization, supporting our stateful experiment design paradigm in Section 2.1.

2.1.1 Configuration. describes the hyperparameter search-space from which the hyperparameters

are sampled. Two custom Python annotations are introduced, Stateless and Derived, to define
attributes to which the experiment state is agnostic, while unannotated attributes are assumed to

be stateful control variables. Stateful attributes require an assignment during the initialization

stage unless they are annotated as Optional.
Stateless configuration attributes can be used as a proxy for variables that can take different

value assignments between trials or experiments. For example, the learning rate can be set as an

independent variable and must be annotated as stateless. Additionally, there are variables that

take different values between experiments and trials to which the state is agnostic, for example, a

random seed or a directory path between execution environments can be annotated as stateless.

Derived attributes are un-decided at the start of the experiment and do not require a value

assignment. Instead, the value is determined by internal experiment processes that can depend

on other experimental attributes, such as the dataset. However, given the same initial state, the

attribute is expected to result in the same value and is therefore deterministic. For example, the
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input size used in a model’s architecture that depends on the dataset will be annotated as Derived
during the experiment design phase.

The annotations address common requirements of ML experiments, where a configuration

may have to describe a search-space that encompasses multiple trials, as opposed to taking on a

specific value assignment at initialization. Additionally, an ML experiment can have attributes that

are difficult to model at initialization but can be inferred during execution. For a stateful design

paradigm, the configuration should be unambiguous at the initialization state, i.e. Figure 2.

2.1.2 Implementation. The implementation describes the methodology of the hypothesis. Invariance of
the implementation w.r.t. the method evaluated produces a single code artifact that encapsulates all

methods i.e. a single code base for using and not using residual connections. The implementation

computes one or more evaluation metrics. Lastly, the implementation should have a deterministic

value assignment to the variables we defined as Derived.
Implementation invariance provides a compact representation and is robust to errors. A compact

representation provides ease of use that is a consequence of a shared implementation among the

ablating components where the differences are specified through the configuration and applied by

conditional if statements. The advantage of this approach is that the performance variance caused

by implementation differences is minimized, where even the order of matrix multiplication can

have significant effects on the method performance [46].

2.2 Experiment Execution
Experiment state can be Running or Complete as the aggregate of the state of all experimental

trials. Each trial can be in three additional states as Pending, Failed or Pruned. Pending trials are

defined by their initial conditions alone, i.e. the sampled hyperparameters. A Running trial extends
the definition to include a checkpoint. Complete trials extends the definition to include one or more

metrics, such as the validation loss. Pruned and Failed trials are a result of irrecoverable errors

during initialization or execution. A fault-tolerant strategy reschedules trials with recoverable

errors as Pending and attempts to resume from the checkpoint. A long-running experiment can be

interrupted (i.e. server maintenance) while errored trials do not interfere with the results (i.e. failed

trials due to recoverable errors).

Checkpoint describes the optimization state of a trial and contains sufficient information to

resume execution. ABLATOR store the model weights, optimizer, scheduler, and training meta-data

such as current training iteration using a compact representation. The checkpoint mechanism in

ABLATOR can be extended to support custom use cases, i.e. RL. Lastly, maintaining the state of the

experiment requires keeping track of the checkpoints and results. Multiple checkpoints are stored

locally on each node and can be synchronized with cloud storage. The experiment is agnostic to

the execution environment; experiment persistence.

2.3 Actionable Analysis
Analysis that is actionable, is a result of the automation to provide sufficient artifacts to support

decision making. The artifacts should help facilitate a quick and informed decision on the likelihood

of the hypothesis. The experiment state is used to infer the hypothesis, i.e. ‘what are we ablating?’,

and conclusiveness of the analysis i.e. ‘is the trial failed?’. The analyses ABLATOR provides infer the
search-space, such as control and independent variables from the configuration and the variable

type to produce the corresponding artifacts. The artifacts produced address common problems in

evaluating ML methods (Section 3.2). For each attribute, the goal is to encapsulate the best, average,

variance and distribution of the performance metric under a single figure; i.e. Figures 4 and 5.

2.4 ABLATOR
ABLATOR is designed in Python and with support for PyTorch models, while the distributed execution

system uses Ray Core [31]; Figure 1. We describe the features of ABLATOR important in addressing
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a stateful experiment paradigm. ABLATOR can be extended or customized specific to the use-case

without loss of automation where an object-oriented design provide access to function overwriting.

The features of ABLATOR provide ease of use where it requires defining an experiment through

implementation and configuration. Automation is supported by providing an abstraction layer on

distributed execution with fault tolerance, artifact consolidation, and analysis. Our framework is

agnostic to the execution environment and can run on a laptop and a cluster of nodes.

Configuration use a hierarchical dictionary-like format that is easy to understand and can

be converted to and from yaml files. ABLATOR uses a strict type-checking system with custom

annotations (Section 2.1.1). A unique signature identifier ("ID") is generated for each experiment

that corresponds to the values of the stateful configuration attributes, while for a trial, the identifier

is based on the unique value assignment of all configurable properties. Thus, the configuration

system allows for a hierarchical representation of trials under a single experiment and facilitate

experiment persistence where multiple experiments are stored in the same directory.

Implementation A Trainer class will manage the physical resources of the experiment. There

are two options according to the use case, ProtoTrainer for prototyping at a local environment,

and ParallelTrainer for horizontal scaling of a single experiment. ParallelTrainer is unique to
ABLATOR, where multiple trials are managed and executed in parallel. Prototyping to experiment

deployment requires a single change ProtoTrainer =⇒ ParallelTrainer.
Artifact Persistence For every resource node, the trials are executed in parallel, and failure in a

single trial does not result in interruption of the experiment. We use the master node to maintain

the experiment state (Section 2.2) and synchronize the artifacts of all nodes with a central database.

Cloud compute nodes are often ephemeral, and restarting the experiment requires only for the files

to be synchronized among the centralized storage and all nodes. Furthermore, the files stored in

the central storage are sufficient to perform an analysis or recover from errors.

Analysis Artifacts are specific to numerical attributes and categorical attributes. The attribute

type is informed by the configuration. Figure are artifacts that summarize the mean, best, and

distribution of a performance metric. For numerical attributes, we use scatter-plot with optional in-

terpolation curves while for categorical attributes we use violin-plots. The analysis can be extended

to support custom use cases, such as additional figures or tables, while still being automatically

generated from the experiment state; examples are in Section 3.3 and our supplementary.

3 Experiments and Results

We first present how ABLATOR can be used for horizontal scaling with an ablation study on the

‘Tablator’, a Transformer model we designed for this study; Section 3.1. In Section 3.2 we categorize

common errors during horizontal scaling of ablation experiments and provide our recommendations.

In Section 3.3 we provide the results of an ablation experiment on tabular dataset benchmark. For

reasons of brevity, we discuss only the results most relevant to ABLATOR. We attach the code that

was used for our experiments and analysis, and additional experiments in the supplementary.

3.1 RQ-1: How can ABLATOR improve the horizontal scaling of thousand experimental trials?

ABLATOR requires the configuration and implementation. We extend the implementation of FT-

Transformers (FT-T)
1
[17] with minimal changes to the original code. We implement a model we

call ‘Tablator’ and evaluate all the design components of FT-T as well as the effect of Residual

Connections [21] and Attention Masks inspired by BigBird [45]. We evaluate ‘Full’, ‘Mixed’, ‘Global’,

and ‘Random’ attention mechanisms and explain their implementation in the supplementary.

We perform an ablation on 14 model hyperparameters and components in total, and evaluate

the effect model-capacity, dropout hyper-parameters , prenormalization, weight initialization,

and activation function have on the model performance. Additionally, we evaluate 7 dataset

1
https://github.com/Yura52/tabular-dl-revisiting-models
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preprocessing techniques and training configurations, such as feature encoding methods, missing

value imputation, feature normalization, training time, optimization.

The differences between ‘Tablator’ and FT-T are on an additional module for Attention masks

that requires 9 additional lines of code as well as 2 lines of code insertions for residual connections.

The majority of the development effort was directed towards making the original dataset performant

and converting it to a PyTorch Dataset as opposed to a Python dataclass. We define the tunable

configurable hyperparameters as shown in Figure 2.

We first verified our implementation with a ProtoTrainer in this section and then we scale

our experiment with a single code change using a ParallelTrainer to thousands of trials for our

results in Section 3.3. For this experiment, it took significantly more time to write the current

section of this paper than it took to write the code and start the execution of the experiments.

3.2 RQ-2: What are common sources of errors during horizontal scaling of experiments?

We identify 3 categories of errors Analysis †, Execution ‡ and Implemention∗ errors that are based
on empirical observations and use previous analysis [10, 8, 9, 27, 36, 1, 46, 12] to support our

conclusions. In this section, we provide examples of each and attach additional analysis in our

supplementary.

Figure 3: We evaluate how Budget Allocation‡
can influence the analysis of an ablation study.

We vary the number of trials we use for analysis

(‘𝑁 trials’). We compare estimating the perfor-

mance of a method to a dataset using the mean

(left) (i.e. ANOVA) or the best (right) trial (i.e.
proof-by-existence). Evaluating the performance

of a component by its mean performance would

require fewer trials for easier dataset (‘Covtype’)

when compared to using the best trial. While

for more challenging dataset (‘Aloi’) evaluating

by the best trial would be more efficient, as the

performance converges at around 20 trials (right

figure) compared to >50 for the mean (left figure).

We conclude that the ablation budget should be

taken into account and relevant to the type of

analysis.

Sampling Strategy † can be incompatible with

the method used to evaluate the performance of

a component and lead to misleading analysis [41].

For example, performing HPO and comparing the

mean performance of the sampled trials can bias

the result towards a single component variant. We

perform two identical experiments using Tablator

with an identical budget for CovType (‘CO’) dataset

[7]. When random sampling between 5 optimiz-

ers AdaB [47], Adam[24], AdamW [29], RAdam[28],

SGD[39] every optimization algorithm was sampled

with an even probability 𝑃 (O) ≈ 0.2. Contrary,

when performing HPO with Tree-structured Parzen

Estimator (TPE) [3], SGD was oversampled with

𝑃 (𝑆𝐺𝐷) = 0.76 as it was found to perform relatively

better compared to other methods. Other optimiza-

tion methods were undersampled by TPE and their

estimated performance is lower when compared to

the empirical mean performance of the same method

calculated via Random Sampling. When TPE was

used, all optimizers appeared to underperform on

average by 4.6% and 3.8% when evaluating the best

and mean trial performance. We conclude that statis-

tical tests can be influenced by the bias of the HPO

method used to sample configurations and their per-

formance might not be fully explored.

Survival Bias † can be caused by nonrandom

execution errors. We identify the trials for which

there were memory errors. We perform feature im-

portance analysis and use a surrogate random for-

est model [34] to predict whether a trial will result

in a memory error. We find that the configuration

attributes related to the dataset and the hidden di-

6



Dataset CA ↓ AD ↑ HE ↑ JA ↑ HI ↑ AL ↑ EP ↑ YE ↓ CO ↑ YA ↓ MI ↓
FT-T 0.459 0.859 0.391 0.732 0.729 0.960 0.898 8.855 0.970 0.756 0.746

Tablator 0.535 0.856 0.368 0.718 0.723 0.921 0.896 8.778 0.930 0.780 0.749

Δ𝐼𝑚𝑝.∗ -0.076 0.003 0.023 0.014 0.006 0.039 0.002 0.077 0.04 -0.024 -0.003

Table 1: We evaluate the difference between the best performing trials as reported by FT-Transformer

(‘FT-T’)[17] and as found by our ablation experiments in Section 2.1. FT-T is in the subspace of

configurations of Tablator where a greedy HPO strategy is used as opposed to random sampling for

Tablator. As such, we expect Tablator to perform similarly but not better. We use the benchmark as

a way to evaluate Implementation Errors ∗ from Section 3.2. We conclude that our implementation

contains no errors, as the relative difference (Δ𝐼𝑚𝑝.∗) is within the expected margin of error between

HPO and random sampling.

mension were the most important. A larger dataset has more features, which leads to a model

with larger hidden dimension. The attributes related to the hidden dimension scored 23% higher

than the average feature importance. We conclude that smaller models and dataset will have a

Survival Bias from the fewer out-of-memory execution errors and that such bias could be mitigated

by better resource allocation. For example, one can group experiments by their memory utilization

as to avoid out-of-memory errors from the largest trial.

Figure 4: Evaluation of the effect of a larger

model for a regression data set, where

(RMSE) ↓ is normalized for the relative dif-

ficulty of each dataset. Larger model per-

forms better but with higher variancewhere

the uncertainty on the estimated perfor-

mance increases. A larger model might be a

more risky choice when deploying a model

that requires to be iteratively trained.

Resource Utilization statistics ‡We observe the re-

source utilization statistics, the mean usage of a trial is

3,075 ± 3,578 (MiB) while the maximum is 32,303 (MiB).

The high variance in memory utilization is a consequence

of a search space that correlates with memory utilization.

Allocating resources based on the largest trial might be

infeasible. Using a heuristic for resource utilization might

be necessary.

Budget Allocation ‡ we vary the number of experi-

mental trials for 10 repeated observations and report the

best and mean performance in Figure 3. An increased bud-

get reduces the variance of the mean performance. We

report less variance in the performance of the best trial for

repeated observations. We conclude that, for ‘Tablator’,

fewer trials are required to obtain an estimate of the top

performance while the mean performance would require

more trials.

Implementation Errors ∗ Our observations on imple-

mentation errors extend previous analysis [46, 27, 36, 12]

on the impact of ML tooling where the sources of errors

are poor development practices and variance introduced

by tooling. Packaging has the benefit of incremental de-

velopment and modular design, where in the example of

‘Tablator’ two methods ([45] and [17]) can be combined.

Additionally, as the method complexity increases, version

control that includes the configuration, and analysis that corresponds to the implementation can

prevent misinterpretation of the results.

3.3 RQ-3: Can ABLATOR be used to perform a large-scale ablation study on Tabular Dataset?

We use ‘Tablator’ presented in Section 3.1 to evaluate possible improvements in data processing,

the Transformer model architecture, and the effect of training hyperparameters on 2,337 trials,
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Figure 5: Example of Automatically generated analysis artifacts from ABLATOR. On the left are the
artifacts for ‘CO’ [7] and on the right for ‘AL’ [16]. We compare the effect of an Optimizer on the

performance to a dataset. In agreement with [44], there is no single model that generalizes across all

dataset; where for example Adam [24] under-performs for ‘AL’ but not for ‘CO’. We conclude that

seperate ablation studies will be required for different dataset.

where the current largest ablation on tabular dataset is 2,000 trials [48]. Our results are summarized

in Figures 4 and 5. On Table 1 we report the Accuracy, where higher is better ↑ and root square-

mean-error (‘RMSE’) where lower is better ↓ on 11 dataset; [32, 25, 18, 18, 2, 16, 17, 4, 7, 11, 38]

identical to the benchmark of FT-T [17]. We find Tablator performs similarly in all datasets. The

goal of the benchmark comparison is to verify our implementation, while the goal of our study

is to evaluate general methods that work best among dataset and not a benchmark improvement.

Similarly to FT-T [17], we conclude that the simplest methods work best in most general cases, i.e.

SGD [39] with momentum has the best mean performance on 9 of 11 datasets. For more complex

methods, there is a large variance on the performance of the method between datasets.

For example, we find that RAdam [28] ranks on average 2.71 for classification dataset but 3.75

for regression dataset when evaluated by the mean performance. Additionally, more complex

methods may result in the best performing trial but perform worse on average, where RAdam ranks

on average 2.25 when evaluated on the best-performing trial for regression dataset (compared to

3.75). Our results indicate that using a complex method may require a large tuning budget to return

good results. Additionally, we conclude that larger models only perform moderately better Figure 4.

The high-performance variance between different components on different datasets leads us to

conclude that evaluations should be done with multiple datasets. Additionally, we find that tuning

would be required that is specific to the dataset and the training configuration. Simple design

choices, such as SGD and moderate model capacity, can provide a good starting point, while more

complex training configurations can provide trade-offs on performance and uncertainty that can

be specific to the use case.

From the median and mean performance observed in our results, we did not find that any

of the preprocessing methods to have a consistent, significant effect on the model performance.

ABLATOR can help provide actionable results specific to the dataset. We conclude that several ablation

experiments are required to evaluate a method and ABLATOR is the only tool currently available to

facilitate rapid evaluation.

4 Discussion

In our work we present ABLATOR an AutoML framework for ablation experiments. Beyond our

framework, there are several issues w.r.t. automated decision making as there is no universal
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statistical test or threshold to accept or reject a hypothesis. Analysis requires domain expertise

relevant to the evaluation setting. Specific to ML research is the lack of methods for evaluation of a

hypothesis where the metric can be both non-normally distributed and heteroskedastic i.e. Figure 5.

Broader Impact Statement Performing large-scale ablation experiments may require a large

number of computational resources that can negatively impact the environment through CO2

emissions. However, the automation provided by ABLATOR can result in a more effective use of

computational resources and reduce CO2 emissions. ABLATOR can help improve research practices

without a negative impact on society when used in the context in which it is presented.

5 Related Works
We identify four categories of work that are most similar to ours. Work that focuses on errors

introduced by tools and incorrect analysis, on horizontal scaling of experiments, works that aid in

ablation studies, and tools for automated HPO.

Previous work [10, 8, 9, 27, 36, 1, 46, 12] identify the source of erroneous analysis as poor
experiment design practices resulting from improper use of statistical evaluation methods, HPO

budget, HPO strategies, and tooling and provide recommendations. We extend their work and

investigate errors during horizontal scaling of experiments that lead to erroneous analysis. We

identify errors from the sampling strategy, non-random execution errors, and implementation

errors. We provide general recommendations in Section 3.2 and address the errors with ABLATOR.
Several tools are proposed [13, 15, 22, 43, 26] that support distributed experiment execution.

However, they require manual effort in integrating with other libraries for resource allocation,

scheduling of experiments, resuming faulty trials, result aggregation, configuration sampling, and

analysis. Contrary, ABLATOR combine all of the above in an automated fashion, where only the

implementation and configuration of the method are used to produce the analysis artifacts.

Ablation framework introduce methods and tools specific to constructing ablation analysis

artifacts. Such methods can have limited use cases [19, 5, 37] or lack automation [42]. In contrast,

ABLATOR provides analysis artifacts that provide a holistic view of a method’s performance that can

be extended to support automation and specific use-cases addressed by the works above.

AutoMLmethods [14, 48, 6] are designed for HPO and can be extended to ablation experiments

that provide support for automated analysis. Unlike ABLATOR, such tools are designed for simple use

cases, such as statistical models, and require additional effort to scale the experiments horizontally.

Such tools and similar, can be used as the implementation provided to ABLATOR and as such

are orthogonal to our work. AutoAblation [40] extends Maggy [30] to Deep Learning models.

However, allocating and managing GPU resources for each trial requires manual effort. While

AutoAblation does not provide experiment persistence and as such is not fault-tolerant. Additionally,

the declarative design paradigm has limited use cases, as opposed to the object-oriented design of

ABLATOR.
As such, ABLATOR improves automation by managing GPU resources, storing of experimental

artifacts, restarting erroneous trials, removing boiler-plate code where only the method implemen-

tation with the configuration is required to provide automated analysis.

6 Conclusion
In this work, we identify several sources of error common in horizontal scaling of multiple experi-

mental trials. We provide general recommendations and address errors with a stateful experiment

design paradigm. ABLATOR implement the paradigm to automate the scaling of ablation experiments

across multiple resources and produce analysis artifacts in an automated fashion and for rapid iter-

ative prototyping. We evaluate ABLATOR with a Transformer model for Tabular dataset, ‘Tablator’,

where we study the effect of several architectural components and hyperparameters on the largest

ablation study for tabular dataset to-date. ABLATOR is an effect tool to conduct large-scale ablation

studies with ease and lead to actionable insights that are particular to the experimental setting.
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