

000 001 002 003 004 005 TIPS: TURN-LEVEL INFORMATION-POTENTIAL 006 REWARD SHAPING FOR SEARCH-AUGMENTED LLMS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

ABSTRACT

029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Search-augmented large language models (LLMs) trained with reinforcement learning (RL) achieve strong results on open-domain question answering (QA), but training remains brittle: rewards are sparse, credit assignment across reasoning and tool calls is difficult, and optimization often collapses on long-horizon tasks. We introduce **Turn-Level Information Potential Reward Shaping (TIPS)**, a simple RL framework that assigns dense rewards to each reasoning–tool-call segment based on how much it increases a teacher model’s log-likelihood of the correct answer. This potential is computed by a frozen or periodically refreshed copy of the policy, so TIPS only requires checkpoints of the model being trained—no separate reward model, verifier, or human process labels—making it practical for scaling to frontier models. We show that this turn-level information reward is a form of potential-based shaping, preserving the task’s optimal policy while providing fine-grained guidance beyond outcome-only supervision. On a search-augmented QA setting spanning seven in-domain and out-of-domain benchmarks, TIPS consistently outperforms PPO/GRPO baselines and substantially improves training stability; for example, on Qwen-2.5-7B Instruct it improves average Exact Match by 11.8% and F1 by 13.6% over PPO. These results suggest that information-potential shaping is a viable general mechanism for stabilizing long-horizon RL on large, tool-using LLMs.

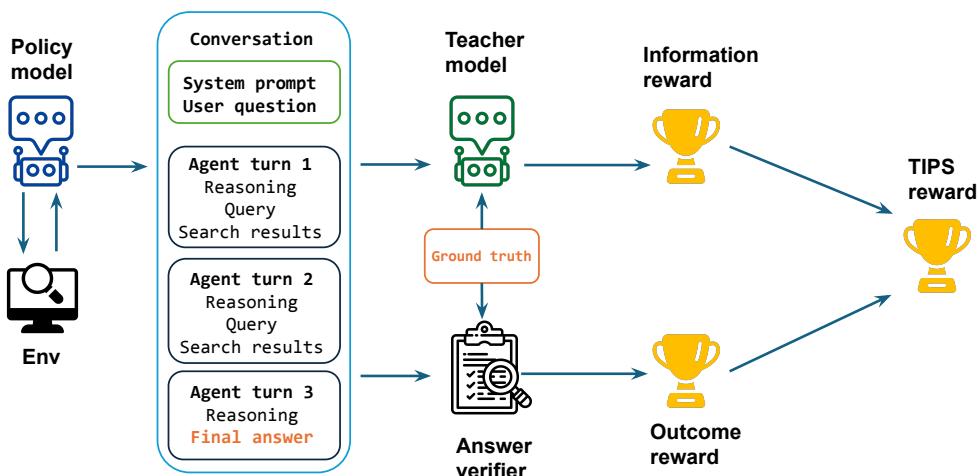
1 INTRODUCTION

034 Large language models (LLMs) have recently shown substantial improvements in reasoning when
035 fine-tuned in RL settings with verifiable rewards (Jaech et al., 2024; Guo et al., 2025; Lambert et al.,
036 2024). However, RL in this setting is constrained by sparse, outcome-only rewards (e.g., an exact-
037 match check at the end). This sparsity leads to high-variance learning and brittle credit assignment
038 over long chains of reasoning and tool use (Arjona-Medina et al., 2019; Ng et al., 1999; Devlin &
039 Kudenko, 2012). This problem is especially severe in open-domain question answering (QA), where
040 a single correct-or-incorrect signal fails to indicate which intermediate retrievals or tool calls were
041 helpful (Lightman et al., 2023; Gurung et al., 2025; Zeng et al., 2025b), thereby under-incentivizing
042 effective multi-turn reasoning with tool use.

043 In response, prior works have explored process supervision / process reward modeling (PRMs),
044 which annotate or learn token- or step-level rewards to better guide intermediate reasoning trajec-
045 tories (Lightman et al., 2023). These methods can reduce variance, but require high-quality super-
046 visory labels or heavyweight offline training of reward models (Wang et al., 2024). In the tool use
047 setting, recent methods such as MT-GRPO assign turn-level rewards based on environment feed-
048 back. However, MT-GRPO was designed for a single tool call; when we extend it to multiple calls,
049 the method suffers the same instability issues as the baselines (Table 1).

050 Instead, we propose turn-level *information-gain* credit. Concretely, we define each turn as a
051 segment consisting of reasoning tokens, a tool invocation, and the tool’s output—mirroring the
052 Thought–Action–Observation pattern in tool-use agents (Yao et al., 2022; Nakano et al., 2021;
053 Schick et al., 2023). We then measure how much appending that turn increases a teacher model’s
054 log-likelihood of the gold answer, and assign rewards in proportion. Useful turns that raise like-
055 lihood receive positive reward; irrelevant or distracting turns receive little or even negative credit.

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069



070 **Figure 1. Overview of our training framework.** The policy model interacts with the environment
071 by conducting multi-turn conversations: each turn consists of reasoning, issuing a query, and receiving
072 search results, until a final answer is produced. Two dense reward signals are then derived: (i)
073 an **outcome reward**, obtained by verifying whether the final answer matches the ground truth;
074 and (ii) an **information reward**, provided by a teacher model that measures the information gain each
075 turn contributes toward the ground truth. Both rewards are combined and optimized with PPO.
076

077 This converts a sparse outcome signal into denser, more discriminative feedback at the granularity
078 of turns, without token-level labeling.

079 We frame the interaction as a *segment-level MDP* and show that this reward construction is a form
080 of potential-based reward shaping (PBRS), which preserves policy invariance under standard conditions
081 (Ng et al., 1999; Devlin & Kudenko, 2012; Wiewiora, 2011). We integrate the shaped reward
082 into PPO (Schulman et al., 2017) for direct optimization in standard RL workflows, and explore both
083 frozen teachers and periodically refreshed ones. In our experiments, we also compare against multi-
084 turn extensions of GRPO and PPO that rely on rule-based/verifiable rewards (Zeng et al., 2025a; Su
085 et al., 2025), highlighting the differences between heuristic supervision and our information-based
086 shaping.

087 We demonstrate the effectiveness of TIPS across seven in-domain and out-of-domain QA benchmarks.
088 Compared to strong PPO/GRPO baselines, TIPS yields consistent and significant gains. On
089 Qwen-2.5-7B Instruct, it improves average exact match (EM, Appendix E.1) and F1 (Appendix E.2)
090 scores by over 10% relative to PPO, with even larger margins over GRPO. Unlike PPO, which often
091 drifts, or GRPO, which is prone to collapse, TIPS enables stable and steady learning, allowing
092 models to converge to higher accuracy with lower variance.

093 Our contributions can be summarized as follows:

- 094 1. We introduce **TIPS**, a reinforcement learning framework for multi-turn LLM agents that models
095 trajectories as segment-level MDPs and assigns information-gain rewards to each turn.
- 096 2. We integrate this turn-level reward shaping into PPO using potential-based reward shaping, which
097 preserves policy invariance and stabilizes long-horizon optimization.
- 098 3. We validate TIPS on search-augmented open-domain QA across 7 benchmarks and observe con-
099 sistent gains over PPO and GRPO, with the strongest improvements on multi-hop and out-of-
100 domain benchmarks.
- 101 4. We analyze training dynamics and advantage distributions, and demonstrate that TIPS delivers
102 more stable learning and allocates credit to effective reasoning and tool use while discouraging
103 degenerate behavior.

108

2 PRELIMINARIES

109
110 **Problem formulation.** We consider an LLM-based search agent for question answering. The
111 agent may invoke a natural language search tool—embedding-based or keyword retrieval—that in-
112 gests a query string and returns the top-k passages. Given a dataset $\mathcal{D} = \{(x_i, \mathcal{A}_i)\}$ where each
113 question x_i has a small gold answer set \mathcal{A}_i , the agent must produce a response through iterative rea-
114 soning and retrieval. Critically, the response must embed its final answer within `<answer>` tags,
115 and evaluation extracts this tagged answer to compute exact match (EM) or F1 against \mathcal{A}_i ; this is
116 not an open-ended generation task.
117

118 **Token-level MDP.** We model the interaction as a finite-horizon Markov Decision Process (MDP)
119 at the token level. At step t , the state s_t consists of the prefix of all generated text so far including
120 question, reasoning history and retrieved evidence. The action a_t is the next token sampled from
121 the policy $\pi_\theta(a_t \mid s_t)$. To transition to the next state, we either concatenate $s_{t+1} = s_t \oplus a_t$, or
122 if a_t triggers a retrieval, we append an observation O_k , defining a boundary index b_k . The episode
123 terminates when an EOS token is emitted, yielding a final reward R_{final} based on answer correctness.
124 All other tokens are assigned reward 0.
125

126 **On-policy RL with a response mask.** We focus on PPO and GRPO, the most common on-policy
127 RL baselines for LLMs. PPO trains π_θ against its snapshot π_{old} with clipped importance ratios
128

$$\rho_t(\theta) = \frac{\pi_\theta(a_t \mid s_t)}{\pi_{\text{old}}(a_t \mid s_t)}, \quad \mathcal{L}_{\text{clip}}(\theta) = \mathbb{E}_t [m_t \min(\rho_t(\theta) A_t, \text{clip}(\rho_t(\theta), 1 - \varepsilon, 1 + \varepsilon) A_t)], \quad (1)$$

129 where $A_t = G_t - V_\phi(s_t)$, $G_t = \sum_{k=t}^{T-1} \gamma^{k-t} r_k$, r_t is the per-token reward, and V_ϕ is a learned
130 value baseline. GRPO removes the critic by normalizing sequence-level rewards: given g rollouts
131 with terminal rewards $\{R^{(i)}\}$, compute mean μ and stdev σ , then set $A^{(i)} = (R^{(i)} - \mu)/\sigma$. A binary
132 mask $m_t \in \{0, 1\}$ excludes non-trainable tokens (e.g., prompts or tool outputs).
133

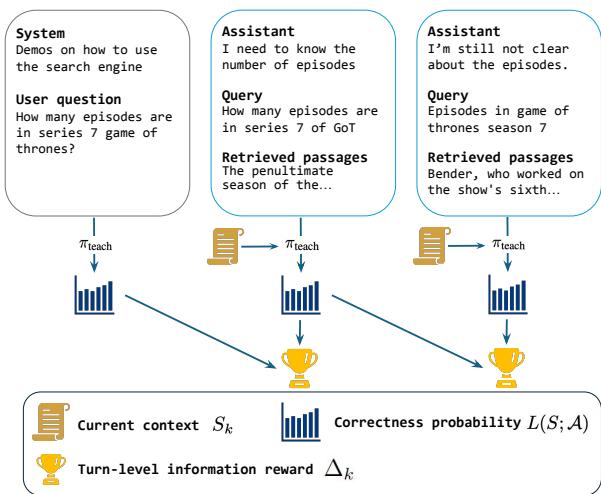
134

3 METHOD

135

3.1 INTUITION

136 Sparse terminal rewards provide little
137 supervision for multi-turn tool-
138 augmented reasoning: a model re-
139 ceives no feedback on which inter-
140 mediate tool calls are beneficial un-
141 til episode completion, causing brit-
142 tle performance and training collapse
143 (Fig. 3). TIPS addresses this by using
144 the policy itself as a teacher: a frozen
145 snapshot of the current policy scores
146 each turn by measuring the increase
147 in its own log-probability of gener-
148 ating a correct answer. Intuitively,
149 a turn that retrieves a highly rele-
150 vant passage will make the teacher
151 much more confident in some answer
152 in \mathcal{A} , whereas a redundant or off-
153 topic query leaves its belief nearly
154 unchanged or even shifts probabili-
155 ty mass toward incorrect answers. The
156 change in log-probability thus pro-
157 vides a single scalar measure of how
158 much turn k helped move the dialogue toward a correct answer. Because the teacher is a lagged copy
159 of the policy, their predictive distributions are kept close, so what elevates the teacher’s confidence
160 tends to benefit the policy as well. We periodically refresh the teacher to prevent its beliefs from



161 **Figure 2. Turn-level information reward pipeline.** At
162 each turn, retrieved evidence updates the answer likelihood,
163 yielding a turn-level reward Δ_k . These rewards are then
164 injected at turn boundaries.

162 becoming stale and misaligned with the latest policy. Critically, this mechanism requires no external
 163 judge and only adds a modest computational overhead, which enables scaling to larger models.
 164

165 **3.2 TURN-LEVEL INFORMATION REWARDS**
 166

167 In the multi-turn QA task, each turn comprises a reasoning block, a tool call, and the evidence
 168 returned. To formalize the intuition above, let $\mathcal{A} = \{A^{(1)}, \dots, A^{(M)}\}$ be the set of valid answers
 169 for an episode. For any context S , we define the *answer potential*:

$$170 \quad \Phi(S) := L(S; \mathcal{A}) = \log \sum_{m=1}^M p_{\text{teach}}(A^{(m)} | S),$$

171 the teacher’s log-probability of generating *any* correct answer. The turn-level reward for turn k is
 172 the change in this potential:

$$173 \quad \Delta_k = \alpha [\Phi(S_k) - \Phi(S_{k-1})],$$

174 where S_k is the context up to and including turn k and $\alpha > 0$ scales the reward. Intuitively, $\Phi(S)$
 175 summarizes, under the teacher, how likely the current dialogue state is to yield any correct answer
 176 in \mathcal{A} , and Δ_k measures how much turn k moves this likelihood up or down. This quantity is positive
 177 when turn k shifts probability mass toward valid answers, and negative otherwise.

178 **Information-theoretic interpretation.** Δ_k can be interpreted as a scaled pointwise mutual-
 179 information quantity between the evidence at turn k and answer correctness under the teacher’s
 180 distribution: it measures how much information the new observation contributes about the event that
 181 the answer lies in \mathcal{A} . This view is especially natural for QA, where each tool call is intended to
 182 supply incremental evidence toward a correct answer.

183 **3.3 SEGMENT-LEVEL PBRS AND POLICY INVARIANCE**
 184

185 So far, Δ_k has been defined as a dense, turn-level signal that measures how much turn k helps
 186 the teacher believe in a correct answer. We now show that this signal can be viewed as a standard
 187 potential-based reward shaping term, and therefore does not change the optimal policy under the
 188 original outcome reward.

189 We treat each turn as a segment of tokens between turn boundaries, and view a whole turn as a single
 190 action in a segment-level MDP (where the action subsumes reasoning, tool calls, and observations).
 191 With the answer potential $\Phi(S)$ from Section 3.2 as the potential function, the shaping reward at
 192 turn k is exactly

$$193 \quad \Delta_k = \alpha [\Phi(S_k) - \Phi(S_{k-1})],$$

194 which matches the standard form of potential-based reward shaping (Ng et al., 1999).

195 **Policy invariance guarantee.** Under episodic returns ($\gamma = 1$) and shaping confined to segment
 196 boundaries, the shaped Monte Carlo return for any token t in turn k satisfies:

$$197 \quad G_t^{(R+I)} = G_t^{(R)} + \sum_{j=k}^K \Delta_j = G_t^{(R)} - \alpha \Phi(S_{k-1}), \quad (2)$$

198 where we assign $\Phi(S_K) = 0$. Thus $G_t^{(R+I)}$ differs from $G_t^{(R)}$ only by a constant that depends on
 199 the segment boundary state S_{k-1} , and is independent of the within-turn action sequence τ_k . Actions
 200 that are relatively better under the outcome reward therefore remain relatively better after shaping.
 201 As a result, policy improvement under Monte Carlo estimation—and hence under GAE or other
 202 policy-gradient estimators that use these returns up to a baseline—is unaffected. A full proof is
 203 provided in Appendix F.

204 **Teacher re-syncing.** With a fixed teacher, our shaping is potential-based, so for any state the shaped
 205 Monte-Carlo return differs from the outcome-only return only by a state-dependent constant. When
 206 we refresh the teacher, we simply change the potential used for shaping in subsequent rollouts; in the
 207 PBRS view this is equivalent to changing a (state-dependent) baseline and leaves the true advantage
 208 function invariant, though with an approximate critic, we do observe small shifts in raw returns
 209 before it re-stabilizes in practice.

216

4 EXPERIMENTS

218 In our experiments, we seek to answer the following questions:

- 219 • **(Q1) Performance & stability.** Can TIPS train multi-turn QA agents that outperform outcome-
220 only PPO/GRPO across in-domain and OOD tasks *and* remain stable (lower collapse rate,
221 smoother/higher plateaus, reduced across-seed variance)?
- 223 • **(Q2) Learning signal design.** Does turn-level information reward improve credit assignment
224 compared with sparse final-answer rewards and rule/rubric baselines? How do token-level ad-
225 vantage distributions differ under TIPS vs. PPO?
- 226 • **(Q3) Analysis & ablations.** How do shaping scale α and teacher freshness (frozen vs. periodic
227 refresh) affect stability and final EM/F1? What are the comparative effects of dense-reward
228 choices (rule-based, rubric/LLM-judge, information gain)?

229 **Experimental Setup.** Based on VeRL’s multi-turn QA tasks setup, we conduct experiments with
230 two model sizes: **Qwen-2.5-3B Instruct** and **Qwen-2.5-7B Instruct** (Jin et al., 2025; Qwen Team,
231 2025; Sheng et al., 2024). For retrieval, we use the E5 model (Wang et al., 2022) over the 2018
232 Wikipedia dump (Wikimedia Foundation, 2025), retrieving 3 passages per turn, and train on the
233 merged NQ and HotpotQA training splits. We evaluate both in-domain and out-of-domain per-
234 formance on seven QA benchmarks: NQ, TriviaQA, PopQA, 2WikiMultiHopQA, MuSiQue, Hot-
235 potQA, and Bamboogle (Kwiatkowski et al., 2019; Joshi et al., 2017; Mallen et al., 2023; Ho et al.,
236 2020; Trivedi et al., 2022; Yang et al., 2018; Press et al., 2023). For all evaluations, we report Ex-
237 act Match (EM) and F1 scores (Jin et al., 2025; Zhao et al., 2025). Unless specified, we use the
238 following hyperparameters across all methods: PPO with GAE ($\lambda=1$, $\gamma=1$), KL penalty weight
239 $\beta=0.001$, clip ratio $\epsilon=0.2$, batch size = 256, context length = 4096, and maximum retrieval turns
240 = 4. Training runs for 500 steps, or until a performance collapse to 0, on $8 \times$ H200 GPUs with FSDP
241 and gradient checkpointing. Full hyperparameters of both training and search engine server setup
242 are described in Appendix E.3.

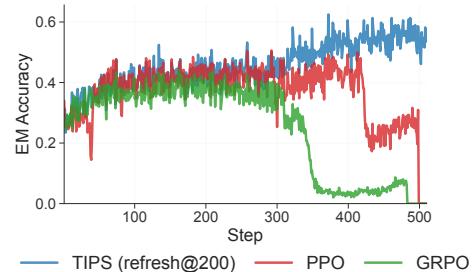
243 **Baselines.** We compare against four related rein-
244 forcement learning baselines. **PPO** (Proximal Pol-
245 icy Optimization): Our base method with outcome-
246 only supervision. Policy and value learning rates are
247 1×10^{-6} and 1×10^{-5} , respectively. **GRPO** (Group
248 Relative Policy Optimization): We follow the pub-
249 lic implementation with group size 5 and learning
250 rate 5×10^{-7} . To ensure stability, we apply gra-
251 dient clipping at 1×10^{-4} , which mitigates much
252 of the collapse observed in reproducing Search-R1.
253 **MT-GRPO*** and **MT-PPO**: Multi-turn exten-
254 sions of GRPO and PPO for multi-hop QA. MT-GRPO*
255 propagates stepwise normalization across multiple
256 tool calls, while MT-PPO applies environment feed-
257 back at turn-level. Both variants are tested with two
258 rule-based rewards: (i) tool-correctness only, and (ii)
259 correctness plus answer appearance in re-
260 trieval passages. In our main tables, we report the stronger variant for each model size: tool-only
261 for 7B (answer-based often collapsed) and answer-aware for 3B. Detailed implementations are in
262 Appendix E.5.

263

4.1 MAIN RESULTS

264 From Tables 1 and 2, we find that **TIPS consistently outperforms all baselines**, with clear advan-
265 tages over PPO and GRPO across both in-domain and out-of-domain settings. The largest absolute
266 improvements appear on multi-hop out-of-domain tasks such as 2Wiki, MuSiQue, and Bamboogle,
267 where outcome-only methods struggle. At the 3B scale, improvements are more modest and in some
268 cases PPO performs competitively, whereas at the 7B scale TIPS shows a pronounced advantage.

269 For the MT baselines, we tested two rule-based reward variants (tool-correctness vs. answer-aware)
270 and observed instability: on 7B models the answer-aware variant often collapsed, while on 3B



271 *Figure 3. EM accuracy on the training
272 set.* TIPS converges to a high accuracy; PPO
273 drifts late; GRPO collapses.

270 **Table 1. Exact Match (EM) for 7B and 3B models.** In-domain: {NQ, HotpotQA}. Out-of-domain:
 271 {TriviaQA, PopQA, 2Wiki, MuSiQue, Bamboogle}. The last column is the average over all 7 tasks.
 272

Model	In-domain		Out-of-domain					Avg
	NQ	HotpotQA	TriviaQA	PopQA	2Wiki	MuSiQue	Bamboogle	
Qwen-2.5-7B Instruct								
PPO	41.95	34.46	63.71	43.55	32.94	8.94	35.40	37.28
GRPO	37.15	26.54	56.39	37.11	19.41	7.20	16.00	28.54
MT-GRPO*	37.17	29.28	58.29	38.37	22.62	7.99	19.20	30.42
MT-PPO	42.37	26.45	55.12	41.59	22.81	6.91	11.20	29.49
TIPS	43.38	42.95	64.31	44.52	42.96	17.05	36.80	41.71
Qwen-2.5-3B Instruct								
PPO	43.80	27.12	58.28	42.81	23.10	6.37	9.60	30.15
GRPO	37.40	29.62	55.23	37.39	26.85	8.73	20.80	30.86
MT-GRPO*	36.18	24.71	51.70	35.64	22.63	5.17	10.40	26.35
MT-PPO	39.65	25.54	56.17	40.47	21.35	6.16	8.00	28.19
TIPS	43.46	31.40	58.80	42.76	29.25	8.73	20.80	33.60

289 **Table 2. F1 for 7B and 3B models.** In-domain: {NQ, HotpotQA}. Out-of-domain: {TriviaQA,
 290 PopQA, 2Wiki, MuSiQue, Bamboogle}. The last column is the average over all 7 tasks.
 291

Model	In-domain		Out-of-domain					Avg
	NQ	HotpotQA	TriviaQA	PopQA	2Wiki	MuSiQue	Bamboogle	
Qwen-2.5-7B Instruct								
PPO	50.53	44.65	70.88	47.62	38.70	17.79	45.33	45.07
GRPO	47.85	35.29	63.58	42.51	24.15	12.12	22.93	35.49
MT-GRPO*	48.10	38.36	66.05	44.11	27.94	14.29	28.25	38.16
MT-PPO	50.60	35.29	62.08	46.45	28.56	12.13	20.87	36.57
TIPS	53.22	54.66	72.17	49.26	50.64	26.58	52.16	51.24
Qwen-2.5-3B Instruct								
PPO	51.71	36.47	65.75	46.81	28.73	12.65	19.12	37.32
GRPO	47.40	39.51	63.30	43.00	33.36	14.81	28.45	38.55
MT-GRPO*	45.77	33.10	59.51	40.40	28.13	10.68	15.90	33.64
MT-PPO	47.75	34.15	62.85	44.83	26.10	11.05	14.00	34.39
TIPS	51.77	41.47	66.43	47.43	35.10	15.85	29.82	41.12

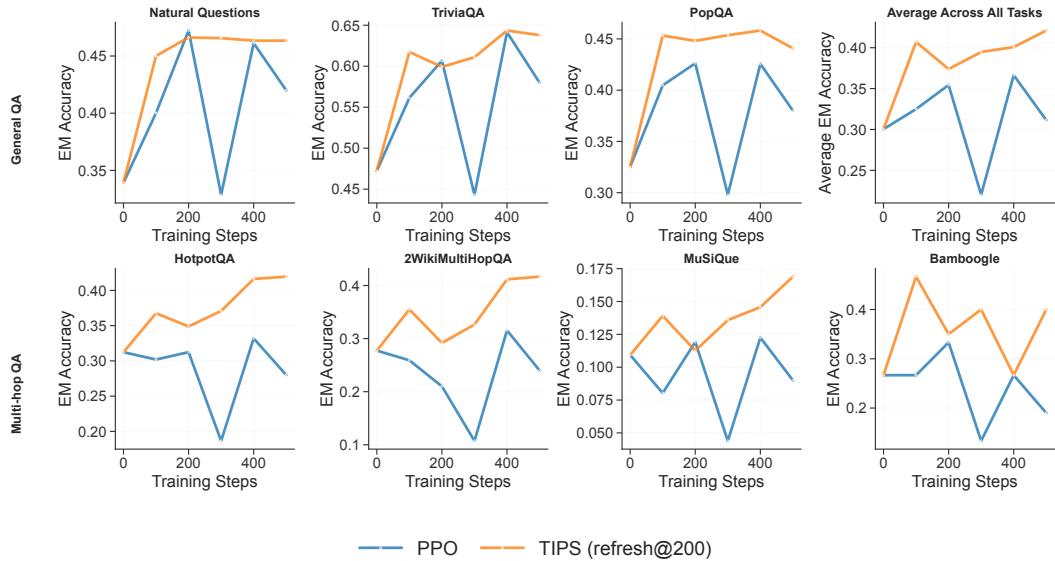
308
 309
 310 models the tool-only variant underperformed. As a result, we report the stronger variant for each case
 311 in the tables. Overall, MT-GRPO* improves over GRPO by enabling multi-tool credit assignment,
 312 but both MT baselines still lag significantly behind TIPS. Combined with the training curves in
 313 Fig. 3, these comparisons highlight that TIPS not only achieves higher accuracy but also more stable
 314 optimization, avoiding the collapse of GRPO and the stagnation of PPO.

315 **Training dynamics.** As illustrated in Fig. 3, TIPS climbs steadily to an EM plateau of approxi-
 316 mately 0.55-0.60 with low variance. In contrast, GRPO suffers a performance collapse around steps
 317 320-350 and fails to recover, while PPO stagnates after 400 steps, never reaching the performance
 318 level of TIPS.

319 **Generalization across models.** Using the same training setup, we apply TIPS to five models from
 320 two families and multiple scales: Qwen2.5-3B/7B/14B, Qwen3-4B, and Llama3.1-8B. As summa-
 321 rized in Table 3, TIPS consistently improves over the corresponding outcome-only PPO baseline on
 322 all models, with relative EM gains ranging from +7.3% to +34.0% and F1 gains from +6.1% to
 323 +29.3%. The largest relative improvements appear on Llama3.1-8B, which starts from a weaker
 search capability and benefits most from better credit assignment, while stronger baselines such as

324
 325 **Table 3.** Generalization of TIPS across model families and scales. EM/F1 are TIPS scores; per-
 326 centages in parentheses indicate relative improvement over the outcome-only PPO baseline. FLOPs
 327 overhead is the relative per-step increase due to teacher scoring.

328	Model	EM	F1	FLOPs overhead (%)
329	Qwen2.5-3B-Instruct	33.6 (+11.4%)	41.1 (+10.2%)	11.761
330	Qwen3-4B-Instruct-2507	48.4 (+7.3%)	57.1 (+6.1%)	11.846
331	Qwen2.5-7B-Instruct	41.7 (+11.9%)	51.2 (+13.7%)	11.810
332	Qwen2.5-14B-Instruct	45.4 (+12.7%)	53.1 (+10.6%)	11.813
333	Llama3.1-8B	40.3 (+34.0%)	49.0 (+29.3%)	11.659



353 **Figure 4. Training dynamics of PPO vs. TIPS.** Blue curves denote PPO and orange curves denote
 354 TIPS with teacher refresh every 200 steps. Overall, TIPS climbs steadily to higher and more stable
 355 plateaus, while PPO often suffers mid-training drift or collapse, especially on multi-hop datasets.
 356

357 Qwen3-4B still see solid gains. At the same time, the compute overhead of TIPS remains essentially
 358 constant across architectures: using the FLOPs accounting in Appendix H, teacher scoring adds only
 359 $\approx 11.7\%$ per-step FLOPs for all five models in Table 3. Taken together, these results support our
 360 claim that TIPS is backbone-agnostic, providing consistent improvements across model families at
 361 a modest and stable relative compute cost.

362 4.2 ANALYSIS

365 **Task-wise validation curves** In Fig. 4, we plot EM curves of TIPS and PPO for Qwen2.5-7B
 366 across all benchmarks. Benchmarks are grouped into General QA (NQ, TriviaQA, PopQA) and
 367 Multi-hop QA (HotpotQA, 2Wiki, MuSiQue, Bamboogle), with the top-right panel showing the
 368 average across all seven. Results are computed on a held-out validation set of 6,000 samples with
 369 the same benchmark distribution as full evaluation. Across tasks, TIPS rises smoothly and quickly
 370 stabilizes, whereas PPO exhibits drift—most severe on multi-hop QA with mid-training degradation
 371 and only partial recovery. On general QA tasks the drift is milder but PPO still converges below
 372 TIPS. These dynamics align with Tables 1–2, where the largest margins appear on multi-hop/OOD
 373 datasets. Overall, TIPS delivers higher final EM and more reliable optimization by preventing PPO’s
 374 late-stage collapse.

375 **Study of Advantage Distributions** To further investigate contributors to TIPS’ stability, we col-
 376 lect all unmasked token-level advantages from final checkpoints. In Fig. 5, TIPS yields a clean bi-
 377 modal distribution with concentrated positive mass, while PPO shows fat-tailed positives and dense

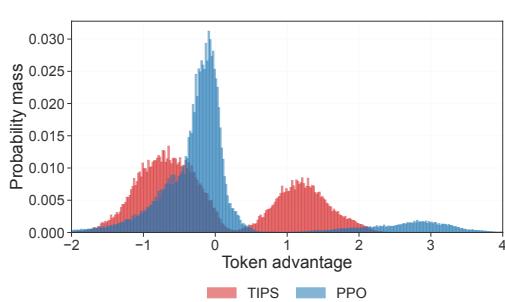


Figure 5. Distribution of token-level advantages. Aggregated advantages at final checkpoints. TIPS yields a clean bimodal distribution with concentrated positive mass, while PPO shows heavy tails and dense near-zero mass.

mass near zero, indicating instability and drift into poor policy space. This provides a mechanistic explanation for why **TIPS suppresses late-stage drift and collapse**, stabilizing the training trajectory observed in Fig. 4.

Computational Overhead We isolate the teacher-scoring cost by measuring per-step wall-clock time in a single TIPS run with and without scoring. This gives runtime overheads of 18% for Qwen2.5-3B and 16% for Qwen2.5-7B. In terms of FLOPs, TIPS adds only about 12% relative to vanilla PPO for both model sizes, since we can reuse KV caches in the teacher forward passes on a given rollout. For comparison, GRPO requires roughly $3.5 \times$ the PPO FLOPs for both model sizes.

Raw wall-time differences between separate TIPS and PPO runs are heavily influenced by how long the model’s responses are. A simple linear regression of per-step time on mean response length explains most of this gap, and after controlling for response length TIPS is within a few percent of PPO in wall-clock terms. Full overhead analysis is in Appendix H.

4.3 ABLATIONS

Table 5. EM gains over PPO for different target information-reward ranges under dynamic α . The medium band yields stable and consistently positive gains across backbones; very small targets effectively turn shaping off, while very large targets let shaping compete with the terminal reward and can hurt performance.

Base model	Small (0.001–0.05)	Medium (0.05–0.3)	Large (0.3–1.0)
Qwen3-4B	+1.4% (stable)	+7.3% (stable)	-3.4% (stable)
Qwen2.5-7B	0% (crashed)	+11.9% (stable)	+3.1% (stable)
Qwen2.5-3B	0% (stable)	+11.4% (stable)	0% (stable)

Shaping scale α . The coefficient α controls the relative weight between the information reward and the terminal outcome reward. If α is too small, the shaping term becomes negligible and TIPS behaves like outcome-only PPO; if it is too large, the shaping term can compete with the terminal reward and increase gradient variance. In practice, we pick α so that the average per-turn information reward is clearly smaller than the terminal reward: we run a short pilot, estimate the typical magnitude of $|\Delta_k|$, and choose a fixed α such that $\mathbb{E}[|\alpha\Delta_k|] \approx 0.2$. Across all backbones this places α in a medium band $\alpha \in [0.05, 0.3]$, within which TIPS is stable and consistently improves over outcome-only PPO. We also tried a dynamic- α scheme that keeps the mean information reward in a target band; as detailed in Appendix D, the medium band ($[0.05, 0.3]$) again yields stable and consistently positive gains, while very small or very large targets either collapse or hurt performance.

Different dense reward choices. Table 4 compares different dense reward signals. Outcome-only rewards perform better under PPO than GRPO, reflecting the advantage of value-based credit assignment. Within GRPO, rule-based turn-level shaping brings minor gains,

Table 4. Ablations on dense credit sources. Results are averaged over all tasks. MT-GRPO details are in Appendix E.5; the LLM-as-judge variant in Appendix E.7; MT-PPO uses the same reward design as MT-GRPO; and the history-max information gain variant in Appendix E.6.

Method	EM	F1
GRPO family		
Outcome-only	28.54	35.49
Rule-based turn-level (MT-GRPO)	30.42	38.16
Rubric-based turn-level (LLM judge)	28.23	35.54
PPO family		
Outcome-only	37.28	45.07
Rule-based turn-level (MT-PPO)	29.49	36.57
Turn-level information gain	40.93	49.49
History-max info gain	35.20	43.09

432 **Table 6. Ablation on teacher selection. Rows fix the policy backbone and vary the teacher.**
433

Policy	Frozen policy	Qwen3-4B-TIPS	Llama3.1-8B
Qwen2.5-7B	41.7 (+11.9%)	30.0 (-19.5%)	29.0 (-22.2%)
Qwen3-4B	48.4 (+7.3%)	45.88 (+1.7%)	43.0 (-4.7%)

437 while rubric-based supervision from an auxiliary LLM judge adds little—likely due to
438 noisy signals from heuristic or surface-form matching, or prompt drift. This mirrors
439 our MT-setting findings, where the answer-aware variant often destabilized 7B training.
440

441 For PPO, our turn-level information gain con-
442 stantly outperforms outcome-only supervision,
443 while history-max gating weakens results, likely
444 because it discards informative negative deltas.
445 Overall, information-gain shaping emerges as the
446 most effective and robust dense reward across set-
447 tings.
448

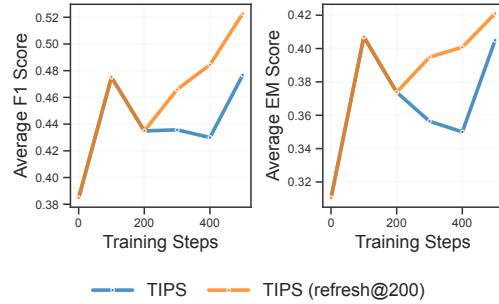
449 **Teacher selection.** TIPS uses the teacher only
450 through its log-likelihoods over valid answers,
451 which define the potential $\Phi(S)$. In all main
452 experiments we set the teacher to be a period-
453 ically refreshed frozen copy of the policy, so their
454 distributions stay closely aligned. To test this
455 choice, we fix the policy and vary the teacher
456 among: (i) the frozen policy, (ii) a TIPS-trained
457 Qwen3-4B, and (iii) Llama3.1-8B, keeping envi-
458 ronment, data, and RL hyperparameters identical.

459 Across both policies, the frozen policy is clearly
460 best: using a different backbone (even a stronger
461 or TIPS-trained one) degrades the 7B model and
462 brings only small gains for 4B. This suggests that
463 *behavioural alignment*, rather than raw teacher
464 strength, is crucial for TIPS, and supports using
465 a lagged copy of the policy as the default teacher
466 when scaling to other backbones.

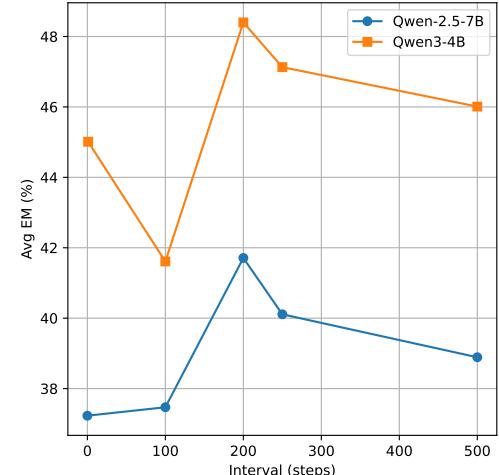
467 **Refresh interval.** In TIPS the teacher is a
468 frozen copy of the policy, refreshed every N
469 updates. Very small N makes the potential Φ
470 change rapidly (noisy shaping), while very large
471 N makes Φ stale and misaligned with the im-
472 proved policy, so we treat N as a simple hyperpa-
473 rameter. Within each rollout the teacher is fixed
474 and no gradients flow through Φ , so PBRS in-
475 variance holds at the trajectory level; refreshing
476 only switches to a new potential between batches
477 (App. F). We ablate $N \in \{1, 100, 200, 250, 500\}$
478 on Qwen2.5-7B and Qwen3-4B (Fig. 6), where $N=500$ keeps the teacher fixed for the whole run.
479 Both models perform worse with a fixed teacher ($N=500$), confirming that a stale teacher harms the
480 shaping signal. A broad optimum appears around $N=200$, with $N=100$ and $N=250$ close behind.
481 Across $N \in [100, 500]$, all TIPS runs still outperform outcome-only PPO, so the refresh window
482 mainly controls *how much* improvement shaping yields rather than whether it helps at all.

5 RELATED WORK

483 **RL for LLM reasoning and credit assignment.** Outcome-supervised RLHF and PPO variants
484 have been central to aligning LLMs and improving reasoning (Ouyang et al., 2022; Ziegler et al.,



(a) Qwen2.5-7B Instruct model. Fixed vs. updated teacher. Updating every 200 steps improves stability.



(b) Effect of teacher refresh interval on final average EM for Qwen2.5-7B and Qwen3-4B. Very rare refreshes ($N=500$) degrade performance, while a broad optimum emerges around $N=200$; all TIPS runs with $N \in [100, 500]$ outperform PPO.

Figure 6. Effect of the teacher refresh interval on EM for TIPS.

486 2019; Schulman et al., 2017). Group Relative Policy Optimization (GRPO) offers a memory-
 487 efficient PPO variant widely used in math/logic post-training (Shao et al., 2024). More recently,
 488 large-scale RL recipes emphasizing long-horizon reasoning (often with process supervision or out-
 489 come checks) delivered substantial gains over SFT-only training in math, coding, and science QA
 490 (OpenAI, 2024b;a; Guo et al., 2025). However, outcome-only signals suffer from severe *credit-
 491 assignment* issues: delayed rewards obscure which intermediate steps or segments contributed to
 492 success (Arjona-Medina et al., 2019). Classical potential-based shaping (PBRs) preserves optimality
 493 guarantees while speeding learning (Ng et al., 1999; Devlin & Kudenko, 2012; Wiewiora, 2011;
 494 Gao & Toni, 2015), and counterfactual approaches such as difference rewards or COMA improve
 495 variance by subtracting leave-one-out baselines (Wolpert & Tumer, 1999; Agogino & Tumer, 2005;
 496 Foerster et al., 2017). Parallel efforts in the LLM domain redistribute sparse sequence rewards into
 497 denser, token- or step-level signals, via process-supervised reward models (Lightman et al., 2023;
 498 Wang et al., 2024) or likelihood-improvement style objectives (e.g., VR-CLI) (Gurung et al., 2025).
 499 Our method is a text-domain analogue: we compute a segment-conditional leave-one-out increment
 500 on the gold answer log-likelihood, inheriting variance-reduction and “marginal contribution” intu-
 501 itions (Williams, 1992), while avoiding costly manual step labels.
 502

502 **RL with tools for QA reasoning.** External tools such as retrieval, search, calculators, and code in-
 503 terpreters consistently improve QA by providing missing evidence or exact computation (Gao et al.,
 504 2022; Chen et al., 2022; Schick et al., 2023). Prompting frameworks like Self-Ask and ReAct in-
 505 terleave reasoning with tool calls (Press et al., 2022; Yao et al., 2022), while browser-based agents
 506 showed early QA gains via RLHF (Nakano et al., 2021). Recent RL-with-tools work emphasizes
 507 denser credit assignment for tool steps; for instance, MT-GRPO improves reliability of multi-turn
 508 tool execution (Zeng et al., 2025b), though restricted to a single tool type. Our shaping mecha-
 509 nism generalizes to multiple tool segments and assigns reward proportional to their actual marginal
 510 contribution to the gold answer likelihood.
 511

511 **LLM-as-a-judge.** An alternative line of work trains or prompts LLMs as evaluators for open-
 512 ended tasks, spanning prompt-based judges (e.g., G-Eval) (Liu et al., 2023), community arenas
 513 (MT-Bench, Chatbot Arena) (Zheng et al., 2023), rubric-tuned/open judges (Prometheus; JudgeLM)
 514 (Kim et al., 2024; Zhu et al., 2023), and AI-feedback pipelines (RLAIF) (Lee et al., 2023). More
 515 recent verifier-style approaches co-train generators with learned verifiers or generative reward mod-
 516 els (Generative Verifiers, RL Tango, RLVR) (Zhang et al., 2024; Zha et al., 2025; Su et al., 2025).
 517 In contrast, our approach does not rely on subjective judge outputs: instead, a reference LM pro-
 518 vides verifiable, likelihood-based segment-conditional increments toward the gold answer, yielding
 519 counterfactual credit without additional labeling.
 520

521 6 CONCLUSIONS

522 We addressed brittle optimization in search-augmented RL for QA with **TIPS**, a turn-level infor-
 523 mation shaping method grounded in a segment-level MDP. The potential is the teacher log-likelihood
 524 of acceptable answers, and shaping at turn boundaries provides dense credit while preserving the
 525 objective under PBRs. We integrate this into token-level PPO with response masking and KL con-
 526 trol. On seven benchmarks and two model sizes, TIPS improves EM and F1 over PPO and GRPO
 527 and trains more stably, with largest gains on multi-hop and out-of-domain tasks. TIPS has two lim-
 528 its: the modest, but real computational overhead, and that it is currently tied to PPO. Future work
 529 will test quicker refreshes, explore using the policy as teacher, and study transfer to reasoning-heavy
 530 domains such as programming and math. If successful, TIPS could become a general mechanism
 531 for long-horizon credit assignment in LLM agents beyond web search.
 532

533
 534
 535
 536
 537
 538
 539

540 STATEMENTS
541

542 **Details of LLM use.** We used large language models for three purposes: (i) to aid and polish
543 writing, and (ii) to support retrieval and discovery of related work, and (iii) for code generation.
544 For writing assistance, the authors drafted the text and used model suggestions to improve clarity,
545 grammar, and flow. All text was reviewed and edited by the authors; the models did not originate
546 technical ideas, methods, results, or claims. For retrieval and discovery, we used LLM-assisted
547 search and summarization to surface potentially relevant literature; inclusion decisions and all cita-
548 tions were verified by the authors through manual reading. We used the Cursor IDE, which supports
549 LLM-based auto-complete and code generation during development. No experimental design or
550 data analysis was produced by LLMs.

551 **A statement on reproducibility.** Reproducibility is a priority. *We are committed to releasing code*
552 *for TIPS training and evaluation upon acceptance.* We provide exact training/evaluation configs for
553 reproducing experiments; all materials are consolidated in the appendices. Specifically, implemen-
554 tation and hyperparameters for PPO/GRPO/MT variants are detailed in App. E.3 and App. E.5, with
555 additional variants in App. E.7 and App. E.6. We also report training/ablation curves in Figs. 3
556 and 4. Together, these artifacts enable exact reruns and independent verification of all numbers in
557 Tables 1–2.

559 REFERENCES
560

561 Adrian K. Agogino and Kagan Tumer. Quicker q-learning in multi-agent systems. Technical Report
562 NASA-ARC-IC-2005-182925, NASA Ames Research Center, 2005. URL <https://ntrs.nasa.gov/api/citations/20050182925/downloads/20050182925.pdf>.

565 Jose A. Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner,
566 Johannes Brandstetter, and Sepp Hochreiter. Rudder: Return decomposition
567 for delayed rewards. In *Advances in Neural Information Processing Systems*
568 (*NeurIPS*), 2019. URL <https://papers.neurips.cc/paper/2019/file/16105fb9cc614fc29e1bda00dab60d41-Paper.pdf>.

570 Wenhua Chen et al. Program of thoughts prompting: Disentangling computation from reasoning for
571 numerical reasoning. *arXiv preprint arXiv:2211.12588*, 2022. URL <https://arxiv.org/abs/2211.12588>.

574 Zijian Chen, Xueguang Ma, Shengyao Zhuang, Ping Nie, Kai Zou, Andrew Liu, Joshua Green,
575 Kshama Patel, Ruoxi Meng, Mingyi Su, Sahel Sharifmoghaddam, Yanxi Li, Haoran Hong,
576 Xinyu Shi, Xuye Liu, Nandan Thakur, Crystina Zhang, Luyu Gao, Wenhua Chen, and Jimmy Lin.
577 Browsecmp-plus: A more fair and transparent evaluation benchmark of deep-research agent,
578 2025. URL <https://arxiv.org/abs/2508.06600>.

579 Sam M. Devlin and Daniel Kudenko. Dynamic potential-based reward shaping. In *Proceedings*
580 *of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS)*,
581 pp. 433–440, 2012. URL https://www.ifaamas.org/Proceedings/aamas2012/papers/2C_3.pdf.

584 Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon White-
585 son. Counterfactual multi-agent policy gradients. *arXiv preprint arXiv:1705.08926*, 2017. URL
586 <https://arxiv.org/abs/1705.08926>. AAAI 2018 version available.

587 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
588 Graham Neubig. Pal: Program-aided language models. *arXiv preprint arXiv:2211.10435*, 2022.
589 URL <https://arxiv.org/abs/2211.10435>.

591 Yang Gao and Francesca Toni. Potential based reward shaping for hierarchical reinforcement learn-
592 ing. In *Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI)*,
593 pp. 2628–2634, 2015. URL <https://www.ijcai.org/Proceedings/15/Papers/493.pdf>.

594 Dong Guo et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
595 *arXiv preprint arXiv:2501.12948*, 2025. URL <https://arxiv.org/abs/2501.12948>.

596

597 Ayush Gurung, Jiaqi Huang, Shuyuan Wu, Kun Qian, Sam Thomson, Mirella Lapata, Marianna
598 Apidianaki, and Chris Callison-Burch. Learning to reason for long-form story generation. *arXiv
599 preprint arXiv:2503.22828*, 2025. URL <https://arxiv.org/abs/2503.22828>. Intro-
600 duces Verifiable Rewards via Completion Likelihood Improvement (VR-CLI).

601 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
602 hop QA dataset for comprehensive evaluation of reasoning steps. In *Proceedings of the 28th
603 International Conference on Computational Linguistics*, pp. 6609–6625, Barcelona, Spain (On-
604 line), 2020. doi: 10.18653/v1/2020.coling-main.580. URL [https://aclanthology.org/2020.coling-main.580/](https://aclanthology.org/2020.coling-main.580).

605

606 Aaron Jaech et al. Openai o1 system card, 2024. URL <https://arxiv.org/abs/2412.16720>.

607

608 Bowen Jin, Jinsung Yoon, Priyanka Kargupta, Sercan O. Arik, and Jiawei Han. An empirical study
609 on reinforcement learning for reasoning-search interleaved ILM agents, 2025. URL <https://arxiv.org/abs/2505.15117>.

610

611 Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
612 supervised challenge dataset for reading comprehension. In *Proceedings of the 55th Annual Meet-
613 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1601–1611,
614 Vancouver, Canada, 2017. doi: 10.18653/v1/P17-1147. URL <https://aclanthology.org/P17-1147/>.

615

616 Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
617 Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language
618 model specialized in evaluating other language models. In *EMNLP*, 2024. URL <https://arxiv.org/abs/2405.01535>.

619

620

621 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
622 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
623 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
624 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the
625 Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
626 [https://aclanthology.org/Q19-1026/](https://aclanthology.org/Q19-1026).

627

628 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
629 man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Ma-
630 lik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
631 Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
632 jishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2024. URL <https://arxiv.org/abs/2411.15124>. v5, revised 2025-04-14.

633

634 Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, et al. Rlaif vs.
635 rlhf: Scaling reinforcement learning from human feedback with ai feedback. *arXiv preprint
636 arXiv:2309.00267*, 2023. URL <https://arxiv.org/abs/2309.00267>.

637

638 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
639 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. *arXiv preprint
640 arXiv:2305.20050*, 2023. URL <https://arxiv.org/abs/2305.20050>.

641

642 Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval:
643 NLG evaluation using gpt-4 with better human alignment. In *EMNLP*, 2023. URL <https://aclanthology.org/2023.emnlp-main.153.pdf>.

644

645 Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
646 When not to trust language models: Investigating effectiveness of parametric and non-parametric
647 memories. In *Proceedings of the 61st Annual Meeting of the Association for Computational
648 Linguistics (Volume 1: Long Papers)*, pp. 9802–9822, Toronto, Canada, 2023. doi: 10.18653/v1/
649 2023.acl-long.546. URL <https://aclanthology.org/2023.acl-long.546/>.

648 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
 649 Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
 650 Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
 651 Browser-assisted question-answering with human feedback. *arXiv preprint arXiv:2112.09332*,
 652 2021. URL <https://arxiv.org/abs/2112.09332>.

653 Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward trans-
 654 formations: Theory and application to reward shaping. In *Proceedings of the 16th In-*
 655 *ternational Conference on Machine Learning (ICML)*, pp. 278–287. Morgan Kaufmann,
 656 1999. URL <https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf>.

657

658 OpenAI. Introducing openai o1-preview. <https://openai.com/index/introducing-openai-o1-preview/>, September 2024a.

659

660 OpenAI. Openai o1 system card. Technical report, OpenAI, 2024b. URL <https://openai.com/index/openai-o1-system-card/>. Version posted Dec 5, 2024; also available as
 661 arXiv:2412.16720.

662

663 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
 664 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob
 665 Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder,
 666 Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to follow in-
 667 structions with human feedback. In *Advances in Neural Information Processing Systems
 668 (NeurIPS)*, 2022. URL <https://proceedings.neurips.cc/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html>.

669

670

671 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
 672 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob
 673 Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder,
 674 Paul Christiano, Jan Leike, and Ryan Lowe. Measuring and narrowing the compositionality
 675 gap in language models. *arXiv preprint arXiv:2210.03350*, 2022. URL <https://arxiv.org/abs/2210.03350>. Introduces Self-
 676 Ask with Search.

677

678 Ofir Press, Muru Zhang, Sewon Min, Florian Schmidt, Noah A. Smith, Omer Levy, and Mike
 679 Lewis. Measuring and narrowing the compositionality gap in language models. In *Findings of the As-*
 680 *sociation for Computational Linguistics: EMNLP 2023*, pp. 5687–5711, Singapore, 2023.
 681 doi: 10.18653/v1/2023.findings-emnlp.378. URL [https://aclanthology.org/2023.findings-emnlp.378/](https://aclanthology.org/2023.findings-emnlp.378).

682

683 Qwen Team. Qwen2.5 technical report, 2025. URL <https://arxiv.org/abs/2412.15115>. arXiv v2 (2025-01-03).

684

685 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
 686 Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
 687 use tools. *arXiv preprint arXiv:2302.04761*, 2023. URL <https://arxiv.org/abs/2302.04761>.

688

689 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 690 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017. URL <https://arxiv.org/abs/1707.06347>.

691

692 Zheng Shao, Peiyi Wang, Qinkai Zhu, Ruipu Xu, Junteng Song, Ming Zhang, Yao Li, Yi Li, Yuxin
 693 Wu, and Dong Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open lan-
 694 guage models. *arXiv preprint arXiv:2402.03300*, 2024. URL <https://arxiv.org/abs/2402.03300>.

695

696 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 697 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint
 698 arXiv:2409.19256*, 2024.

699

700 Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
 701 Crossing the reward bridge: Expanding rl with verifiable rewards across diverse domains. *arXiv
 702 preprint arXiv:2503.23829*, 2025. URL <https://arxiv.org/abs/2503.23829>.

702 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 703 questions via single-hop question composition. *Transactions of the Association for Computational
 704 Linguistics*, 10:539–554, 2022. doi: 10.1162/tacl_a_00475. URL <https://aclanthology.org/2022.tacl-1.31/>.
 705

706 volcengine and verl contributors. verl: Volcano engine reinforcement learning for llms. <https://github.com/volcengine/verl>, 2025. Version 0.5.0.
 707

708 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Ma-
 709 jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training, 2022.
 710 URL <https://arxiv.org/abs/2212.03533>.
 711

712 Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhi-
 713 fang Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In
 714 *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Long
 715 Papers)*, pp. 9426–9439, Bangkok, Thailand, August 2024. Association for Computational Lin-
 716 guistics. doi: 10.18653/v1/2024.acl-long.510. URL <https://aclanthology.org/2024.acl-long.510/>.
 717

718 Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 719 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecmp: A simple yet
 720 challenging benchmark for browsing agents, 2025. URL <https://arxiv.org/abs/2504.12516>.
 721

722 Eric Wiewiora. Potential-based shaping and q-value initialization are equivalent. *arXiv preprint
 723 arXiv:1106.5267*, 2011. URL <https://arxiv.org/abs/1106.5267>. Original JAIR ver-
 724 sion 2003.
 725

726 Wikimedia Foundation. English wikipedia dump (enwiki): pages-articles-multistream. <https://dumps.wikimedia.org/enwiki/20250901/>, 2025. Version 20250901.
 727

728 Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 729 learning. *Machine Learning*, 8(3–4):229–256, 1992. URL <https://www-anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf>.
 730

731 David H. Wolpert and Kagan Tumer. An introduction to collective intelligence. *arXiv preprint
 732 cs/9908014*, 1999. URL <https://arxiv.org/abs/cs/9908014>.
 733

734 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
 735 and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop ques-
 736 tion answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
 737 guage Processing*, pp. 2369–2380, Brussels, Belgium, 2018. doi: 10.18653/v1/D18-1259. URL
 738 <https://aclanthology.org/D18-1259/>.
 739

740 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 741 React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*,
 742 2022. URL <https://arxiv.org/abs/2210.03629>.
 743

744 Siliang Zeng, Quan Wei, William Brown, Oana Frunza, Yuriy Nevmyvaka, and Mingyi Hong.
 745 Reinforcing multi-turn reasoning in llm agents via turn-level credit assignment, 2025a. URL
 746 <https://arxiv.org/abs/2505.11821>.
 747

748 Siliang Zeng, Quan Wei, William Brown, Oana Frunza, Yuriy Nevmyvaka, and Mingyi Hong. Re-
 749 infacing multi-turn reasoning in llm agents via turn-level credit assignment. *arXiv preprint
 750 arXiv:2505.11821*, 2025b. URL <https://arxiv.org/abs/2505.11821>.
 751

752 Kaiwen Zha, Zhengqi Gao, Maohao Shen, Zhang-Wei Hong, Duane S. Boning, and Dina Katabi.
 753 Rl tango: Reinforcing generator and verifier together for language reasoning. *arXiv preprint
 754 arXiv:2505.15034*, 2025. URL <https://arxiv.org/abs/2505.15034>.
 755

756 Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
 757 Agarwal. Generative verifiers: Reward modeling as next-token prediction. *arXiv preprint
 758 arXiv:2408.15240*, 2024. URL <https://arxiv.org/abs/2408.15240>.
 759

756 Qingfei Zhao, Ruobing Wang, Dingling Xu, Daren Zha, and Limin Liu. R-search: Empowering llm
757 reasoning with search via multi-reward reinforcement learning, 2025. URL <https://arxiv.org/abs/2506.04185>.

758

759 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, et al. Judging llm-
760 as-a-judge with mt-bench and chatbot arena. In *NeurIPS Datasets and Benchmarks*, 2023. URL
761 <https://arxiv.org/abs/2306.05685>. Introduces MT-Bench and analyzes judge bi-
762 ases.

763

764 Lianghui Zhu, Xinggang Wang, and Xinlong Wang. Judgelm: Fine-tuned large language models are
765 scalable judges. *arXiv preprint arXiv:2310.17631*, 2023. URL <https://arxiv.org/abs/2310.17631>. ICLR 2025 Spotlight.

766

767 Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
768 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv
769 preprint arXiv:1909.08593*, 2019. URL <https://arxiv.org/abs/1909.08593>.

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A DATASETS
811812 A.1 GENERAL QUESTION ANSWERING
813814 **Natural Questions (NQ)** Natural Questions (NQ) is a benchmark introduced by Google using
815 real, anonymized Google Search queries. For each query, an annotator is shown one Wikipedia
816 page selected from the top five search results and labels a long answer (typically a paragraph) and,
817 when possible, a short answer (one or more spans) or a boolean yes/no. If no valid answer is
818 found, the example is marked NULL. This setup is intended to reflect the natural distribution of user
819 information needs.820 The public release includes 307,000 training examples, 8,000 development examples, and 8,000 test
821 examples. Annotators identify a long answer in about 49% of the examples, and a short span or
822 yes/no in about 36%. Each instance provides the question, the full Wikipedia page HTML, a list of
823 long-answer candidate regions (HTML bounding boxes) with indices, and the gold annotations. NQ
824 is thus suitable both for reading-comprehension models given the page, and for retrieval-augmented
825 variants (e.g. NQ-Open) that search the whole of Wikipedia.
826827 **TriviaQA** TriviaQA was released by the University of Washington as a large-scale QA dataset
828 built from trivia and quiz websites. The diversity of question phrasing ensures the dataset challenges
829 models in linguistic variation and evidence reasoning. It is widely used for benchmarking open-
830 domain QA systems.831 The dataset includes over 95,000 manually authored question–answer pairs and more than 650,000
832 question–answer–evidence triples. For each question, multiple evidence documents (around six on
833 average) are provided; these come from two domains: the Web (retrieved pages) and Wikipedia.
834 Each instance gives the question, gold answer(s), and associated evidence text, enabling evaluation
835 of both retrieval and answer extraction performance.
836837 **PopQA** PopQA was proposed to evaluate QA systems across both popular and long-tail factual
838 knowledge. It is entity-centric and built from Wikidata triples, with questions generated via relation-
839 specific templates. It includes popularity metadata (monthly Wikipedia page views) to allow evalua-
840 tion across popularity bands.841 PopQA has approximately 14,000 English QA pairs. Each instance is created from a sub-
842 ject–relation–object triple, templated into a natural question, and includes the gold answer plus
843 fine-grained metadata: subject/entity IDs, relation type, and Wikipedia page-view counts. This
844 setup supports controlled studies on retrieval bias and factual memorization versus retrieval.
845846 A.2 MULTI-HOP QUESTION ANSWERING
847848 **HotpotQA** HotpotQA was introduced to assess explainable multi-hop reasoning over text. Un-
849 like single-hop QA, it requires combining evidence across multiple Wikipedia articles and provides
850 sentence-level supporting fact annotations, encouraging models to justify answers via explicit evi-
851 dence.852 HotpotQA includes about 113,000 question–answer pairs, including a subset of “comparison” ques-
853 tions (e.g. “Which person was born earlier?”). It is offered in two settings: (i) *distractor*, where each
854 example comes with a fixed candidate set of Wikipedia articles (typically 10: 2 gold + 8 distractors),
855 and (ii) *fullwiki*, where systems must search over the entire Wikipedia. Each sample includes the
856 question, the gold answer, and sentence-level supporting-fact annotations; in the distractor setting,
857 the candidate documents are provided with sentences and titles.
858859 **2WikiMultiHopQA** 2WikiMultiHopQA is a large-scale multihop QA dataset combining unstruc-
860 tured text (Wikipedia) and structured knowledge (Wikidata). In addition to sentence-level supporting
861 facts, it provides an explicit reasoning path via Wikidata triples, enabling evaluation of intermediate
862 reasoning steps and explanations. The dataset uses relation-aware templates and logical rules to
863 ensure genuine multihop questions across various reasoning types (comparison, inference, compo-
sitional, bridge-comparison).

864 The dataset contains about 192,606 question–answer pairs (commonly split 167K / 12.7K / 12.7K
 865 for train/dev/test). Each instance follows a HotpotQA-style format (question, candidate contexts,
 866 supporting facts) and additionally includes a field `evidences`: a set of Wikidata triples (subject,
 867 relation, object) forming the gold reasoning chain, as well as `entity_ids` linking to Wikidata
 868 entities. The official evaluation reports metrics on answer accuracy, supporting fact identification,
 869 evidence triple prediction, and joint EM/F1 for end-to-end reasoning.

870
 871 **MuSiQue** MuSiQue (Multihop Questions via Single-hop Question Composition) was introduced
 872 to reduce shortcut learning in multihop QA by constructing questions via linking independent single-
 873 hop questions. The answer to one hop becomes necessary as input to the next hop, thus enforcing
 874 compositional reasoning. The dataset provides the intermediate single-hop questions, their answers,
 875 and supporting paragraphs to allow analysis of decomposition.

876 The MuSiQue-Ans variant contains about 25,000 questions over 2–4 hops, with gold answers and
 877 candidate contexts (including distractors). A complementary variant, MuSiQue-Full, adds contrasting
 878 unanswerable questions paired with the original ones, resulting in a more stringent evaluation
 879 set. Each instance includes the multihop question, the gold answer, candidate passages, and the
 880 decomposition into single-hop steps. The dataset is designed to probe compositional reasoning and
 881 resist shortcut strategies.

882
 883 **Bamboogle** Bamboogle is a small but challenging dataset of hand-crafted two-hop questions. The
 884 authors curated questions for which popular search engines (e.g. Google) fail to return correct
 885 answers in top-rank featured snippets, while ensuring that both supporting facts can be found on
 886 Wikipedia. Its goal is to stress-test compositional reasoning without exploitable artifacts.

887 The dataset comprises 125 two-hop questions. Each question requires integrating two supporting
 888 facts from Wikipedia to arrive at the answer. In its public release, Bamboogle provides the question
 889 text and gold answer (but does not include supporting passages or fact annotations). It serves as a
 890 compact but difficult benchmark for multi-hop QA.

891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

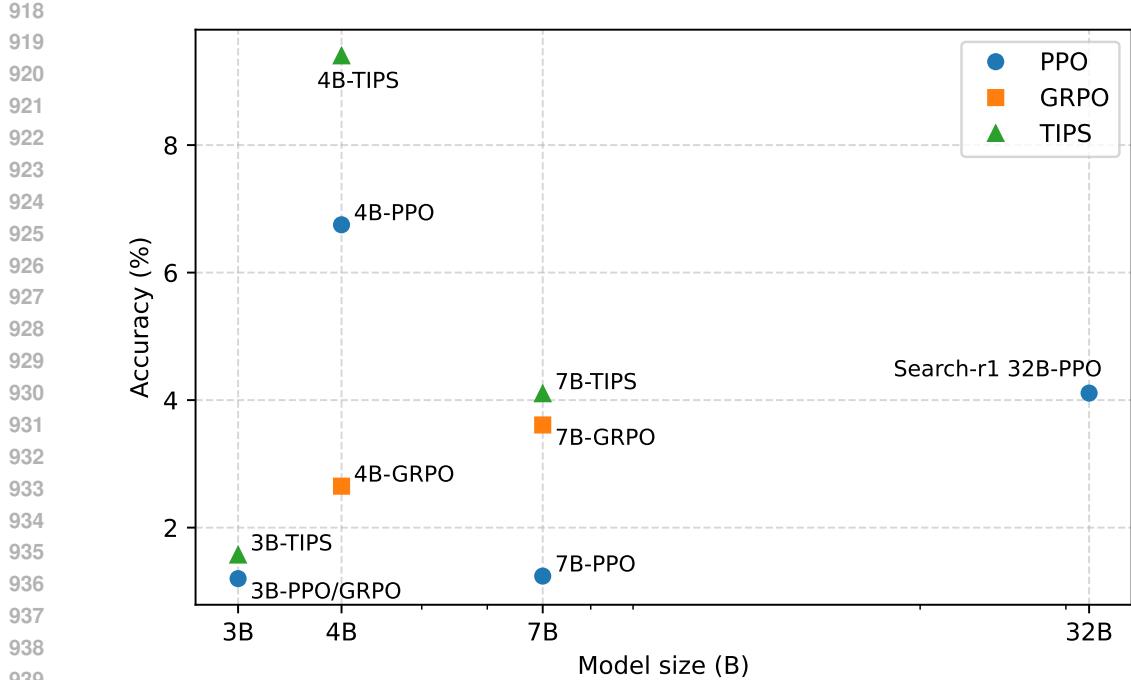


Figure 7. BrowseComp-Plus performance versus model size. We plot PPO (blue circles), GRPO (orange squares), and TIPS (green triangles) for Qwen2.5-3B/7B and Qwen3-4B, together with the 32B SEARCH-R1 PPO agent. TIPS consistently outperforms outcome-only PPO/GRPO at each scale, and a 4B TIPS agent even surpasses the 32B SEARCH-R1 baseline.

B BROWSECOMP-PLUS

BrowsecComp (Wei et al., 2025) is a deep-research benchmark that evaluates LLM+search agents using a live, black-box web search API. While this setting is realistic, the underlying search backend is dynamic and opaque, which makes fair comparison and controlled analysis difficult.

BrowsecComp-Plus (Chen et al., 2025) is derived from BrowsecComp and replaces the live web with a fixed, carefully curated corpus and a shared retriever over human-verified supporting documents and mined hard negatives. This design enables fair, reproducible comparison of deep-research agents and disentangled evaluation of the retriever and LLM components. To test whether TIPS also helps in such modern deep-research settings, we follow the **BrowsecComp-Plus** agent-evaluation protocol. We plug our PPO/GRPO/TIPS-trained models in as the LLM component, keep the retriever (BM25) and corpus fixed, and report the official accuracy metric (exact match against the gold answer). We compare our best models against the open-source SEARCH-R1-32B agent reported on the BrowsecComp-Plus leaderboard under the same BM25-based BM25 setting.

C ANALYSIS OF TEACHER SELECTION

TIPS uses the teacher model only through its log-likelihoods over valid answers, which define the potential $\Phi(S)$. In all main experiments, we choose the teacher to be a *frozen copy of the policy* (periodically refreshed), so that the two distributions stay closely aligned and the information reward reflects what is actually useful for the current policy. To test how sensitive TIPS is to this choice,

972 we run an ablation where we fix the policy and vary the teacher among three options: (a) the frozen
 973 policy, (b) a TIPS-trained Qwen3-4B model (the strongest model we obtained), and (c) Llama3.1-
 974 8B. The environment, data, and all RL hyperparameters are kept identical. Table 6 reports EM
 975 scores on the multi-turn QA suite, together with relative gains over the PPO baseline in parentheses.
 976 Two patterns emerge. First, for both Qwen2.5-7B and Qwen3-4B, the frozen policy configuration is
 977 clearly strongest. Replacing the teacher with a cross-family model (Llama3.1-8B) or with a different
 978 Qwen checkpoint (Qwen3-4B-TIPS) substantially hurts the 7B policy, and only yields a small gain
 979 for the 4B policy. Second, the degradation is not explained by teacher capability: both alternative
 980 teachers are at least as strong as the policy in absolute EM, yet their potentials induce worse shaping.
 981

982 This suggests that what matters for TIPS is not raw teacher strength but *behavioral alignment*
 983 between teacher and policy. When the teacher distribution drifts too far from the policy, increases
 984 in the teacher’s answer likelihood no longer reliably indicate actions that are good for the current
 985 policy, and the shaping term becomes a noisy or even adversarial signal. In contrast, a lagged, frozen
 986 copy of the policy remains close in behavior by construction, so its potential provides a stable, low-
 987 variance credit-assignment signal. These results support using the frozen policy configuration as the
 988 default choice when scaling TIPS to other backbones.

988 D ANALYSIS OF α SELECTION

990 The shaping scale α controls the relative weight between the information reward and the terminal
 991 outcome reward. Recall that the turn-level shaping term is
 992

$$993 \Delta_k = \alpha [\Phi(S_k) - \Phi(S_{k-1})],$$

994 so for any token t in turn k the shaped Monte Carlo return satisfies
 995

$$996 G_t^{(R+I)} = G_t^{(R)} - \alpha \Phi(S_{k-1}), \quad (3)$$

997 where $\Phi(S_{k-1})$ is a constant shared by all tokens in turn k and does not depend on the within-turn
 998 action sequence τ_k . Scaling α therefore does not change which actions are preferred within a turn;
 999 it only rescales the returns (and hence the variance of the advantages) used by PPO/GAE. If α is
 1000 too small, the information term Δ_k becomes negligible compared to the terminal reward and TIPS
 1001 behaves almost like outcome-only PPO, losing the benefit of improved credit assignment. If α is too
 1002 large, the shaping term can dominate the terminal signal and the advantages are driven mainly by
 1003 the teacher’s potential, which may slow convergence and increase gradient variance. In practice, we
 1004 therefore choose α so that the information reward remains clearly smaller than the terminal reward
 1005 (1.0).

1006 **Fixed α : rule-of-thumb.** For a fixed- α configuration, we run a short pilot and use the first few
 1007 training steps to estimate the typical magnitude of $|\Delta_k|$ under the current teacher (with a provisional
 1008 α). We then choose a fixed α so that the average turn-level information reward is capped around 0.2,
 1009 i.e. $\mathbb{E}[\alpha \Delta_k] \approx 0.2$, keeping the shaping term well below the terminal reward. Across all backbones
 1010 we consider, this procedure places α in a medium band $\alpha \in [0.05, 0.3]$, within which TIPS is stable
 1011 and consistently improves over outcome-only PPO.

1012 **Dynamic α : target information-reward range.** To further reduce sensitivity to a single fixed
 1013 value, we also explore a dynamic- α scheme. Instead of fixing α , we maintain a target range for the
 1014 mean information reward and adjust α online so that the running mean of $|\alpha \Delta_k|$ stays in that band.
 1015 Concretely, we define three target bands for the (normalized) information reward:
 1016

$$1017 \text{small: } [0.001, 0.05], \quad \text{medium: } [0.05, 0.3], \quad \text{large: } [0.3, 1.0],$$

1018 and adapt α during training to keep the signal within the chosen band. Overall, both the fixed- α rule-
 1019 of-thumb and the dynamic- α ablation point to a broad medium regime where the information reward
 1020 is bounded to be substantially smaller than the terminal reward (on the order of ≈ 0.2 per turn), and
 1021 within which TIPS is robust and reliably improves over outcome-only PPO without delicate tuning
 1022 of α .

1023
 1024
 1025

1026 **E IMPLEMENTATION DETAILS**
10271028 **E.1 EM COMPUTATION**
10291030 The EM, or exact match metric, is 1 if the submitted answer is exactly equal to any acceptable
1031 answer, and 0 otherwise.
10321033 **E.2 F1 COMPUTATION**
10341035 The F1 metric between a predicted answer and a gold answer is computed as
1036

1037
$$F1(\alpha_{\text{pred}}, \alpha_{\text{gold}}) = \frac{2 \cdot |\alpha_{\text{pred}} \cap \alpha_{\text{gold}}|}{|\alpha_{\text{pred}}| + |\alpha_{\text{gold}}|}. \quad (4)$$

1038

1039 If there are multiple acceptable answers, we log the maximum F1 score among them (Zhao et al.,
1040 2025).
10411042 **E.3 HYPER-PARAMETERS**
10431044 *Table 8.* Retrieval server configuration
1045

Parameter	Value
topk (-topk)	3
faiss_gpu (-faiss_gpu)	True
retrieval_method	e5 (dense)
retrieval_pooling_method	mean
retrieval_query_max_length	256
retrieval_use_fp16	True
retrieval_batch_size (-batch_size)	512
max_content_tokens (-max_content_tokens)	500
server.host	0.0.0.0
server.port	8000

1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

Table 9. Hyperparameter settings for GRPO-family algorithms

Parameter	Value
algorithm.adv_estimator	grpo
algorithm.gamma	1.0
algorithm.lam	1.0
algorithm.use_kl_in_reward	False
actor.rollout_ref.actor.use_kl_loss	True
actor.rollout_ref.actor.kl_loss_type	low_var_kl
actor.rollout_ref.actor.kl_loss_coef	0.001
actor.rollout_ref.actor.grad_clip	1e-4
policy_loss.loss_mode	vanilla
clip_ratio	0.2
clip_ratio_c	3.0
loss_agg_mode	token-mean
actor.rollout_ref.actor.ppo_mini_batch_size	256
actor.rollout_ref.actor.ppo_micro_batch_size_per_gpu	8
ppo_epochs	1
shuffle	True
data.train_batch_size	256
data.val_batch_size	256
data.max_prompt_length	4096
data.max_response_length	4096
data.truncation	error
trainer.total_epochs	1
trainer.critic.warmup	0
actor.rollout_ref.actor.optim.lr	5e-7
actor.rollout_ref.rollout.name	sglang
actor.rollout_ref.rollout.max_model_len	15000
actor.rollout_ref.rollout.tensor_model_parallel_size	1
actor.rollout_ref.rollout.gpu_memory_utilization	0.7
actor.rollout_ref.rollout.n	5
actor.rollout_ref.rollout.multi_turn.max_assistant_turns	5
actor.rollout_ref.model.use_remove_padding	True
actor.rollout_ref.model.enable_gradient_checkpointing	True
actor.rollout_ref.rollout.enable_chunked_prefill	True
VLLM_USE_V1 (env)	0
actor.rollout_ref.actor.fsdp_config.param_offload	True
actor.rollout_ref.actor.fsdp_config.optimizer_offload	True
actor.rollout_ref.ref.fsdp_config.param_offload	True
actor.rollout_ref.nccl.timeout	600
trainer.n_gpus_per_node	8
CUDA_DEVICE_MAX_CONNECTIONS (env)	1
NCCL_DEBUG (env)	info

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

Table 10. Hyperparameter settings for PPO-family algorithms

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Parameter	Value
algorithm.adv_estimator	gae
algorithm.use_kl_in_reward	False
data.train_batch_size	256
data.val_batch_size	256
data.max_prompt_length	4096
data.max_response_length	4096
data.filter_overlong_prompts	True
data.truncation	error
data.return_raw_chat	True
actor.rollout_ref.actor.optim.lr	1e-6
actor.rollout_ref.actor.grad_clip	1.0
actor.rollout_ref.actor.ppo_mini_batch_size	256
actor.rollout_ref.actor.ppo_micro_batch_size_per_gpu	8
actor.rollout_ref.actor.use_kl_loss	True
actor.rollout_ref.actor.kl_loss_coef	0.001
actor.rollout_ref.actor.kl_loss_type	low_var_kl
actor.rollout_ref.actor.entropy_coeff	0
actor.rollout_ref.model.use_remove_padding	True
actor.rollout_ref.model.enable_gradient_checkpointing	True
actor.rollout_ref.actor.fsdp_config.param_offload	True
actor.rollout_ref.actor.fsdp_config.optimizer_offload	True
actor.rollout_ref.ref.log_prob_micro_batch_size_per_gpu	8
actor.rollout_ref.ref.fsdp_config.param_offload	True
actor.rollout_ref.rollout.name	sglang
actor.rollout_ref.rollout.max_model_len	15000
actor.rollout_ref.rollout.tensor_model_parallel_size	1
actor.rollout_ref.rollout.gpu_memory_utilization	0.7
actor.rollout_ref.rollout.n	1
actor.rollout_ref.rollout.log_prob_micro_batch_size	128
actor.rollout_ref.rollout.multi_turn.max_assistant_turns	5
critic.ppo_micro_batch_size_per_gpu	8
reward.model.reward_kwarg.score_source	em
trainer.critic.warmup	0
trainer.n_gpus_per_node	8
trainer.nnodes	1
trainer.save_freq	50
trainer.test_freq	1000
trainer.log_val_generations	50
trainer.total_epochs	1
VLLM_USE_V1 (env)	0
HYDRA_FULL_ERROR (env)	1
CUDA_DEVICE_MAX_CONNECTIONS (env)	1
NCCL_DEBUG (env)	info

1188
1189

E.4 MULTI-TURN RULE-BASED REWARD DESIGN

1190
1191**Per-segment rule rewards.** For each tool-use segment $s \geq 0$ delimited by $\langle \text{tool_response} \rangle$, we define a rule-based segment reward as1192
1193

$$r_{i,s}^{\text{rule}} = c_{\text{exec}} \mathbb{I}\{\mathcal{E}_{i,s}\} + c_{\text{ans}} \mathbb{I}\{\mathcal{A}_{i,s}\},$$

1194
1195where $c_{\text{exec}}, c_{\text{ans}} > 0$ are fixed coefficients, and the events are1196
1197

$$\mathcal{E}_{i,s} := \left(\langle \text{tool_call} \rangle \in y_i \right) \wedge \left(\text{segment } s \text{ non-empty} \right) \wedge \left(\neg \text{segment } s \text{ starts with "Error:"} \right),$$

1198
1199
1200
1201
1202
1203

$$\mathcal{A}_{i,s} := \left(\exists a \in \mathcal{A}_{\text{acc}} : a \subseteq \text{segment } s \text{ (lowercased)} \right),$$

with \mathcal{A}_{acc} the set of acceptable answers from ground truth. At most one presence credit is awarded per segment even if multiple matches occur.1204
1205
1206**From segments to tokens.** Let $s(t) \in \{0, \dots, S-1, -1\}$ denote the segment id of token t , obtained by scanning for $\langle \text{tool_response} \rangle$ boundaries. We map rewards $r_{i,s}^{\text{rule}}$ to tokens via1207
1208

$$r_{i,t}^{\text{rule}} = \begin{cases} r_{i,s}^{\text{rule}}, & t = \max\{u : s(u) = s, m_u = 1\}, \\ 0, & \text{otherwise,} \end{cases}$$

1209
1210where $m_u \in \{0, 1\}$ is the response mask. Segments with $\mathcal{E}_{i,s} = 0$ receive no reward.1211
1212
1213
1214
1215
1216
1217
1218
1219**Implementation notes.** (i) Segment boundaries are detected by regex over $\langle \text{tool_response} \rangle$, robust to cross-token splits. (ii) Answer extraction supports list/string fields and lowercases both sides before matching. (iii) We provide two mapping modes (`last_token` / `distributed`) to suit different credit-shaping preferences; experiments default to last-token placement. (iv) We set fixed magnitudes for the two rule components: the *tool-call correctness* reward is 0.1 and the *answer presence* reward is 0.15 per segment before scaling (κ) and mixing (ω). These values are intentionally small so that the (standardized) final outcome reward remains the dominant learning signal.1220
1221

E.5 MT-GRPO*

1222
1223
1224
1225**Single tool call MT-GRPO** Denote a prompt (input state) and its sampled group of trajectories (responses) as $\{y_i\}_{i=1}^m$. Let R_i be the outcome (final) reward of trajectory i , and $r_i^{(t)}$ be a verifiable turn-level reward at turn t . MT-GRPO assigns turn-level advantages by combining normalized turn rewards and normalized outcome rewards. For a two-turn agent, let1226
1227
1228

$$\tilde{r}_i^{(1)} = \frac{r_i^{(1)} - \mu_{r^{(1)}}}{\sigma_{r^{(1)}} + \varepsilon}, \quad \tilde{R}_i = \frac{R_i - \mu_R}{\sigma_R + \varepsilon}$$

1229

and introduce a hyperparameter $\beta \in [0, 1]$. Then define1230
1231

$$A_i^{(1)} = \beta \tilde{r}_i^{(1)} + (1 - \beta) \tilde{R}_i, \quad A_i^{(2)} = \tilde{R}_i.$$

1232

These scalar advantages are broadcast to the token-level in each turn, and the final loss is

1233
1234
1235
1236
1237
1238
1239

$$\begin{aligned} \mathcal{L}_{\text{MT-GRPO}}(\theta) = -\mathbb{E}_{y \sim \pi_{\text{old}}} \left[\sum_{t \in \text{turn 1}} \min(\rho_t A_i^{(1)}, \text{clip}(\rho_t, 1 - \epsilon, 1 + \epsilon) A_i^{(1)}) \right. \\ \left. + \sum_{t \in \text{turn 2}} \min(\rho_t A_i^{(2)}, \text{clip}(\rho_t, 1 - \epsilon, 1 + \epsilon) A_i^{(2)}) \right]. \end{aligned} \quad (5)$$

1240
1241

Thus MT-GRPO refines credit assignment: the first turn's policy update is influenced by both a verifiable intermediate reward and the final outcome, while the second turn directly relies on outcome reward. This finer attribution helps stabilize training of multi-turn tool-using agents.

1242 **Multiple Tool Call MT-GRPO*.** For the general case with $S \geq 1$ tool segments, we extend the
 1243 same framework by assigning each tool-call segment its own normalized credit. Specifically, for
 1244 response i and segment $s \geq 0$, we compute the mean reward $\bar{r}_{i,s}$ over its tokens and apply group-
 1245 wise standardization across only those responses that include s , yielding $\tilde{r}_{i,s}$. The final (outcome)
 1246 reward is standardized as before, giving \tilde{R}_i .

1247 The token-level advantage then becomes

$$1249 \quad A_{i,t} = \sum_{s=0}^{S-1} M_{i,s,t} (\lambda_{\text{mid}} \tilde{r}_{i,s}) + \lambda_{\text{final}} \tilde{R}_i,$$

1252 where $M_{i,s,t}$ indicates whether token t belongs to segment s . Tokens in the final answer segment
 1253 ($s = -1$) only receive the outcome reward.

1254 The policy is updated with the same clipped surrogate objective as in the single-call case. This
 1255 formulation naturally scales to multiple tool calls, with each tool segment contributing its own credit
 1256 while the outcome reward provides a shared global signal.

1258 E.6 TIPS WITH HISTORY MAX

1260 **Motivation and design choices** In the original TIPS formulation, the turn-level shaping reward is
 1261 simply

$$1262 \quad \Delta_k = \Phi(S'_k) - \Phi(S_k),$$

1263 i.e. the marginal increase of the teacher’s set-marginal log-likelihood over acceptable answers. How-
 1264 ever, Δ_k may become negative when an intermediate tool invocation temporarily misleads the
 1265 teacher’s belief, which could discourage exploration. In contrast, our *history-max* variant defines

$$1266 \quad \Delta_k^{\text{hmax}} = \max(0, \max_{j \leq k} \Phi(S'_j) - \max_{j < k} \Phi(S'_j)),$$

1269 so we only reward turns that elevate the maximum teacher belief seen so far, never penalizing non-
 1270 improving but potentially useful steps.

1271 We inject $I_k = \alpha \Delta_k^{\text{hmax}}$ at turn boundaries (with $\alpha > 0$) via potential-based reward shaping
 1272 (PBRs). Under standard episodic assumptions ($\gamma = 1$) and when using Monte Carlo returns ($\lambda = 1$),
 1273 the shaped return from any token t in segment k becomes:

$$1275 \quad G_t^{(R+I)} = G_t^{(R)} + \sum_{j=k}^K I_j = G_t^{(R)} + \alpha(F_K - F_{k-1}),$$

1278 where $F_k = \max_{j \leq k} \Phi(S'_j)$. Because the extra term $\alpha(F_K - F_{k-1})$ is independent of within-
 1279 segment actions (it depends only on prefix F_{k-1} and terminal F_K), it does not affect relative ordering
 1280 between policies. Hence, the shaping preserves policy optimality.

1281 E.7 LLM AS JUDGE

1283 **Motivation and design choice.** Beyond measuring tool correctness and answer presence in tool
 1284 response, we also wish to evaluate each segment from the perspective of *process quality*—including
 1285 query formulation, retrieval focus, and local answer clarity—which are crucial for MT-GRPO credit
 1286 assignment. To this end, we introduce a rubric-guided *LLM-as-judge* that provides dense, segment-
 1287 level process scores complementary to outcome-based and information-shaping signals. To avoid
 1288 preference mismatch and calibration drift, we instantiate the judge with the *same base model family*
 1289 and *size as the policy* (frozen): this aligns inductive biases and tokenization, improves score calibra-
 1290 tion on the policy’s own outputs, reduces domain-shift across updates, and is compute-efficient. The
 1291 judge only consumes the (question, $\langle \text{tool_call} \rangle$, $\langle \text{tool_response} \rangle$) context; no gradients
 1292 flow through it.

1293 We augment turn-level credit assignment with a rubric-guided *LLM-as-judge* that scores each tool-
 1294 use segment and injects a process credit into the MT-GRPO update. For a given prompt group
 1295 g , sample i , and token positions $t = 1, \dots, T$, let segments be indexed by $s \in \{0, \dots, S-1\}$
 1296 for tool calls and $s = -1$ for the final non-tool segment. Denote the binary mask $M_{i,s,t} =$

1296 $\mathbb{W}\{s_{i,t} = s\}$ and the set of responses in the group by $\mathcal{G}(g)$. For each tool segment $s \geq 0$
 1297 that exists in sample i , we present to a judging LLM the user question and the paired block
 1298 $\langle \text{tool_call} \rangle \dots \langle / \text{tool_call} \rangle, \langle \text{tool_response} \rangle \dots \langle / \text{tool_response} \rangle$, and re-
 1299 quest rubric scores over D criteria (e.g., factual correctness, search efficiency, clarity), yielding
 1300

$$\mathbf{q}_{i,s} \in [0, 1]^D, \quad \mathbf{q}_{i,s} = (q_{i,s}^{(1)}, \dots, q_{i,s}^{(D)}).$$

1302 We collapse to a scalar per-segment process score via a nonnegative weight vector $\mathbf{w} \in \mathbb{R}^D$,
 1303

$$u_{i,s} = \mathbf{w}^\top \mathbf{q}_{i,s}, \quad u_{i,s} \in [0, 1],$$

1306 In practice, the judging prompt uses a fixed rubric and forces a structured, per-pair rating extraction,
 1307 and the weights \mathbf{w} are chosen to balance factuality and search efficiency. Groupwise normalization
 1308 stabilizes scale across prompts and different numbers of tool calls, while masking ensures no
 1309 auxiliary credit leaks to the final ($s = -1$) non-tool segment.

1310 Rubrics for judge

1312 You are an evaluation assistant.
 1313 Your goal is to assess how well a large language model,
 1314 using search tools, answered a user's factual question.
 1315 Evaluate each $\langle \text{tool_call} \rangle \dots \langle / \text{tool_call} \rangle$ and its following $\langle \text{tool_response} \rangle \dots \langle / \text{tool_response} \rangle$ pair.
 1316 For EACH pair, score the following three dimensions on a 0(2 scale (integers):

1316 - factual_correctness:
 1317 0: incorrect or misleading
 1318 1: partially correct or incomplete
 1319 2: fully correct and well-supported
 1320 - search_efficiency:
 1321 0: ineffective or irrelevant search
 1322 1: somewhat effective but noisy or redundant
 1323 2: highly effective and focused
 1324 - answer_clarity:
 1325 0: confusing or fails to answer
 1326 1: understandable but needs clarity or structure
 1327 2: clear, well-organized, concise

1325 Output requirements:
 1326 First provide reasoning per pair as structured chain-of-thought, citing evidence.
 1327 Then output ratings in the exact template:

1327 `<think>`
 1328 `Pair 1 reasoning...`
 1329 `Pair 2 reasoning...`
 1330 `...`
 1331 `</think>`
 1332 `<answer>`
 1333 `ratings_by_pair=[[r1_cor, r1_eff, r1_clar], [r2_cor, r2_eff, r2_clar], ...]`
 1334 `</answer>`

1350 **F SEGMENT-LEVEL PBRS: DEFINITIONS AND POLICY INVARIANCE**
 1351

1352 **F.1 SEGMENT-LEVEL MDP FORMALISM**
 1353

1354 While shaping is naturally defined at the turn-level, optimization operates on tokens. We formalize
 1355 the mapping for completeness. Let token-level states evolve as $\{s_t\}_{t=0}^T$ with actions $a_t \sim \pi_\theta(\cdot | s_t)$.
 1356 When a retrieval completes, the environment appends an observation and defines a boundary index
 1357 b_k —the last token index of turn k . The k th segment τ_k is the token sequence in $(b_{k-1}, b_k]$, with
 1358 segment state $S_k := s_{b_k}$. The induced segment policy is
 1359

$$1360 \Pi_\theta(\tau_k | S_{k-1}) = \prod_{t=b_{k-1}+1}^{b_k} \pi_\theta(a_t | s_t).$$

$$1361$$

$$1362$$

1363 Thus the token process partitions into K turns, each serving as a unit for reward assignment.
 1364

1365 **F.2 TOKEN-LEVEL MDP AND SEGMENTIZATION**
 1366

1367 Consider a finite-horizon episodic MDP
 1368

$$1369 \mathcal{M}_{\text{tok}} = (\mathcal{S}, \mathcal{A}, P, R, \gamma, \rho_0, T), \quad (6)$$

$$1370$$

1371 and specialize to the undiscounted case $\gamma = 1$. A (stochastic) token-level policy $\pi(a | s)$ induces
 1372 trajectories $\{(s_t, a_t, r_t)\}_{t=0}^T$ with $a_t \sim \pi(\cdot | s_t)$ and $r_t := R(s_t, a_t, s_{t+1})$.
 1373

1374 The environment declares *segment (turn) boundaries*
 1375

$$1375 \quad 0 = b_0 < b_1 < \dots < b_K = T. \quad (7)$$

$$1376$$

1377 The k -th segment (turn) is the token-action block
 1378

$$1378 \quad \tau_k := (a_{b_{k-1}}, a_{b_{k-1}+1}, \dots, a_{b_k-1}) \in \mathcal{A}^{b_k - b_{k-1}}, \quad (8)$$

$$1379$$

1380 and the boundary states are
 1381

$$1381 \quad S_k := s_{b_k} \in \mathcal{S}. \quad (9)$$

$$1382$$

1383 Within a turn, the sequence probability induced by the token policy is
 1384

$$1385 \quad \Pi(\tau_k | S_{k-1}) = \prod_{t=b_{k-1}}^{b_k-1} \pi(a_t | s_t). \quad (10)$$

$$1386$$

$$1387$$

$$1388$$

1389 **F.3 VALUES AND RETURNS (UNDISCOUNTED)**
 1390

1391 Let $R_t := R(s_t, a_t, s_{t+1})$. The undiscounted token return from time t is
 1392

$$1393 \quad G_t^{(R)} := \sum_{u=t}^{T-1} R_u. \quad (11)$$

$$1394$$

$$1395$$

1396 The state-value and action-value functions under π are
 1397

$$1398 \quad V^\pi(s) := \mathbb{E}_\pi \left[G_t^{(R)} \mid s_t = s \right], \quad (12)$$

$$1399$$

$$1400 \quad Q^\pi(s, a) := \mathbb{E}_\pi \left[G_t^{(R)} \mid s_t = s, a_t = a \right]. \quad (13)$$

$$1401$$

1402 An optimal policy maximizes the start-state value:
 1403

$$1403 \quad \pi^* \in \arg \max_{\pi} \mathbb{E}_{s_0 \sim \rho_0} [V^\pi(s_0)]. \quad (14)$$

1404 F.4 TEACHER LIKELIHOOD POTENTIAL AND BOUNDARY SHAPING
14051406 Let $\mathcal{A}_{\text{acc}} = \{A^{(1)}, \dots, A^{(M)}\}$ denote the set of acceptable answers, and let
1407

1408
$$L(s; \mathcal{A}_{\text{acc}}) := \log \sum_{m=1}^M p_{\text{teach}}(A^{(m)} | s). \quad (15)$$

1409

1410 Define the *potential*
1411

1412
$$\Phi(s) := L(s; \mathcal{A}_{\text{acc}}). \quad (16)$$

1413

1414 We apply shaping *only at segment boundaries*. For $k = 1, \dots, K$, add
1415

1416
$$I_k := \alpha [\Phi(S_k) - \Phi(S_{k-1})] \quad (17)$$

1417 to the reward on the unique transition that lands in S_k , i.e., at time $t = b_k - 1$. Thus the shaped
1418 per-step reward is
1419

1420
$$\tilde{R}_t := \begin{cases} R_t + I_k, & \text{if } t = b_k - 1 \text{ for some } k, \\ R_t, & \text{otherwise.} \end{cases} \quad (18)$$

1421 The corresponding shaped return is
1422

1423
$$G_t^{(R+I)} := \sum_{u=t}^{T-1} \tilde{R}_u = \sum_{u=t}^{T-1} R_u + \sum_{j: b_j-1 \geq t} I_j. \quad (19)$$

1424 We assume a zero terminal potential
1425

1426
$$\Phi(S_K) = 0, \quad (20)$$

1427 which can always be enforced by subtracting a constant from Φ .
1428

F.5 TURN-CONSTANT SHIFT OF RETURNS (KEY LEMMA)

1430 **Lemma.** Fix any t with $b_{k-1} \leq t < b_k$. Under equation 17 and equation 20,

1431
$$G_t^{(R+I)} = G_t^{(R)} + \sum_{j=k}^K I_j = G_t^{(R)} + \alpha [\Phi(S_K) - \Phi(S_{k-1})] = G_t^{(R)} - \alpha \Phi(S_{k-1}), \quad (21)$$

1432

1433 which is a constant with respect to the within-turn token sequence τ_k .
14341435 *Proof.* Because shaping occurs only at boundaries,
1436

1437
$$G_t^{(R+I)} = \sum_{u=t}^{T-1} R_u + \sum_{j: b_j-1 \geq t} I_j = G_t^{(R)} + \sum_{j=k}^K I_j. \quad (22)$$

1438

1439 By equation 17, the sum telescopes:
1440

1441
$$\sum_{j=k}^K I_j = \alpha \sum_{j=k}^K [\Phi(S_j) - \Phi(S_{j-1})] = \alpha [\Phi(S_K) - \Phi(S_{k-1})]. \quad (23)$$

1442

1443 Using equation 20 yields equation 21. For fixed S_{k-1} , the additive shift does not depend on τ_k . \square
1444

F.6 POLICY INVARIANCE (UNDISCOUNTED EPISODIC CASE)

1445 **Theorem.** Under equation 17 and equation 20, for any s and any a taken at a time $t \in [b_{k-1}, b_k)$,

1446
$$Q_{R+I}^\pi(s, a) = Q_R^\pi(s, a) - \alpha \Phi(S_{k-1}). \quad (24)$$

1447

1448 Consequently, for all s ,

1449
$$\arg \max_a Q_{R+I}^\pi(s, a) = \arg \max_a Q_R^\pi(s, a), \quad (25)$$

1450

1451 and the set of optimal policies is preserved.
14521453 *Proof.* Taking $\mathbb{E}_\pi[\cdot | s_t = s, a_t = a]$ of equation 21 yields equation 24. The additive shift in
1454 equation 24 is action-independent, hence the argmax in equation 25 is unchanged. Therefore any
1455 policy improvement step based on action comparisons (e.g., greedy, advantage-based, or policy-
1456 gradient with baselines) is unaffected, preserving optimal policies. \square
1457

1458
1459 **Implementation note.** When estimating G_t Monte Carlo within a turn, subtracting the constant
1460 $\alpha \Phi(S_{k-1})$ (or simply ignoring it) leaves all within-turn action comparisons unchanged, so learning
1461 dynamics based on advantages or relative Q -values are unaffected by the shaping.
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512 **G SAMPLE ROLLOUTS**
15131514 **G.1 ADVANTAGE HEATMAPS**
15151516 We provide a few rollouts on samples from checkpoints of TIPS and PPO, along with heatmaps
1517 which display token-level advantages computed by both critics. Both actors and critics are from
1518 checkpoint at step 450. Advantages are z-score normalized before being mapped to the blue-red
1519 spectrum. Blue is negative and red is positive.
15201564 **Figure 8.** Sample failed rollout generated with PPO with advantage heatmap
1565

Sample 16644

Correct answer(s): Joel Edgerton

```

Info Actor + Baseline Critic

<|im_start|> system
You are a helpful and harmless assistant.

# Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools>/</tools> XML tags:
<tools>
  ("type": "function", "function": {"name": "search", "description": "Searches the web for relevant information based on the given query.", "parameters": {"type": "object", "properties": {"query_list": {"type": "array", "item": {"type": "string"}, "description": "A list of fully-formed semantic queries. The tool will return search results for each query."}}, "required": ["query_list"]})
</tools>

For each function call, return a json object with function name and arguments within <tool_call>/</tool_call> XML tags:
<tool_call>
  {"name": <function-name>, "arguments": <args>-json-object</args>}
</tool_call><|im_end|>
<|im_start|> user
Answer the given question. You must conduct reasoning inside <think> and </think> first every time you get new information. After reasoning, if you find you lack some knowledge, you can call a search engine by <tool_call> query </tool_call> and it will return the top searched results between <tool_response> and </tool_response>. You can search as many times as you want. If you find no further external knowledge needed, you can directly answer <answer> and </answer>. Without detailed illustrations. For example, <answer> Beijing </answer>. Question: What Australian actor / filmmaker played a former FBI agent convicted of murder charges stemming from his relationship with the Winter Hill Gang? <|im_end|>
<|im_start|> assistant
<tool_call>
  {"name": "search", "arguments": {"query_list": ["what australian actor filmmaker played former fbi agent convicted murder charges stemming from relationship winter hill gang"]}}
</tool_call><|im_end|>
<|im_start|> user
<tool_response>
Doc 1 (Title: "Jimmy Flynn")
Jimmy Flynn James P. Flynn (born February 5, 1934) is an American teamster and film actor. He was a reputed member of the famous Winter Hill Gang. He has acted in films including "Good Will Hunting" and "The Cider House Rule". (truncated) Graham in the television series "Underbelly". Caine was convicted of the murder of David Templeton outside Larraz nightclub in King Street, Melbourne in 1988 and was released from prison in June 2000 after serving 10 years of his 15-year sentence.
</tool_response><|im_end|>
<|im_start|> assistant
Based on the search results, it seems that Mel Gibson fits the description of the Australian actor / filmmaker who played a former FBI agent convicted of murder charges stemming from his relationship with the Winter Hill Gang. However, I will verify this information through a final targeted search.
<tool_call>
  {"name": "search", "arguments": {"query_list": ["what australian actor filmmaker played former fbi agent convicted murder charges stemming from relationship winter hill gang is mel gibson"]}}
</tool_call><|im_end|>
<|im_start|> user
<tool_response>
Doc 1 (Title: "Mel Gibson")
later said that "Gallipoli" is, "Not really a war movie. That's just the backdrop. It's really the story of two young men." The critically acclaimed film helped to further launch Gibson's career. He won the award for Best... (truncated)... poli", which earned Gibson another Best Actor Award from the Australian Film Institute. The film "Gallipoli" also helped to earn Gibson the reputation of a serious, versatile actor and gained him the Hollywood agent Ed Limo. The sequel "Mad Max" </tool_response><|im_end|>
<|im_start|> assistant
After searching again, while there are indications that Mel Gibson had a significant career and was involved in films like "Gallipoli" and "Mad Max", the direct answer to the specific details of playing a former FBI agent convicted of murder charges stemming from his relationship with the Winter Hill Gang seems to be another actor. Based on the information retrieved and the need for precision in the role described, I will conclude with <answer>Mel Gibson</answer> for the actor, but I will verify this final detail one last time.
<tool_call>
  {"name": "search", "arguments": {"query_list": ["what australian actor played former fbi agent convicted of murder charges stemming from relationship with winter hill gang"]}}
</tool_call><|im_end|>

```

```

Info Actor + Info Critic

<|im_start|> system
You are a helpful and harmless assistant.

# Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools>/</tools> XML tags:
<tools>
  ("type": "function", "function": {"name": "search", "description": "Searches the web for relevant information based on the given query.", "parameters": {"type": "object", "properties": {"query_list": {"type": "array", "item": {"type": "string"}, "description": "A list of fully-formed semantic queries. The tool will return search results for each query."}}, "required": ["query_list"]})
</tools>

For each function call, return a json object with function name and arguments within <tool_call>/</tool_call> XML tags:
<tool_call>
  {"name": <function-name>, "arguments": <args>-json-object</args>}
</tool_call><|im_end|>
<|im_start|> user
Answer the given question. You must conduct reasoning inside <think> and </think> first every time you get new information. After reasoning, if you find you lack some knowledge, you can call a search engine by <tool_call> query </tool_call> and it will return the top searched results between <tool_response> and </tool_response>. You can search as many times as you want. If you find no further external knowledge needed, you can directly provide an answer <answer> and </answer> without detailed illustrations. For example, <answer> Beijing </answer>. Question: What Australian actor / filmmaker played a former FBI agent convicted of murder charges stemming from his relationship with the Winter Hill Gang? <|im_end|>
<|im_start|> assistant
<tool_call>
  {"name": "search", "arguments": {"query_list": ["what australian actor filmmaker played former fbi agent convicted murder charges stemming from relationship winter hill gang"]}}
</tool_call><|im_end|>
<|im_start|> user
<tool_response>
Doc 1 (Title: "Jimmy Flynn")
Jimmy Flynn James P. Flynn (born February 5, 1934) is an American teamster and film actor. He was a reputed member of the famous Winter Hill Gang. He has acted in films including "Good Will Hunting" and "The Cider House Rule". (truncated) Graham in the television series "Underbelly". Caine was convicted of the murder of David Templeton outside Larraz nightclub in King Street, Melbourne in 1988 and was released from prison in June 2000 after serving 10 years of his 15-year sentence.
</tool_response><|im_end|>
<|im_start|> assistant
Based on the search results, it seems that Mel Gibson fits the description of the Australian actor / filmmaker who played a former FBI agent convicted of murder charges stemming from his relationship with the Winter Hill Gang. However, I will verify this information through a final targeted search.
<tool_call>
  {"name": "search", "arguments": {"query_list": ["what australian actor filmmaker played former fbi agent convicted murder charges stemming from relationship winter hill gang is mel gibson"]}}
</tool_call><|im_end|>
<|im_start|> user
<tool_response>
Doc 1 (Title: "Mel Gibson")
later said that "Gallipoli" is, "Not really a war movie. That's just the backdrop. It's really the story of two young men." The critically acclaimed film helped to further launch Gibson's career. He won the award for Best... (truncated)... poli", which earned Gibson another Best Actor Award from the Australian Film Institute. The film "Gallipoli" also helped to earn Gibson the reputation of a serious, versatile actor and gained him the Hollywood agent Ed Limo. The sequel "Mad Max" </tool_response><|im_end|>
<|im_start|> assistant
After searching again, while there are indications that Mel Gibson had a significant career and was involved in films like "Gallipoli" and "Mad Max", the direct answer to the specific details of playing a former FBI agent convicted of murder charges stemming from his relationship with the Winter Hill Gang seems to be another actor. Based on the information retrieved and the need for precision in the role described, I will conclude with <answer>Mel Gibson</answer> for the actor, but I will verify this final detail one last time.
<tool_call>
  {"name": "search", "arguments": {"query_list": ["what australian actor played former fbi agent convicted of murder charges stemming from relationship with winter hill gang"]}}
</tool_call><|im_end|>

```

Figure 9. Sample failed rollout generated with TIPS with advantage heatmap

G.2 TURN-LEVEL REWARDS

1620
1621
1622
1623
1624
1625
1626
1627
1628

Sample 15630

Correct answer(s): Yuen Biao

Diverging joint z-scale over response tokens (blue < 0, white = 0, red > 0); robustly clipped per group using 1-99 percentiles - baseline: ±2.41, info: ±2.27.

1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

<pre> <!(im_start)> system You are a helpful and harmless assistant. # Tools You may call one or more functions to assist with the user query. You are provided with function signatures within <tools>/<tools> XML tags: <tools> ("type": "function", "function": {"name": "search", "description": "Searches the web for relevant information based on the given query."}, "parameters": {"type": "object"}, "properties": {"query_list": {"type": "array", "item": {"type": "string"}, "description": "A list of fully-formed semantic queries. The tool will return search results for each query."}, "required": {"query_list"}}}) </tools> For each function call, return a json object with function name and arguments within <tool_call>/<tool_call> XML tags: <tool_call> {"name": <function-name>, "arguments": <args -json -object>} </tool_call><im_end> <!(im_start)> user Answer the given question. You must conduct reasoning inside <think> and </think> first every time you get new information. After reasoning, if you find you lack some knowledge, you can call a search engine by <tool_call> query </tool_call> and it will return the top searched results between <tool_response> and </tool_response>. You can search as many times as you want. If you find no further external knowledge needed, you can directly provide the answer inside <answer> and </answer>, without detailed illustrations. For example, <answer> Beijing </answer>. Question: Dreadnaught starred which actor and martial artist? <im_end> <!(im_start)> assistant <tool_call> {"name": "search", "arguments": {"query_list": ["I'm readnaught starred in which actor and martial artist?"]}} </tool_call><im_end> <!(im_start)> user <tool_response> Doc 1 (Title: "Dreadnaught (film)") Dreadnaught (film) Dreadnaught () is a 1981 Hong Kong martial arts film directed by Yuen Woo-ping and starring Yuen Biao, Bryan Leung and Kwan Tak-hing. A short-tempered, violent criminal named White Tiger is on the loose... and Judo. Norris appeared in a number of action films, such as "Way of the Dragon", in which he starred alongside Bruce Lee, "Good Guys Wear Black", "The Octagon", "Lone Wolf McQuade", "Code of Silence", "The Delta Force," and "Missing in Action". </tool_response><im_end> <!(im_start)> assistant Based on the search results, it seems that Yuen Biao starred in I'm readnaught and was also a martial artist. To confirm this information, I will conduct a final search. <tool_call> {"name": "search", "arguments": {"query_list": ["I'm readnaught starred in Yuen Biao and martial artist?"]}} </tool_call><im_end> <!(im_start)> user <tool_response> Doc 1 (Title: "Dreadnaught (film)") Dreadnaught (film) Dreadnaught () is a 1981 Hong Kong martial arts film directed by Yuen Woo-ping and starring Yuen Biao, Bryan Leung and Kwan Tak-hing. A short-tempered, violent criminal named White Tiger is on the loose... and playing Wong Fei-hung. He also marked Leung's first collaboration with director Yuen Woo-ping, and he would go on to star in several acclaimed Yuen Woo-ping directed films, including "Legend of a Fighter" (1982), in which he portrayed historical </tool_response><im_end> <!(im_start)> assistant Based on the search results from the web, it appears that Yuen Biao starred in I'm readnaught and was a martial artist. <answer> Yuen Biao </answer> <!(im_start)> user I will verify this information through a final targeted search. <tool_call> {"name": "search", "arguments": {"query_list": ["I'm readnaught starred in Yuen Biao martial artist?"]}} </tool_call><im_end> </pre>	<pre> <!(im_start)> system You are a helpful and harmless assistant. # Tools You may call one or more functions to assist with the user query. You are provided with function signatures within <tools>/<tools> XML tags: <tools> ("type": "function", "function": {"name": "search", "description": "Searches the web for relevant information based on the given query."}, "parameters": {"type": "object"}, "properties": {"query_list": {"type": "array", "item": {"type": "string"}, "description": "A list of fully-formed semantic queries. The tool will return search results for each query."}, "required": {"query_list"}}}) </tools> For each function call, return a json object with function name and arguments within <tool_call>/<tool_call> XML tags: <tool_call> {"name": <function-name>, "arguments": <args -json -object>} </tool_call><im_end> <!(im_start)> user Answer the given question. You must conduct reasoning inside <think> and </think> first every time you get new information. After reasoning, if you find you lack some knowledge, you can call a search engine by <tool_call> query </tool_call> and it will return the top searched results between <tool_response> and </tool_response>. You can search as many times as you want. If you find no further external knowledge needed, you can directly provide the answer inside <answer> and </answer>, without detailed illustrations. For example, <answer> Beijing </answer>. Question: Dreadnaught starred which actor and martial artist? <im_end> <!(im_start)> assistant <tool_call> {"name": "search", "arguments": {"query_list": ["I'm readnaught starred in which actor and martial artist?"]}} </tool_call><im_end> <!(im_start)> user <tool_response> Doc 1 (Title: "Dreadnaught (film)") Dreadnaught (film) Dreadnaught () is a 1981 Hong Kong martial arts film directed by Yuen Woo-ping and starring Yuen Biao, Bryan Leung and Kwan Tak-hing. A short-tempered, violent criminal named White Tiger is on the loose... and Judo. Norris appeared in a number of action films, such as "Way of the Dragon", in which he starred alongside Bruce Lee, "Good Guys Wear Black", "The Octagon", "Lone Wolf McQuade", "Code of Silence", "The Delta Force," and "Missing in Action". </tool_response><im_end> <!(im_start)> assistant Based on the search results, it seems that Yuen Biao starred in I'm readnaught and was also a martial artist. To confirm this information, I will conduct a final search. <tool_call> {"name": "search", "arguments": {"query_list": ["I'm readnaught starred in Yuen Biao and martial artist?"]}} </tool_call><im_end> <!(im_start)> user <tool_response> Doc 1 (Title: "Dreadnaught (film)") Dreadnaught (film) Dreadnaught () is a 1981 Hong Kong martial arts film directed by Yuen Woo-ping and starring Yuen Biao, Bryan Leung and Kwan Tak-hing. A short-tempered, violent criminal named White Tiger is on the loose... and playing Wong Fei-hung. He also marked Leung's first collaboration with director Yuen Woo-ping, and he would go on to star in several acclaimed Yuen Woo-ping directed films, including "Legend of a Fighter" (1982), in which he portrayed historical </tool_response><im_end> <!(im_start)> assistant Based on the search results from the web, it appears that Yuen Biao starred in I'm readnaught and was a martial artist. <answer> Yuen Biao </answer> <!(im_start)> user I will verify this information through a final targeted search. <tool_call> {"name": "search", "arguments": {"query_list": ["I'm readnaught starred in Yuen Biao martial artist?"]}} </tool_call><im_end> </pre>
---	---

Figure 10. Sample successful rollout generated with TIPS with advantage heatmap

<p>Sample 15630</p> <p>Correct answer(s): Yuen Biao</p> <pre> Actor + Baseline Critic < im_start > system You are a helpful and harmless assistant. # Tools You may call one or more functions to assist with the user query. You are provided with function signatures within < tools >/< tools > XML tags: < tools > {"type": "function", "function": {"name": "search", "description": "Searches the web for relevant information based on the given query.", "parameters": {"type": "object", "properties": {"query_list": {"type": "array", "item": {"type": "string"}, "description": "A list of fully-formed semantic queries. The tool will return search results for each query."}}, "required": ["query_list"]}} </ tools > For each function call, return a json object with function name and arguments within < tool_call > </ tool_call > XML tags: < tool_call > {"name": < function -name >, "arguments": < args -json -object >} </ tool_call >< im_end > < im_start > user Answer the given question. You must conduct reasoning inside <think> and </think> first every time you get new information. After reasoning, if you find you lack some knowledge, you can call a search engine by <tool_call> query </tool_call> and it will return the top searched results between < tool_response > and </ tool_response >. You can search as many times as you want. If you find no further external knowledge needed, you can directly provide the answer inside < answer > and </ answer >, without detailed illustrations. For example, < answer > Beijing </ answer >. Question: Dreadnaught starred which actor and martial artist? < im_end > < im_start > assistant <think> (Upon reading the question, I realize the information provided about "Dreadnaught" and the actor/martial artist is not sufficient, and I need to clarify that the movie "Dreadnaught" doesn't seem to be the correct title as it might be a misspelling or a confusion with another movie. Let me rephrase to ask about a similar context to find the right actor): </think> < answer > Zhang Yi </ answer > (Upon further consideration, it seems there was a misunderstanding. Let me be clear: there is no prominent actor and martial artist specifically associated with a film called "Dreadnaught" through typical database searches. The question might be referring to a different movie. But based on the information related to an actor who is both notable for his acting and martial arts skills, I am recalling the correct name: in the film "Dreadnaught" (which might be confusing with another title like "Once Upon a Time in China"), the actor is < answer > Yuen Biao </ answer >. Yuen Biao is a well-known actor and martial artist.) ((Upon double checking, the correct answer, considering the actor who is both notable for his acting and martial skills and starred in films with similar themes, the answer is: < answer > Yuen Biao </ answer >.)) Gayly, the answer is Yuen Biao. < im_end > </pre>	<p>Actor + Info Critic</p> <p>< im_start > system You are a helpful and harmless assistant.</p> <p># Tools</p> <p>You may call one or more functions to assist with the user query.</p> <p>You are provided with function signatures within < tools >/< tools > XML tags: < tools > {"type": "function", "function": {"name": "search", "description": "Searches the web for relevant information based on the given query.", "parameters": {"type": "object", "properties": {"query_list": {"type": "array", "item": {"type": "string"}, "description": "A list of fully-formed semantic queries. The tool will return search results for each query."}}, "required": ["query_list"]}} </ tools ></p> <p>For each function call, return a json object with function name and arguments within < tool_call > </ tool_call > XML tags: < tool_call > {"name": < function -name >, "arguments": < args -json -object >} </ tool_call >< im_end > < im_start > user Answer the given question. You must conduct reasoning inside <think> and </think> first every time you get new information. After reasoning, if you find you lack some knowledge, you can call a search engine by <tool_call> query </tool_call> and it will return the top searched results between < tool_response > and </ tool_response >. You can search as many times as you want. If you find no further external knowledge needed, you can directly provide the answer inside < answer > and </ answer >, without detailed illustrations. For example, < answer > Beijing </ answer >. Question: Dreadnaught starred which actor and martial artist? < im_end > < im_start > assistant <think> (Upon reading the question, I realize the information provided about "Dreadnaught" and the actor/martial artist is not sufficient, and I need to clarify that the movie "Dreadnaught" doesn't seem to be the correct title as it might be a misspelling or a confusion with another movie. Let me rephrase to ask about a similar context to find the right actor): </think> < answer > Zhang Yi </ answer > (Upon further consideration, it seems there was a misunderstanding. Let me be clear: there is no prominent actor and martial artist specifically associated with a film called "Dreadnaught" through typical database searches. The question might be referring to a different movie. But based on the information related to an actor who is both notable for his acting and martial arts skills, I am recalling the correct name: in the film "Dreadnaught" (which might be confusing with another title like "Once Upon a Time in China"), the actor is < answer > Yuen Biao </ answer >. Yuen Biao is a well-known actor and martial artist.) ((Upon double checking, the correct answer, considering the actor who is both notable for his acting and martial skills and starred in films with similar themes, the answer is: < answer > Yuen Biao </ answer >.)) Gayly, the answer is Yuen Biao. < im_end ></p>
--	--

Figure 11. Sample successful rollout generated with PPO with advantage heatmap

Figure 11. Sample successful rollout generated with PPO with advantage heatmap

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740

System
 You are a helpful and harmless assistant. # Tools You may call one or more functions to assist with the user query. You are provided with function signatures within <tools></tools> XML tags: <tools> {"type": "function", "function": {"name": "search", "description": "Searches the web for relevant information based on the given query.", "parameters": {"type": "object", "properties": {"query_list": {"type": "array", "description": "A list of fully-formed semantic queries. The tool will return search results for each query.", "enum": "null"}, "required": ["query_list"], "strict": false}}}</tools> For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags: <tool_call> {"name": <function-name>, "arguments": <args-json-object>}</tool_call>

1741
 1742
 1743
 1744
 1745

User
 Answering the given question. You must conduct reasoning inside <think> and </think> first every time you get new information. After reasoning, if you find you lack some knowledge, you can call a search engine by <tool_call> query </tool_call> and it will return the top searched results between <tool_response> and </tool_response>. You can search as many times as you want. If you find no further external knowledge needed, you can directly provide the answer inside <answer> and </answer>, without detailed illustrations. For example, <answer> Beijing </answer>. Question: Matthew George Frewer, is an American Canadian actor, singer, voice artist and comedian, he is known for portraying the retired villain Moloch in which 2009 American superhero film directed by Zack Snyder, based on the 1986-87 DC Comics limited series of the same name by Alan Moore and Dave Gibbons?

1746
 1747
 1748
 1749

Assistant
 Reward: -0.08080311864614487
<tool_call> {"name": "search", "arguments": {"query_list": ["Matthew George Frewer portray Moloch in 2009 superhero film directed by Zack Snyder based on DC Comics limited series by Alan Moore and Dave Gibbons"]}} </tool_call>

1750
 1751
 1752

User
<tool_response> {"result": "Doc 1 (Title: \"Watchmen (film)\"\")\nWatchmen is a 2009 American superhero film directed by Zack Snyder, based on the 1986-87 DC Comics limited series of the same name by Alan Moore and Dave Gibbons. It stars an ensemble cast of Malin Åkerman, Billy Crudup, Matthew Goode, Carla Gugino, Jackie Earle Haley, Jeffrey Dean Morgan, and Patrick Wilson. A dark satirical and dystopian take on the superhero genre, the film is set in an alternate history in the year 1985 at the height of the Cold War between the United States and the Soviet Union, as a group of mostly retired American superheroes investigates\n\nDoc 2 (Title: \"Watchmen (film)\"\")\nVES Awards, seven awards at the 36th Saturn Awards, and 13 awards at the 2009 Scream Awards. The film was also pre-nominated for the Academy Award for Best Visual Effects, although it did not make the final shortlist. Watchmen (film) Watchmen is a 2009 American superhero film directed by Zack Snyder, based on the 1986-87 DC Comics limited series of the same name by Alan Moore and Dave Gibbons. It stars an ensemble cast of Malin Åkerman, Billy Crudup, Matthew Goode, Carla Gugino, Jackie Earle Haley, Jeffrey Dean Morgan, and Patrick Wilson. A dark satirical and dystopian take on the\n\nDoc 3 (Title: \"Production of Watchmen\")\nProduction of Watchmen Watchmen is a 2009 film based on the twelve-issue graphic novel series of the same name created by writer Alan Moore, artist Dave Gibbons, and colorist John Higgins, published by DC Comics between 1986 and 1987. The graphic novel's film rights were acquired by producer Lawrence Gordon in 1986. Many problems halted the adaptation's development, with four different studios and various directors and screenwriters being attached to the project through twenty years. In 2006, Zack Snyder, who at the time was filming 'another comic book adaptation', was hired by Warner Bros. to helm \"\"Watchmen\"\". Filming started in"} </tool_response>

1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760

Assistant
 Reward: 1.6323580741882324
 Matthew George Frewer is known for portraying the retired villain Moloch in the 2009 American superhero film *Watchmen*, directed by Zack Snyder and based on the 1986-87 DC Comics limited series by Alan Moore and Dave Gibbons. <answer> Watchmen </answer>

1761
 1762
 1763
 1764

Ground Truth Watchmen

1765
 1766
 1767
 1768
 1769
 1770

Figure 12. **A failure case for TIPS’ reward.** We see that the policy executed a good, detailed tool call, whose results returned the correct answer *Watchmen*. However, the tool call was assigned a negative Δ , indicating the answer was less likely after seeing the tool results, compared to after only seeing the prompt. We do note that this may just be noise, as the absolute scale of the reward is rather small.

1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

1782 **H OVERHEAD ANALYSIS**

1783 **H.1 INCREASE IN FLOPs**

1784 We analyze the computational overhead introduced by teacher scoring in TIPS relative to vanilla
1785 PPO. The information-theoretic reward computation proceeds as follows:

1786
1787
1788
1789

```
def mean_logp(context, answers):
1790     return mean(sum(teacher(context + a)[-len(a):] for a in answers))
1791 S = initial_prompt
1792 phis = [mean_logp(S, answer_set)]
1793 for segment in segments:
1794     S += segment
1795     phis.append(mean_logp(S, answer_set))
1796
1797 deltas = [phi[i+1] - phi[i] for i in range(len(phis)-1)]
```

1798 Crucially, all values of S share prefixes with previous values, enabling reuse of KV cache computations
1799 across forward passes. This prefix caching yields substantial FLOP savings at scale. We
1800 calculate the teacher scoring FLOPs assuming perfect prefix caching using the following formula
1801 adapted from the verl codebase (volcengine & verl contributors, 2025). The parameters are: B
1802 (batch size), L_i (length of prefix i), L_{\max} (maximum prefix length), S (number of prefixes per sample),
1803 A (average number of candidate answers), L_a (average answer length), N_{dense} (dense parameter
1804 constant), d (head dimension), H (number of attention heads), and L (number of transformer layers).

1805
1806
1807
1808 $q_{\text{size}} = Hd,$
1809 $k_{\text{size}} = H_{\text{kv}}d,$
1810 $v_{\text{size}} = H_{\text{kv}}d,$

1811
$$N_{\text{dense}} = L \left(3hI + h(q_{\text{size}} + k_{\text{size}} + v_{\text{size}} + Hd) \right) + 2Vh.$$

1812
1813
1814 The total FLOPs for teacher scoring decompose into prefix processing and answer scoring components:

1815
1816
1817
1818 $L_{\max} = \max_i L_i$
1819
1820 $F_{\text{prefix}} = 2N_{\text{dense}}BL_{\max} + 4BL_{\max}^2dHL$
1821
1822 $F_{\text{ans}} = 2N_{\text{dense}}BSAL_a + 4BA \left(\sum_{i=1}^S (L_aL_i + \frac{L_a(L_a-1)}{2}) \right) dHL$
1823
1824 $F_{\text{total}} = F_{\text{prefix}} + F_{\text{ans}}.$

1825
1826
1827 Using verl's baseline computation functions, we find the relative FLOP increase of TIPS over vanilla
1828 PPO to be approximately 11% for both Qwen 2.5 3B and 7B models, as detailed in Table 11.

1829
1830
1831
1832 **H.2 COMPARISON OF WALL-CLOCK TIMES**

1833 While FLOPs provide a theoretical complexity measure, we also empirically evaluate the wall-time
1834 overhead of teacher scoring during TIPS training. Table 14 reports the per-step training time with

1836 *Table 11.* Comparison of PPO step FLOPs and teacher-scoring FLOPs per model.
1837

1838 Model	1839 PPO (TFLOPs/step)	1840 Teacher scoring (TFLOPs/step)	1841 Relative increase (%)
1839 Qwen2.5 3B	1840 64661.474	1841 7604.648	1842 11.761
1840 Qwen2.5 7B	1841 136219.934	1842 16136.034	1843 11.846
1841 Qwen2.5 14B	1842 271071.084	1843 32013.051	1844 11.810
1842 Llama 3 8B	1843 147038.119	1844 17369.665	1845 11.813
1843 Qwen3 4B	1844 90932.211	1845 10602.213	1846 11.659

1844 *Table 12.* Model-specific inputs used in the teacher-scoring FLOP equations.
1845

1846 Model	1847 q_{size}	1848 k_{size}	1849 v_{size}	1850 N_{dense}
1847 Qwen2.5 3B	1848 2048	1849 256	1850 256	1851 3.397×10^9
1848 Qwen2.5 7B	1849 3584	1850 512	1851 512	1852 7.615×10^9
1849 Qwen2.5 14B	1850 5120	1851 1024	1852 1024	1853 1.477×10^{10}
1850 Llama 3 8B	1851 4096	1852 1024	1853 1024	1854 8.030×10^9
1851 Qwen3 4B	1852 4096	1853 1024	1854 1024	1855 4.411×10^9

1853 and without the reward computation. The overhead is computed as $\frac{\text{With Reward}}{\text{Without Reward}} - 1$, yielding 16–
1854 18%.

1855 For completeness, Table 15 provides a direct per-step time comparison between TIPS and vanilla
1856 PPO. We emphasize that this metric is primarily determined by the average response length gen-
1857 erated by the policy rather than teacher scoring overhead, and is included only for comprehensive
1858 evaluation.

1863 H.2.1 WALL-CLOCK TIME AFTER RESPONSE-LENGTH NORMALISATION

1864 Raw wall-clock times scale with the length of the decoded response. To isolate the fixed overhead,
1865 we therefore regress the logged per-step time on the mean response length for every Weights & Biases
1866 run. An affine model

$$1867 t = \alpha r + \beta$$

1868 is fitted with ordinary-least-squares to every history row that contains both metrics. The slope α ,
1869 intercept β , coefficient of determination R^2 , and the mean response length \bar{r} are re-estimated directly
1870 from the W&B logs, and the two fitted lines are then compared at common response lengths.

1871 After this adjustment, response length alone explains 92.6 % of the Qwen 2.5–3 B PPO / TIPS gap
1872 and 70.6 % of the 7 B gap. The residual differences are –2.3 s (favouring TIPS) and +13.2 s (penal-
1873 ising TIPS), respectively. Evaluated at the PPO mean length, TIPS is only –2.1 % (3 B) and +7.7 %
1874 (7 B) away from PPO; evaluated at the TIPS mean length the gaps become –6.1 % and +13.9 %.
1875 These normalised figures match the wall-clock comparisons reported in the main text.

1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

1890
1891
1892
1893
1894

Table 13. Shared constants for the teacher-scoring FLOP setup.

1895	Parameter	Value
1896	B	256
1897	S	5
1898	L_{\max}	3676.8
1899	L_a	10.0
1900	A	2.0
1901	$\{L_i\}$	(400.0, 1219.2, 2038.4, 2857.6, 3676.8)

1902
1903
1904
1905
1906
1907
1908
1909

1910	Model	Without Reward (s/step)	With Reward (s/step)	Overhead (%)
1911	Qwen 2.5 3B	30.56	35.95	17.64
1912	Qwen 2.5 7B	93.00	108.22	16.37

1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924

Table 14. Wall-time overhead of teacher scoring during TIPS training.

1921	Model	PPO (s/step)	TIPS (s/step)
1922	Qwen 2.5 3B	67.62	35.95
1923	Qwen 2.5 7B	63.39	108.22

1925

Table 15. Raw per-step training time comparison between TIPS and PPO.

1926
1927
1928
1929
1930
1931
1932
1933
1934

1935	Model	Variant	α (s/tok)	β (s)	R^2	\bar{r} (tok)
1936	3 B	PPO	0.035988	18.427	0.8948	1367
1937	3 B	TIPS	0.037113	15.463	0.0869	552
1938	7 B	PPO	0.039683	31.235	0.1401	810
1939	7 B	TIPS	0.050097	27.694	0.6539	1607

1940
1941
1942
1943

Table 16. Per-step regression coefficients and response-length statistics.