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ABSTRACT

Search-augmented large language models (LLMs) trained with reinforcement
learning (RL) achieve strong results on open-domain question answering (QA),
but training remains brittle: rewards are sparse, credit assignment across reasoning
and tool calls is difficult, and optimization often collapses on long-horizon tasks.
We introduce Turn-Level Information Potential Reward Shaping (TIPS), a
simple RL framework that assigns dense rewards to each reasoning–tool-call seg-
ment based on how much it increases a teacher model’s log-likelihood of the cor-
rect answer. This potential is computed by a frozen or periodically refreshed copy
of the policy, so TIPS only requires checkpoints of the model being trained—no
separate reward model, verifier, or human process labels—making it practical
for scaling to frontier models. We show that this turn-level information reward
is a form of potential-based shaping, preserving the task’s optimal policy while
providing fine-grained guidance beyond outcome-only supervision. On a search-
augmented QA setting spanning seven in-domain and out-of-domain benchmarks,
TIPS consistently outperforms PPO/GRPO baselines and substantially improves
training stability; for example, on Qwen-2.5-7B Instruct it improves average Ex-
act Match by 11.8% and F1 by 13.6% over PPO. These results suggest that
information-potential shaping is a viable general mechanism for stabilizing long-
horizon RL on large, tool-using LLMs.

1 INTRODUCTION

Large language models (LLMs) have recently shown substantial improvements in reasoning when
fine-tuned in RL settings with verifiable rewards (Jaech et al., 2024; Guo et al., 2025; Lambert et al.,
2024). However, RL in this setting is constrained by sparse, outcome-only rewards (e.g., an exact-
match check at the end). This sparsity leads to high-variance learning and brittle credit assignment
over long chains of reasoning and tool use (Arjona-Medina et al., 2019; Ng et al., 1999; Devlin &
Kudenko, 2012). This problem is especially severe in open-domain question answering (QA), where
a single correct-or-incorrect signal fails to indicate which intermediate retrievals or tool calls were
helpful (Lightman et al., 2023; Gurung et al., 2025; Zeng et al., 2025b), thereby under-incentivizing
effective multi-turn reasoning with tool use.

In response, prior works have explored process supervision / process reward modeling (PRMs),
which annotate or learn token- or step-level rewards to better guide intermediate reasoning trajec-
tories (Lightman et al., 2023). These methods can reduce variance, but require high-quality super-
visory labels or heavyweight offline training of reward models (Wang et al., 2024). In the tool use
setting, recent methods such as MT-GRPO assign turn-level rewards based on environment feed-
back. However, MT-GRPO was designed for a single tool call; when we extend it to multiple calls,
the method suffers the same instability issues as the baselines (Table 1).

Instead, we propose turn-level information-gain credit. Concretely, we define each turn as a
segment consisting of reasoning tokens, a tool invocation, and the tool’s output—mirroring the
Thought–Action–Observation pattern in tool-use agents (Yao et al., 2022; Nakano et al., 2021;
Schick et al., 2023). We then measure how much appending that turn increases a teacher model’s
log-likelihood of the gold answer, and assign rewards in proportion. Useful turns that raise like-
lihood receive positive reward; irrelevant or distracting turns receive little or even negative credit.

1
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Figure 1. Overview of our training framework. The policy model interacts with the environment
by conducting multi-turn conversations: each turn consists of reasoning, issuing a query, and receiv-
ing search results, until a final answer is produced. Two dense reward signals are then derived: (i)
an outcome reward, obtained by verifying whether the final answer matches the ground truth; and
(ii) an information reward, provided by a teacher model that measures the information gain each
turn contributes toward the ground truth. Both rewards are combined and optimized with PPO.

This converts a sparse outcome signal into denser, more discriminative feedback at the granularity
of turns, without token-level labeling.

We frame the interaction as a segment-level MDP and show that this reward construction is a form
of potential-based reward shaping (PBRS), which preserves policy invariance under standard condi-
tions (Ng et al., 1999; Devlin & Kudenko, 2012; Wiewiora, 2011). We integrate the shaped reward
into PPO (Schulman et al., 2017) for direct optimization in standard RL workflows, and explore both
frozen teachers and periodically refreshed ones. In our experiments, we also compare against multi-
turn extensions of GRPO and PPO that rely on rule-based/verifiable rewards (Zeng et al., 2025a; Su
et al., 2025), highlighting the differences between heuristic supervision and our information-based
shaping.

We demonstrate the effectiveness of TIPS across seven in-domain and out-of-domain QA bench-
marks. Compared to strong PPO/GRPO baselines, TIPS yields consistent and significant gains. On
Qwen-2.5-7B Instruct, it improves average exact match (EM, Appendix E.1) and F1 (Appendix E.2)
scores by over 10% relative to PPO, with even larger margins over GRPO. Unlike PPO, which of-
ten drifts, or GRPO, which is prone to collapse, TIPS enables stable and steady learning, allowing
models to converge to higher accuracy with lower variance.

Our contributions can be summarized as follows:

1. We introduce TIPS, a reinforcement learning framework for multi-turn LLM agents that models
trajectories as segment-level MDPs and assigns information-gain rewards to each turn.

2. We integrate this turn-level reward shaping into PPO using potential-based reward shaping, which
preserves policy invariance and stabilizes long-horizon optimization.

3. We validate TIPS on search-augmented open-domain QA across 7 benchmarks and observe con-
sistent gains over PPO and GRPO, with the strongest improvements on multi-hop and out-of-
domain benchmarks.

4. We analyze training dynamics and advantage distributions, and demonstrate that TIPS delivers
more stable learning and allocates credit to effective reasoning and tool use while discouraging
degenerate behavior.
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2 PRELIMINARIES

Problem formulation. We consider an LLM-based search agent for question answering. The
agent may invoke a natural language search tool—embedding-based or keyword retrieval—that in-
gests a query string and returns the top-k passages. Given a dataset D = {(xi,Ai)} where each
question xi has a small gold answer set Ai, the agent must produce a response through iterative rea-
soning and retrieval. Critically, the response must embed its final answer within <answer> tags,
and evaluation extracts this tagged answer to compute exact match (EM) or F1 against Ai; this is
not an open-ended generation task.

Token-level MDP. We model the interaction as a finite-horizon Markov Decision Process (MDP)
at the token level. At step t, the state st consists of the prefix of all generated text so far including
question, reasoning history and retrieved evidence. The action at is the next token sampled from
the policy πθ(at | st). To transition to the next state, we either concatenate st+1 = st ⊕ at, or
if at triggers a retrieval, we append an observation Ok, defining a boundary index bk. The episode
terminates when an EOS token is emitted, yielding a final reward Rfinal based on answer correctness.
All other tokens are assigned reward 0.

On-policy RL with a response mask. We focus on PPO and GRPO, the most common on-policy
RL baselines for LLMs. PPO trains πθ against its snapshot πold with clipped importance ratios

ρt(θ) =
πθ(at | st)
πold(at | st)

, Lclip(θ) = Et

[
mt min(ρt(θ)At, clip(ρt(θ), 1− ε, 1 + ε)At)

]
, (1)

where At = Gt − Vϕ(st), Gt =
∑T−1

k=t γk−t rk, rt is the per-token reward, and Vϕ is a learned
value baseline. GRPO removes the critic by normalizing sequence-level rewards: given g rollouts
with terminal rewards {R(i)}, compute mean µ and stdev σ, then set A(i) = (R(i)−µ)/σ. A binary
mask mt ∈ {0, 1} excludes non-trainable tokens (e.g., prompts or tool outputs).

3 METHOD

3.1 INTUITION

Assistant
I need to know the 
number of episodes

Query 
How many episodes are 
in series 7 of GoT

Retrieved passages
The penultimate 
season of the…

Current context Correctness probability

Turn-level information reward

Assistant
I’m still not clear 
about the episodes.

Query 
Episodes in game of 
thrones season 7

Retrieved passages
Bender, who worked on 
the show's sixth…

System 
Demos on how to use 
the search engine

User question
How many episodes are 
in series 7 game of 
thrones?

Figure 2. Turn-level information reward pipeline. At
each turn, retrieved evidence updates the answer likelihood,
yielding a turn-level reward ∆k. These rewards are then in-
jected at turn boundaries.

Sparse terminal rewards provide lit-
tle supervision for multi-turn tool-
augmented reasoning: a model re-
ceives no feedback on which inter-
mediate tool calls are beneficial un-
til episode completion, causing brit-
tle performance and training collapse
(Fig. 3). TIPS addresses this by using
the policy itself as a teacher: a frozen
snapshot of the current policy scores
each turn by measuring the increase
in its own log-probability of gener-
ating a correct answer. Intuitively,
a turn that retrieves a highly rele-
vant passage will make the teacher
much more confident in some answer
in A, whereas a redundant or off-
topic query leaves its belief nearly
unchanged or even shifts probability
mass toward incorrect answers. The
change in log-probability thus pro-
vides a single scalar measure of how
much turn k helped move the dialogue toward a correct answer. Because the teacher is a lagged copy
of the policy, their predictive distributions are kept close, so what elevates the teacher’s confidence
tends to benefit the policy as well. We periodically refresh the teacher to prevent its beliefs from
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becoming stale and misaligned with the latest policy. Critically, this mechanism requires no external
judge and only adds a modest computational overhead, which enables scaling to larger models.

3.2 TURN-LEVEL INFORMATION REWARDS

In the multi-turn QA task, each turn comprises a reasoning block, a tool call, and the evidence
returned. To formalize the intuition above, let A = {A(1), . . . , A(M)} be the set of valid answers
for an episode. For any context S, we define the answer potential:

Φ(S) := L(S;A) = log

M∑
m=1

pteach(A
(m) | S),

the teacher’s log-probability of generating any correct answer. The turn-level reward for turn k is
the change in this potential:

∆k = α
[
Φ(Sk)− Φ(Sk−1)

]
,

where Sk is the context up to and including turn k and α > 0 scales the reward. Intuitively, Φ(S)
summarizes, under the teacher, how likely the current dialogue state is to yield any correct answer
in A, and ∆k measures how much turn k moves this likelihood up or down. This quantity is positive
when turn k shifts probability mass toward valid answers, and negative otherwise.

Information-theoretic interpretation. ∆k can be interpreted as a scaled pointwise mutual-
information quantity between the evidence at turn k and answer correctness under the teacher’s
distribution: it measures how much information the new observation contributes about the event that
the answer lies in A. This view is especially natural for QA, where each tool call is intended to
supply incremental evidence toward a correct answer.

3.3 SEGMENT-LEVEL PBRS AND POLICY INVARIANCE

So far, ∆k has been defined as a dense, turn-level signal that measures how much turn k helps
the teacher believe in a correct answer. We now show that this signal can be viewed as a standard
potential-based reward shaping term, and therefore does not change the optimal policy under the
original outcome reward.

We treat each turn as a segment of tokens between turn boundaries, and view a whole turn as a single
action in a segment-level MDP (where the action subsumes reasoning, tool calls, and observations).
With the answer potential Φ(S) from Section 3.2 as the potential function, the shaping reward at
turn k is exactly

∆k = α
[
Φ(Sk)− Φ(Sk−1)

]
,

which matches the standard form of potential-based reward shaping (Ng et al., 1999).

Policy invariance guarantee. Under episodic returns (γ = 1) and shaping confined to segment
boundaries, the shaped Monte Carlo return for any token t in turn k satisfies:

G
(R+I)
t = G

(R)
t +

K∑
j=k

∆j = G
(R)
t − αΦ(Sk−1), (2)

where we assign Φ(SK) = 0. Thus G(R+I)
t differs from G

(R)
t only by a constant that depends on

the segment boundary state Sk−1, and is independent of the within-turn action sequence τk. Actions
that are relatively better under the outcome reward therefore remain relatively better after shaping.
As a result, policy improvement under Monte Carlo estimation—and hence under GAE or other
policy-gradient estimators that use these returns up to a baseline—is unaffected. A full proof is
provided in Appendix F.

Teacher re-syncing. With a fixed teacher, our shaping is potential-based, so for any state the shaped
Monte-Carlo return differs from the outcome-only return only by a state-dependent constant. When
we refresh the teacher, we simply change the potential used for shaping in subsequent rollouts; in the
PBRS view this is equivalent to changing a (state-dependent) baseline and leaves the true advantage
function invariant, though with an approximate critic, we do observe small shifts in raw returns
before it re-stabilizes in practice.

4
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4 EXPERIMENTS

In our experiments, we seek to answer the following questions:

• (Q1) Performance & stability. Can TIPS train multi-turn QA agents that outperform outcome-
only PPO/GRPO across in-domain and OOD tasks and remain stable (lower collapse rate,
smoother/higher plateaus, reduced across-seed variance)?

• (Q2) Learning signal design. Does turn-level information reward improve credit assignment
compared with sparse final-answer rewards and rule/rubric baselines? How do token-level ad-
vantage distributions differ under TIPS vs. PPO?

• (Q3) Analysis & ablations. How do shaping scale α and teacher freshness (frozen vs. periodic
refresh) affect stability and final EM/F1? What are the comparative effects of dense-reward
choices (rule-based, rubric/LLM-judge, information gain)?

Experimental Setup. Based on VeRL’s multi-turn QA tasks setup, we conduct experiments with
two model sizes: Qwen-2.5-3B Instruct and Qwen-2.5-7B Instruct (Jin et al., 2025; Qwen Team,
2025; Sheng et al., 2024). For retrieval, we use the E5 model (Wang et al., 2022) over the 2018
Wikipedia dump (Wikimedia Foundation, 2025), retrieving 3 passages per turn, and train on the
merged NQ and HotpotQA training splits. We evaluate both in-domain and out-of-domain per-
formance on seven QA benchmarks: NQ, TriviaQA, PopQA, 2WikiMultiHopQA, MuSiQue, Hot-
potQA, and Bamboogle (Kwiatkowski et al., 2019; Joshi et al., 2017; Mallen et al., 2023; Ho et al.,
2020; Trivedi et al., 2022; Yang et al., 2018; Press et al., 2023). For all evaluations, we report Ex-
act Match (EM) and F1 scores (Jin et al., 2025; Zhao et al., 2025). Unless specified, we use the
following hyperparameters across all methods: PPO with GAE (λ=1, γ=1), KL penalty weight
β=0.001, clip ratio ε=0.2, batch size = 256, context length = 4096, and maximum retrieval turns
= 4. Training runs for 500 steps, or until a performance collapse to 0, on 8×H200 GPUs with FSDP
and gradient checkpointing. Full hyperparameters of both training and search engine server setup
are described in Appendix E.3.

100 200 300 400 500
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TIPS (refresh@200) PPO GRPO

Figure 3. EM accuracy on the training
set. TIPS converges to a high accuracy; PPO
drifts late; GRPO collapses.

Baselines. We compare against four related rein-
forcement learning baselines. PPO (Proximal Pol-
icy Optimization): Our base method with outcome-
only supervision. Policy and value learning rates are
1×10−6 and 1×10−5, respectively. GRPO (Group
Relative Policy Optimization): We follow the pub-
lic implementation with group size 5 and learning
rate 5 × 10−7. To ensure stability, we apply gra-
dient clipping at 1 × 10−4, which mitigates much
of the collapse observed in reproducing Search-R1.
MT-GRPO* and MT-PPO: Multi-turn extensions
of GRPO and PPO for multi-hop QA. MT-GRPO*
propagates stepwise normalization across multiple
tool calls, while MT-PPO applies environment feed-
back at turn–level. Both variants are tested with two
rule-based rewards: (i) tool-correctness only, and (ii) correctness plus answer appearance in re-
trieved passages. In our main tables, we report the stronger variant for each model size: tool-only
for 7B (answer-based often collapsed) and answer-aware for 3B. Detailed implementations are in
Appendix E.5.

4.1 MAIN RESULTS

From Tables 1 and 2, we find that TIPS consistently outperforms all baselines, with clear advan-
tages over PPO and GRPO across both in-domain and out-of-domain settings. The largest absolute
improvements appear on multi-hop out-of-domain tasks such as 2Wiki, MuSiQue, and Bamboogle,
where outcome-only methods struggle. At the 3B scale, improvements are more modest and in some
cases PPO performs competitively, whereas at the 7B scale TIPS shows a pronounced advantage.

For the MT baselines, we tested two rule-based reward variants (tool-correctness vs. answer-aware)
and observed instability: on 7B models the answer-aware variant often collapsed, while on 3B

5
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Table 1. Exact Match (EM) for 7B and 3B models. In-domain: {NQ, HotpotQA}. Out-of-domain:
{TriviaQA, PopQA, 2Wiki, MuSiQue, Bamboogle}. The last column is the average over all 7 tasks.

Model In-domain Out-of-domain Avg
NQ HotpotQA TriviaQA PopQA 2Wiki MuSiQue Bamboogle

Qwen-2.5-7B Instruct
PPO 41.95 34.46 63.71 43.55 32.94 8.94 35.40 37.28
GRPO 37.15 26.54 56.39 37.11 19.41 7.20 16.00 28.54
MT-GRPO* 37.17 29.28 58.29 38.37 22.62 7.99 19.20 30.42
MT-PPO 42.37 26.45 55.12 41.59 22.81 6.91 11.20 29.49

TIPS 43.38 42.95 64.31 44.52 42.96 17.05 36.80 41.71
Qwen-2.5-3B Instruct

PPO 43.80 27.12 58.28 42.81 23.10 6.37 9.60 30.15
GRPO 37.40 29.62 55.23 37.39 26.85 8.73 20.80 30.86
MT-GRPO* 36.18 24.71 51.70 35.64 22.63 5.17 10.40 26.35
MT-PPO 39.65 25.54 56.17 40.47 21.35 6.16 8.00 28.19

TIPS 43.46 31.40 58.80 42.76 29.25 8.73 20.80 33.60

Table 2. F1 for 7B and 3B models. In-domain: {NQ, HotpotQA}. Out-of-domain: {TriviaQA,
PopQA, 2Wiki, MuSiQue, Bamboogle}. The last column is the average over all 7 tasks.

Model In-domain Out-of-domain Avg
NQ HotpotQA TriviaQA PopQA 2Wiki MuSiQue Bamboogle

Qwen-2.5-7B Instruct
PPO 50.53 44.65 70.88 47.62 38.70 17.79 45.33 45.07
GRPO 47.85 35.29 63.58 42.51 24.15 12.12 22.93 35.49
MT-GRPO* 48.10 38.36 66.05 44.11 27.94 14.29 28.25 38.16
MT-PPO 50.60 35.29 62.08 46.45 28.56 12.13 20.87 36.57

TIPS 53.22 54.66 72.17 49.26 50.64 26.58 52.16 51.24
Qwen-2.5-3B Instruct

PPO 51.71 36.47 65.75 46.81 28.73 12.65 19.12 37.32
GRPO 47.40 39.51 63.30 43.00 33.36 14.81 28.45 38.55
MT-GRPO* 45.77 33.10 59.51 40.40 28.13 10.68 15.90 33.64
MT-PPO 47.75 34.15 62.85 44.83 26.10 11.05 14.00 34.39

TIPS 51.77 41.47 66.43 47.43 35.10 15.85 29.82 41.12

models the tool-only variant underperformed. As a result, we report the stronger variant for each case
in the tables. Overall, MT-GRPO* improves over GRPO by enabling multi-tool credit assignment,
but both MT baselines still lag significantly behind TIPS. Combined with the training curves in
Fig. 3, these comparisons highlight that TIPS not only achieves higher accuracy but also more stable
optimization, avoiding the collapse of GRPO and the stagnation of PPO.

Training dynamics. As illustrated in Fig. 3, TIPS climbs steadily to an EM plateau of approxi-
mately 0.55-0.60 with low variance. In contrast, GRPO suffers a performance collapse around steps
320–350 and fails to recover, while PPO stagnates after 400 steps, never reaching the performance
level of TIPS.

Generalization across models. Using the same training setup, we apply TIPS to five models from
two families and multiple scales: Qwen2.5-3B/7B/14B, Qwen3-4B, and Llama3.1-8B. As summa-
rized in Table 3, TIPS consistently improves over the corresponding outcome-only PPO baseline on
all models, with relative EM gains ranging from +7.3% to +34.0% and F1 gains from +6.1% to
+29.3%. The largest relative improvements appear on Llama3.1-8B, which starts from a weaker
search capability and benefits most from better credit assignment, while stronger baselines such as

6
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Table 3. Generalization of TIPS across model families and scales. EM/F1 are TIPS scores; per-
centages in parentheses indicate relative improvement over the outcome-only PPO baseline. FLOPs
overhead is the relative per-step increase due to teacher scoring.

Model EM F1 FLOPs overhead (%)

Qwen2.5-3B-Instruct 33.6 (+11.4%) 41.1 (+10.2%) 11.761
Qwen3-4B-Instruct-2507 48.4 (+7.3%) 57.1 (+6.1%) 11.846
Qwen2.5-7B-Instruct 41.7 (+11.9%) 51.2 (+13.7%) 11.810
Qwen2.5-14B-Instruct 45.4 (+12.7%) 53.1 (+10.6%) 11.813
Llama3.1-8B 40.3 (+34.0%) 49.0 (+29.3%) 11.659
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Figure 4. Training dynamics of PPO vs. TIPS. Blue curves denote PPO and orange curves denote
TIPS with teacher refresh every 200 steps. Overall, TIPS climbs steadily to higher and more stable
plateaus, while PPO often suffers mid-training drift or collapse, especially on multi-hop datasets.

Qwen3-4B still see solid gains. At the same time, the compute overhead of TIPS remains essentially
constant across architectures: using the FLOPs accounting in Appendix H, teacher scoring adds only
≈ 11.7% per-step FLOPs for all five models in Table 3. Taken together, these results support our
claim that TIPS is backbone-agnostic, providing consistent improvements across model families at
a modest and stable relative compute cost.

4.2 ANALYSIS

Task-wise validation curves In Fig. 4, we plot EM curves of TIPS and PPO for Qwen2.5-7B
across all benchmarks. Benchmarks are grouped into General QA (NQ, TriviaQA, PopQA) and
Multi-hop QA (HotpotQA, 2Wiki, MuSiQue, Bamboogle), with the top-right panel showing the
average across all seven. Results are computed on a held-out validation set of 6,000 samples with
the same benchmark distribution as full evaluation. Across tasks, TIPS rises smoothly and quickly
stabilizes, whereas PPO exhibits drift—most severe on multi-hop QA with mid-training degradation
and only partial recovery. On general QA tasks the drift is milder but PPO still converges below
TIPS. These dynamics align with Tables 1–2, where the largest margins appear on multi-hop/OOD
datasets. Overall, TIPS delivers higher final EM and more reliable optimization by preventing PPO’s
late-stage collapse.

Study of Advantage Distributions To further investigate contributors to TIPS’ stability, we col-
lect all unmasked token-level advantages from final checkpoints. In Fig. 5, TIPS yields a clean bi-
modal distribution with concentrated positive mass, while PPO shows fat-tailed positives and dense
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Figure 5. Distribution of token-level advan-
tages. Aggregated advantages at final check-
points. TIPS yields a clean bimodal distribu-
tion with concentrated positive mass, while PPO
shows heavy tails and dense near-zero mass.

Table 4. Ablations on dense credit sources.
Results are averaged over all tasks. MT-GRPO
details are in Appendix E.5; the LLM-as-judge
variant in Appendix E.7; MT-PPO uses the same
reward design as MT-GRPO; and the history-
max information gain variant in Appendix E.6.

Method EM F1
GRPO family

Outcome-only 28.54 35.49
Rule-based turn-level (MT-GRPO) 30.42 38.16
Rubric-based turn-level (LLM judge) 28.23 35.54

PPO family
Outcome-only 37.28 45.07
Rule-based turn-level (MT-PPO) 29.49 36.57
Turn-level information gain 40.93 49.49
History-max info gain 35.20 43.09

mass near zero, indicating instability and drift into poor policy space. This provides a mechanistic
explanation for why TIPS suppresses late-stage drift and collapse, stabilizing the training trajec-
tory observed in Fig. 4.

Computational Overhead We isolate the teacher-scoring cost by measuring per-step wall-clock
time in a single TIPS run with and without scoring. This gives runtime overheads of 18% for
Qwen2.5-3B and 16% for Qwen2.5-7B. In terms of FLOPs, TIPS adds only about 12% relative to
vanilla PPO for both model sizes, since we can reuse KV caches in the teacher forward passes on a
given rollout. For comparison, GRPO requires roughly 3.5× the PPO FLOPs for both model sizes.

Raw wall-time differences between separate TIPS and PPO runs are heavily influenced by how long
the model’s responses are. A simple linear regression of per-step time on mean response length
explains most of this gap, and after controlling for response length TIPS is within a few percent of
PPO in wall-clock terms. Full overhead analysis is in Appendix H.

4.3 ABLATIONS

Table 5. EM gains over PPO for different target information-reward ranges under dynamic α. The
medium band yields stable and consistently positive gains across backbones; very small targets
effectively turn shaping off, while very large targets let shaping compete with the terminal reward
and can hurt performance.

Base model Small (0.001–0.05) Medium (0.05–0.3) Large (0.3–1.0)

Qwen3-4B +1.4% (stable) +7.3% (stable) −3.4% (stable)
Qwen2.5-7B 0% (crashed) +11.9% (stable) +3.1% (stable)
Qwen2.5-3B 0% (stable) +11.4% (stable) 0% (stable)

Shaping scale α. The coefficient α controls the relative weight between the information reward
and the terminal outcome reward. If α is too small, the shaping term becomes negligible and TIPS
behaves like outcome-only PPO; if it is too large, the shaping term can compete with the terminal
reward and increase gradient variance. In practice, we pick α so that the average per-turn infor-
mation reward is clearly smaller than the terminal reward: we run a short pilot, estimate the typical
magnitude of |∆k|, and choose a fixed α such that E[|α∆k|] ≈ 0.2. Across all backbones this places
α in a medium band α ∈ [0.05, 0.3], within which TIPS is stable and consistently improves over
outcome-only PPO. We also tried a dynamic-α scheme that keeps the mean information reward in
a target band; as detailed in Appendix D, the medium band ([0.05, 0.3]) again yields stable and con-
sistently positive gains, while very small or very large targets either collapse or hurt performance.

Different dense reward choices. Table 4 compares different dense reward signals. Outcome-
only rewards perform better under PPO than GRPO, reflecting the advantage of value-
based credit assignment. Within GRPO, rule-based turn-level shaping brings minor gains,
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Table 6. Ablation on teacher selection. Rows fix the policy backbone and vary the teacher.

Policy Frozen policy Qwen3-4B-TIPS Llama3.1-8B

Qwen2.5-7B 41.7 (+11.9%) 30.0 (-19.5%) 29.0 (-22.2%)
Qwen3-4B 48.4 (+7.3%) 45.88 (+1.7%) 43.0 (-4.7%)

while rubric-based supervision from an auxiliary LLM judge adds little—likely due to
noisy signals from heuristic or surface-form matching, or prompt drift. This mirrors
our MT-setting findings, where the answer-aware variant often destabilized 7B training.
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(b) Effect of teacher refresh interval on final aver-
age EM for Qwen2.5-7B and Qwen3-4B. Very rare
refreshes (N=500) degrade performance, while a
broad optimum emerges around N=200; all TIPS
runs with N ∈ [100, 500] outperform PPO.
Figure 6. Effect of the teacher refresh interval
on EM for TIPS.

For PPO, our turn-level information gain con-
sistently outperforms outcome-only supervision,
while history-max gating weakens results, likely
because it discards informative negative deltas.
Overall, information-gain shaping emerges as the
most effective and robust dense reward across set-
tings.

Teacher selection. TIPS uses the teacher only
through its log-likelihoods over valid answers,
which define the potential Φ(S). In all main
experiments we set the teacher to be a periodi-
cally refreshed frozen copy of the policy, so their
distributions stay closely aligned. To test this
choice, we fix the policy and vary the teacher
among: (i) the frozen policy, (ii) a TIPS-trained
Qwen3-4B, and (iii) Llama3.1-8B, keeping envi-
ronment, data, and RL hyperparameters identical.
Across both policies, the frozen policy is clearly

best: using a different backbone (even a stronger
or TIPS-trained one) degrades the 7B model and
brings only small gains for 4B. This suggests that
behavioural alignment, rather than raw teacher
strength, is crucial for TIPS, and supports using
a lagged copy of the policy as the default teacher
when scaling to other backbones.

Refresh interval. In TIPS the teacher is a
frozen copy of the policy, refreshed every N
updates. Very small N makes the potential Φ
change rapidly (noisy shaping), while very large
N makes Φ stale and misaligned with the im-
proved policy, so we treat N as a simple hyperpa-
rameter. Within each rollout the teacher is fixed
and no gradients flow through Φ, so PBRS in-
variance holds at the trajectory level; refreshing
only switches to a new potential between batches
(App. F). We ablate N ∈ {1, 100, 200, 250, 500}
on Qwen2.5-7B and Qwen3-4B (Fig. 6), where N=500 keeps the teacher fixed for the whole run.
Both models perform worse with a fixed teacher (N=500), confirming that a stale teacher harms the
shaping signal. A broad optimum appears around N=200, with N=100 and N=250 close behind.
Across N ∈ [100, 500], all TIPS runs still outperform outcome-only PPO, so the refresh window
mainly controls how much improvement shaping yields rather than whether it helps at all.

5 RELATED WORK

RL for LLM reasoning and credit assignment. Outcome-supervised RLHF and PPO variants
have been central to aligning LLMs and improving reasoning (Ouyang et al., 2022; Ziegler et al.,
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2019; Schulman et al., 2017). Group Relative Policy Optimization (GRPO) offers a memory-
efficient PPO variant widely used in math/logic post-training (Shao et al., 2024). More recently,
large-scale RL recipes emphasizing long-horizon reasoning (often with process supervision or out-
come checks) delivered substantial gains over SFT-only training in math, coding, and science QA
(OpenAI, 2024b;a; Guo et al., 2025). However, outcome-only signals suffer from severe credit-
assignment issues: delayed rewards obscure which intermediate steps or segments contributed to
success (Arjona-Medina et al., 2019). Classical potential-based shaping (PBRS) preserves optimal-
ity guarantees while speeding learning (Ng et al., 1999; Devlin & Kudenko, 2012; Wiewiora, 2011;
Gao & Toni, 2015), and counterfactual approaches such as difference rewards or COMA improve
variance by subtracting leave-one-out baselines (Wolpert & Tumer, 1999; Agogino & Tumer, 2005;
Foerster et al., 2017). Parallel efforts in the LLM domain redistribute sparse sequence rewards into
denser, token- or step-level signals, via process-supervised reward models (Lightman et al., 2023;
Wang et al., 2024) or likelihood-improvement style objectives (e.g., VR-CLI) (Gurung et al., 2025).
Our method is a text-domain analogue: we compute a segment-conditional leave-one-out increment
on the gold answer log-likelihood, inheriting variance-reduction and “marginal contribution” intu-
itions (Williams, 1992), while avoiding costly manual step labels.

RL with tools for QA reasoning. External tools such as retrieval, search, calculators, and code in-
terpreters consistently improve QA by providing missing evidence or exact computation (Gao et al.,
2022; Chen et al., 2022; Schick et al., 2023). Prompting frameworks like Self-Ask and ReAct in-
terleave reasoning with tool calls (Press et al., 2022; Yao et al., 2022), while browser-based agents
showed early QA gains via RLHF (Nakano et al., 2021). Recent RL-with-tools work emphasizes
denser credit assignment for tool steps; for instance, MT-GRPO improves reliability of multi-turn
tool execution (Zeng et al., 2025b), though restricted to a single tool type. Our shaping mecha-
nism generalizes to multiple tool segments and assigns reward proportional to their actual marginal
contribution to the gold answer likelihood.

LLM-as-a-judge. An alternative line of work trains or prompts LLMs as evaluators for open-
ended tasks, spanning prompt-based judges (e.g., G-Eval) (Liu et al., 2023), community arenas
(MT-Bench, Chatbot Arena) (Zheng et al., 2023), rubric-tuned/open judges (Prometheus; JudgeLM)
(Kim et al., 2024; Zhu et al., 2023), and AI-feedback pipelines (RLAIF) (Lee et al., 2023). More
recent verifier-style approaches co-train generators with learned verifiers or generative reward mod-
els (Generative Verifiers, RL Tango, RLVR) (Zhang et al., 2024; Zha et al., 2025; Su et al., 2025).
In contrast, our approach does not rely on subjective judge outputs: instead, a reference LM pro-
vides verifiable, likelihood-based segment-conditional increments toward the gold answer, yielding
counterfactual credit without additional labeling.

6 CONCLUSIONS

We addressed brittle optimization in search-augmented RL for QA with TIPS, a turn-level informa-
tion shaping method grounded in a segment-level MDP. The potential is the teacher log-likelihood
of acceptable answers, and shaping at turn boundaries provides dense credit while preserving the
objective under PBRS. We integrate this into token-level PPO with response masking and KL con-
trol. On seven benchmarks and two model sizes, TIPS improves EM and F1 over PPO and GRPO
and trains more stably, with largest gains on multi-hop and out-of-domain tasks. TIPS has two lim-
its: the modest, but real computational overhead, and that it is currently tied to PPO. Future work
will test quicker refreshes, explore using the policy as teacher, and study transfer to reasoning-heavy
domains such as programming and math. If successful, TIPS could become a general mechanism
for long-horizon credit assignment in LLM agents beyond web search.
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STATEMENTS

Details of LLM use. We used large language models for three purposes: (i) to aid and polish
writing, and (ii) to support retrieval and discovery of related work, and (iii) for code generation.
For writing assistance, the authors drafted the text and used model suggestions to improve clarity,
grammar, and flow. All text was reviewed and edited by the authors; the models did not originate
technical ideas, methods, results, or claims. For retrieval and discovery, we used LLM-assisted
search and summarization to surface potentially relevant literature; inclusion decisions and all cita-
tions were verified by the authors through manual reading. We used the Cursor IDE, which supports
LLM-based auto-complete and code generation during development. No experimental design or
data analysis was produced by LLMs.

A statement on reproducibility. Reproducibility is a priority. We are committed to releasing code
for TIPS training and evaluation upon acceptance. We provide exact training/evaluation configs for
reproducing experiments; all materials are consolidated in the appendices. Specifically, implemen-
tation and hyperparameters for PPO/GRPO/MT variants are detailed in App. E.3 and App. E.5, with
additional variants in App. E.7 and App. E.6. We also report training/ablation curves in Figs. 3
and 4. Together, these artifacts enable exact reruns and independent verification of all numbers in
Tables 1–2.
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A DATASETS

A.1 GENERAL QUESTION ANSWERING

Natural Questions (NQ) Natural Questions (NQ) is a benchmark introduced by Google using
real, anonymized Google Search queries. For each query, an annotator is shown one Wikipedia
page selected from the top five search results and labels a long answer (typically a paragraph) and,
when possible, a short answer (one or more spans) or a boolean yes/no. If no valid answer is
found, the example is marked NULL. This setup is intended to reflect the natural distribution of user
information needs.

The public release includes 307,000 training examples, 8,000 development examples, and 8,000 test
examples. Annotators identify a long answer in about 49% of the examples, and a short span or
yes/no in about 36%. Each instance provides the question, the full Wikipedia page HTML, a list of
long-answer candidate regions (HTML bounding boxes) with indices, and the gold annotations. NQ
is thus suitable both for reading-comprehension models given the page, and for retrieval-augmented
variants (e.g. NQ-Open) that search the whole of Wikipedia.

TriviaQA TriviaQA was released by the University of Washington as a large-scale QA dataset
built from trivia and quiz websites. The diversity of question phrasing ensures the dataset challenges
models in linguistic variation and evidence reasoning. It is widely used for benchmarking open-
domain QA systems.

The dataset includes over 95,000 manually authored question–answer pairs and more than 650,000
question–answer–evidence triples. For each question, multiple evidence documents (around six on
average) are provided; these come from two domains: the Web (retrieved pages) and Wikipedia.
Each instance gives the question, gold answer(s), and associated evidence text, enabling evaluation
of both retrieval and answer extraction performance.

PopQA PopQA was proposed to evaluate QA systems across both popular and long-tail factual
knowledge. It is entity-centric and built from Wikidata triples, with questions generated via relation-
specific templates. It includes popularity metadata (monthly Wikipedia page views) to allow evalu-
ation across popularity bands.

PopQA has approximately 14,000 English QA pairs. Each instance is created from a sub-
ject–relation–object triple, templated into a natural question, and includes the gold answer plus
fine-grained metadata: subject/entity IDs, relation type, and Wikipedia page-view counts. This
setup supports controlled studies on retrieval bias and factual memorization versus retrieval.

A.2 MULTI-HOP QUESTION ANSWERING

HotpotQA HotpotQA was introduced to assess explainable multi-hop reasoning over text. Un-
like single-hop QA, it requires combining evidence across multiple Wikipedia articles and provides
sentence-level supporting fact annotations, encouraging models to justify answers via explicit evi-
dence.

HotpotQA includes about 113,000 question–answer pairs, including a subset of “comparison” ques-
tions (e.g. “Which person was born earlier?”). It is offered in two settings: (i) distractor, where each
example comes with a fixed candidate set of Wikipedia articles (typically 10: 2 gold + 8 distractors),
and (ii) fullwiki, where systems must search over the entire Wikipedia. Each sample includes the
question, the gold answer, and sentence-level supporting-fact annotations; in the distractor setting,
the candidate documents are provided with sentences and titles.

2WikiMultiHopQA 2WikiMultiHopQA is a large-scale multihop QA dataset combining unstruc-
tured text (Wikipedia) and structured knowledge (Wikidata). In addition to sentence-level supporting
facts, it provides an explicit reasoning path via Wikidata triples, enabling evaluation of intermediate
reasoning steps and explanations. The dataset uses relation-aware templates and logical rules to
ensure genuine multihop questions across various reasoning types (comparison, inference, compo-
sitional, bridge-comparison).
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The dataset contains about 192,606 question–answer pairs (commonly split 167K / 12.7K / 12.7K
for train/dev/test). Each instance follows a HotpotQA-style format (question, candidate contexts,
supporting facts) and additionally includes a field evidences: a set of Wikidata triples (subject,
relation, object) forming the gold reasoning chain, as well as entity ids linking to Wikidata
entities. The official evaluation reports metrics on answer accuracy, supporting fact identification,
evidence triple prediction, and joint EM/F1 for end-to-end reasoning.

MuSiQue MuSiQue (Multihop Questions via Single-hop Question Composition) was introduced
to reduce shortcut learning in multihop QA by constructing questions via linking independent single-
hop questions. The answer to one hop becomes necessary as input to the next hop, thus enforcing
compositional reasoning. The dataset provides the intermediate single-hop questions, their answers,
and supporting paragraphs to allow analysis of decomposition.

The MuSiQue-Ans variant contains about 25,000 questions over 2–4 hops, with gold answers and
candidate contexts (including distractors). A complementary variant, MuSiQue-Full, adds contrast-
ing unanswerable questions paired with the original ones, resulting in a more stringent evaluation
set. Each instance includes the multihop question, the gold answer, candidate passages, and the
decomposition into single-hop steps. The dataset is designed to probe compositional reasoning and
resist shortcut strategies.

Bamboogle Bamboogle is a small but challenging dataset of hand-crafted two-hop questions. The
authors curated questions for which popular search engines (e.g. Google) fail to return correct
answers in top-rank featured snippets, while ensuring that both supporting facts can be found on
Wikipedia. Its goal is to stress-test compositional reasoning without exploitable artifacts.

The dataset comprises 125 two-hop questions. Each question requires integrating two supporting
facts from Wikipedia to arrive at the answer. In its public release, Bamboogle provides the question
text and gold answer (but does not include supporting passages or fact annotations). It serves as a
compact but difficult benchmark for multi-hop QA.
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Figure 7. BrowseComp-Plus performance versus model size. We plot PPO (blue circles), GRPO
(orange squares), and TIPS (green triangles) for Qwen2.5-3B/7B and Qwen3-4B, together with the
32B SEARCH-R1 PPO agent. TIPS consistently outperforms outcome-only PPO/GRPO at each
scale, and a 4B TIPS agent even surpasses the 32B SEARCH-R1 baseline.

B BROWSECOMP-PLUS

Table 7. BrowseComp-Plus accuracy (%). TIPS consis-
tently improves over PPO/GRPO, and our Qwen3-4B TIPS
agent surpasses a 32B SEARCH-R1 baseline.

Model PPO GRPO TIPS

Qwen2.5-3B-Instruct 1.20 1.20 1.57
Qwen2.5-7B-Instruct 1.24 3.61 4.10
Qwen3-4B-Instruct 6.75 2.65 9.40

Search-R1-32B 4.11 – –

BrowseComp (Wei et al., 2025) is a
deep-research benchmark that evalu-
ates LLM+search agents using a live,
black-box web search API. While
this setting is realistic, the underly-
ing search backend is dynamic and
opaque, which makes fair compari-
son and controlled analysis difficult.
BrowseComp-Plus (Chen et al.,
2025) is derived from BrowseComp
and replaces the live web with a fixed,
carefully curated corpus and a shared
retriever over human-verified supporting documents and mined hard negatives. This design enables
fair, reproducible comparison of deep-research agents and disentangled evaluation of the retriever
and LLM components. To test whether TIPS also helps in such modern deep-research settings, we
follow the BrowseComp-Plus agent-evaluation protocol. We plug our PPO/GRPO/TIPS-trained
models in as the LLM component, keep the retriever (BM25) and corpus fixed, and report the of-
ficial accuracy metric (exact match against the gold answer). We compare our best models against
the open-source SEARCH-R1-32B agent reported on the BrowseComp-Plus leaderboard under the
same BM25-based BM25 setting.

C ANALYSIS OF TEACHER SELECTION

TIPS uses the teacher model only through its log-likelihoods over valid answers, which define the
potential Φ(S). In all main experiments, we choose the teacher to be a frozen copy of the policy
(periodically refreshed), so that the two distributions stay closely aligned and the information reward
reflects what is actually useful for the current policy. To test how sensitive TIPS is to this choice,
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we run an ablation where we fix the policy and vary the teacher among three options: (a) the frozen
policy, (b) a TIPS-trained Qwen3-4B model (the strongest model we obtained), and (c) Llama3.1-
8B. The environment, data, and all RL hyperparameters are kept identical. Table 6 reports EM
scores on the multi-turn QA suite, together with relative gains over the PPO baseline in parentheses.
Two patterns emerge. First, for both Qwen2.5-7B and Qwen3-4B, the frozen policy configuration is
clearly strongest. Replacing the teacher with a cross-family model (Llama3.1-8B) or with a different
Qwen checkpoint (Qwen3-4B-TIPS) substantially hurts the 7B policy, and only yields a small gain
for the 4B policy. Second, the degradation is not explained by teacher capability: both alternative
teachers are at least as strong as the policy in absolute EM, yet their potentials induce worse shaping.

This suggests that what matters for TIPS is not raw teacher strength but behavioral alignment
between teacher and policy. When the teacher distribution drifts too far from the policy, increases
in the teacher’s answer likelihood no longer reliably indicate actions that are good for the current
policy, and the shaping term becomes a noisy or even adversarial signal. In contrast, a lagged, frozen
copy of the policy remains close in behavior by construction, so its potential provides a stable, low-
variance credit-assignment signal. These results support using the frozen policy configuration as the
default choice when scaling TIPS to other backbones.

D ANALYSIS OF α SELECTION

The shaping scale α controls the relative weight between the information reward and the terminal
outcome reward. Recall that the turn-level shaping term is

∆k = α
[
Φ(Sk)− Φ(Sk−1)

]
,

so for any token t in turn k the shaped Monte Carlo return satisfies

G
(R+I)
t = G

(R)
t − αΦ(Sk−1), (3)

where Φ(Sk−1) is a constant shared by all tokens in turn k and does not depend on the within-turn
action sequence τk. Scaling α therefore does not change which actions are preferred within a turn;
it only rescales the returns (and hence the variance of the advantages) used by PPO/GAE. If α is
too small, the information term ∆k becomes negligible compared to the terminal reward and TIPS
behaves almost like outcome-only PPO, losing the benefit of improved credit assignment. If α is too
large, the shaping term can dominate the terminal signal and the advantages are driven mainly by
the teacher’s potential, which may slow convergence and increase gradient variance. In practice, we
therefore choose α so that the information reward remains clearly smaller than the terminal reward
(1.0).

Fixed α: rule-of-thumb. For a fixed-α configuration, we run a short pilot and use the first few
training steps to estimate the typical magnitude of |∆k| under the current teacher (with a provisional
α). We then choose a fixed α so that the average turn-level information reward is capped around 0.2,
i.e. E[|α∆k|] ≈ 0.2, keeping the shaping term well below the terminal reward. Across all backbones
we consider, this procedure places α in a medium band α ∈ [0.05, 0.3], within which TIPS is stable
and consistently improves over outcome-only PPO.

Dynamic α: target information-reward range. To further reduce sensitivity to a single fixed
value, we also explore a dynamic-α scheme. Instead of fixing α, we maintain a target range for the
mean information reward and adjust α online so that the running mean of |α∆k| stays in that band.
Concretely, we define three target bands for the (normalized) information reward:

small: [0.001, 0.05], medium: [0.05, 0.3], large: [0.3, 1.0],

and adapt α during training to keep the signal within the chosen band. Overall, both the fixed-α rule-
of-thumb and the dynamic-α ablation point to a broad medium regime where the information reward
is bounded to be substantially smaller than the terminal reward (on the order of ≈ 0.2 per turn), and
within which TIPS is robust and reliably improves over outcome-only PPO without delicate tuning
of α.
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E IMPLEMENTATION DETAILS

E.1 EM COMPUTATION

The EM, or exact match metric, is 1 if the submitted answer is exactly equal to any acceptable
answer, and 0 otherwise.

E.2 F1 COMPUTATION

The F1 metric between a predicted answer and a gold answer is computed as

F1(αpred, αgold) =
2 · |αpred ∩ αgold|
|αpred|+ |αgold|

. (4)

If there are multiple acceptable answers, we log the maximum F1 score among them (Zhao et al.,
2025).

E.3 HYPER-PARAMETERS

Table 8. Retrieval server configuration

Parameter Value

topk (–topk) 3
faiss gpu (–faiss gpu) True
retrieval method e5 (dense)
retrieval pooling method mean
retrieval query max length 256
retrieval use fp16 True
retrieval batch size (–batch size) 512
max content tokens (–max content tokens) 500
server.host 0.0.0.0
server.port 8000
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Table 9. Hyperparameter settings for GRPO-family algorithms

Parameter Value

algorithm.adv estimator grpo
algorithm.gamma 1.0
algorithm.lam 1.0
algorithm.use kl in reward False
actor rollout ref.actor.use kl loss True
actor rollout ref.actor.kl loss type low var kl
actor rollout ref.actor.kl loss coef 0.001
actor rollout ref.actor.grad clip 1e-4
policy loss.loss mode vanilla
clip ratio 0.2
clip ratio c 3.0
loss agg mode token-mean
actor rollout ref.actor.ppo mini batch size 256
actor rollout ref.actor.ppo micro batch size per gpu 8
ppo epochs 1
shuffle True
data.train batch size 256
data.val batch size 256
data.max prompt length 4096
data.max response length 4096
data.truncation error
trainer.total epochs 1
trainer.critic warmup 0
actor rollout ref.actor.optim.lr 5e-7
actor rollout ref.rollout.name sglang
actor rollout ref.rollout.max model len 15000
actor rollout ref.rollout.tensor model parallel size 1
actor rollout ref.rollout.gpu memory utilization 0.7
actor rollout ref.rollout.n 5
actor rollout ref.rollout.multi turn.max assistant turns 5
actor rollout ref.model.use remove padding True
actor rollout ref.model.enable gradient checkpointing True
actor rollout ref.rollout.enable chunked prefill True
VLLM USE V1 (env) 0
actor rollout ref.actor.fsdp config.param offload True
actor rollout ref.actor.fsdp config.optimizer offload True
actor rollout ref.ref.fsdp config.param offload True
actor rollout ref.nccl timeout 600
trainer.n gpus per node 8
CUDA DEVICE MAX CONNECTIONS (env) 1
NCCL DEBUG (env) info
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Table 10. Hyperparameter settings for PPO-family algorithms

Parameter Value

algorithm.adv estimator gae
algorithm.use kl in reward False
data.train batch size 256
data.val batch size 256
data.max prompt length 4096
data.max response length 4096
data.filter overlong prompts True
data.truncation error
data.return raw chat True
actor rollout ref.actor.optim.lr 1e-6
actor rollout ref.actor.grad clip 1.0
actor rollout ref.actor.ppo mini batch size 256
actor rollout ref.actor.ppo micro batch size per gpu 8
actor rollout ref.actor.use kl loss True
actor rollout ref.actor.kl loss coef 0.001
actor rollout ref.actor.kl loss type low var kl
actor rollout ref.actor.entropy coeff 0
actor rollout ref.model.use remove padding True
actor rollout ref.model.enable gradient checkpointing True
actor rollout ref.actor.fsdp config.param offload True
actor rollout ref.actor.fsdp config.optimizer offload True
actor rollout ref.ref.log prob micro batch size per gpu 8
actor rollout ref.ref.fsdp config.param offload True
actor rollout ref.rollout.name sglang
actor rollout ref.rollout.max model len 15000
actor rollout ref.rollout.tensor model parallel size 1
actor rollout ref.rollout.gpu memory utilization 0.7
actor rollout ref.rollout.n 1
actor rollout ref.rollout.log prob micro batch size 128
actor rollout ref.rollout.multi turn.max assistant turns 5
critic.ppo micro batch size per gpu 8
reward model.reward kwargs.score source em
trainer.critic warmup 0
trainer.n gpus per node 8
trainer.nnodes 1
trainer.save freq 50
trainer.test freq 1000
trainer.log val generations 50
trainer.total epochs 1
VLLM USE V1 (env) 0
HYDRA FULL ERROR (env) 1
CUDA DEVICE MAX CONNECTIONS (env) 1
NCCL DEBUG (env) info
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E.4 MULTI-TURN RULE-BASED REWARD DESIGN

Per-segment rule rewards. For each tool-use segment s ≥ 0 delimited by
</tool response>, we define a rule-based segment reward as

rrulei,s = cexec I{Ei,s}+ cans I{Ai,s},

where cexec, cans > 0 are fixed coefficients, and the events are

Ei,s :=
(
<tool call> ∈ yi

)
∧
(

segment s non-empty
)

∧
(
¬ segment s starts with “Error:”

)
,

Ai,s :=
(
∃ a ∈ Aacc : a ⊆ segment s (lowercased)

)
,

with Aacc the set of acceptable answers from ground truth. At most one presence credit is awarded
per segment even if multiple matches occur.

From segments to tokens. Let s(t) ∈ {0, . . . , S − 1,−1} denote the segment id of token t,
obtained by scanning for </tool response> boundaries. We map rewards rrulei,s to tokens via

rrulei,t =

{
rrulei,s , t = max{u : s(u) = s, mu = 1},
0, otherwise,

where mu ∈ {0, 1} is the response mask. Segments with Ei,s = 0 receive no reward.

Implementation notes. (i) Segment boundaries are detected by regex over
</tool response>, robust to cross-token splits. (ii) Answer extraction supports list/string fields
and lowercases both sides before matching. (iii) We provide two mapping modes (last token
/ distributed) to suit different credit-shaping preferences; experiments default to last-token
placement. (iv) We set fixed magnitudes for the two rule components: the tool-call correctness
reward is 0.1 and the answer presence reward is 0.15 per segment before scaling (κ) and mixing
(ω). These values are intentionally small so that the (standardized) final outcome reward remains
the dominant learning signal.

E.5 MT-GRPO*

Single tool call MT-GRPO Denote a prompt (input state) and its sampled group of trajectories
(responses) as {yi}mi=1. Let Ri be the outcome (final) reward of trajectory i, and r

(t)
i be a verifiable

turn-level reward at turn t. MT-GRPO assigns turn-level advantages by combining normalized turn
rewards and normalized outcome rewards. For a two-turn agent, let

r̃
(1)
i =

r
(1)
i − µr(1)

σr(1) + ε
, R̃i =

Ri − µR

σR + ε

and introduce a hyperparameter β ∈ [0, 1]. Then define

A
(1)
i = β r̃

(1)
i + (1− β) R̃i, A

(2)
i = R̃i.

These scalar advantages are broadcast to the token-level in each turn, and the final loss is

LMT−GRPO(θ) = −Ey∼πold

[ ∑
t∈turn 1

min
(
ρtA

(1)
i , clip(ρt, 1− ϵ, 1 + ϵ)A

(1)
i

)
+
∑

t∈turn 2

min
(
ρtA

(2)
i , clip(ρt, 1− ϵ, 1 + ϵ)A

(2)
i

) ]
. (5)

Thus MT-GRPO refines credit assignment: the first turn’s policy update is influenced by both a ver-
ifiable intermediate reward and the final outcome, while the second turn directly relies on outcome
reward. This finer attribution helps stabilize training of multi-turn tool-using agents.
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Multiple Tool Call MT-GRPO*. For the general case with S ≥ 1 tool segments, we extend the
same framework by assigning each tool-call segment its own normalized credit. Specifically, for
response i and segment s ≥ 0, we compute the mean reward r̄i,s over its tokens and apply group-
wise standardization across only those responses that include s, yielding r̃i,s. The final (outcome)
reward is standardized as before, giving R̃i.

The token-level advantage then becomes

Ai,t =

S−1∑
s=0

Mi,s,t

(
λmid r̃i,s

)
+ λfinal R̃i,

where Mi,s,t indicates whether token t belongs to segment s. Tokens in the final answer segment
(s = −1) only receive the outcome reward.

The policy is updated with the same clipped surrogate objective as in the single-call case. This
formulation naturally scales to multiple tool calls, with each tool segment contributing its own credit
while the outcome reward provides a shared global signal.

E.6 TIPS WITH HISTORY MAX

Motivation and design choices In the original TIPS formulation, the turn-level shaping reward is
simply

∆k = Φ(S′
k)− Φ(Sk),

i.e. the marginal increase of the teacher’s set-marginal log-likelihood over acceptable answers. How-
ever, ∆k may become negative when an intermediate tool invocation temporarily misleads the
teacher’s belief, which could discourage exploration. In contrast, our history-max variant defines

∆hmax
k = max

(
0, max

j≤k
Φ(S′

j)−max
j<k

Φ(S′
j)
)
,

so we only reward turns that elevate the maximum teacher belief seen so far, never penalizing non-
improving but potentially useful steps.

We inject Ik = α∆hmax
k at turn boundaries (with α > 0) via potential-based reward shaping

(PBRS). Under standard episodic assumptions (γ = 1) and when using Monte Carlo returns (λ = 1),
the shaped return from any token t in segment k becomes:

G
(R+I)
t = G

(R)
t +

K∑
j=k

Ij = G
(R)
t + α

(
FK − Fk−1

)
,

where Fk = maxj≤k Φ(S
′
j). Because the extra term α(FK − Fk−1) is independent of within-

segment actions (it depends only on prefix Fk−1 and terminal FK), it does not affect relative ordering
between policies. Hence, the shaping preserves policy optimality.

E.7 LLM AS JUDGE

Motivation and design choice. Beyond measuring tool correctness and answer presence in tool
response, we also wish to evaluate each segment from the perspective of process quality—including
query formulation, retrieval focus, and local answer clarity—which are crucial for MT-GRPO credit
assignment. To this end, we introduce a rubric-guided LLM-as-judge that provides dense, segment-
level process scores complementary to outcome-based and information-shaping signals. To avoid
preference mismatch and calibration drift, we instantiate the judge with the same base model family
and size as the policy (frozen): this aligns inductive biases and tokenization, improves score calibra-
tion on the policy’s own outputs, reduces domain-shift across updates, and is compute-efficient. The
judge only consumes the (question, <tool call>, <tool response>) context; no gradients
flow through it.

We augment turn-level credit assignment with a rubric-guided LLM-as-judge that scores each tool-
use segment and injects a process credit into the MT-GRPO update. For a given prompt group
g, sample i, and token positions t = 1, . . . , T , let segments be indexed by s ∈ {0, . . . , S − 1}
for tool calls and s = −1 for the final non-tool segment. Denote the binary mask Mi,s,t =

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

⊮{si,t = s} and the set of responses in the group by G(g). For each tool segment s ≥ 0
that exists in sample i, we present to a judging LLM the user question and the paired block
⟨<tool call> · · ·</tool call>, <tool response> · · ·</tool response>⟩, and re-
quest rubric scores over D criteria (e.g., factual correctness, search efficiency, clarity), yielding

qi,s ∈ [0, 1]D, qi,s =
(
q
(1)
i,s , . . . , q

(D)
i,s

)
.

We collapse to a scalar per-segment process score via a nonnegative weight vector w ∈ RD,

ui,s = w⊤qi,s, ui,s ∈ [0, 1],

In practice, the judging prompt uses a fixed rubric and forces a structured, per-pair rating extraction,
and the weights w are chosen to balance factuality and search efficiency. Groupwise normaliza-
tion stabilizes scale across prompts and different numbers of tool calls, while masking ensures no
auxiliary credit leaks to the final (s = −1) non-tool segment.

Rubrics for judge

You are an evaluation assistant.
Your goal is to assess how well a large language model,
using search tools, answered a user’s factual question.

Evaluate each <tool_call>...</tool_call> and its following <tool_response>...</tool_response> pair.
For EACH pair, score the following three dimensions on a 0{2 scale (integers):

- factual_correctness:
0: incorrect or misleading
1: partially correct or incomplete
2: fully correct and well-supported

- search_efficiency:
0: ineffective or irrelevant search
1: somewhat effective but noisy or redundant
2: highly effective and focused

- answer_clarity:
0: confusing or fails to answer
1: understandable but needs clarity or structure
2: clear, well-organized, concise

Output requirements:
First provide reasoning per pair as structured chain-of-thought, citing evidence.
Then output ratings in the exact template:

<think>
Pair 1 reasoning...
Pair 2 reasoning...
...
</think>
<answer>
ratings_by_pair=[[r1_cor,r1_eff,r1_clar],[r2_cor,r2_eff,r2_clar],...]
</answer>
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F SEGMENT-LEVEL PBRS: DEFINITIONS AND POLICY INVARIANCE

F.1 SEGMENT-LEVEL MDP FORMALISM

While shaping is naturally defined at the turn–level, optimization operates on tokens. We formalize
the mapping for completeness. Let token-level states evolve as {st}Tt=0 with actions at ∼ πθ(· | st).
When a retrieval completes, the environment appends an observation and defines a boundary index
bk—the last token index of turn k. The kth segment τk is the token sequence in (bk−1, bk], with
segment state Sk := sbk . The induced segment policy is

Πθ(τk | Sk−1) =

bk∏
t=bk−1+1

πθ(at | st).

Thus the token process partitions into K turns, each serving as a unit for reward assignment.

F.2 TOKEN-LEVEL MDP AND SEGMENTIZATION

Consider a finite-horizon episodic MDP

Mtok = (S,A, P,R, γ, ρ0, T ), (6)

and specialize to the undiscounted case γ = 1. A (stochastic) token-level policy π(a | s) induces
trajectories {(st, at, rt)}Tt=0 with at ∼ π(· | st) and rt := R(st, at, st+1).

The environment declares segment (turn) boundaries

0 = b0 < b1 < · · · < bK = T. (7)

The k-th segment (turn) is the token-action block

τk := (abk−1
, abk−1+1, . . . , abk−1) ∈ A bk−bk−1 , (8)

and the boundary states are

Sk := sbk ∈ S. (9)

Within a turn, the sequence probability induced by the token policy is

Π(τk | Sk−1) =

bk−1∏
t=bk−1

π(at | st). (10)

F.3 VALUES AND RETURNS (UNDISCOUNTED)

Let Rt := R(st, at, st+1). The undiscounted token return from time t is

G
(R)
t :=

T−1∑
u=t

Ru. (11)

The state-value and action-value functions under π are

V π(s) := Eπ

[
G

(R)
t | st = s

]
, (12)

Qπ(s, a) := Eπ

[
G

(R)
t | st = s, at = a

]
. (13)

An optimal policy maximizes the start-state value:

π⋆ ∈ argmax
π

Es0∼ρ0
[V π(s0)] . (14)
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F.4 TEACHER LIKELIHOOD POTENTIAL AND BOUNDARY SHAPING

Let Aacc = {A(1), . . . , A(M)} denote the set of acceptable answers, and let

L(s;Aacc) := log

M∑
m=1

pteach

(
A(m) | s

)
. (15)

Define the potential
Φ(s) := L(s;Aacc). (16)

We apply shaping only at segment boundaries. For k = 1, . . . ,K, add

Ik := α
[
Φ(Sk)− Φ(Sk−1)

]
(17)

to the reward on the unique transition that lands in Sk, i.e., at time t = bk − 1. Thus the shaped
per-step reward is

R̃t :=

{
Rt + Ik, if t = bk − 1 for some k,

Rt, otherwise.
(18)

The corresponding shaped return is

G
(R+I)
t :=

T−1∑
u=t

R̃u =

T−1∑
u=t

Ru +
∑

j: bj−1≥t

Ij . (19)

We assume a zero terminal potential
Φ(SK) = 0, (20)

which can always be enforced by subtracting a constant from Φ.

F.5 TURN-CONSTANT SHIFT OF RETURNS (KEY LEMMA)

Lemma. Fix any t with bk−1 ≤ t < bk. Under equation 17 and equation 20,

G
(R+I)
t = G

(R)
t +

K∑
j=k

Ij = G
(R)
t + α [Φ(SK)− Φ(Sk−1)] = G

(R)
t − αΦ(Sk−1), (21)

which is a constant with respect to the within-turn token sequence τk.

Proof. Because shaping occurs only at boundaries,

G
(R+I)
t =

T−1∑
u=t

Ru +
∑

j: bj−1≥t

Ij = G
(R)
t +

K∑
j=k

Ij . (22)

By equation 17, the sum telescopes:
K∑

j=k

Ij = α

K∑
j=k

[
Φ(Sj)− Φ(Sj−1)

]
= α [Φ(SK)− Φ(Sk−1)]. (23)

Using equation 20 yields equation 21. For fixed Sk−1, the additive shift does not depend on τk.

F.6 POLICY INVARIANCE (UNDISCOUNTED EPISODIC CASE)

Theorem. Under equation 17 and equation 20, for any s and any a taken at a time t ∈ [bk−1, bk),

Qπ
R+I(s, a) = Qπ

R(s, a) − αΦ(Sk−1). (24)

Consequently, for all s,

argmax
a

Qπ
R+I(s, a) = argmax

a
Qπ

R(s, a), (25)

and the set of optimal policies is preserved.

Proof. Taking Eπ[· | st = s, at = a] of equation 21 yields equation 24. The additive shift in
equation 24 is action-independent, hence the argmax in equation 25 is unchanged. Therefore any
policy improvement step based on action comparisons (e.g., greedy, advantage-based, or policy-
gradient with baselines) is unaffected, preserving optimal policies.
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Implementation note. When estimating Gt Monte Carlo within a turn, subtracting the constant
αΦ(Sk−1) (or simply ignoring it) leaves all within-turn action comparisons unchanged, so learning
dynamics based on advantages or relative Q-values are unaffected by the shaping.
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G SAMPLE ROLLOUTS

G.1 ADVANTAGE HEATMAPS

We provide a few rollouts on samples from checkpoints of TIPS and PPO, along with heatmaps
which display token-level advantages computed by both critics. Both actors and critics are from
checkpoint at step 450. Advantages are z-score normalized before being mapped to the blue-red
spectrum. Blue is negative and red is positive.

Sample 16644

Correct answer(s): Joel Edgerton

Actor + Baseline Critic

<|im_start|> system

You  are  a  helpful  and  harmless  assistant .

#  Tools

You  may  call  one  or  more  functions  to  assist  with  the  

user  query .

You  are  provided  with  function  signatures  within  

< tools ></ tools >  XML  tags :

< tools >

{" type ":  " function ",  " function ":  {" name ":  " search ",

 " description ":  " Search es  the  web  for  relevant  

information  based  on  the  given  query .",  " parameters ":  

{" type ":  " object ",  " properties ":  {" query _list ":  

{" type ":  " array ",  " item ":  {" type ":  " string "},  

" description ":  " A  list  of  fully -formed  semantic  

queries .  The  tool  will  return  search  results  for  each  

query ." }},  " required ":  [" query _list "] }} }

</ tools >

For  each  function  call ,  return  a  json  object  with  

function  name  and  arguments  within  <tool_call>

</tool_call>  XML  tags :

<tool_call>

{" name ":  < function -name >,  " arguments ":  < args -json -

object >}

</tool_call> <|im_end|>

<|im_start|> user

Answer  the  given  question .  You  must  conduct  reasoning  

inside  < think >  and  </ think >  first  every  time  you  get  

new  information .  After  reasoning ,  if  you  find  you  

lack  some  knowledge ,  you  can  call  a  search  engine  by  

<tool_call>  query  </tool_call>  and  it  will  return  the  

top  searched  results  between  < tool _response >  and  

</ tool _response >.  You  can  search  as  many  times  as  

your  want .  If  you  find  no  further  external  knowledge  

needed ,  you  can  directly  provide  the  answer  inside  

< answer >  and  </ answer >,  without  detailed  

illustrations .  For  example ,  < answer >  Beijing  

</ answer >.  Question :  What  Australian  actor /f il mm aker  

played  a  former  FBI  agent  convicted  of  murder  charges  

stemming  from  his  relationship  with  the  Winter  Hill  

Gang ? <|im_end|>

<|im_start|> assistant

< think >  After  considering  the  question ,  I  realize  

that  the  information  about  the  specific  Australian  

actor /f il mm aker  is  not  directly  available  with  the  

given  

context . 1 ) 2 ) 3 ) 4 ) 5 ) 6 ) 7 ) 8 ) 9 ) 1 0 ) ĉ < answer >  

Russell  Crow e  </ answer >  is  the  Australian  actor  who  

fits  this  description .  He  played  the  role  of  Ron  

K ovic ,  a  former  FBI  agent ,  in  the  movie  " American  

Gang ster "  which  is  somewhat  related  to  the  Winter  

Hill  Gang ,  although  the  character  in  the  movie  is  

fiction  and  the  real  Ron  K ovic  served  in  the  Marines  

rather  than  the  FBI .  The  mention  of  murder  charges  

stemming  from  his  relationship  with  the  Winter  Hill  

Gang  seems  to  be  a  reference  to  the  movie  plot  rather  

than  a  bi ographical  fact  about  Russell  Crow e .  The  

question  seems  to  mix  facts  from  the  real  life  of  the  

actor  and  fictional  characters  he  played . :

< answer >  Russell  Crow e  </ answer >  is  the  answer  based  

on  the  information  related  to  the  question . <|im_end|>

Actor + Info Critic

<|im_start|> system

You  are  a  helpful  and  harmless  assistant .

#  Tools

You  may  call  one  or  more  functions  to  assist  with  the  

user  query .

You  are  provided  with  function  signatures  within  

< tools ></ tools >  XML  tags :

< tools >

{" type ":  " function ",  " function ":  {" name ":  " search ",

 " description ":  " Search es  the  web  for  relevant  

information  based  on  the  given  query .",  " parameters ":  

{" type ":  " object ",  " properties ":  {" query _list ":  

{" type ":  " array ",  " item ":  {" type ":  " string "},  

" description ":  " A  list  of  fully -formed  semantic  

queries .  The  tool  will  return  search  results  for  each  

query ." }},  " required ":  [" query _list "] }} }

</ tools >

For  each  function  call ,  return  a  json  object  with  

function  name  and  arguments  within  <tool_call>

</tool_call>  XML  tags :

<tool_call>

{" name ":  < function -name >,  " arguments ":  < args -json -

object >}

</tool_call> <|im_end|>

<|im_start|> user

Answer  the  given  question .  You  must  conduct  reasoning  

inside  < think >  and  </ think >  first  every  time  you  get  

new  information .  After  reasoning ,  if  you  find  you  

lack  some  knowledge ,  you  can  call  a  search  engine  by  

<tool_call>  query  </tool_call>  and  it  will  return  the  

top  searched  results  between  < tool _response >  and  

</ tool _response >.  You  can  search  as  many  times  as  

your  want .  If  you  find  no  further  external  knowledge  

needed ,  you  can  directly  provide  the  answer  inside  

< answer >  and  </ answer >,  without  detailed  

illustrations .  For  example ,  < answer >  Beijing  

</ answer >.  Question :  What  Australian  actor /f il mm aker  

played  a  former  FBI  agent  convicted  of  murder  charges  

stemming  from  his  relationship  with  the  Winter  Hill  

Gang ? <|im_end|>

<|im_start|> assistant

< think >  After  considering  the  question ,  I  realize  

that  the  information  about  the  specific  Australian  

actor /f il mm aker  is  not  directly  available  with  the  

given  

context . 1 ) 2 ) 3 ) 4 ) 5 ) 6 ) 7 ) 8 ) 9 ) 1 0 ) ĉ < answer >  

Russell  Crow e  </ answer >  is  the  Australian  actor  who  

fits  this  description .  He  played  the  role  of  Ron  

K ovic ,  a  former  FBI  agent ,  in  the  movie  " American  

Gang ster "  which  is  somewhat  related  to  the  Winter  

Hill  Gang ,  although  the  character  in  the  movie  is  

fiction  and  the  real  Ron  K ovic  served  in  the  Marines  

rather  than  the  FBI .  The  mention  of  murder  charges  

stemming  from  his  relationship  with  the  Winter  Hill  

Gang  seems  to  be  a  reference  to  the  movie  plot  rather  

than  a  bi ographical  fact  about  Russell  Crow e .  The  

question  seems  to  mix  facts  from  the  real  life  of  the  

actor  and  fictional  characters  he  played . :

< answer >  Russell  Crow e  </ answer >  is  the  answer  based  

on  the  information  related  to  the  question . <|im_end|>

Figure 8. Sample failed rollout generated with PPO with advantage heatmap
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Under review as a conference paper at ICLR 2026

Sample 16644

Correct answer(s): Joel Edgerton

Info Actor + Baseline Critic

<|im_start|> system

You  are  a  helpful  and  harmless  assistant .

#  Tools

You  may  call  one  or  more  functions  to  assist  with  the  user  query .

You  are  provided  with  function  signatures  within  < tools ></ tools >  XML  tags :

< tools >

{" type ":  " function ",  " function ":  {" name ":  " search ",  " description ":  

" Search es  the  web  for  relevant  information  based  on  the  given  query .",  

" parameters ":  {" type ":  " object ",  " properties ":  {" query _list ":  {" type ":  

" array ",  " item ":  {" type ":  " string "},  " description ":  " A  list  of  fully -

formed  semantic  queries .  The  tool  will  return  search  results  for  each  

query ." }},  " required ":  [" query _list "] }} }

</ tools >

For  each  function  call ,  return  a  json  object  with  function  name  and  

arguments  within  <tool_call> </tool_call>  XML  tags :

<tool_call>

{" name ":  < function -name >,  " arguments ":  < args -json -object >}

</tool_call> <|im_end|>

<|im_start|> user

Answer  the  given  question .  You  must  conduct  reasoning  inside  < think >  and  

</ think >  first  every  time  you  get  new  information .  After  reasoning ,  if  you  

find  you  lack  some  knowledge ,  you  can  call  a  search  engine  by  <tool_call>  

query  </tool_call>  and  it  will  return  the  top  searched  results  between  

< tool _response >  and  </ tool _response >.  You  can  search  as  many  times  as  

your  want .  If  you  find  no  further  external  knowledge  needed ,  you  can  

directly  provide  the  answer  inside  < answer >  and  </ answer >,  without  detailed  

illustrations .  For  example ,  < answer >  Beijing  </ answer >.  Question :  What  

Australian  actor /f il mm aker  played  a  former  FBI  agent  convicted  of  murder  

charges  stemming  from  his  relationship  with  the  Winter  Hill  Gang ? <|im_end|>

<|im_start|> assistant

<tool_call>

{" name ":  " search ",  " arguments ":  {" query _list ":  [" what  a ustralian  actor  

filmmaker  played  former  f bi  agent  convicted  murder  charges  stemming  from  

relationship  winter  hill  gang "] }}

</tool_call> <|im_end|>

<|im_start|> user

< tool _response >

Doc  1  ( Title :  " Jimmy  Flynn ")

Jimmy  Flynn  James  P .  Flynn  ( born  February  5 ,  1 9 3 4 )  is  an  American  

team ster  and  film  actor .  He  was  a  reputed  member  of  the  famous  Winter  Hill  

Gang .  He  has  been  in  films  including  "" Good  Will  Hunting "",  "" The  C ider  

House  Ru ...( tr uncated )...  Graham  in  the  television  series  "" Under bel ly "".  

C aine  was  convicted  of  the  murder  of  David  Temple ton  outside  Laz ars  

nightclub  in  King  Street ,  Melbourne  in  1 9 8 8  and  was  released  from  prison  

in  June  2 0 0 0  after  serving  1 0  years  of  his  1 5 -year  sentence .

</ tool _response > <|im_end|>

<|im_start|> assistant

Based  on  the  search  results ,  it  seems  that  Mel  Gibson  fits  the  description  

of  the  Australian  actor /f il mm aker  who  played  a  former  FBI  agent  convicted  

of  murder  charges  stemming  from  his  relationship  with  the  Winter  Hill  Gang .  

However ,  I  will  verify  this  information  through  a  final  targeted  search .

<tool_call>

{" name ":  " search ",  " arguments ":  {" query _list ":  [" what  a ustralian  actor  

filmmaker  played  former  f bi  agent  convicted  murder  charges  stemming  from  

relationship  winter  hill  gang  is  mel  gib son "] }}

</tool_call> <|im_end|>

<|im_start|> user

< tool _response >

Doc  1  ( Title :  " Mel  Gibson ")

later  said  that  "" G all ip oli ""  is ,  "" Not  really  a  war  movie .  That 's  

just  the  backdrop .  It 's  really  the  story  of  two  young  men .""  The  

critically  acclaimed  film  helped  to  further  launch  Gibson 's  career .  He  won  

the  award  for  B ...( tr uncated )... pol i "",  which  earned  Gibson  another  Best  

Actor  Award  from  the  Australian  Film  Institute .  The  film  "" G all ip oli ""  

also  helped  to  earn  Gibson  the  reputation  of  a  serious ,  versatile  actor  and  

gained  him  the  Hollywood  agent  Ed  Lim ato .  The  sequel  "" Mad  Max

</ tool _response > <|im_end|>

<|im_start|> assistant

After  searching  again ,  while  there  are  indications  that  Mel  Gibson  had  a  

significant  career  and  was  involved  in  films  like  " G all ip oli "  and  " Mad  

Max ,"  the  direct  answer  to  the  specific  details  of  playing  a  former  FBI  

agent  convicted  of  murder  charges  stemming  from  his  relationship  with  the  

Winter  Hill  Gang  points  towards  another  actor .  Based  on  the  information  

retrieved  and  the  need  for  precision  in  the  role  described ,  I  will  conclude  

with  < answer >M el  Gibson </ answer >  for  the  actor ,  but  I  will  verify  this  

final  detail  one  last  time .

<tool_call>

{" name ":  " search ",  " arguments ":  {" query _list ":  [" what  a ustralian  actor  

played  former  f bi  agent  convicted  of  murder  charges  stemming  from  

relationship  with  winter  hill  gang "] }}

</tool_call> <|im_end|>

Info Actor + Info Critic

<|im_start|> system

You  are  a  helpful  and  harmless  assistant .

#  Tools

You  may  call  one  or  more  functions  to  assist  with  the  user  query .

You  are  provided  with  function  signatures  within  < tools ></ tools >  XML  tags :

< tools >

{" type ":  " function ",  " function ":  {" name ":  " search ",  " description ":  

" Search es  the  web  for  relevant  information  based  on  the  given  query .",  

" parameters ":  {" type ":  " object ",  " properties ":  {" query _list ":  {" type ":  

" array ",  " item ":  {" type ":  " string "},  " description ":  " A  list  of  fully -

formed  semantic  queries .  The  tool  will  return  search  results  for  each  

query ." }},  " required ":  [" query _list "] }} }

</ tools >

For  each  function  call ,  return  a  json  object  with  function  name  and  

arguments  within  <tool_call> </tool_call>  XML  tags :

<tool_call>

{" name ":  < function -name >,  " arguments ":  < args -json -object >}

</tool_call> <|im_end|>

<|im_start|> user

Answer  the  given  question .  You  must  conduct  reasoning  inside  < think >  and  

</ think >  first  every  time  you  get  new  information .  After  reasoning ,  if  you  

find  you  lack  some  knowledge ,  you  can  call  a  search  engine  by  <tool_call>  

query  </tool_call>  and  it  will  return  the  top  searched  results  between  

< tool _response >  and  </ tool _response >.  You  can  search  as  many  times  as  

your  want .  If  you  find  no  further  external  knowledge  needed ,  you  can  

directly  provide  the  answer  inside  < answer >  and  </ answer >,  without  detailed  

illustrations .  For  example ,  < answer >  Beijing  </ answer >.  Question :  What  

Australian  actor /f il mm aker  played  a  former  FBI  agent  convicted  of  murder  

charges  stemming  from  his  relationship  with  the  Winter  Hill  Gang ? <|im_end|>

<|im_start|> assistant

<tool_call>

{" name ":  " search ",  " arguments ":  {" query _list ":  [" what  a ustralian  actor  

filmmaker  played  former  f bi  agent  convicted  murder  charges  stemming  from  

relationship  winter  hill  gang "] }}

</tool_call> <|im_end|>

<|im_start|> user

< tool _response >

Doc  1  ( Title :  " Jimmy  Flynn ")

Jimmy  Flynn  James  P .  Flynn  ( born  February  5 ,  1 9 3 4 )  is  an  American  

team ster  and  film  actor .  He  was  a  reputed  member  of  the  famous  Winter  Hill  

Gang .  He  has  been  in  films  including  "" Good  Will  Hunting "",  "" The  C ider  

House  Ru ...( tr uncated )...  Graham  in  the  television  series  "" Under bel ly "".  

C aine  was  convicted  of  the  murder  of  David  Temple ton  outside  Laz ars  

nightclub  in  King  Street ,  Melbourne  in  1 9 8 8  and  was  released  from  prison  

in  June  2 0 0 0  after  serving  1 0  years  of  his  1 5 -year  sentence .

</ tool _response > <|im_end|>

<|im_start|> assistant

Based  on  the  search  results ,  it  seems  that  Mel  Gibson  fits  the  description  

of  the  Australian  actor /f il mm aker  who  played  a  former  FBI  agent  convicted  

of  murder  charges  stemming  from  his  relationship  with  the  Winter  Hill  Gang .  

However ,  I  will  verify  this  information  through  a  final  targeted  search .

<tool_call>

{" name ":  " search ",  " arguments ":  {" query _list ":  [" what  a ustralian  actor  

filmmaker  played  former  f bi  agent  convicted  murder  charges  stemming  from  

relationship  winter  hill  gang  is  mel  gib son "] }}

</tool_call> <|im_end|>

<|im_start|> user

< tool _response >

Doc  1  ( Title :  " Mel  Gibson ")

later  said  that  "" G all ip oli ""  is ,  "" Not  really  a  war  movie .  That 's  

just  the  backdrop .  It 's  really  the  story  of  two  young  men .""  The  

critically  acclaimed  film  helped  to  further  launch  Gibson 's  career .  He  won  

the  award  for  B ...( tr uncated )... pol i "",  which  earned  Gibson  another  Best  

Actor  Award  from  the  Australian  Film  Institute .  The  film  "" G all ip oli ""  

also  helped  to  earn  Gibson  the  reputation  of  a  serious ,  versatile  actor  and  

gained  him  the  Hollywood  agent  Ed  Lim ato .  The  sequel  "" Mad  Max

</ tool _response > <|im_end|>

<|im_start|> assistant

After  searching  again ,  while  there  are  indications  that  Mel  Gibson  had  a  

significant  career  and  was  involved  in  films  like  " G all ip oli "  and  " Mad  

Max ,"  the  direct  answer  to  the  specific  details  of  playing  a  former  FBI  

agent  convicted  of  murder  charges  stemming  from  his  relationship  with  the  

Winter  Hill  Gang  points  towards  another  actor .  Based  on  the  information  

retrieved  and  the  need  for  precision  in  the  role  described ,  I  will  conclude  

with  < answer >M el  Gibson </ answer >  for  the  actor ,  but  I  will  verify  this  

final  detail  one  last  time .

<tool_call>

{" name ":  " search ",  " arguments ":  {" query _list ":  [" what  a ustralian  actor  

played  former  f bi  agent  convicted  of  murder  charges  stemming  from  

relationship  with  winter  hill  gang "] }}

</tool_call> <|im_end|>

Figure 9. Sample failed rollout generated with TIPS with advantage heatmap

G.2 TURN-LEVEL REWARDS
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Under review as a conference paper at ICLR 2026

Sample 15630

Correct answer(s): Yuen Biao

Diverging joint z-scale over response tokens (blue < 0, white = 0, red > 0); robustly clipped per group using 1–99 percentiles → baseline: ±2.41, info: ±2.27.

Info Actor + Baseline Critic

<|im_start|> system

You  are  a  helpful  and  harmless  assistant .

#  Tools

You  may  call  one  or  more  functions  to  assist  with  the  user  query .

You  are  provided  with  function  signatures  within  < tools ></ tools >  XML  tags :

< tools >

{" type ":  " function ",  " function ":  {" name ":  " search ",  " description ":  

" Search es  the  web  for  relevant  information  based  on  the  given  query .",  

" parameters ":  {" type ":  " object ",  " properties ":  {" query _list ":  {" type ":  

" array ",  " item ":  {" type ":  " string "},  " description ":  " A  list  of  fully -

formed  semantic  queries .  The  tool  will  return  search  results  for  each  

query ." }},  " required ":  [" query _list "] }} }

</ tools >

For  each  function  call ,  return  a  json  object  with  function  name  and  

arguments  within  <tool_call> </tool_call>  XML  tags :

<tool_call>

{" name ":  < function -name >,  " arguments ":  < args -json -object >}

</tool_call> <|im_end|>

<|im_start|> user

Answer  the  given  question .  You  must  conduct  reasoning  inside  < think >  and  

</ think >  first  every  time  you  get  new  information .  After  reasoning ,  if  you  

find  you  lack  some  knowledge ,  you  can  call  a  search  engine  by  <tool_call>  

query  </tool_call>  and  it  will  return  the  top  searched  results  between  

< tool _response >  and  </ tool _response >.  You  can  search  as  many  times  as  

your  want .  If  you  find  no  further  external  knowledge  needed ,  you  can  

directly  provide  the  answer  inside  < answer >  and  </ answer >,  without  detailed  

illustrations .  For  example ,  < answer >  Beijing  </ answer >.  Question :  

Dread na ught  starred  which  actor  and  martial  artist ? <|im_end|>

<|im_start|> assistant

<tool_call>

{" name ":  " search ",  " arguments ":  {" query _list ":  [" d read na ught  starred  

which  actor  and  martial  artist "] }}

</tool_call> <|im_end|>

<|im_start|> user

< tool _response >

Doc  1  ( Title :  " D read na ught  ( film )")

D read na ught  ( film )  Dread na ught  ()  is  a  1 9 8 1  Hong  Kong  martial  arts  

film  directed  by  Y uen  Woo -p ing  and  starring  Y uen  B iao ,  Bryan  Le ung  and  

K wan  Tak -h ing .  A  short - tem pered ,  violent  criminal  named  White  Tiger  is  

on  th ...( tr uncated )... nd  J udo .  Norris  appeared  in  a  number  of  action  

films ,  such  as  "" Way  of  the  Dragon "",  in  which  he  starred  alongside  Bruce  

Lee ,  "" Good  Guys  Wear  Black "",  "" The  Oct agon "",  "" L one  Wolf  Mc Qu ade "",  

"" Code  of  Silence "",  "" The  Delta  Force ," "  and  "" Missing  in

</ tool _response > <|im_end|>

<|im_start|> assistant

Based  on  the  search  results ,  it  seems  that  Y uen  B iao  starred  in  

" D read na ught "  and  was  also  a  martial  artist .  To  confirm  this  information ,

 I  will  conduct  a  final  search .

<tool_call>

{" name ":  " search ",  " arguments ":  {" query _list ":  [" d read na ught  starred  

y uen  b iao  and  martial  artist "] }}

</tool_call> <|im_end|>

<|im_start|> user

< tool _response >

Doc  1  ( Title :  " D read na ught  ( film )")

D read na ught  ( film )  Dread na ught  ()  is  a  1 9 8 1  Hong  Kong  martial  arts  

film  directed  by  Y uen  Woo -p ing  and  starring  Y uen  B iao ,  Bryan  Le ung  and  

K wan  Tak -h ing .  A  short - tem pered ,  violent  criminal  named  White  Tiger  is  

on  th ...( tr uncated )... ng  playing  Wong  Fe i -h ung .  It  also  marked  Le ung 's  

first  collaboration  with  director  Y uen  Woo -p ing ,  and  he  would  go  on  to  

star  in  several  acclaimed  Y uen  Woo -p ing  directed  films ,  including  "" Legend  

of  a  Fighter ""  ( 1 9 8 2 ),  in  which  he  portrayed  historical

</ tool _response > <|im_end|>

<|im_start|> assistant

Based  on  the  search  results  from  the  web ,  it  appears  that  Y uen  B iao  

starred  in  " D read na ught "  and  was  a  martial  artist .  

< answer > Y uen  B iao </ answer >.

I  will  verify  this  information  through  a  final  targeted  search .

<tool_call>

{" name ":  " search ",  " arguments ":  {" query _list ":  [" d read na ught  starred  

y uen  b iao  martial  artist "] }}

</tool_call> <|im_end|>

Info Actor + Info Critic

<|im_start|> system

You  are  a  helpful  and  harmless  assistant .

#  Tools

You  may  call  one  or  more  functions  to  assist  with  the  user  query .

You  are  provided  with  function  signatures  within  < tools ></ tools >  XML  tags :

< tools >

{" type ":  " function ",  " function ":  {" name ":  " search ",  " description ":  

" Search es  the  web  for  relevant  information  based  on  the  given  query .",  

" parameters ":  {" type ":  " object ",  " properties ":  {" query _list ":  {" type ":  

" array ",  " item ":  {" type ":  " string "},  " description ":  " A  list  of  fully -

formed  semantic  queries .  The  tool  will  return  search  results  for  each  

query ." }},  " required ":  [" query _list "] }} }

</ tools >

For  each  function  call ,  return  a  json  object  with  function  name  and  

arguments  within  <tool_call> </tool_call>  XML  tags :

<tool_call>

{" name ":  < function -name >,  " arguments ":  < args -json -object >}

</tool_call> <|im_end|>

<|im_start|> user

Answer  the  given  question .  You  must  conduct  reasoning  inside  < think >  and  

</ think >  first  every  time  you  get  new  information .  After  reasoning ,  if  you  

find  you  lack  some  knowledge ,  you  can  call  a  search  engine  by  <tool_call>  

query  </tool_call>  and  it  will  return  the  top  searched  results  between  

< tool _response >  and  </ tool _response >.  You  can  search  as  many  times  as  

your  want .  If  you  find  no  further  external  knowledge  needed ,  you  can  

directly  provide  the  answer  inside  < answer >  and  </ answer >,  without  detailed  

illustrations .  For  example ,  < answer >  Beijing  </ answer >.  Question :  

Dread na ught  starred  which  actor  and  martial  artist ? <|im_end|>

<|im_start|> assistant

<tool_call>

{" name ":  " search ",  " arguments ":  {" query _list ":  [" d read na ught  starred  

which  actor  and  martial  artist "] }}

</tool_call> <|im_end|>

<|im_start|> user

< tool _response >

Doc  1  ( Title :  " D read na ught  ( film )")

D read na ught  ( film )  Dread na ught  ()  is  a  1 9 8 1  Hong  Kong  martial  arts  

film  directed  by  Y uen  Woo -p ing  and  starring  Y uen  B iao ,  Bryan  Le ung  and  

K wan  Tak -h ing .  A  short - tem pered ,  violent  criminal  named  White  Tiger  is  

on  th ...( tr uncated )... nd  J udo .  Norris  appeared  in  a  number  of  action  

films ,  such  as  "" Way  of  the  Dragon "",  in  which  he  starred  alongside  Bruce  

Lee ,  "" Good  Guys  Wear  Black "",  "" The  Oct agon "",  "" L one  Wolf  Mc Qu ade "",  

"" Code  of  Silence "",  "" The  Delta  Force ," "  and  "" Missing  in

</ tool _response > <|im_end|>

<|im_start|> assistant

Based  on  the  search  results ,  it  seems  that  Y uen  B iao  starred  in  

" D read na ught "  and  was  also  a  martial  artist .  To  confirm  this  information ,

 I  will  conduct  a  final  search .

<tool_call>

{" name ":  " search ",  " arguments ":  {" query _list ":  [" d read na ught  starred  

y uen  b iao  and  martial  artist "] }}

</tool_call> <|im_end|>

<|im_start|> user

< tool _response >

Doc  1  ( Title :  " D read na ught  ( film )")

D read na ught  ( film )  Dread na ught  ()  is  a  1 9 8 1  Hong  Kong  martial  arts  

film  directed  by  Y uen  Woo -p ing  and  starring  Y uen  B iao ,  Bryan  Le ung  and  

K wan  Tak -h ing .  A  short - tem pered ,  violent  criminal  named  White  Tiger  is  

on  th ...( tr uncated )... ng  playing  Wong  Fe i -h ung .  It  also  marked  Le ung 's  

first  collaboration  with  director  Y uen  Woo -p ing ,  and  he  would  go  on  to  

star  in  several  acclaimed  Y uen  Woo -p ing  directed  films ,  including  "" Legend  

of  a  Fighter ""  ( 1 9 8 2 ),  in  which  he  portrayed  historical

</ tool _response > <|im_end|>

<|im_start|> assistant

Based  on  the  search  results  from  the  web ,  it  appears  that  Y uen  B iao  

starred  in  " D read na ught "  and  was  a  martial  artist .  

< answer > Y uen  B iao </ answer >.

I  will  verify  this  information  through  a  final  targeted  search .

<tool_call>

{" name ":  " search ",  " arguments ":  {" query _list ":  [" d read na ught  starred  

y uen  b iao  martial  artist "] }}

</tool_call> <|im_end|>

Figure 10. Sample successful rollout generated with TIPS with advantage heatmap
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Sample 15630

Correct answer(s): Yuen Biao

Actor + Baseline Critic

<|im_start|> system

You  are  a  helpful  and  harmless  assistant .

#  Tools

You  may  call  one  or  more  functions  to  assist  with  the  

user  query .

You  are  provided  with  function  signatures  within  

< tools ></ tools >  XML  tags :

< tools >

{" type ":  " function ",  " function ":  {" name ":  " search ",

 " description ":  " Search es  the  web  for  relevant  

information  based  on  the  given  query .",  " parameters ":  

{" type ":  " object ",  " properties ":  {" query _list ":  

{" type ":  " array ",  " item ":  {" type ":  " string "},  

" description ":  " A  list  of  fully -formed  semantic  

queries .  The  tool  will  return  search  results  for  each  

query ." }},  " required ":  [" query _list "] }} }

</ tools >

For  each  function  call ,  return  a  json  object  with  

function  name  and  arguments  within  <tool_call>

</tool_call>  XML  tags :

<tool_call>

{" name ":  < function -name >,  " arguments ":  < args -json -

object >}

</tool_call> <|im_end|>

<|im_start|> user

Answer  the  given  question .  You  must  conduct  reasoning  

inside  < think >  and  </ think >  first  every  time  you  get  

new  information .  After  reasoning ,  if  you  find  you  

lack  some  knowledge ,  you  can  call  a  search  engine  by  

<tool_call>  query  </tool_call>  and  it  will  return  the  

top  searched  results  between  < tool _response >  and  

</ tool _response >.  You  can  search  as  many  times  as  

your  want .  If  you  find  no  further  external  knowledge  

needed ,  you  can  directly  provide  the  answer  inside  

< answer >  and  </ answer >,  without  detailed  

illustrations .  For  example ,  < answer >  Beijing  

</ answer >.  Question :  Dread na ught  starred  which  actor  

and  martial  artist ? <|im_end|>

<|im_start|> assistant

< think >  (  Upon  reading  the  question ,  I  realize  the  

information  provided  about  " D read na ught "  and  the  

actor / ma ur alist  artist  is  not  sufficient ,  and  I  need  

to  clarify  that  the  movie  " D read na ught "  doesn 't  seem

 to  be  the  correct  title  as  it  might  be  a  

miss p elling  or  a  confusion  with  another  movie .  Let  me  

re phrase  to  ask  about  a  similar  context  to  find  the  

right  actor ):

< answer >  Zhang  Yi  </ answer >  (  Upon  further 0  

consideration ,  it  seems  there  was  a  misunderstanding .  

Let  me  be  clear :  there  is  no  prominent  actor  and  

martial  artist  specifically  associated  with  a  film  

called  " D read na ught "  through  typical  database  

searches .  The  question  might  be  referring  to  a  

different  movie .  But  based  on  the  information  related  

to  an  actor  who  is  both  notable  for  his  acting  and  

martial  arts  skills ,  I  am  recalling  the  correct  name :  

in  the  film  " D read na ught "  ( which  might  be  confusing  

with  another  title  like  " Once  Upon  a  Time  in  China "),  

the  actor  is  < answer >  Y uen  B iao  </ answer >.  Y uen  

B iao  is  a  well -known  actor  and  martial  artist .  )  ( (  

Upon  double  checking ,  the  correct  answer ,  considering  

the  actor  who  is  both  notable  for  his  acting  and  

martial  skills  and  starred  in  films  with  similar  

themes ,  the  answer  is :  

< answer >  Y uen  B iao  </ answer > .)  )  Gay ly ,  the  

answer  is  Y uen  B iao . <|im_end|>

Actor + Info Critic

<|im_start|> system

You  are  a  helpful  and  harmless  assistant .

#  Tools

You  may  call  one  or  more  functions  to  assist  with  the  

user  query .

You  are  provided  with  function  signatures  within  

< tools ></ tools >  XML  tags :

< tools >

{" type ":  " function ",  " function ":  {" name ":  " search ",

 " description ":  " Search es  the  web  for  relevant  

information  based  on  the  given  query .",  " parameters ":  

{" type ":  " object ",  " properties ":  {" query _list ":  

{" type ":  " array ",  " item ":  {" type ":  " string "},  

" description ":  " A  list  of  fully -formed  semantic  

queries .  The  tool  will  return  search  results  for  each  

query ." }},  " required ":  [" query _list "] }} }

</ tools >

For  each  function  call ,  return  a  json  object  with  

function  name  and  arguments  within  <tool_call>

</tool_call>  XML  tags :

<tool_call>

{" name ":  < function -name >,  " arguments ":  < args -json -

object >}

</tool_call> <|im_end|>

<|im_start|> user

Answer  the  given  question .  You  must  conduct  reasoning  

inside  < think >  and  </ think >  first  every  time  you  get  

new  information .  After  reasoning ,  if  you  find  you  

lack  some  knowledge ,  you  can  call  a  search  engine  by  

<tool_call>  query  </tool_call>  and  it  will  return  the  

top  searched  results  between  < tool _response >  and  

</ tool _response >.  You  can  search  as  many  times  as  

your  want .  If  you  find  no  further  external  knowledge  

needed ,  you  can  directly  provide  the  answer  inside  

< answer >  and  </ answer >,  without  detailed  

illustrations .  For  example ,  < answer >  Beijing  

</ answer >.  Question :  Dread na ught  starred  which  actor  

and  martial  artist ? <|im_end|>

<|im_start|> assistant

< think >  (  Upon  reading  the  question ,  I  realize  the  

information  provided  about  " D read na ught "  and  the  

actor / ma ur alist  artist  is  not  sufficient ,  and  I  need  

to  clarify  that  the  movie  " D read na ught "  doesn 't  seem

 to  be  the  correct  title  as  it  might  be  a  

miss p elling  or  a  confusion  with  another  movie .  Let  me  

re phrase  to  ask  about  a  similar  context  to  find  the  

right  actor ):

< answer >  Zhang  Yi  </ answer >  (  Upon  further 0  

consideration ,  it  seems  there  was  a  misunderstanding .  

Let  me  be  clear :  there  is  no  prominent  actor  and  

martial  artist  specifically  associated  with  a  film  

called  " D read na ught "  through  typical  database  

searches .  The  question  might  be  referring  to  a  

different  movie .  But  based  on  the  information  related  

to  an  actor  who  is  both  notable  for  his  acting  and  

martial  arts  skills ,  I  am  recalling  the  correct  name :  

in  the  film  " D read na ught "  ( which  might  be  confusing  

with  another  title  like  " Once  Upon  a  Time  in  China "),  

the  actor  is  < answer >  Y uen  B iao  </ answer >.  Y uen  

B iao  is  a  well -known  actor  and  martial  artist .  )  ( (  

Upon  double  checking ,  the  correct  answer ,  considering  

the  actor  who  is  both  notable  for  his  acting  and  

martial  skills  and  starred  in  films  with  similar  

themes ,  the  answer  is :  

< answer >  Y uen  B iao  </ answer > .)  )  Gay ly ,  the  

answer  is  Y uen  B iao . <|im_end|>

Figure 11. Sample successful rollout generated with PPO with advantage heatmap
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System
You are a helpful and harmless assistant. # Tools You may call one or more functions to assist with the user query. You are provided
with function signatures within <tools></tools> XML tags: <tools> {"type": "function", "function": {"name": "search", "description":
"Searches the web for relevant information based on the given query.", "parameters": {"type": "object", "properties": {"query_list":
{"type": "array", "description": "A list of fully-formed semantic queries. The tool will return search results for each query.",
"enum": null}}, "required": ["query_list"]}, "strict": false}} </tools> For each function call, return a json object with function name
and arguments within <tool_call></tool_call> XML tags: <tool_call> {"name": <function-name>, "arguments": <args-json-object>}
</tool_call>

User
Answer the given question. You must conduct reasoning inside <think> and </think> first every time you get new information. After
reasoning, if you find you lack some knowledge, you can call a search engine by <tool_call> query </tool_call> and it will return the
top searched results between <tool_response> and </tool_response>. You can search as many times as your want. If you find no further
external knowledge needed, you can directly provide the answer inside <answer> and </answer>, without detailed illustrations. For
example, <answer> Beijing </answer>. Question: Matthew George Frewer, is an American Canadian actor, singer, voice artist and comedian,
he is known for portraying the retired villain Moloch in which 2009 American superhero film directed by Zack Snyder, based on the 1986–
87 DC Comics limited series of the same name by Alan Moore and Dave Gibbons?

Assistant
Reward: -0.08080311864614487
<tool_call> {"name": "search", "arguments": {"query_list": ["Matthew George Frewer portray Moloch in 2009 superhero film directed by
Zack Snyder based on DC Comics limited series by Alan Moore and Dave Gibbons"]}} </tool_call>

User
<tool_response> {"result": "Doc 1 (Title: \"Watchmen (film)\")\nWatchmen (film) Watchmen is a 2009 American superhero film directed by
Zack Snyder, based on the 1986–87 DC Comics limited series of the same name by Alan Moore and Dave Gibbons. It stars an ensemble cast
of Malin Åkerman, Billy Crudup, Matthew Goode, Carla Gugino, Jackie Earle Haley, Jeffrey Dean Morgan, and Patrick Wilson. A dark
satirical and dystopian take on the superhero genre, the film is set in an alternate history in the year 1985 at the height of the Cold
War between the United States and the Soviet Union, as a group of mostly retired American superheroes investigates\n\nDoc 2 (Title:
\"Watchmen (film)\")\nVES Awards, seven awards at the 36th Saturn Awards, and 13 awards at the 2009 Scream Awards. The film was also
pre-nominated for the Academy Award for Best Visual Effects, although it did not make the final shortlist. Watchmen (film) Watchmen is
a 2009 American superhero film directed by Zack Snyder, based on the 1986–87 DC Comics limited series of the same name by Alan Moore
and Dave Gibbons. It stars an ensemble cast of Malin Åkerman, Billy Crudup, Matthew Goode, Carla Gugino, Jackie Earle Haley, Jeffrey
Dean Morgan, and Patrick Wilson. A dark satirical and dystopian take on the\n\nDoc 3 (Title: \"Production of Watchmen\")\nProduction of
Watchmen Watchmen is a 2009 film based on the twelve-issue graphic novel series of the same name created by writer Alan Moore, artist
Dave Gibbons, and colorist John Higgins, published by DC Comics between 1986 and 1987. The graphic novel's film rights were acquired by
producer Lawrence Gordon in 1986. Many problems halted the adaptation's development, with four different studios and various directors
and screenwriters being attached to the project through twenty years. In 2006, Zack Snyder, who at the time was filming 'another comic
book adaptation', was hired by Warner Bros. to helm \"\"Watchmen\"\". Filming started in"} </tool_response>

Assistant
Reward: 1.6323580741882324
Matthew George Frewer is known for portraying the retired villain Moloch in the 2009 American superhero film *Watchmen*, directed by
Zack Snyder and based on the 1986–87 DC Comics limited series by Alan Moore and Dave Gibbons. <answer> Watchmen </answer>

Ground Truth Watchmen

Figure 12. A failure case for TIPS’ reward. We see that the policy executed a good, detailed tool
call, whose results returned the correct answer Watchmen. However, the tool call was assigned a
negative ∆, indicating the answer was less likely after seeing the tool results, compared to after only
seeing the prompt. We do note that this may just be noise, as the absolute scale of the reward is
rather small.
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H OVERHEAD ANALYSIS

H.1 INCREASE IN FLOPS

We analyze the computational overhead introduced by teacher scoring in TIPS relative to vanilla
PPO. The information-theoretic reward computation proceeds as follows:

def mean_logp(context, answers):
return mean(sum(teacher(context + a)[-len(a):] for a in answers))

S = initial_prompt
phis = [mean_logp(S, answer_set)]
for segment in segments:

S += segment
phis.append(mean_logp(S, answer_set))

deltas = [phi[i+1] - phi[i] for i in range(len(phis)-1)]

Crucially, all values of S share prefixes with previous values, enabling reuse of KV cache compu-
tations across forward passes. This prefix caching yields substantial FLOP savings at scale. We
calculate the teacher scoring FLOPs assuming perfect prefix caching using the following formula
adapted from the verl codebase (volcengine & verl contributors, 2025). The parameters are: B
(batch size), Li (length of prefix i), Lmax (maximum prefix length), S (number of prefixes per sam-
ple), A (average number of candidate answers), La (average answer length), Ndense (dense parameter
constant), d (head dimension), H (number of attention heads), and L (number of transformer layers).

qsize = Hd,

ksize = Hkvd,

vsize = Hkvd,

Ndense = L
(
3hI + h

(
qsize + ksize + vsize +Hd

))
+ 2V h .

The total FLOPs for teacher scoring decompose into prefix processing and answer scoring compo-
nents:

Lmax = max
i

Li

Fprefix = 2NdenseBLmax + 4BL2
maxdHL

Fans = 2NdenseBSALa + 4BA

(
S∑

i=1

(
LaLi +

La(La−1)
2

))
dHL

Ftotal = Fprefix + Fans .

Using verl’s baseline computation functions, we find the relative FLOP increase of TIPS over vanilla
PPO to be approximately 11% for both Qwen 2.5 3B and 7B models, as detailed in Table 11.

H.2 COMPARISON OF WALL-CLOCK TIMES

While FLOPs provide a theoretical complexity measure, we also empirically evaluate the wall-time
overhead of teacher scoring during TIPS training. Table 14 reports the per-step training time with
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Table 11. Comparison of PPO step FLOPs and teacher-scoring FLOPs per model.

Model PPO (TFLOPs/step) Teacher scoring (TFLOPs/step) Relative increase (%)
Qwen2.5 3B 64661.474 7604.648 11.761
Qwen2.5 7B 136219.934 16136.034 11.846
Qwen2.5 14B 271071.084 32013.051 11.810
Llama 3 8B 147038.119 17369.665 11.813
Qwen3 4B 90932.211 10602.213 11.659

Table 12. Model-specific inputs used in the teacher-scoring FLOP equations.

Model qsize ksize vsize Ndense
Qwen2.5 3B 2048 256 256 3.397× 109

Qwen2.5 7B 3584 512 512 7.615× 109

Qwen2.5 14B 5120 1024 1024 1.477× 1010

Llama 3 8B 4096 1024 1024 8.030× 109

Qwen3 4B 4096 1024 1024 4.411× 109

and without the reward computation. The overhead is computed as With Reward
Without Reward − 1, yielding 16–

18%.

For completeness, Table 15 provides a direct per-step time comparison between TIPS and vanilla
PPO. We emphasize that this metric is primarily determined by the average response length gen-
erated by the policy rather than teacher scoring overhead, and is included only for comprehensive
evaluation.

H.2.1 WALL-CLOCK TIME AFTER RESPONSE-LENGTH NORMALISATION

Raw wall-clock times scale with the length of the decoded response. To isolate the fixed overhead,
we therefore regress the logged per-step time on the mean response length for every Weights &Biases
run. An affine model

t = αr + β

is fitted with ordinary-least-squares to every history row that contains both metrics. The slope α,
intercept β, coefficient of determination R2, and the mean response length r̄ are re-estimated directly
from the W&B logs, and the two fitted lines are then compared at common response lengths.

After this adjustment, response length alone explains 92.6% of the Qwen 2.5–3 B PPO / TIPS gap
and 70.6% of the 7 B gap. The residual differences are −2.3 s (favouring TIPS) and +13.2 s (penal-
ising TIPS), respectively. Evaluated at the PPO mean length, TIPS is only −2.1% (3 B) and +7.7%
(7 B) away from PPO; evaluated at the TIPS mean length the gaps become −6.1% and +13.9%.
These normalised figures match the wall-clock comparisons reported in the main text.
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Table 13. Shared constants for the teacher-scoring FLOP setup.

Parameter Value
B 256
S 5
Lmax 3676.8
La 10.0
A 2.0
{Li} (400.0, 1219.2, 2038.4, 2857.6, 3676.8)

Model Without Reward (s/step) With Reward (s/step) Overhead (%)
Qwen 2.5 3B 30.56 35.95 17.64
Qwen 2.5 7B 93.00 108.22 16.37

Table 14. Wall-time overhead of teacher scoring during TIPS training.

Model PPO (s/step) TIPS (s/step)
Qwen 2.5 3B 67.62 35.95
Qwen 2.5 7B 63.39 108.22

Table 15. Raw per-step training time comparison between TIPS and PPO.

Model Variant α (s/tok) β (s) R2 r̄ (tok)

3 B PPO 0.035988 18.427 0.8948 1367
3 B TIPS 0.037113 15.463 0.0869 552

7 B PPO 0.039683 31.235 0.1401 810
7 B TIPS 0.050097 27.694 0.6539 1607

Table 16. Per-step regression coefficients and response-length statistics.
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