
Published as a conference paper at ICLR 2022

ANALYZING AND IMPROVING THE OPTIMIZATION
LANDSCAPE OF NOISE-CONTRASTIVE ESTIMATION

Bingbin Liu, Elan Rosenfeld, Pradeep Ravikumar, Andrej Risteski
Machine Learning Department
Carnegie Mellon University
{bingbinl,elan,pradeepr,aristesk}@cs.cmu.edu

ABSTRACT

Noise-contrastive estimation (NCE) is a statistically consistent method for learn-
ing unnormalized probabilistic models. It has been empirically observed that the
choice of the noise distribution is crucial for NCE’s performance. However, such
observations have never been made formal or quantitative. In fact, it is not even
clear whether the difficulties arising from a poorly chosen noise distribution are
statistical or algorithmic in nature. In this work, we formally pinpoint reasons
for NCE’s poor performance when an inappropriate noise distribution is used.
Namely, we prove these challenges arise due to an ill-behaved (more precisely,
flat) loss landscape. To address this, we introduce a variant of NCE called eNCE
which uses an exponential loss and for which normalized gradient descent ad-
dresses the landscape issues provably when the target and noise distributions are
in a given exponential family.

1 INTRODUCTION

Noise contrastive estimation (NCE) is a method for learning parameterized statistical models (Gut-
mann & Hyvärinen, 2010; 2012). To estimate a distribution P∗, NCE trains a discriminant model to
distinguish between samples of P∗ and a known distributionQ of our choice, often referred to as the
“noise” distribution. If the function class for the discriminant model is representationally powerful
enough, the optimal model learns the density ratio p∗/q, from which we can extract the density p∗
since q is known (Menon & Ong, 2016; Sugiyama et al., 2012). Compared to the well-studied maxi-
mum likelihood estimation (MLE), NCE avoids calculating the (often intractable) partition function,
1 while maintaining the asymptotic consistency of MLE (Gutmann & Hyvärinen, 2012).

It is empirically well-documented that the choice of the noise distribution Q is crucial to both the
statistical and algorithmic efficiency of NCE (Gutmann & Hyvärinen, 2010; 2012; Rhodes et al.,
2020; Goodfellow et al., 2014; Gao et al., 2020). However, it has been observed in practice that even
when following the standard guidelines for choosing Q, NCE can still yield parameter estimates far
from the ground truth (Rhodes et al., 2020; Goodfellow et al., 2014; Gao et al., 2020). Most recently,
Rhodes et al. (2020) identified a phenomenon they call the “density chasm,” observing empirically
that NCE performs poorly when the KL divergence between P∗ and Q is large. One example is
when P∗, Q are both tightly concentrated unimodal distributions with faraway modes; the region
between the two modes will have a small density under both distributions, thus forming a “chasm”.
While it makes intuitive sense that NCE does not perform well under such settings—since disparate
Q and P∗ are easy to distinguish and do not require the model to learn much about P∗ in order to
do well on the classification task—there has not been a theoretical analysis of this phenomenon. In
fact, it is not even clear whether the difficulty is statistical or algorithmic in nature.

In this work, we formally study the challenges for NCE with a fixed Q with a focus on distribu-
tions in an exponential family. We show that when the noise distribution Q is poorly chosen, the
loss landscape can become extremely flat: in particular, even when P ∗ and Q are two univariate
Gaussian with unit variance, the loss gradient and curvature can become exponentially small in
the difference in their means. We prove that this poses challenges for standard first order and even

1The partition function is also known as the normalizing constant of an unnormalized density, such that the
density after normalization will integrate to 1.

1

Published as a conference paper at ICLR 2022

second-order optimization methods, forcing them to take an exponential number of steps to converge
to a good parameter estimate. Thus, standard approaches to minimizing convex functions such as
gradient descent—or even more advanced techniques such as momentum or Newton’s method—are
not suited to the NCE objective unless Q is close to P∗ in KL sense.

To remedy this issue, we study an alternative method for optimizing the NCE objective. We consider
instead Normalized Gradient Descent (NGD) whereby the gradient is normalized to have unit norm
at each time step. Perhaps surprisingly, we prove that this small modification can overcome the
problem of poor curvature in the Gaussian example. In general, we show the number of steps for
NGD to converge to a good solution for the NCE loss depends on the condition number κ of the
Hessian of the loss at the optimum—the growth of this condition number is unclear for P ∗ and Q
when they belong to an exponential family.

To address this, we propose the eNCE loss, a variant to NCE that replaces the log loss in NCE with
an exponential loss, and we show that the resulting condition number is polynomial in the dimension
and the parameter distance between P ∗ and Q when they belong to an exponential family. Our
proposed change of loss and optimization algorithm together form the first solution that provides a
provable polynomial rate for learning the parameters of the ground truth distribution. Theoretically,
both NCE and eNCE can potentially suffer from numerical issues during optimization when P ∗ and
Q are far—this is an interesting direction for future work. Nonetheless, we find this to be a simple
and effective fix to the flatness of the loss landscape in many settings, as evidenced by experimental
results on synthetic and MNIST dataset.

1.1 RELATED WORK

NCE and its variants have inspired a large volume of research in NLP (Mnih & Teh, 2012; Mnih &
Kavukcuoglu, 2013; Dyer, 2014; Kong et al., 2020) as well as computer vision (Oord et al., 2018;
Hjelm et al., 2018; Henaff, 2020; Tian et al., 2020). It has been observed empirically that NCE with
a fixed noise Q is often insufficient for learning good generative models. The predominant class
of approaches that have been proposed to overcome this issue aim to do so by not using a fixed
Q but by iteratively solving multiple NCE problems with an updated Q, or equivalently updated
discriminators. This includes the famous generative adversarial network (GAN) by Goodfellow
et al. (2014), which uses a separate discriminator network updated throughout training. In a similar
vein, Gao et al. (2020) also aimed to increase the discriminative power as the density estimator
improves, and parameterize Q explicitly with a flow model. More recently, Rhodes et al. (2020)
proposed the telescoping density ratio estimation, or TRE, which sidesteps the chasm by expanding
p∗/q into a series of intermediate density ratios, each of which is easier to estimate, leading to strong
empirical performance—though their work carries no formal guarantees.

With respect to a fixed Q, it remains an open question about what formally are the nature of the
challenges posed by a poorly chosen Q, which could be statistical and/or algorithmic. Various pre-
vious works have analyzed the asymptotic behavior of NCE and its variants (Gutmann & Hyvärinen,
2012; Riou-Durand et al., 2018; Uehara et al., 2020), but these do not provide guidance on the finite
step convergence of NCE or its common variants. The improvements to NCE in prior works are
all borne out by the empirical observations of NCE practitioners, rather than motivated by theory,
which is precisely the aim of this work.

Finally, we would like to note that prior work has proposed “generalized NCE" (Pihlaja et al., 2010;
Gutmann & Hirayama, 2011; Uehara et al., 2020), which relates the NCE objective to minimizing
the Bregman divergence. Generalized NCE says that we can design a family of training objectives
by using different convex functions to define the Bregman divergence, and the proposed eNCE is
an instance of the generalized NCE objective. The difference between these prior work and ours is
again the different focuses on asymptotic behavior versus finite step convergence.

2 PRELIMINARIES

The NCE objective Let P∗ denote an unknown distribution in a parametric family {Pθ}θ∈Θ, for
some bounded convex set Θ, with P∗ = Pθ∗ . Our goal is to estimate P∗ via Pθ for some θ ∈ Θ by
solving a noise contrastive estimation task. The noise distribution Q belongs to the same parametric
family with parameters θq ∈ Θ, so that Q = Pθq . We use pθ, p∗, q to denote the probability density

2

Published as a conference paper at ICLR 2022

functions (pdfs) of Pθ, P∗, and Q; we may omit θ in Pθ, pθ when it is clear from the context and
write P, p instead. Given P∗ and Q, the NCE loss of P is defined as follows:
Definition 2.1 (NCE Loss). The NCE loss of Pθ w.r.t. data distribution P∗ and noise Q is:

L(Pθ) = −1

2
EP∗ log

pθ
pθ + q

− 1

2
EQ log

q

pθ + q
. (2.1)

The NCE loss can be interpreted as the binary cross-entropy loss for the classification task of distin-
guishing the data samples from the noise samples. Moreover, the NCE loss has a unique minimizer:
Lemma 2.1 (Gutmann & Hyvärinen 2012). The NCE objective in Definition 2.1 is uniquely mini-
mized at P = P∗, provided that the support of Q covers that of P∗.

Exponential family. We focus our attention on the exponential family, where the pdf for a dis-
tribution with parameter θ is pθ(x) = exp

(
θ>T̃ (x)−A(θ)

)
, with T̃ (x) denoting the sufficient

statistics and A(θ) the log partition function. 2 The partition function is treated as a parameter in
NCE, so we use τ to denote the extended parameter, i.e. τ := [θ, α] where α is the estimate for
the log partition function. We accordingly extend the sufficient statistics as T (x) = [T̃ (x),−1]
to account for the log partition function. The pdf with the extended representation is now simply
pτ (x) = exp(τ>T (x)). We will use the notation Pθ and Pτ interchangeably. We will also use τ(θ)
to denote the log-partition extended parameterization when the log partition function α properly
normalizes the distribution specified by θ.

A compelling reason for focusing on the exponential family is the observation that the NCE loss is
convex in the parameter τ :
Lemma 2.2 (NCE convexity). For exponential family pθ,α(x) = h(x) exp(θ>T̃ (x)− α), the NCE
loss is convex in parameter τ := [θ, α].

Lemma 2.2 has been stated under more general settings by Uehara et al. (2020); an alternative self-
contained proof is included in Appendix A for completeness.

Recall that Θ denotes the set of parameters without the extended coordinate for the log partition
function. We assume the following on distributions supported on Θ:
Assumption 2.1 (Bounded parameter norm). ‖θ‖2≤ ω, ∀θ ∈ Θ.
Assumption 2.2 (Lipschitz log partition function). Assume the log partition function is βZ-
Lipschitz, that is, ∀θ1, θ2 ∈ Θ, |logZ(θ1)− logZ(θ2)|≤ βZ‖θ1 − θ2‖.
Assumption 2.3 (Bounded singular values of the population Fisher matrix). There exist
λmax, λmin > 0, such that ∀θ ∈ Θ, we have σmax(Eθ[T (x)T (x)>]) ≤ λmax, and
σmin(Eθ[T (x)T (x)>]) ≥ λmin.
Assumption 2.4 (Smooth change in the Fisher matrix). Assume the maximum and minimum singular
values of the Fisher matrix change smoothly. Namely, there exist constants γmax, γmin > 0 s.t.

‖∇θσmax(Eθ[T (x)T (x)>])‖≤ γmax, ‖∇θσmin(Eθ[T (x)T (x)>])‖≤ γmin.

Assumptions 2.2-2.4 can be viewed as smoothness assumptions on the first, second and third order
derivatives of the log partition function, and can be viewed as introducing structural parameters of
the distributions. For example, distributions with flatter tails will have a larger λmax, which then
translates to a slower rate in the results; distributions closer to being singular will have a smaller
λmin, etc. In particular, Assumption 2.3 says the singular values of the Fisher matrix Eθ[T (x)T (x)>]
should be bounded from above and below. It can be shown that the Fisher matrix is proportional
to the Hessian of the NCE objective when using Q = P∗, which means Assumption 2.3 can be
interpreted as saying the NCE task can be solved efficiently under the optimal choice of Q.

3 OVERVIEW OF RESULTS

We first provide an informal overview of our results, focusing on learning of exponential families.
2Another common format of the exponential family PDF is pθ(x) = h(x) exp

(
θ>T (x)−A(θ)

)
where

h(x) is a non-negative function. Such h(x) could be absorbed into T̃ (x) and θ with corresponding coordinates
log(h(x)) and 1.

3

Published as a conference paper at ICLR 2022

Flatness of population landscape: Our first contribution is a negative result identifying a key
source of difficulty for NCE optimization to be an ill-behaved population landscape. We show that
due to an extremely flat landscape, gradient descent or Newton’s method with standard choices of
step sizes will need to take an exponential number of steps to find a reasonable parameter estimate.

We emphasize that though Gaussian mean estimation is a trivial task, its simplicity strengthens
the results above: we are proving a negative result so that failures with a simpler setup means a
stronger result. Moreover, the results only apply to standard choices of step sizes, such as inversely
proportional to the smoothness for gradient descent, or to the ratio between the smoothness and
strong convexity for Newton’s method. This does not rule out the possibility that a cleverly designed
learning rate schedule or a different algorithm would work efficiently; the results are however still
meaningful since gradient descent with standard step sizes is the most common choice in practice.

Overcoming flatness using normalized gradient descent: Our second contribution is to show
that the flatness problem can be solved by a simple modification to gradient descent if the loss is
well-conditioned. Specifically, we show that the convergence rate for normalized gradient descent
is polynomial in the parameter distance and κ∗, the condition number of the Hessian at the optimum.
One immediate consequence is that in Gaussian mean estimation, for a target error of δ ∈ (0, 1

βZ
]

in parameter distance, NCE optimized with NGD achieves a rate of O(1
δ2), which is the same as the

optimal rate achieved by MLE.

The remaining question is then whether κ∗ is polynomial in the parameters of interests. We show
that κ∗ can be related to the Bhattacharyya coefficient between P∗ and Q, which indeed grows
polynomially in parameter distance under certain assumptions as detailed in Section 5.2.

Polynomial condition number for the eNCE loss: Our third and final contribution is that if we
modify the NCE objective slightly—namely, use the exponential loss in place of the log loss—then
the condition number at the optimum is guaranteed to be polynomial. We call this new objective
eNCE . Combined with the NGD result, we get that running NGD on the eNCE objective achieves a
polynomial convergence guarantee.

We then provide empirical evidence on synthetic and MNIST dataset that eNCE with NGD performs
comparatively with NGD on the original NCE loss, and both outperform gradient descent.

4 FLATNESS OF THE NCE LOSS

In this section, we study the challenges posed to NCE when using a badly chosen fixed Q. The main
thrust of the results is to show that both algorithmic and statistical challenges can arise because the
NCE loss is poorly behaved, particularly for first- and second-order optimization algorithms: when
P∗, Q are far, the loss landscape is extremely flat near the optimum. In particular, the gradient has
exponentially small norm and the strong convexity constant decreases exponentially fast, limiting
the convergence rate of the excess risk. We further show that when moving from P = Q to P = P∗,
the loss drops from Θ(1) to a value that is exponentially small in terms of the distance between
P∗ and Q. Consequently, common gradient-based and second order methods will take exponential
number of steps to converge.

An important note is that our analysis is at the population level, implying that the hardness comes
from the landscape itself regardless of the statistical estimators used.

Setup – Gaussian mean estimation: For the negative results in this section, let’s consider an ex-
ceedingly simple scenario of 1-dimensional, fixed-variance Gaussian mean estimation. We will
demonstrate the enormous difficulty of achieving a good parameter estimate, even for such a sim-
ple problem—this bodes ill for NCE objectives corresponding to more complex models in practice,
which certainly pose a much more difficult challenge. In particular, let P∗, Q, P be Gaussians with
identity variance. Let θ∗, θq, θ denote the respective means, with θ∗ being the target mean that NCE
aims to estimate. When the covariance is known to be 1, we can denote h(x) := exp(−x

2

2), and
parametrize the pdf of a 1d Gaussian with mean θ as p(x) = h(x) exp(〈τ(θ), T (x)〉),3 where the
parameter is τ(θ) := [θ, θ

2

2 + log
√

2π] and the sufficient statistics are T (x) := [x,−1]. 4 We will
shorthand τ(θ) when it is clear from the context.

3Thus, we are setting h to be the base measure for the exponential family we are considering.
4Recall that the last coordinate −1 acts as a sufficient statistic for the log partition function.

4

Published as a conference paper at ICLR 2022

Without loss of generality, we will assume θq = 0, and θ∗ > 0, and denote R := θ∗ − θq . We will
write τ∗ := τ(θ∗) = [R, R

2

2 + log
√

2π], and τq := τ(θq) = [0, log
√

2π]. As a clarification, the
results stated in this section will be in terms of R, hence the asymptotic notations Ω, O never hide
dominating dependency on R. 5

4.1 PROPERTIES OF THE NCE LOSS

We first describe several properties of the NCE loss that will be useful in the analysis of first- and
second-order algorithms.

To start, we show that the dynamic range of the loss is large: that is, the optimal NCE loss is
exponentially small as a function of R; on the other hand, if θ is initialized close to θq , the initial
loss would be on the order of a constant. Precisely:
Proposition 4.1 (Range of NCE loss). Consider the 1d Gaussian mean estimation task with mean
θ∗, θq ∈ R, and a known variance of 1. Denote R := |θq − θ∗| where R � 1, Then, the loss at
θ = θq is log 2, while the minimal loss L∗ is L∗(R) = c exp(−R2/8) for some c ∈ [1

2 , 2].

The next shows we need to decrease the loss to be on an order comparable to the optimum value.
Namely, the loss is very flat close to θ∗, thus in order to recover a θ close to θ∗, we have to reach a
very small value for the loss. Precisely:
Proposition 4.2. Under the same setup as Proposition 4.1, for a given δ ∈ (0, 1), if the learned
parameter τ satisfies ‖τ − τ∗‖2≤ δ, then L(τ)− L(τ∗) ≤ R exp(−R2/8) δ2.

The way we will leverage Propositions 4.1 and 4.2 to prove lower bounds is to say that if the updates
of an iterative algorithm are too small, the convergence will take an exponential number of steps.

Proposition 4.2 is proven via the Taylor expansion at θ∗: since the gradient is 0 at θ∗, we just need
to bound the Hessian at θ∗. We show:
Lemma 4.1 (Smoothness at P = P ∗). Under the same setup as Proposition 4.1, the smoothness at
P = P∗ is upper bounded as σmax(∇2L(τ∗)) ≤ R√

2π
exp(−R2/8).

We will also need a bound on the strong convexity constant (i.e. smallest singular value) at P = P ∗:
Lemma 4.2 (Strong convexity at P = P ∗). Under the same setup as Proposition 4.1, the minimum
singular value at P = P∗ is σ∗min(∇2L(τ∗)) = Θ

(
1
R exp

(
−R

2

8

))
.

Finally, in order to estimate the choice of the step size for standard optimization methods, we will
also need a bound of the smoothness at P = Q:
Lemma 4.3 (Smoothness at P = Q). Under the same setup as Proposition 4.1, the smoothness at
P = Q is lower bounded as σmax(∇2L(τq)) ≥ R2

2 .

Lemma 4.1, 4.2 are proved in Appendix D.4, and Lemma 4.3 is proved in Appendix D.5.

4.2 LOWER BOUNDS ON FIRST- AND SECOND-ORDER METHODS

With the landscape properties at hand, we are now ready to provide lower bounds for both first-order
and second-order methods. For first-order methods, we show that:
Theorem 4.1 (Lower bound for gradient-based methods). Let P∗, Q, P be 1d Gaussian with vari-
ance 1. Assume θq = 0, θ∗ > 0 without loss of generality, and assume R := θ∗ − θq � 1. Then,
gradient descent with any step size η = o(1) from an initialization τ = τq will need an exponential
number of steps to reach some τ ′ that is O(1) close to τ∗.

Note, the maximum step size η = o(1) the theorem applies to is actually a loose bound: the standard
setting of step size for gradient descent is η ≤ 1/λM for λM := maxθ∈Θ σmax(∇2L(τ(θ))), which
is Ω(R2) by Lemma 4.3. Theorem 4.1 helps explain why NCE with a far-away Q fails in practice,
if we set the budget for the number of updates to be polynomial.

5For example, for R� 1, R exp(R2) = O(exp(R2)), but the constant in O(1) will not depend on R.

5

Published as a conference paper at ICLR 2022

A natural remedy to the drastically changing norms of the gradients is to use methods that can
properly precondition the gradient. This motivates the use of second order methods, which adapt to
the geometry of the loss and hence can potentially perform more competitively.

Unfortunately, standard second-order approaches are again of no help, and the number of steps
required to converge remains exponential. Consider Newton’s method with updates of the form
η(∇2L)−1∇L. At first glance, this looks like it may solve the issue of a flat gradient, since the
Hessian ∇2L may also be exponentially small hence canceling out with the exponentially small
gradient. However, the flatness of the landscape forces us to take an exponentially small step size η,
resulting in the following claim:
Theorem 4.2 (Lower bound for Newton’s method). Let P∗, Q, P satisfy the same conditions as in
theorem 4.1. Let λρ := minθ∈Θ σmin(∇2L(τθ)), λM := maxθ∈Θ σmax(∇2L(τθ)). Then, run-
ning the Newton’s method with step size η = O(

λρ
λM

) from an initialization τ = τq will need an
exponential number of steps to reach some τ ′ that is O(1) close to τ∗.

Again, the condition η = O
(
λρ
λM

)
follows the typical step size choice for Newton’s method, i.e. the

step size should be upper bounded by the ratio between the global strong convexity constant and the
global smoothness of the function, which is exponentially small for this setup by Lemma 4.2, 4.3.

5 NORMALIZED GRADIENT DESCENT FOR WELL-CONDITIONED LOSSES

We have seen that due to an ill-behaved landscape, NCE optimized with standard gradient descent
or Newton’s method will fail to reach a good parameter estimate efficiently, even on a problem as
simple as Gaussian mean estimation, and even with access to the population gradient.

In this section, we will show that a close relative of gradient descent, normalized gradient descent
(NGD), despite its simplicity, provides a fix to the flatness problem to exponential family distribu-
tions when the Hessian of the loss is well-conditioned close to the optimum.

Precisely, recall that the NGD updates for a loss function L is τt+1 = τt − η ∇L(τt)
‖∇L(τt)‖2 . We assume

that in a neighborhood around τ∗, the change in the shape of the Hessian H is moderate: 6

Assumption 5.1 (Hessian in a neighborhood of τ∗). Under assumption 2.2 with constant βZ , assume
that for any τ such that ‖τ − τ∗‖2≤ 1

βZ
, it holds that σmax(H(τ)) ≤ βu · σmax(H(τ∗)), and

σmin(H(τ)) ≥ βl · σmin(H(τ∗)), for some constant βu, βl > 0.

The main result of this section states that NGD can find a parameter estimate efficiently for expo-
nential families, where the number of steps required is polynomial in the distance between the initial
estimate and the optimum:
Theorem 5.1. Let L be any loss function that is convex in the exponential family parameter and
satisfies Assumptions 5.1 and 2.1 - 2.4. Furthermore, let P∗, Q be exponential family distributions
with parameters τ∗, τq and let κ∗ be the condition number of the Hessian at P = P∗. Then, for

any 0 < δ ≤ 1
βZ

and parameter initialization τ0, with step size η ≤
√

βl
βuκ∗

δ, performing NGD on

the population objective L guarantees that after T ≤ βuκ∗
βl
· ‖τ0−τ∗‖

2

δ2 steps, there exists an iterate
t ≤ T such that ‖τt − τ∗‖2≤ δ.

The main technical ingredient for proving Theorem 5.1 is the following Lemma:
Lemma 5.1. Suppose Assumptions 2.2 and 5.1 hold with constants βZ , βu and βl. Let L be a convex

function with minimizer τ∗, and let g := ∇L(τ). For any δ ≤ 1
βZ

, let γ =
√

βl
βuκ∗

δ. Then for all τ
s.t. ‖τ − τ∗‖2≥ δ, we have L(τ∗ + γ g

‖g‖) ≤ L(τ).

Lemma 5.1 explains the dependency on κ∗ in the NGD convergence rate. The intuition of the proof
is that in a small neighborhood around τ∗, the set of parameters that have the same loss form an
“ellipsoid", and by Taylor expansion, any two points in the same set will have a distance-to-τ∗ ratio
upper bounded roughly by

√
κ∗. The details are in Appendix C.2.

6As a concrete example, we will show in the next section that a variant of NCE satisfies both conditions.

6

Published as a conference paper at ICLR 2022

Proof sketch for Theorem 5.1: the proof leverages two observations: the convexity of NCE loss on
exponential family parameters, and that the Hessian in a neighborhood around τ∗ changes moder-
ately as stated in Assumption 5.1. One can then show there exists a global constant γ such that for
any τt satisfying ‖τt− τ∗‖2≥ δ, one step of NGD update guarantees a decrease of γ2 in the squared
error, which means NGD must have found an δ-close estimate within ‖τ0−τ∗‖

2

γ2 steps. The full proof
is deferred to Appendix C.1.

5.1 EXAMPLE: 1D GAUSSIAN MEAN ESTIMATION

It is relatively straightforward to check that NGD addresses the flatness problem faced by Gaussian
mean estimation we considered in Section 4:
Corollary 5.1. Let P∗, Q be 1d Gaussian with covariance 1 and mean θ∗ = R where R � 1, and
θq = 0. For any given δ ≤ 1

R and initial estimate τ0 = τq , NGD can find an estimate τ such that
‖τ − τ∗‖2≤ δ, with at most O(R

6

δ2) steps.

Intuitively, the effectiveness of NGD comes from the crucial observation that though the magnitude
for the loss and derivatives can be exponentially small, they share the same exponential factor, mak-
ing normalization effective. Formally, it can be shown that βuβl = O(1) (Appendix D.6). Corollary
5.1 then follows from Theorem 5.1 and the curvature and strong convexity from Lemma 4.1, 4.2.

5.2 BOUNDS ON THE CONDITION NUMBER OF NCE

The convergence rate in Theorem 5.1 depends on κ∗, the condition number of the NCE Hessian at
the optimum, and Hessian-related constants βu, βl in Assumption 5.1. We now show that under the
setup of Theorem 5.1, κ∗ and βu, βl can be related to the Bhattacharyya coefficient between P∗ and
Q, which is a similarity measure defined as BC(P∗, Q) :=

∫
x

√
p∗(x)q(x)dx. As a result, we get

the following convergence guarantee:
Theorem 5.2. Suppose Assumptions 2.1, 2.3 hold with constants ω, λmax, and λmin. Consider
a NCE task with data distribution P1 and noise distribution P2, parameterized by θ1, θ2 ∈ Θ re-
spectively. Then for any given δ ≤ 1

R and initial estimate τ0 = τq , NGD finds an estimate τ such

that ‖τ − τ∗‖2≤ δ within T ≤ C · 1

BC(P∗,Q)3

‖τ0−τ∗‖2
δ2 steps, where C := 18 exp (2

βZ
) · (λmax

λmin
)
3 ·

min
{

2λ2
max

λ2
min

, 2λmin+γmax‖δ̄‖
λmin−γmin‖δ̄‖

}
.

In particular, when P∗, Q are not too far, we can further show a lower bound on BC(P∗, Q):
Lemma 5.2. For P1, P2 parameterized by θ1, θ2 ∈ Θ, if ‖θ1 − θ2‖22≤ 4

λmax
, then BC(P1, P2) ≥ 1

2 .

The proofs of Theorem 5.2 and Lemma 5.2 rely on analyzing the geodesic on the manifold of
square root densities

√
p equipped with the Hellinger distance as a metric; the details are deferred to

Appendix C.3 and C.4. It is also worth noting that Theorem 5.2 only requires ‖θ1−θ2‖ to be smaller
than a constant, rather than tending to zero as usually required for analyses using Taylor expansions.

Finally, we would like to note that although our analysis can be tightened, it is unlikely to remove
such dependency since NGD only uses first-order information. 7 Moreover, the condition number
κ∗ also affects the practical use of Newton-like methods, since matrix inversion is widely known
to be sensitive to numerical issues when the matrix is extremely ill-conditioned. It is an interesting
open question whether a non-standard preconditioning approach might be amenable to this setting.

6 ANALYZING ENCE : NCE WITH AN EXPONENTIAL LOSS

The previous section proved that NGD can serve as a simple fix to overcome the flatness problem of
NCE for well-conditioned losses. However, though we showed κ∗ has a polynomial growth when
the distributions P , Q∗ are sufficiently close —it is unclear how κ∗ behaves beyond this threshold.

7In the next section, we will that the condition number is provably polynomial in ‖θ∗− θq‖ for a variant of
the NCE loss.

7

Published as a conference paper at ICLR 2022

In this section, we introduce a slight modification to the NCE objective, which we call the eNCE
objective, for which κ∗ depends polynomially on some class-related constants. This means though
eNCE may still suffer from the flatness problem, eNCE and NGD together provide a solution that
guarantees a polynomial convergence rate.

Towards formalizing this, the eNCE loss is defined as:

Definition 6.1 (eNCE Loss). Let ϕ(x) := log
√

p(x)
q(x) , and l(x, y) := exp(−yϕ(x)) for y ∈ {±1}.

The eNCE loss of Pθ w.r.t. data distribution P∗ and noise Q is:

Lexp(Pθ) =
1

2
Ex∼P∗ [l (x, 1)] +

1

2
Ex∼P∗ [l (x,−1)] =

1

2

∫
x

p∗

√
q(x)

p(x)
+

1

2

∫
x

q

√
p(x)

q(x)
. (6.1)

It can be checked easily that the minimizing ϕ learns ϕ(x) = 1
2 log p∗

q . Moreover, each ϕ is associ-
ated with an induced distribution p, defined by p(x) = exp(ϕ(x))q(x).

Relation to NCE: Same as the original NCE loss (referred to as “NCE” below), eNCE learns to solve
a distinguishing task between samples from P∗ or Q. The difference lies only in the losses, which
have analogous forms: the NCE loss described in Def. 2.1 can be rewritten in the same form with
l(x, y) := log 1

1+exp(−yψ(x)) and ψ(x) := log p(x)
q(x) .

The main advantage of the exponential loss is that the Hessian at the optimum is now guaranteed to
be well-conditioned:
Lemma 6.1 (Polynomial condition number for eNCE loss). Under Assumption 2.3 with constants
λmax, λmin, the condition number of the eNCE Hessian at the optimum is bounded by κ∗ ≤ λmax

λmin
.

We can also show that eNCE satisfies part (ii) of Assumption 5.1. Due to space considerations, the
proof is deferred to Appendix B.1.
Lemma 6.2. Under assumption 2.2 with constant βZ , for any unit vector u and constant c ∈ [0, 1

βZ
],

the maximum and minimum singular values of H(τ∗ + cu) satisfy assumption 5.1 with constants
βu = 2 exp(1) · λmax

λmin
, βl = 1

2 exp(1) ·
λmin

λmax
.

Lemma 6.1 and Lemma 6.2 together imply the Hessian is well-conditioned around the optimum.
Combined with Theorem 5.1, we have the main result of this section:
Theorem 6.1. Let P∗, Q be exponential family distributions with parameters τ∗, τq under Assump-
tion 2.1-2.4. Let λmax, λmin be constants for Assumption 2.3. For any given δ ≤ 1

βZ
and pa-

rameter initialization τ0, performing NGD on the eNCE objective guarantees that when taking
T ≤ 4 exp(2) · λ

3
max

λ3
min
· ‖τ0−τ∗‖

2

δ2 steps, there exists an iterate t ≤ T such that ‖τt − τ∗‖2≤ δ.

Proof. Theorem 6.1 follows directly from Theorem 5.1, using the condition number bound from
Lemma 6.1 and constants from 6.2.

6.1 PROOF OF LEMMA 6.1

It can be checked that the Hessian at P = P∗ is H∗ := ∇2L(P∗) = 1
4

∫
x

√
p∗q∇ log p(∇ log p)>.

Recall that θ∗, θq, T̃ denote the parameters and sufficient statistics without the partition func-
tion coordinate, and τ∗, τq, T denote the extended version with the partition function, e.g. τ∗ =

[θ∗, logZ(θ∗)], T (x) = [T̃ (x),−1]. Then, we can rewrite H∗ as:

H∗ =
1

4

∫
x

√
p∗qT (x)T (x)> =

1

4

∫
x

exp

(
(τ∗ + τq)

>

2
T (x)

)
T (x)T (x)>

=
1

4

∫
x

exp

(
(θ∗ + θq)

>

2
T̃ (x)− 1

2
logZ(θ∗)−

1

2
logZ(θq)

)
T (x)T (x)>

=
1

4

Z
(
θ∗+θq

2

)
√
Z(θ∗)Z(θq)︸ ︷︷ ︸
B(P∗,Q)

∫
x

exp
(

(
θ∗+θq

2
)>T̃ (x)

)
Z
(
θ∗+θq

2

) T (x)T (x)>dx =
B(P∗, Q)

4
E θ∗+θq

2

[TT>].

(6.2)

The Lemma then follows from λminI � E θ∗+θq
2

[TT>] � λmaxI by Assumption 2.3.

8

Published as a conference paper at ICLR 2022

Figure 1: Results for estimating 1d (left) and 16d (right) Gaussians, plotting mint∈[T]‖τ∗ − τt‖2
(y-axis) against the number of updates T (x-axis). In both cases, when using NCE, normalized
gradient descent (“NCE, NGD", yellow) largely outperforms gradient descent (“NCE, GD”, red).
When using NGD, the proposed eNCE (“eNCE, NGD”, blue) decays faster than the original NCE
loss. The results are averaged over 5 runs, with shaded areas showing the standard deviation.

Figure 2: Results on MNIST, plotting loss value (y-axis, log scale) against update steps (x-axis).
The left plot shows NCE optimized by GD (black) and NGD (yellow), and the right shows eNCE
optimized by GD (black) and NGD (blue). It can be seen that NGD outperforms GD in both cases.

7 EMPIRICAL VERIFICATION

To corroborate our theory, we verify the effectiveness of NGD and eNCE on Gaussian mean esti-
mation and the MNIST dataset. For MNIST, we use a ResNet-18 to model the log density ratio
log(p/q), following the setup in TRE (Rhodes et al., 2020).

Results: For Gaussian data, we run gradient descent (GD) and normalized gradient descent (NGD)
on the NCE loss and eNCE loss. Figure 1 compares the best runs under each setup given a fixed
computation budget (100 update steps), where “best" is defined to be the run with the lowest loss on
fresh samples. The plots show the minimum parameter distance mint∈[T]‖τ∗−τt‖2 for each step T .
We find that NGD indeed outperforms GD, and that the proposed eNCE sees a further improvement
over NCE while additionally enjoying provable polynomial convergence guarantees. For MNIST,
we can no longer compare parameter distances since τ∗ is unknown. Instead, we compare the result
of optimization directly in terms of loss achieved, again under a fixed computation budget (2K steps).
The results are shown in Figure 2, with NGD converging significantly faster for both NCE and
eNCE. We note that eNCE can be numerically unstable, especially when P∗, Q are well separated.
We include implementation details in Appendix E.1 and additional results in Appendix E.2.

8 CONCLUSION AND DISCUSSIONS

We provided a theoretical analysis of the algorithmic difficulties that arise when optimizing the NCE
objective with an uninformative noise distribution, stemming from an ill-behaved loss landscape.
Our theoretical results are inspired by empirical observations in prior works (Rhodes et al., 2020;
Gao et al., 2020; Goodfellow et al., 2014) and provide the first formal explanation on the nature
of the optimization problems of NCE. Our negative results showed that even on the simple task of
Gaussian mean estimation, and even assuming access to the population gradient, gradient descent
and Newton’s method with standard step size choice still require an exponential number of steps to
reach a good solution.

We then proposed modifications to the NCE loss and optimization algorithm, whose combination
results in the first provably polynomial convergence rate for NCE. The loss we propose, eNCE, can
be efficiently optimized using normalized gradient descent and empirically outperforms existing
methods. We hope these theoretical results will help identify promising new directions in the search
for simple, effective, and practical improvements to noise-contrastive estimation.

9

Published as a conference paper at ICLR 2022

REFERENCES

Jacob Andreas, Maxim Rabinovich, Dan Klein, and Michael I Jordan. On the accuracy of self-
normalized log-linear models. arXiv preprint arXiv:1506.04147, 2015.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Accurate and conservative estimates of mrf
log-likelihood using reverse annealing. In Artificial Intelligence and Statistics, pp. 102–110.
PMLR, 2015.

Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models. arXiv
preprint arXiv:1903.08689, 2019.

Chris Dyer. Notes on noise contrastive estimation and negative sampling. arXiv preprint
arXiv:1410.8251, 2014.

Ruiqi Gao, Erik Nijkamp, Diederik P Kingma, Zhen Xu, Andrew M Dai, and Ying Nian Wu. Flow
contrastive estimation of energy-based models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7518–7528, 2020.

Andrew Gelman and Xiao-Li Meng. Simulating normalizing constants: From importance sampling
to bridge sampling to path sampling. Statistical science, pp. 163–185, 1998.

Charles J Geyer. On the convergence of monte carlo maximum likelihood calculations. Journal of
the Royal Statistical Society: Series B (Methodological), 56(1):261–274, 1994.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. arXiv preprint
arXiv:1406.2661, 2014.

Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi,
and Kevin Swersky. Your classifier is secretly an energy based model and you should treat it like
one. arXiv preprint arXiv:1912.03263, 2019.

Roger B Grosse, Chris J Maddison, and Russ R Salakhutdinov. Annealing between distributions
by averaging moments. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger (eds.), Advances in Neural Information Processing Systems, volume 26. Curran As-
sociates, Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/file/
fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf.

Michael Gutmann and Jun-ichiro Hirayama. Bregman divergence as general framework to estimate
unnormalized statistical models. In Proceedings of the Conference on Uncertainty in Artificial
Intelligence (UAI), 2011.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 297–304. JMLR Workshop and Conference Proceedings,
2010.

Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormalized statistical
models, with applications to natural image statistics. Journal of Machine Learning Research, 13
(2), 2012.

Nicholas JA Harvey, Christopher Liaw, and Sikander Randhawa. Simple and optimal
high-probability bounds for strongly-convex stochastic gradient descent. arXiv preprint
arXiv:1909.00843, 2019.

Elad Hazan, Tomer Koren, and Kfir Y Levy. Logistic regression: Tight bounds for stochastic and
online optimization. In Conference on Learning Theory, pp. 197–209. PMLR, 2014.

Elad Hazan, Kfir Y Levy, and Shai Shalev-Shwartz. Beyond convexity: Stochastic quasi-convex
optimization. arXiv preprint arXiv:1507.02030, 2015.

Olivier Henaff. Data-efficient image recognition with contrastive predictive coding. In International
Conference on Machine Learning, pp. 4182–4192. PMLR, 2020.

10

https://proceedings.neurips.cc/paper/2013/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf

Published as a conference paper at ICLR 2022

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. arXiv preprint arXiv:1808.06670, 2018.

Aapo Hyvarinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning
and nonlinear ica. arXiv preprint arXiv:1605.06336, 2016.

Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated annealing.
science, 220(4598):671–680, 1983.

Lingpeng Kong, Cyprien de Masson d’Autume, Lei Yu, Wang Ling, Zihang Dai, and Dani Yo-
gatama. A mutual information maximization perspective of language representation learning. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=Syx79eBKwr.

Matthieu Labeau and Alexandre Allauzen. Learning with noise-contrastive estimation: Easing train-
ing by learning to scale. In Proceedings of the 27th International Conference on Computational
Linguistics, pp. 3090–3101, Santa Fe, New Mexico, USA, August 2018. Association for Compu-
tational Linguistics. URL https://www.aclweb.org/anthology/C18-1261.

Aditya Menon and Cheng Soon Ong. Linking losses for density ratio and class-probability estima-
tion. In International Conference on Machine Learning, pp. 304–313. PMLR, 2016.

Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noise-contrastive
estimation. Advances in neural information processing systems, 26:2265–2273, 2013.

Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic
language models. In Proceedings of the 29th International Conference on Machine Learning, pp.
1751–1758, 2012.

Radford M Neal. Annealed importance sampling. Statistics and computing, 11(2):125–139, 2001.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. arXiv preprint arXiv:1606.00709, 2016.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Miika Pihlaja, Michael Gutmann, and Aapo Hyvärinen. A family of computationally efficient and
simple estimators for unnormalized statistical models. In Proceedings of the Conference on Un-
certainty in Artificial Intelligence (UAI), 2010.

Benjamin Rhodes, Kai Xu, and Michael U Gutmann. Telescoping density-ratio estimation. arXiv
preprint arXiv:2006.12204, 2020.

Lionel Riou-Durand, Nicolas Chopin, et al. Noise contrastive estimation: Asymptotic properties,
formal comparison with mc-mle. Electronic Journal of Statistics, 12(2):3473–3518, 2018.

Akash Srivastava, Kai Xu, Michael U. Gutmann, and Charles Sutton. Generative ratio matching
networks. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=SJg7spEYDS.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density Ratio Estimation in Machine
Learning. Cambridge University Press, USA, 1st edition, 2012. ISBN 0521190177.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding, 2020.

Che-Ping Tsai, Adarsh Prasad, Sivaraman Balakrishnan, and Pradeep Ravikumar. Heavy-tailed
streaming statistical estimation. arXiv preprint arXiv:2108.11483, 2021.

Masatoshi Uehara, Takafumi Kanamori, Takashi Takenouchi, and Takeru Matsuda. A unified statis-
tically efficient estimation framework for unnormalized models. In International Conference on
Artificial Intelligence and Statistics, pp. 809–819. PMLR, 2020.

11

https://openreview.net/forum?id=Syx79eBKwr
https://openreview.net/forum?id=Syx79eBKwr
https://www.aclweb.org/anthology/C18-1261
https://openreview.net/forum?id=SJg7spEYDS
https://openreview.net/forum?id=SJg7spEYDS

Published as a conference paper at ICLR 2022

Martin J Wainwright and Michael Irwin Jordan. Graphical models, exponential families, and vari-
ational inference. Now Publishers Inc, 2008.

Lantao Yu, Yang Song, Jiaming Song, and Stefano Ermon. Training deep energy-based models with
f-divergence minimization. In International Conference on Machine Learning, pp. 10957–10967.
PMLR, 2020.

12

Published as a conference paper at ICLR 2022

APPENDIX

We will fist provide missing proofs for the eNCE results in section 6 in section B. Section C provides
proofs for NGD convergence on the NCE loss, and section D proves the negative results of NCE in
section 4). Additional notes on the experiments are provided in section E.1.

Notation: We will use a . b to denote a = O(b) with O hiding a constant less than 2. Similarly,
a & b denotes a = Ω(b) where Ω hides a constant greater than 1

2 .

A PROOF OF CONVEXITY OF NCE (LEMMA 2.2)

As a preliminary, let’s first prove that the NCE loss is convex in exponential family parameters.
Recall that the NCE loss is

L(P) :=
1

2
EP∗ log

p+ q

p
+

1

2
EQ log

p+ q

q
(A.1)

where p(x) = p(τ>T (x)). The gradient and Hessian of the NCE loss are:

∇τp(x) =p(x) · T (x),

∇L(τ) =
1

2
∇
[
E∗ log

p+ q

p
+ EQ log

p+ q

q

]
=

1

2

[
E∗

p

p+ q

p− p− q
p2

∇τp+ EQ
q

p+ q

1

q
∇τp

]
=

1

2

∫
x

q

p+ q
(p− p∗)T (x)dx,

∇2L(τ) =
1

2

∫
x

(
−q(p− p∗)

(p+ q)2
∇τp+

q

p+ q
∇τp

)
T (x)dx

=
1

2

∫
x

q

p+ q
· p∗ + q

p+ q
· p · T (x)T (x)>dx =

1

2

∫
x

(p∗ + q)pq

(p+ q)2
T (x)T (x)>dx.

(A.2)

Hence the Hessian is PSD at any τ .

B PROOFS FOR SECTION 6 (ENCE)

We first write down the loss, gradient and Hessian of eNCE for the exponential family:

Lexp(P) =
1

2

∫
x

p∗

√
q

p
+

1

2

∫
x

q

√
p

q

∇Lexp(P) =
1

4

∫
x

√
q

(
√
p− p∗√

p

)
∇ log p

∇2Lexp(P) =
1

4

∫
x

√
q

(
√
p− p∗√

p

)
· ∇2 log p+

1

8

∫
x

√
q

(
√
p+

p∗√
p

)
∇ log p(∇ log p)>

=
1

8

∫
x

√
q

(
√
p+

p∗√
p

)
∇ log p(∇ log p)>

=
1

8

∫
x

p∗

√
q

p
T (x)T (x)> +

1

8

∫
x

q

√
p

q
T (x)T (x)>.

(B.1)

Note that the Hessian is always PSD, which means Lexp is convex in the parameters of the expo-
nential family.

13

Published as a conference paper at ICLR 2022

B.1 PROOF OF LEMMA 6.2

We directly calculate the Hessian at some τ̃ := τ∗ + cu for some c ≤ 1
βZ

and ‖u‖2= 1, using the
expression in equation B.1:

∇2Lexp(τ̃) =

∫
x

(
p∗

√
q

p̃
+ q

√
p̃

q

)
T (x)T (x)>

=

∫
x

[
exp

(
〈τ∗ +

τq − τ̃
2

, T (x)〉
)

+ exp

(
〈τq + τ̃

2
, T (x)〉

)]
T (x)T (x)>

=

∫
x

[
exp

(
〈τq + τ∗

2
− c

2
u, T (x)〉

)
+ exp

(
〈τq + τ∗

2
+
c

2
u, T (x)〉

)]
T (x)T (x)>

=

∫
x

[
exp

(
〈− c

2
u, T (x)〉

)
+ exp

(
〈 c
2
u, T (x)〉

)]
exp

(
〈τq + τ∗

2
, T (x)〉

)
T (x)T (x)>

=
Z(

θ∗+θq
2

)√
Z(θq)Z(θ∗)︸ ︷︷ ︸
B(P∗,Q)

∫
x

[
exp

(
〈− c

2
u, T (x)〉

)
+ exp

(
〈 c
2
u, T (x)〉

)]
exp

(
〈τ(

θq + θ∗
2

), T (x)〉
)
T (x)T (x)>.

(B.2)

Note that without the term in the square brackets, the integration is exactly the same as the one for
H∗.

We would like to bound the ratio v>∇2Lexp(τ̃)v
v>H∗v

for any unit vector v. Denote δ̄ := cu
2 , τ̄ :=

τ
(
θq+θ∗

2

)
for notation convenience, and denote S1 := {x : δ̄>T (x) > 0}, S−1 := {x : δ̄>T (x) ≤

0}. We have:

v>∇2Lexp(τ̃)v

v>H∗v
'
∫
x∈S1

exp
(
δ̄>T (x)

)
exp

(
τ̄>T (x)

)
(v>T (x))2∫

x
exp (τ̄>T (x)) (v>T (x))2

+

∫
x∈S−1

exp
(
δ̄>T (x)

)
exp

(
τ̄>T (x)

)
(v>T (x))2∫

x
exp (τ̄>T (x)) (v>T (x))2

:= T1 + T−1.

(B.3)

Recall that f ' g means functions f, g differ only by a constant factor. This equation will be used
to calculate both the upper and the lower bound.

For the upper bound, let χ ∈ {±1}, we have

Tχ =

∫
x:χδ̄>T (x)>0

exp
(
χδ̄>T (x)

)
exp

(
τ̄>T (x)

)
(v>T (x))2∫

x
exp (τ̄>T (x)) (v>T (x))2

=
Z(χθ̄ +

θq+θ∗
2)

Z(
θq+θ∗

2) · exp(χᾱ)
·

∫
x:δ̄>T (x)>0

p
χθ̄+

θ∗+θq
2

(x)(v>T (x))2∫
x
p θ∗+θq

2

(v>T (x))2

≤
Z(χθ̄ +

θq+θ∗
2)

Z(
θq+θ∗

2) · exp(χᾱ)
·
E
χθ̄+

θ∗+θq
2

[(v>T (x))2]

E θ∗+θq
2

[(v>T (x))2]

(i)

≤ exp
(
βZ‖θ̄‖−χᾱ

) Eχθ̄+ θ∗+θq
2

[(v>T (x))2]

E θ∗+θq
2

[(v>T (x))2]

(B.4)

where step (i) uses the Lipschitz property of the log partition function in assumption 2.2.

For the lower bound, let χ∗ := arg maxχ∈{±1} Tχ. Write δ̄ = [θ̄, ᾱ] (i.e. separating out ᾱ which is
the normalizing constant), let S 1

2
(v) ⊂ Sχ∗ denote a set s.t.∫

x∈S 1
2

(v)

p
χ∗θ̄+

θ∗+θq
2

(x)(v>T (x))2 ≥ 1

2

∫
x

p
χ∗θ̄+

θ∗+θq
2

(x)(v>T (x))2.

14

Published as a conference paper at ICLR 2022

Then Tχ for χ ∈ {±1} can be lower bounded as:

Tχ∗ ≥
Z(χθ̄ +

θq+θ∗
2)

Z(
θq+θ∗

2) · exp(ᾱ)
·

∫
x∈S 1

2
(v)

p
χ∗θ̄+

θ∗+θq
2

(x)(v>T (x))2∫
x
p θ∗+θq

2

(v>T (x))2

≥1

2

Z(χ∗θ̄ +
θq+θ∗

2)

Z(
θq+θ∗

2) · exp(ᾱ)
·
E
χ∗θ̄+

θ∗+θq
2

[(v>T (x))2]

E θ∗+θq
2

[(v>T (x))2]

(i)

≥ 1

2
exp

(
−βZ‖θ̄‖−χ∗ᾱ

)
·
E
χ∗θ̄+

θ∗+θq
2

[(v>T (x))2]

E θ∗+θq
2

[(v>T (x))2]

T−χ∗ ≥0

(B.5)

where step (i) uses the Lipschitz property of the log partition function in assumption 2.2.

This means for any unit vector v, we have

v>∇2Lexp(τ̃)v

v>H∗v
=T1 + T−1

≤ exp
(
βZ‖θ̄‖+|ᾱ|

)
·

[E
θ̄+

θ∗+θq
2

[(v>T (x))2]

E θ∗+θq
2

[(v>T (x))2]
+

E−θ̄+ θ∗+θq
2

[(v>T (x))2]

E θ∗+θq
2

[(v>T (x))2]

]
(i)

≤2 exp
(
βZ‖θ̄‖+|ᾱ|

)
· λmax

λmin
≤ 2 exp

(c
2

(1 + βZ)
)
· λmax

λmin
≤ 2 exp(1) · λmax

λmin

v>∇2Lexp(τ̃)v

v>H∗v
=T1 + T−1

(ii)

≥ 1

2
exp

(
−βZ‖θ̄‖−|ᾱ|

)
· λmin

λmax
≥ 1

2 exp(1)
· λmin

λmax

(B.6)

where step (i), (ii) follow from assumption 2.3.

Hence the eNCE loss satisfies assumption 5.1 with constants βu = 2 exp(1) · λmax

λmin
, βl = 1

2 exp(1) ·
λmin

λmax
.

C PROOFS FOR SECTION 5 (NGD AND CONDITION NUMBER AT THE
OPTIMUM)

This section provides proofs for results in section 5. Results for NGD convergence rate (Theorem
5.1 and Lemma 5.1) are proved in section C.1 and C.2. Section C.3 proves the convergence rate
stated in terms of the Bhattacharyya coefficient (Theorem 5.2), and the bound on Bhattacharyya
coefficient (Lemma 5.2) is proved in section C.4.

C.1 PROOF OF THEOREM 5.1 (NGD CONVERGENCE RATE)

Theorem C.1 (Theorem 5.1 restated). Let L be any loss function that is convex in the exponential
family parameter and satisfies Assumptions 5.1 and 2.1 - 2.4. Furthermore, let P∗, Q be exponential
family distributions with parameters τ∗, τq and let κ∗ be the condition number of the Hessian at P =

P∗. Then, for any 0 < δ ≤ 1
βZ

and parameter initialization τ0, let the step size be η ≤
√

βl
βuκ∗

δ,

performing NGD on the population objective L guarantees that after T ≤ βuκ∗
βl
· ‖τ0−τ∗‖

2

δ2 steps,
there exists an iterate t ≤ T such that ‖τt − τ∗‖2≤ δ.

Proof. Denote gt := ∇L(τt) and R := ‖τ∗ − τq‖2 for notation convenience. Recall that the NGD
update with step size η is τt+1 = τt − η · gt

‖gt‖2 . Then, ‖τt − τ∗‖2 can be rewritten as:

‖τt+1 − τ∗‖2=‖τt − τ∗‖2−2γη + η2 + 2η
g>t
‖gt‖

(
τ∗ + γ

gt
‖gt‖

− τt
)

(C.1)

15

Published as a conference paper at ICLR 2022

If we set γ s.t. the last term is smaller than 0 for all τ that are not within distance δ to τ∗, setting
η = γ gives:

‖τt+1 − τ∗‖2≤ ‖τt − τ∗‖2−2γη + η2 = ‖τt − τ∗‖2−γ2 (C.2)

Hence the number of steps required to find a τ s.t. ‖τ − τ∗‖2≤ δ is at most T ≤ ‖τ0−τ∗‖
2

γ2 .

By Lemma 5.1, setting γ =
√

βl
βuκ∗

δ ensures L(τ∗ + γ gt
‖gt‖) ≤ L(τt) for any τt that is at least δ

away from τ∗. It then follows from the convexity of L that

g>t

(
τ∗ + γ

gt
‖gt‖

− τt
)
≤ L

(
τ∗ + γ

gt
‖gt‖

)
− L(τt) ≤ 0. (C.3)

Substituting this choice of γ back to the bound for T gives T ≤ βuκ∗
βl
· ‖τ0−τ∗‖

2

δ2 .

C.2 PROOF OF LEMMA 5.1

Lemma C.1 (Lemma 5.1 restated). Suppose Assumptions 2.2 and 5.1 hold with constant βZ , βu
and βl. Let L be a convex function with minimizer τ∗, and let g := ∇L(τ). For any δ ≤ 1

βZ
, let

γ =
√

βl
βuκ∗

δ, then for all τ s.t. ‖τ − τ∗‖2≥ δ, we have L(τ∗ + γ g
‖g‖) ≤ L(τ).

Proof. The proof follows from the Taylor expansion around τ∗: for any unit vector v and any con-
stant c ≤ γ, the Taylor remainder theorem states that there exists some constant c′ < c and unit
vector v′ such that L(τ∗ + cv)− L(τ∗) = c2

2 v>H(τ∗ + c′v′)v.

For any unit vector v1,v2 and constants c1, c2 ≤ δ such that L(τ∗+ c1v1) = L(τ∗+ c2v2), we have

L(τ∗ + c1v1)− L(τ∗) =
c21
2
v>1 H(τ∗ + c′1v

′
1)v1 =

c22
2
v>2 H(τ∗ + c′2v

′
2)v2 = L(τ∗ + c2v2)− L(τ∗)

⇒ c1
c2
≤

√
σmax(H(τ∗ + c′1v

′
1))

σmin(H(τ∗ + c′2v
′
2))
≤

√
βu
βl
κ∗.

(C.4)

This means for any two points with the same loss, the ratio between their distances to τ∗ will be at

most
√

βu
βl
κ∗. Therefore setting γ =

√
βl

βuκ∗
δ guarantees that for any τ that is at least δ away from

τ∗, τ will have a larger loss than any point that is γ away from τ∗. In other words, L(τ1) ≤ L(τ2)
holds for any τ1 ∈ B(τ∗, γ), τ2 6∈ B(τ∗, δ).

C.3 PROOF OF THEOREM 5.2 (CONVERGENCE RATE IN TERMS OF BHATTACHARYYA
COEFFICIENT)

Recall that the Bhattacharyya coefficient of P∗, Q is defined as BC(P∗, Q) :=
∫
x

√
p∗(x)q(x)dx.

Theorem C.2 (Theorem 5.2, restated). Suppose Assumptions 2.1, 2.3 hold with constants ω, λmax,
and λmin. Consider a NCE task with data distribution P∗ and noise distribution Q, parameterized
by θ∗, θq ∈ Θ respectively. Then for any given δ ≤ 1

R and initial estimate τ0 = τq , NGD finds

an estimate τ such that ‖τ − τ∗‖2≤ δ within T ≤ C · 1

BC(P∗,Q)3

‖τ0−τ∗‖2
δ2 steps, where C :=

18 exp (2
βZ

) · (λmax

λmin
)
3 ·min

{
2λ2

max

λ2
min

, 2λmin+γmax‖δ̄‖
λmin−γmin‖δ̄‖

}
.

Proof. Proving Theorem 5.2 requires bounding the condition number κ∗ and the Hessian-related
constants βu, βl.

We first show that κ∗ is inversely related to BC(P∗, Q):

Lemma C.2. Let Θ be the set of parameters for an exponential family satisfying assumption 2.1-2.2.
Then, for any pair of P∗, Q parameterized by θ∗, θq ∈ Θ, the NCE problem defined with P∗, Q has
κ∗ ≤ λmax

2λmin

1

BC(P∗,Q)
.

16

Published as a conference paper at ICLR 2022

The next lemma provides the Hessian-related constants in Assumption 5.1:

Lemma C.3. Let δ̄ := τ − τ∗. Let BC(P∗, Q) denote the Bhattacharyya coefficient between P∗
and Q, then for any τ such that ‖δ̄‖≤ 1

βZ
, we have:

σmax(∇2L(τ))

σmax(∇2L(τ∗))
≤ 1

BC(P∗, Q)
· 8 exp

(3

2
+

1

βZ

)
· λmax

λmin
·min

{
2λmax

λmin
, 2 +

γmax‖δ̄‖
λmin

}
σmin(∇2L(τ))

σmin(∇2L(τ∗))
≥ BC(P∗, Q) · 16 exp

(
− 2− 1

βZ

)
· λmin

λmax
·max

{
λmin

λmax
, 1− γmin‖δ̄‖

λmin

}
.

Hence Assumption 5.1 is satisfied with constants βu, βl equal to the respective right hand sides.

The factor C in the theorem statement is then chosen such that C

BC(P∗,Q)3
≥ βu

βl
, and the proof of

Theorem 5.2 is completed by applying Theorem 5.1 and the above lemmas.

C.3.1 PROOF OF LEMMA C.2

For exponential family with pdf p(x) = h(x) exp
(
θ>x− logZ(θ)

)
, the Hessian at the optimum is:

H∗ =

∫
x

p∗q

p∗ + q
T (x)T (x)>dx �

∫
x

min{p∗, q}T (x)T (x)>dx := M . (C.5)

We also have H∗ � 1
2M by noting that p∗ + q ≤ 2 max{p∗, q}. Therefore in order to bound κ∗, it

suffices to analyze the condition number of M .

For any pair of distributions parameterized by θ, θq ∈ Θ with PDFs p, q, and for any unit vector v,
we have(∫

x

√
p
√
q(v>T (x))2

)2

=

(∫
x

min{√p,√q}max{√p,√q}(v>T (x))2

)2

(i)

≤
(∫

x

(min{√p,√q})2(v>T (x))2

)
·
(∫

x

(max{√p,√q})2(v>T (x))2

)
≤
(∫

x

min{p, q}(v>T (x))2

)
·
(∫

x

(p+ q)(v>T (x))2

)
(ii

≤ 2λmax

∫
x

min{p, q}(v>T (x))2

(C.6)

where (i) uses Cauchy-Schwarz, and (ii) uses assumption 2.3.

Denote B :=

√
Z(θ)Z(θq)

Z
(
θ+θq

2

) . We have:(∫
x

√
p
√
q(v>T (x))2

)2

=
Z
(
θ+θq

2

)2

Z(θ)Z(θq)

(∫
x

p θ+θq
2

(x)(v>T (x))2

)2

=
1

B2

(
E θ+θq

2

(v>T (x))2
)2

.

(C.7)

Combining equation C.6, C.7 gives a lower bound of
∫
x

min{p, q}(v>T (x))2:∫
x

min{p, q}(v>T (x))2 ≥ 1

2λmax

1

B2

(
E θ+θq

2

(v>T (x))2
)2

. (C.8)

On the other hand,
∫
x

min{p, q}(v>T (x))2 can also be upper bounded as:∫
x

min{p, q}(v>T (x))2 ≤
∫
x

√
p
√
q(v>T (x))2 ≤ 1

B
E θ+θq

2

[
(v>T (x))2

]
. (C.9)

Hence the condition number of M is bounded as:

κ(M) :=
maxv

∫
x

min{p, q}(v>T (x))2

minv
∫
x

min{p, q}(v>T (x))2
≤ λmaxB

2 minv E θ+θq
2

[(v>T (x))2]
≤ λmax

2λmin
·B. (C.10)

17

Published as a conference paper at ICLR 2022

It is left to determine the value of B. We claim that B = 1

BC(P,Q)
, where BC(P,Q) is the Bhat-

tacharyya coefficient of P and Q defined as BC(P,Q) :=
∫
x

√
p(x)q(x)dx. To see this, note that it

holds for any x that logZθ = θ>x+ log h(x)− log pθ(x). Hence for any x,

B−1 = exp

(
logZ θ+θq

2

− 1

2
logZθ −

1

2
logZθq

)
=

√
pθ(x)pθq (x)

p θ+θq
2

(x)
. (C.11)

Therefore B−1 =
(∫

x
p θ+θq

2

(x)
)
·B−1 =

∫
x

√
pθ(x)pθq (x) = BC(P,Q).

C.3.2 PROOF FOR LEMMA C.3 (BOUND ON BC(P∗, Q))

Proof. For notational convenience, write δ̄ = [θ̄, ᾱ], where ᾱ = logZ(θ∗)− logZ(θ) is the differ-
ence in the coordinate for the log partition function.

Upper bounding σmax(∇2L(τ))
σmax(∇2L(τ∗))

: We proceed by splitting v>∇2L(τ)v into two terms:

v>∇2L(τ)v

=

∫
δ̄>T (x)<0

(p∗ + q)
pq

(p+ q)2
(v>T (x))2dx+

∫
δ̄>T (x)>0

(p∗ + q)
pq

(p+ q)2
(v>T (x))2dx.

(C.12)
The first term is bounded as:∫

δ̄>T (x)<0

(p∗ + q)
pq

(p+ q)2
(v>T (x))2dx =

∫
δ̄>T (x)<0

(p∗ + q)
1

p
q + q

p + 2
(v>T (x))2dx

≤
∫
δ̄>T (x)<0

(p∗ + q)
1

p
q + q

p

(v>T (x))2dx ≤
∫
δ̄>T (x)<0

(p∗ + q) ·min

{
q

p
,
p

q

}
(v>T (x))2dx

=

∫
δ̄>T (x)<0

(p∗ + q) ·min

{
q

p∗ exp
(
δ̄>T (x)

) , p∗ exp(δ̄>T (x))

q

}
(v>T (x))2dx

=

∫
δ̄>T (x)<0

exp
(
−δ̄>T (x)

)
(p∗ + q) min

{
q

p∗
,
p∗ exp(2δ̄>T (x))

q

}
(v>T (x))2dx

(i)

≤
∫
δ̄>T (x)<0

exp
(
−δ̄>T (x)

)
(p∗ + q) min

{
q

p∗
,
p∗
q

}
(v>T (x))2dx

≤ 2

∫
δ̄>T (x)<0

exp
(
−δ̄>T (x)

)
min{q, p∗}(v>T (x))2dx

(ii)

≤ 2

∫
x

exp
(
−δ̄>T (x)

)
min{q, p∗}(v>T (x))2dx ≤ 2

∫
x

exp
(
−δ̄>T (x)

)√
p∗q(v

>T (x))2dx

=2
Z(

θ∗+θq
2 − θ̄) exp(−ᾱ)√
Z(θ∗)Z(θq)

∫
x

p θ∗+θq
2 −θ̄ · (v

>T (x))2dx

≤ 2
Z(

θ∗+θq
2 − θ̄) exp(−ᾱ)√
Z(θ∗)Z(θq)

E θ∗+θq
2 −θ̄(v

>T (x))2

(iii)

≤ 2
Z(

θ∗+θq
2)√

Z(θ∗)Z(θq)︸ ︷︷ ︸
:=1/B

· exp
(
βZ θ̄ − ᾱ

)
· E θ∗+θq

2 −θ̄(v
>T (x))2

(iv)

≤ 2

B
· exp

(
1 +

1

βZ

)
· E θ∗+θq

2 −θ̄(v
>T (x))2

(C.13)

where step (i) is because δ̄>T (x) < 0; step (ii) increases the value by integrating over all x; step
(iii) uses Assumption 2.2 on Lipschitz log partition function; and step (iv) follows from the choice
of δ̄ = [θ̄, ᾱ] that ‖δ̄‖≤ 1

βZ
.

18

Published as a conference paper at ICLR 2022

The second term can be bounded as:∫
δ̄>T (x)>0

(p∗ + q)
pq

(p+ q)2
(v>T (x))2dx

≤
∫
δ̄>T (x)>0

p∗ + q

p+ q
min{p, q}(v>T (x))2dx ≤

∫
δ̄>T (x)>0

min{p, q}(v>T (x))2dx

≤
∫
x

√
pq(v>T (x))2dx =

Z(
θ∗+θ̄+θq

2) exp(−ᾱ)√
Z(θ∗ + θ̄)Z(θq)

E θ∗+θ̄+θq
2

(v>T (x))2

(i)

≤
Z(

θ∗+θq
2)√

Z(θ∗)Z(θq)
E θ∗+θ̄+θq

2

(v>T (x))2 · exp

(
3

2
βZ‖θ̄‖2−ᾱ

)
≤ 1

B
exp

(
3

2
+

1

βZ

)
· E θ∗+θ̄+θq

2

(v>T (x))2

(C.14)

where step (i) uses Assumption 2.2 about Lipschitzness of the log partition function, and step (ii)
is because we have chosen that ‖δ̄‖2≤ 1

βZ
.

Substituting back to equation C.12 gives:

v>∇2L(τ)v ≤ 1

B

[
2 exp

(
1 +

1

βZ

)
· E θ∗+θq

2 −θ̄(v
>T (x))2 + exp

(
3

2
+

1

βZ

)
· E θ∗+θq+θ̄

2

(v>T (x))2

]
≤

2 exp(3
2 + 1

βZ
)

B
·min

{
λmax, σmax(E θ∗+θq

2

[T (x)T (x)>]) + γmax‖δ̄‖
}

(C.15)

where the second inequality uses Assumption 2.3 and Assumption 2.4 for the first and second term
respectively.

Recall that v>∇2L(τ∗)v ≥ 1
4B2

1
λmax

(
E θ∗+θq

2

(v>T (x))2
)2

. Hence:

σmax(∇2L(τ))

σmax(∇2L(τ∗))
=

maxv v
>∇2L(τ)v

maxṽ′ ṽ>∇2L(τ∗)ṽ

≤ 8λmaxB exp

(
3

2
+

1

βZ

) E θ∗+θq
2 −θ̄(v

>T (x))2 + E θ∗+θq+θ̄

2

(v>T (x))2

maxṽ

(
E θ∗+θq

2

(ṽ>T (x))2
)2

≤ 8
λmax

λmin
B exp

(
3

2
+

1

βZ

)
·min

{
2λmax

λmin
, 2 +

γmax‖δ̄‖
σmax(E θ∗+θq

2

[T (x)T (x)>])

}

≤ 8
λmax

λmin
B exp

(
3

2
+

1

βZ

)
·min

{
2λmax

λmin
, 2 +

γmax‖δ̄‖
λmin

}
.

(C.16)

Lower bounding σmin(∇2L(τ))
σmin(∇2L(τ∗))

: Let us denote S1 := {x : δ̄>T (x) > 0} and S−1 := {x :

δ̄>T (x) ≤ 0}. The goal is to lower bound:

v>∇2L(τ)v =

∫
x∈S1

(p∗ + q)
pq

(p+ q)2
(v>T (x))2dx+

∫
x∈S−1

(p∗ + q)
pq

(p+ q)2
(v>T (x))2dx

:=T1 + T−1

(C.17)

Let’s lower bound T1, T−1 in each of the following two cases.

The first case is when T−1 ≥ T1. Let S 1
2
(v) ⊂ S−1 denote a set s.t.∫

x∈S 1
2

(v)

min{p, q}(v>T (x))2 ≥ 1

2

∫
x

min{p, q}(v>T (x))2.

19

Published as a conference paper at ICLR 2022

Write δ̄ = [θ̄, ᾱ] as before, then
T1 ≥0

T−1 =

∫
δ̄>T (x)<0

(p∗ + q)
pq

(p+ q)2
(v>T (x))2dx

(i)

≥
∫
δ̄>T (x)<0

pq

p+ q
(v>T (x))2dx

≥1

2

∫
δ̄>T (x)<0

min{p, q}(v>T (x))2dx
(ii)

≥ 1

2

∫
S 1

2
(v)

min{p, q}(v>T (x))2dx

(iii)

≥ 1

4

∫
min{p, q}(v>T (x))2dx

(iv)

≥ exp(−ᾱ)

8λmax
·
Z(

θ+θq
2)2

Z(θ)Z(θq)

(
E θ+θq

2

(v>T (x))2
)2

(v)

≥ exp(−ᾱ)

8λmax
· 1

B2
exp(−2βZ‖δ̄‖) ·

(
E θ∗+θq+θ̄

2

(v>T (x))2
)2

(C.18)

where step (i) uses p∗+q
p+q < 1 since δ̄>T (x) < 0; step (ii), (iii) follows from the definition of

S−1; step (iv) uses equation C.8; and step (v) uses Assumption 2.2 that the log partition function is
Lipschitz.

The second case is when T1 ≥ T−1. Let S 1
2
(v) ⊂ S1 denote a set s.t.∫

x∈S 1
2

(v)

min{p, q}(v>T (x))2 ≥ 1

2

∫
x

min{p, q}(v>T (x))2.

Then T−1, T1 can be lower bounded as:
T−1 ≥ 0

T1 =

∫
x∈S1

(p∗ + q)
pq

(p+ q)2
(v>T (x))2dx

≥1

2

∫
x∈S1

p∗ + q

p+ q
·min{p, q}(v>T (x))2dx ≥ 1

2

∫
x∈S1

p∗
p
·min{p, q}(v>T (x))2dx

=
exp(ᾱ)

2

∫
x∈S1

min{pθ∗ , pθq−θ̄}(v
>T (x))2dx

≥exp(ᾱ)

2

∫
x∈S 1

2
(v)

min{pθ∗ , pθq−θ̄}(v
>T (x))2dx ≥ exp(ᾱ)

4

∫
x

min{pθ∗ , pθq−θ̄}(v
>T (x))2dx

≥exp(ᾱ)

8λmax
·
Z(

θ∗+θq−θ̄
2)2

Z(θ∗)Z(θq − θ̄)

(
E θ∗+θq−θ̄

2

(v>T (x))2
)2

≥exp(ᾱ)

8λmax
· 1

B2
exp(−2βZ‖δ̄‖) ·

(
E θ∗+θq−θ̄

2

(v>T (x))2
)2

.

(C.19)

Combining both cases and using ‖δ̄‖≤ 1
βZ

, we get:

v>∇2L(τ)v = T1 + T−1

≥
exp(−2− 1

βZ
)

8λmax
· 1

B2
·min

{(
E θ∗+θq+θ̄

2

(v>T (x))2
)2

,
(
E θ∗+θq−θ̄

2

(v>T (x))2
)2
}
.

(C.20)

Recall that v>∇2L(τ∗)v ≤ 2
BE θ∗+θq

2

[(v>T (x))2]. Hence

σmin(∇2L(τ))

σmin(∇2L(τ∗))
=

minv v
>∇2L(τ)v

minṽ′ ṽ>∇2L(τ∗)ṽ

≥
16 exp(−2− 1

βZ
)

B

λmin

λmax
·max

{
λmin

λmax
,min

{σmin(E θ∗+θq+θ̄

2

TT>)

σmin(E θ∗+θq
2

[TT>])
,
σmin(E θ∗+θq−θ̄

2

TT>)

σmin(E θ∗+θq
2

[TT>])

}}

≥
16 exp(−2− 1

βZ
)

B

λmin

λmax
·max

{
λmin

λmax
, 1− γmin‖δ̄‖

λmin

}
.

(C.21)

20

Published as a conference paper at ICLR 2022

C.4 PROOF OF LEMMA 5.2 (BOUND ON THE BHATTACHARYYA COEFFICIENT)

Lemma C.4 (Lemma 5.2 restated). For P1, P2 parameterized by θ1, θ2 ∈ Θ, if ‖θ1 − θ2‖22≤ 4
λmax

,
then BC(P1, P2) ≥ 1

2 .

Proof. Given θ1, θ2 ∈ Θ, define a map φ from [0, 1] to a function
√
p, where p is the PDF for a

distribution parameterized by some θ ∈ Θ: let Z(θ) denote the partition function for parameter
θ ∈ Θ, and let δ := θ2 − θ1, then φ(t) is a function of x defined as:

φ(t)(x) =
√
h(x) exp ((θ1 + tδ)>x− logZ(θ1 + tδ)). (C.22)

Denote φt(x) := φ(t)(x) and θt := θ1 + tδ for notation convenience. Then

∂φt(x)

∂t
=
∂

∂t

(√
h exp

(
1
2θ
>
t x
)√

Z(θt)

)
=

√
h

2
exp

(
1

2
θ>t x

) δ>x ·
√
Z(θt)− 1√

Z(θt)

∂Z(θt)
∂t

Z(θt)

(∗)
=

√
h

2
exp

(
1

2
θ>t x

)
δ>x− Eθt [δ>x]√

Z(θt)
=

1

2

√
pθt(x)(δ>x− Eθt [δ>x])

(C.23)

where step (∗) used

∂Z(θt)

∂t
=

∂

∂t

∫
x

h(x) exp
(
θ>t x

)
=

∫
x

h(x) exp
(
θ>t x

)
δ>x = Z(θt)Eθt [δ>x]. (C.24)

Hence ∥∥∥∥∂φt∂t
∥∥∥∥
L2

:=

∫
x

(
∂φt(x)

∂t

)2

=

∫
x
pθt(x)

(
δ>x− Eθt [δ>x]

)2
4

=
Varθt(δ

>x)

4
=
δ>Eθt [xx>]δ>

4
≤ λmax

4
‖δ‖22.

(C.25)

Using the fundamental theorem of calculus, we get

‖√pθ1 −
√
pθ2‖L2

= ‖φ(1)− φ(0)‖L2
=

∫ 1

t=0

∂φt(x)

∂t
dt ≤

∫ 1

t=0

∥∥∥∥∂φt(x)

∂t

∥∥∥∥ dt ≤ λmax

4
‖δ‖22.

(C.26)

Hence
∫
x

√
pθ1
√
pθ2 ≥ 1− λmax

8 ‖δ‖
2, or 1∫

x

√
pθ1pθ2

≤ 1

1−λmax
8 ‖δ‖2

for ‖δ‖2< 8
λmax

. In particular,

for any θ1, θ2 satisfying ‖δ‖2:= ‖θ1 − θ2‖2≤ 4
λmax

, 1∫
x

√
pθ1pθ2

= 1

BC(P,Q)
≤ 2, i.e. BC(P,Q) ≥

1
2 .

As a side note, another bound we can get is from Lipschitzness of the log partition function:

B :=
Z(θ1+θ2

2)√
Z(θ1)Z(θ2)

=
1

BC(P,Q)

≤
Z(θ∗) exp

(
βZ · ‖θ∗−θq‖22

)
√
Z(θ∗) · Z(θ∗) exp (−βZ‖θ∗ − θq‖)

= exp

(
3

2
βZ · ‖θ∗ − θq‖2

) (C.27)

which is tighter than 1

1−λmax
8 ‖δ‖2

if
√
λmax � βZ .

D PROOFS FOR SECTION 4 (NEGATIVE RESULTS OF NCE)

This section provides proofs for the negative results in section 4, that is, the NCE landscape is
ill-behaved with exponentially flat loss, gradient, and curvature. We will first prove Theorem 4.1
and properties regarding losses and gradients, then prove results related to second-order properties
(Lemma 4.1, 4.3, 4.2, Theorem 4.2).

21

Published as a conference paper at ICLR 2022

Figure 3: The gray-shaded area is the region where equation D.7 is satisfied. The orange dot marks
τ∗, which is enclosed in the green-shaded area. Moreover, the red-shaded area centered at τ∗ corre-
sponds the width-0.1R annulus A, within which the gradient is exponentially small.

D.1 PROOF OF THEOREM 4.1 (LOWER BOUND FOR GRADIENT-BASED METHODS)

Theorem D.1 (Theorem 4.1 restated). Let P∗, Q, P be 1d Gaussian with variance 1. Assume θq =
0, θ∗ > 0 without loss of generality, and assume R := θ∗ − θq � 1. Then, gradient descent with
any step size η = o(1) from an initialization τ = τq will need an exponential number of steps to
reach some τ ′ that is O(1) close to τ∗.

Proof. The key lemma to prove Theorem 4.1 is as follows, which upper bounds the decrease in
parameter distance from each gradient step:

Lemma D.1. Consider the annulus A := {(b, c) : (c − R2

2)2 + (b − R)2 ∈ [(0.1R)2, (0.2R)2]}.
Then, for any (b, c) ∈ A, it satisfies that∣∣∣∣〈∇L(τ),

τ∗ − τ
‖τ∗ − τ‖

〉
∣∣∣∣ = O(1) · exp

(
−κ(b, c) ·R2

8

)
(D.1)

where κ(b, c) ∈ [3
4 ,

5
4] is a small constant.

Lemma D.1 is proved in section D.2.

To prove Theorem 4.1, we will first show that Lemma D.1 serves as an upper bound for the decrease
in parameter distance, that is, showing η

∣∣∣〈∇L(τ), τ∗−τ
‖τ∗−τ‖ 〉

∣∣∣ ≥ ‖τt − τ∗‖−‖τt+1 − τ∗‖. Towards
this claim, we write τt+1 as:

τt+1 = τt − η∇L(τt) = τt − η
〈
∇L(τt),

τ∗ − τt
‖τ∗ − τt‖

〉
· τ∗ − τt
‖τ∗ − τt‖

− ηv (D.2)

where v := ∇L(τt)− 〈∇L(τt),
τ∗−τt
‖τ∗−τt‖ 〉 ·

τ∗−τt
‖τ∗−τt‖ is orthogonal to τ∗ − τt. Hence

‖τt+1 − τ∗‖=
(

1− η

‖τ∗ − τt‖

〈
∇L(τt),

τ∗ − τt
‖τ∗ − τt‖

〉)
· ‖τt − τ∗‖+η‖v‖. (D.3)

From this, we can conclude

‖τt − τ∗‖−‖τt+1 − τ∗‖= η

〈
∇L(τt),

τ∗ − τt
‖τ∗ − τt‖

〉
− η‖v‖≤ η

∣∣∣∣〈∇L(τt),
τ∗ − τt
‖τ∗ − τt‖

〉∣∣∣∣ . (D.4)

The next step is to show that there is a path lying in A of length at 0.01R that gradient descent has
to go through. We have the following lemma (proof in appendix D.3):

Lemma D.2. Let η = o(1). For any τ s.t. ‖τ − τ∗‖≥ 0.2R, let τ ′ denote the point after one step of
gradient descent from τ , then ‖τ ′ − τ∗‖> 0.15R.

22

Published as a conference paper at ICLR 2022

From any such τ ′, the shortest way to exit the annulus A is to project onto the inner circle defining
A, i.e. the circle centered at τ∗ with radius 0.1R which is a convex set. Denote this inner circle
as B(τ∗, 0.1R) whose projection is ΠB(τ∗,0.1R), then the shortest path is the line segment τ ′ −
ΠB(τ∗,0.1R)(τ

′). Further, this line segment is of length 0.05R since ‖τ ′ − τ∗‖> 0.15R by Lemma
D.2, while the decrease of the parameter distance (i.e. ‖τ − τ∗‖) is exponentially small at any point
in A by Lemma D.1 and equation D.4. Hence the number of steps to exit A is lower bounded by

0.05R

η·O(1)·exp
(
−κR2

8

) = ω(R) exp
(
κR2

8

)
.

D.2 PROOF OF LEMMA D.1

Recall that for 1d Gaussian with a known unit covariance, we can use parameter τ := [b, c] and
sufficient statistics T (x) := [x,−1], with pdf p(x) = exp

(
−x

2

2

)
· exp (〈τ, T (x)〉).

For any τ such that ‖τ∗ − τ‖≥ 1,
∣∣∣〈∇L(τ), τ∗−τ

‖τ∗−τ‖ 〉
∣∣∣ can be upper bounded as:

2

∣∣∣∣〈∇L(τ),
τ∗ − τ
‖τ∗ − τ‖

〉
∣∣∣∣ ≤ 2 |〈∇L(τ), τ∗ − τ〉| =

∣∣∣∣∣
∫
x

p− p∗
p
q + 1

〈T (x), τ∗ − τ〉

∣∣∣∣∣
=

∣∣∣∣∣
∫
x

p− p∗
p
q + 1

[
(R− b)x− R2

2
− log

√
2π + c

]∣∣∣∣∣
≤(R− b)

∣∣∣∣∣
∫
x

p− p∗
p
q + 1

x

∣∣∣∣∣+

∣∣∣∣R2

2
+ log

√
2π − c

∣∣∣∣ ·
∣∣∣∣∣
∫
x

p− p∗
p
q + 1

∣∣∣∣∣ .
(D.5)

Let a ' b denote a = kb for a constant k = Θ(1). We first show the calculations with b > 0 for
cleaner presentation; the b < 0 case is analogous and deferred to D.2.2.

Bounding
∣∣∣∫x p−p∗p

q+1

∣∣∣:
∣∣∣∣∣
∫
x

p− p∗
p
q

+ 1

∣∣∣∣∣ =

∣∣∣∣∣∣
∫
x

exp
(
−x

2

2
+ bx− c

)
− exp

(
− (x−R)2

2
− log

√
2π
)

exp
(
bx− c+ log

√
2π
)

+ 1

∣∣∣∣∣∣
≤
∫
x< c−log

√
2π

b

exp

(
−x

2

2
+ bx− c

)
︸ ︷︷ ︸

T
(0)
1

+

∫
x≥ c−log

√
2π

b

exp

(
−x

2

2
− log

√
2π

)
︸ ︷︷ ︸

T
(0)
2

+

∫
x< c−log

√
2π

b

exp

(
− (x−R)2

2
− log

√
2π

)
︸ ︷︷ ︸

T
(0)
3

+

∫
x≥ c−log

√
2π

b

exp

(
−x

2

2
+ (R− b)x+ c− R2

2
− 2 log

√
2π

)
︸ ︷︷ ︸

T
(0)
4

(i)
' 1√

2π

1

b− c−log
√

2π
b

· exp

(
− (c− log

√
2π)2

2b2

)
+

1√
2π

1
c−log

√
2π

b

exp

(
− (c− log

√
2π)2

2b2

)

+
1√
2π

1

R− c−log
√

2π
b

exp

(
−

(c−log
√

2π
b

−R)2

2

)
+

1√
2π

1
c−log

√
2π

b
− (R− b)

exp

−
(
c−log

√
2π

b
−R

)2

2


' b

b2 − c · exp

(
− c2

2b2

)
+
b

c
exp

(
− c2

2b2

)
+

b

bR− c exp

(
− (c− bR)2

2b2

)
+

b

c− b(R− b) exp

(
− (c− bR)2

2b2

)
(ii)
=O(R−1) · exp

(
−κ(b, c) ·R2

8

)
(D.6)

where κ(b, c) ∈ [3
4 ,

5
4]. Step (i) uses calculations in equation D.12-D.15 (deferred to subsection

D.2.1 for cleaner presentation), and assumes (b, c) belongs to the set V := {(b, c) : c ∈ [b(R− b), b ·

23

Published as a conference paper at ICLR 2022

min{b, R}]}. In particular, the annulus A := {(b, c) : (c− R2

2)2 + (b−R)2 ∈ [(0.1R)2, (0.2R)2]}
is a subset of V when R� 1. Step (ii) considers (b, c) ∈ A.

We can choose b, c s.t. b ≥ R
2 , c ∈ [b(R − b), b ·min{b, R}], so that we pick up the tails in T (0)

1 to
T

(0)
4 . This means:

{
c ∈

[
b(R− b), b2

]
, b ∈ [R2 , R],

c ∈ [−b(b−R), bR] , b ∈ [R,∞].
(D.7)

Bounding
∣∣∣∫x p−p∗p

q+1 x
∣∣∣: Using similar calculations as before, we have that when c− log

√
2π > 0

(which is the case for τ = [b, c] ∈ A),

∣∣∣∣∣
∫
x

p− p∗
p
q + 1

x

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
x

p
p
q + 1

x

∣∣∣∣∣+

∣∣∣∣∣
∫
x

p∗
p
q + 1

x

∣∣∣∣∣
≤max

{∫
x>0

p
p
q + 1

x, −
∫
x<0

p
p
q + 1

x

}
+ max

{∫
x>0

p∗
p
q + 1

x, −
∫
x<0

p∗
p
q + 1

x

}
.

(D.8)

Below we bound the case where x > 0; the other case (i.e. x < 0) has an upper bound of the same
order following similar calculations and is hence omitted.

∫
x>0

p
p
q + 1

x+

∫
x>0

p∗
p
q + 1

x

≤
∫
x∈[0, c−log

√
2π

b]

exp

(
−x

2

2
+ bx− c

)
x︸ ︷︷ ︸

T
(1)
1

+

∫
x≥ c−log

√
2π

b

exp

(
−x

2

2
− log

√
2π

)
x︸ ︷︷ ︸

T
(1)
2

+

∫
x∈[0, c−log

√
2π

b]

exp

(
− (x−R)2

2
− log

√
2π

)
x︸ ︷︷ ︸

T
(1)
3

+

∫
x≥ c−log

√
2π

b

exp

(
−x

2

2
+ (R− b)x+ c− R2

2
− 2 log

√
2π

)
x︸ ︷︷ ︸

T
(1)
4

(i)
' exp(−c)− 1√

2π
exp

(
− (c− log

√
2π)2

2b2

)
+ bT

(0)
1 +

1√
2π

1
c−log

√
2π

b

exp

(
− (c− log

√
2π)2

2b2

)

+
1√
2π

exp

(
−R

2

2

)
− 1√

2π
exp

(
− (c− log

√
2π − bR)2

2b2

)
+RT

(0)
3

+
1√
2π

exp

(
− (c− log

√
2π − bR)2

2b2

)
+ (R− b)T (0)

4

(D.9)

where step (i) uses calculations in equation D.16-D.19. Ignoring small constants log
√

2π in c −
log
√

2π, and denoting E1 := exp
(
− c2

2b2

)
, E2 := exp

(
− (c−bR)2

2b2

)
for notation convenience, we

24

Published as a conference paper at ICLR 2022

can substitute equation D.6 and D.8 into equation D.5 as:

(R− b)

∣∣∣∣∣
∫
x

p− p∗
p
q + 1

x

∣∣∣∣∣+

∣∣∣∣R2

2
+ log

√
2− c

∣∣∣∣ ·
∣∣∣∣∣
∫
x

p− p∗
p
q + 1

∣∣∣∣∣
≤(R− b) · (T (1)

1 + T
(1)
2 + T

(1)
3 + T

(1)
4) +

∣∣∣∣R2

2
+ log

√
2− c

∣∣∣∣ · (T (0)
1 + T

()
2 + T

(0)
3 + T

(0)
4)

=O(R)

[
exp(−c)− E1 + bT

(0)
1 + E1 + exp

(
−R

2

2

)
− E2 +RT

(0)
3 + E2 + (R− b)T (0)

4

]
+ Θ(R2) · (T (0)

1 + T
(0)
2 + T

(0)
3 + T

(0)
4)

=O(R)

[
exp(−c) + exp

(
−R

2

2

)]
+ Θ(R2) ·O(R−1) exp

(
−κ(b, c)R2

8

)
=O(R) exp

(
−κ(b, c) ·R2

8

)
(D.10)

where κ(b, c) ∈ [3
4 ,

5
4] is the constant defined in equation D.6.

Since τ ∈ R, ‖τ∗ − τ‖= Θ(R), and the proof is completed by:∣∣∣∣〈∇L(τ),
τ∗ − τ
‖τ∗ − τ‖

〉
∣∣∣∣ =

O(R) exp
(
−κ(b,c)·R2

8

)
Θ(R)

= O(1) exp

(
−κ(b, c) ·R2

8

)
. (D.11)

D.2.1 CALCULATION DETAILS FOR EQUATION D.6 AND D.8

We now calculate term T
(0
i and T (1)

i used in equation D.6 and D.8.

T
(0)
1 =

∫
x< c−log

√
2π

b

exp

(
−x

2

2
+ bx− c

)
= exp

(
b2

2
− c
)∫

x< c−log
√

2π
b

exp

(
− (x− b)2

2

)
= exp

(
b2

2
− c
)∫

x< c−log
√

2π
b −b

exp

(
−x

2

2

)

'


exp

(
b2

2 − c
)
· 1

b− c−log
√

2π
b

· exp

(
− 1

2

(
c−log

√
2π

b − b
)2
)
, c− log

√
2π < b2

exp
(
b2

2 − c
)
·
[
1− 1

c−log
√

2π
b −b

· exp

(
− 1

2

(
c−log

√
2π

b − b
)2
)]

, c− log
√

2π ≥ b2

=


1√
2π

1

b− c−log
√

2π
b

· exp
(
− (c−log

√
2π)2

2b2

)
, c− log

√
2π < b2

exp
(
b2

2 − c
)
− 1√

2π
1

c−log
√

2π
b −b

· exp
(
− (c−log

√
2π)2

2b2

)
, c− log

√
2π ≥ b2

(D.12)

T
(0)
2 =

∫
x≥ c−log

√
2π

b

1√
2π

exp

(
−x

2

2

)

'


1√
2π

1
c−log

√
2π

b

exp
(
− (c−log

√
2π)2

2b2

)
, c− log

√
2π > 0

1− 1√
2π

1
|c−log

√
2π|

b

exp
(
− (c−log

√
2π)2

2b2

)
, c− log

√
2π < 0

(D.13)

T
(0)
3 =

∫
x< c−log

√
2π

b

1√
2π

exp

(
− (x−R)2

2

)
=

∫
x< c−log

√
2π

b −R

1√
2π

exp

(
−x

2

2

)

=


1√
2π

1

R− c−log
√

2π
b

exp

(
− (c−log

√
2π

b −R)2

2

)
, c− log

√
2π < bR

1− 1√
2π

1
c−log

√
2π

b −R
exp

(
− (c−log

√
2π

b −R)2

2

)
, c− log

√
2π ≥ bR

(D.14)

25

Published as a conference paper at ICLR 2022

T
(0)
4 = exp

(
(R− b)2

2
+ c− R2

2
− 2 log

√
2π

)∫
x≥ c−log

√
2π

b

exp

(
− (x− (R− b))2

2

)
= exp

(
(R− b)2

2
+ c− R2

2
− 2 log

√
2π

)∫
x≥ c−log

√
2π

b −(R−b)
exp

(
−x

2

2

)

=


exp

(
(R−b)2

2 + c− R2

2 − 2 log
√

2π
)[

1− 1

R−b− c−log
√

2π
b

exp

(
− (R−b− c−log

√
2π

b)2

2

)]
, c− log

√
2π < b(R− b)

exp
(

(R−b)2

2 + c− R2

2 − 2 log
√

2π
)

1
c−log

√
2π

b −(R−b)
exp

(
− (R−b− c−log

√
2π

b)2

2

)
, c− log

√
2π ≥ b(R− b)

=


1

2π exp
(

(R−b)2

2 + c− R2

2

)
− 1√

2π
1

R−b− c−log
√

2π
b

exp

(
−
(
c−log

√
2π

b −R
)2

2

)
c− log

√
2π < b(R− b)

1√
2π

1
c−log

√
2π

b −(R−b)
exp

(
−
(
c−log

√
2π

b −R
)2

2

)
, c− log

√
2π ≥ b(R− b)

(D.15)

T
(1)
1 =

∫
x∈[0, c−log

√
2π

b]

exp

(
−x

2

2
+ bx− c

)
x

= exp

(
b2

2
− c
)∫

x∈[0, c−log
√

2π
b]

exp

(
− (x− b)2

2

)
(x− b) + b ·

∫
x∈[0, c−log

√
2π

b]

exp

(
− (x− b)2

2

)
≤ exp

(
b2

2
− c
)∫

x∈[−b, c−log
√

2π
b −b]

exp

(
−x

2

2

)
x+ bT

(0)
1

= exp

(
b2

2
− c
)[
− exp

(
−x

2

2

)] c−log
√

2π
b −b

−b
+ bT

(0)
1

= exp

(
b2

2
− c
)(

exp

(
−b

2

2

)
− exp

(
− (c− log

√
2π − b2)2

2b2

))
+ bT

(0)
1

= exp(−c)− 1√
2π

exp

(
− (c− log

√
2π)2

2b2

)
+ bT

(0)
1

(D.16)

T
(1)
2 =

∫
x≥ c−log

√
2π

b

1√
2π

exp

(
−x

2

2

)
x =

1√
2π

[
− exp

(
−x

2

2

)]∞
c−log

√
2π

b

=
1√
2π

exp

(
− (c− log

√
2π)2

2b2

) (D.17)

T
(1)
3 =

∫
x∈[0, c−log

√
2π

b]

1√
2π

exp

(
− (x−R)2

2

)
x

≤
∫
x∈[0, c−log

√
2π

b]

1√
2π

exp

(
− (x−R)2

2

)
(x−R) +RT

(0)
3

=

∫
x∈[−R, c−log

√
2π

b −R]

1√
2π

exp

(
−x

2

2

)
x+RT

(0)
3 =

1√
2π

[
− exp

(
−x

2

2

)] c−log
√

2π
b −R

−R
+RT

(0)
3

=
1√
2π

exp

(
−R

2

2

)
− 1√

2π
exp

(
− (c− log

√
2π − bR)2

2b2

)
+RT

(0)
3

(D.18)

26

Published as a conference paper at ICLR 2022

T
(1)
4

= exp

(
(R− b)2

2
+ c− R2

2
− 2 log

√
2π

)∫
x≥ c−log

√
2π

b

exp

(
− (x− (R− b))2

2

)
(x− (R− b)) + (R− b)T (0)

4

= exp

(
(R− b)2

2
+ c− R2

2
− 2 log

√
2π

)∫
x≥ c−log

√
2π

b
−(R−b)

exp

(
−x

2

2

)
x+ (R− b)T (0)

4

= exp

(
(R− b)2

2
+ c− R2

2
− 2 log

√
2π

)[
− exp

(
−x

2

2

)]∞
c−log

√
2π

b
−(R−b)

+ (R− b)T (0)
4

=
1√
2π

exp

(
− (c− log

√
2π − bR)2

2b2

)
+ (R− b)T (0)

4

(D.19)

D.2.2 CALCULATIONS FOR b < 0

We now calculate the gradient norm bound for the case where b < 0. Recall that:

‖∇L(τ)‖2≤ ‖∇L(τ)‖1=

∣∣∣∣∣
∫
x

p− p∗
p
q + 1

x

∣∣∣∣∣+

∣∣∣∣∣
∫
x

p− p∗
p
q + 1

∣∣∣∣∣ . (D.20)

Bounding
∣∣∣∫x p−p∗p

q+1

∣∣∣:
∣∣∣∣∣
∫
x

p− p∗
p
q

+ 1

∣∣∣∣∣ =

∣∣∣∣∣∣
∫
x

exp
(
−x

2

2
+ bx− c

)
− exp

(
− (x−R)2

2
− log

√
2π
)

exp
(
bx− c+ log

√
2π
)

+ 1

∣∣∣∣∣∣
≤
∫
x< c−log

√
2π

b

exp

(
−x

2

2
− log

√
2π

)
︸ ︷︷ ︸

T
(0)
1,−

+

∫
x≥ c−log

√
2π

b

exp

(
−x

2

2
+ bx− c

)
︸ ︷︷ ︸

T
(0)
2,−

+

∫
x< c−log

√
2π

b

exp

(
−x

2

2
+ (R− b)x+ c− R2

2
− 2 log

√
2π

)
︸ ︷︷ ︸

T
(0)
3,−

+

∫
x≥ c−log

√
2π

b

exp

(
− (x−R)2

2
− log

√
2π

)
︸ ︷︷ ︸

T
(0)
4,−

= O(1)
(D.21)

where T (0)
i,− terms are calculated as:

T
(0)
1,− =

∫
x< c−log

√
2π

b

exp

(
−x

2

2
− log

√
2π

)

'


1√
2π
· 1

− c−log
√

2π
b

exp
(
− (c−log

√
2π)2

2b2

)
, c−log

√
2π

b < 0

1− 1√
2π
· 1
c−log

√
2π

b

exp
(
− (c−log

√
2π)2

2b2

)
, c−log

√
2π

b > 0

(D.22)

27

Published as a conference paper at ICLR 2022

T
(0)
2,− =

∫
x≥ c−log

√
2π

b

exp

(
−x

2

2
+ bx− c

)
= exp

(
b2

2
− c
)∫

x≥ c−log
√

2π
b

exp

(
− (x− b)2

2

)
= exp

(
b2

2
− c
)∫

x≥ c−log
√

2π
b −b

exp

(
−x

2

2

)

'


exp

(
b2

2 − c
)
·
[
1− 1

b− c−log
√

2π
b

· exp

(
− 1

2

(
c−log

√
2π

b − b
)2
)]

, c−log
√

2π
b − b < 0

exp
(
b2

2 − c
)
· 1
c−log

√
2π

b −b
· exp

(
− 1

2

(
c−log

√
2π

b − b
)2
)
, c−log

√
2π

b − b > 0

=

 exp
(
b2

2 − c
)
− 1√

2π
1

b− c−log
√

2π
b

· exp
(
− (c−log

√
2π)2

2b2

)
, c−log

√
2π

b − b < 0

1√
2π

1
c−log

√
2π

b −b
· exp

(
− (c−log

√
2π)2

2b2

)
, c−log

√
2π

b − b > 0

(D.23)

T
(0)
3,− = exp

(
(R− b)2

2
+ c− R2

2
− 2 log

√
2π

)∫
x< c−log

√
2π

b

exp

(
− (x− (R− b))2

2

)
= exp

(
(R− b)2

2
+ c− R2

2
− 2 log

√
2π

)∫
x< c−log

√
2π

b
−(R−b)

exp

(
−x

2

2

)

=


exp

(
(R−b)2

2
+ c− R2

2
− 2 log

√
2π
)

1

R−b− c−log
√

2π
b

exp

(
− (R−b− c−log

√
2π

b
)2

2

)
, c−log

√
2π

b
− (R− b) < 0

exp
(

(R−b)2
2

+ c− R2

2
− 2 log

√
2π
)[

1− 1
c−log

√
2π

b
−(R−b)

exp

(
− (R−b− c−log

√
2π

b
)2

2

)]
, c−log

√
2π

b
− (R− b) > 0

=


1

2π
exp

(
(R−b)2

2
+ c− R2

2

)
− 1√

2π

1
c−log

√
2π

b
−(R−b)

exp

−
(
c−log

√
2π

b
−R

)2

2

 c−log
√

2π
b

− (R− b) > 0

1√
2π

1

R−b− c−log
√

2π
b

exp

−
(
c−log

√
2π

b
−R

)2

2

 , c−log
√

2π
b

− (R− b) < 0

(D.24)

T
(0)
4,− =

∫
x≥ c−log

√
2π

b

1√
2π

exp

(
− (x−R)2

2

)
=

∫
x≥ c−log

√
2π

b −R

1√
2π

exp

(
−x

2

2

)

=


1√
2π

1
c−log

√
2π

b −R
exp

(
− (c−log

√
2π

b −R)2

2

)
, c−log

√
2π

b −R > 0

1− 1√
2π

1

R− c−log
√

2π
b

exp

(
− (c−log

√
2π

b −R)2

2

)
, c−log

√
2π

b −R < 0

(D.25)

Bounding
∣∣∣∫x p−p∗p

q+1 x
∣∣∣:∣∣∣∣∣

∫
x

p− p∗
p
q + 1

x

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
x

p
p
q + 1

x

∣∣∣∣∣+

∣∣∣∣∣
∫
x

p∗
p
q + 1

x

∣∣∣∣∣
≤max

{∫
x>0

p
p
q + 1

x, −
∫
x<0

p
p
q + 1

x

}
+ max

{∫
x>0

p∗
p
q + 1

x, −
∫
x<0

p∗
p
q + 1

x

}
.

(D.26)

As before, we will show the bound for the case where x > 0; the other case (i.e. x < 0) follows a
similar calculation and has an upper bound on the same order.

First consider b < 0, c− log
√

2π > 0:∫
x>0

p
p
q + 1

x+

∫
x>0

p∗
p
q + 1

x

≤
∫
x>0

px+

∫
x>0

p∗x
(i)
' 1

b2 + 1
exp(−c) + 1 +

1

1 +R2
exp

(
−R

2

2

)
= O(1),

(D.27)

28

Published as a conference paper at ICLR 2022

where step (i) uses the following:∫
x>0

exp

(
−x

2

2
+ bx− c

)
x = exp

(
b2

2
− c
)∫

x>0

exp

(
− (x− b)2

2

)
(x− b+ b)

= exp

(
b2

2
− c
)[∫

x>−b
exp

(
−x

2

2

)
x+ b

∫
x>−b

exp

(
−x

2

2

)]
= exp

(
b2

2
− c
)[

exp

(
−b

2

2

)
− b2

b2 + 1
exp

(
−b

2

2

)]
=

1

b2 + 1
exp(−c)∫

x>0

exp

(
− (x−R)2

2

)
x ≤ exp

(
−R

2

2

)
+ 1− R2

1 +R2
exp

(
−R

2

2

)
=1 +

1

1 +R2
exp

(
−R

2

2

)
.

(D.28)

When b < 0, c− log
√

2π < 0,∫
x>0

p
p
q + 1

x+

∫
x>0

p∗
p
q + 1

x

=

∫
x∈[0, c−log

√
2π

b]

qx︸ ︷︷ ︸
T

(1)
1,−

+

∫
x≥ c−log

√
2π

b

px︸ ︷︷ ︸
T

(1)
2,−

+

∫
x∈[0, c−log

√
2π

b]

p∗q

p︸ ︷︷ ︸
T

(1)
3,−

+

∫
x≥ c−log

√
2π

b

p∗︸ ︷︷ ︸
T

(1)
4,−

≤16 max{R, |b|},

(D.29)

where T (1)
i, terms are calculated as:

T
(1)
1,− =

∫
x∈[0, c−log

√
2π

b]

qx =

[
− exp

(
−x

2

2

)] c−log
√

2π
b

0

= 1− exp

(
− (c− log

√
2π)2

2b2

)
(D.30)

T
(1)
2,− =

∫
x≥ c−log

√
2π

b

px = exp

(
b2

2
− c
)∫

x≥ c−log
√

2π
b

exp

(
− (x− b)2

2

)
x

= exp

(
b2

2
− c
)[∫

x≥ c−log
√

2π
b −b

exp

(
−x

2

2

)
x+ b

∫
x≥ c−log

√
2π

b −b
exp

(
−x

2

2

)]

'

(
1− 1

1− c−log
√

2π
b2

)
· exp

(
− (c− log

√
2π)2

2b2

) (D.31)

T
(1)
3,− =

∫
x∈[0, c−log

√
2π

b]

p∗q

p
'
∫
x∈[0, c−log

√
2π

b]

exp

(
− (x−R)2

2
− bx+ c− log

√
2π

)
= exp

(
(R− b)2

2
− R2

2
+ c− log

√
2π

)∫
x∈[0, c−log

√
2π

b]

exp

(
− (x− (R− b))2

2

)
= exp

(
(R− b)2

2
− R2

2
+ c− log

√
2π

)∫
x∈[−(R−b), c−log

√
2π

b −(R−b)]
exp

(
−x

2

2

)
(x+R− b)

= exp

(
−R

2

2
+ c− log

√
2π

)
− exp

(
−

(c−log
√

2π
b −R)2

2

)
+ (R− b) · β(1)

3,−

(D.32)

where β(1)
3,− = O(1) is:

β
(1)
3,− =


2− 1

R−b exp
(
−R

2

2 + c− log
√

2π
)
− 1

c−log
√

2π
b −(R−b)

exp

(
− (c−log

√
2π

b −R)2

2

)
, c−log

√
2π

b ≥ R− b

1
c−log

√
2π

b −(R−b)
exp

(
− (c−log

√
2π

b −R)2

2

)
− 1

R−b exp
(
−R

2

2 + c− log
√

2π
)
, c−log

√
2π

b < R− b

(D.33)

29

Published as a conference paper at ICLR 2022

T
(1)
4,− =

∫
x≥ c−log

√
2π

b

p∗ =

∫
x≥ c−log

√
2π

b

exp

(
− (x−R)2

2

)
(x−R+R)

=

∫
x≥ c−log

√
2π

b −R
exp

(
−x

2

2

)
x+R

∫
x≥ c−log

√
2π

b −R
exp

(
−x

2

2

)

= exp

(
−

(c−log
√

2π
b −R)2

2

)
+R · β(1)

4,−

(D.34)

where β(1)
4,− = O(1) is:

β
(1)
4,− =


1− 1

R− c−log
√

2π
b

exp

(
− (c−log

√
2π

b −R)2

2

)
, c−log

√
2π

b < R

1
c−log

√
2π

b −R
exp

(
− (c−log

√
2π

b −R)2

2

)
, c−log

√
2π

b > R
(D.35)

Combining equation D.21, D.27, and D.26 we have that ‖∇L([b, c])‖2≤ 32 max{R, |b|} for b < 0.

D.3 PROOF OF LEMMA D.2

We first show the following claim, and prove Lemma D.2 at the end of this subsection:

Claim D.1. For any τ = [b, c] ∈ R2, the gradient norm at τ is ‖∇L(τ)‖2≤ 32 max{R, |b|}.

Proof. For parameter τ = [b, c] where b > 0, c− log
√

2π > 0,

‖∇L(τ)‖2≤ ‖∇L(τ)‖1=

∣∣∣∣∣
∫
x

p− p∗
p
q + 1

x

∣∣∣∣∣+

∣∣∣∣∣
∫
x

p− p∗
p
q + 1

∣∣∣∣∣
(i)

≤ exp(−c)− exp

(
− c2

2b2

)
+ bT

(0)
1 + exp

(
− c2

2b2

)
+ exp

(
−R

2

2

)
− exp

(
− (c− bR)2

2b2

)
+RT

(0)
3 + exp

(
− (c− bR)2

2b2

)
+ (R− b)T (0)

4 + T
(0)
1 + T

(0)
2 + T

(0)
3 + T

(0)
4

(ii)
' (b+ 1)T

(0)
1 + T

(0)
2 + (R+ 1)T

(0)
3 + (R− b+ 1)T

(0)
4

≤4 + b+R+ max{R− b, 0} . 2 max{R, b}.
(D.36)

where step (i) and (ii) use equation D.16-D.19 and equation D.12-D.15. Moreover, step (ii) in-
creases the value by at most 16. Hence overall we have ‖∇τL‖2≤ 32 max{R, b}.

When b > 0, c− log
√

2π < 0:∣∣∣∣∣
∫
x

p− p∗
p
q + 1

x

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
x

p
p
q + 1

x

∣∣∣∣∣+

∣∣∣∣∣
∫
x

p∗
p
q + 1

x

∣∣∣∣∣
≤max

{∫
x>0

p
p
q + 1

x+

∫
x>0

p∗
p
q + 1

x, −
∫
x<0

p
p
q + 1

x−
∫
x<0

p∗
p
q + 1

x

}
.

(D.37)

30

Published as a conference paper at ICLR 2022

Let’s bound the first term (i.e. x > 0); the bound for the second term (i.e. x < 0) follows from
similar calculations and is on the same order.∫

x>0

p
p
q + 1

x+

∫
x>0

p∗
p
q + 1

x ≤
∫
x>0

qx+

∫
x>0

p∗q

p
x

=
1√
2π

∫
x>0

exp

(
−x

2

2

)
x+

1√
2π

∫
x>0

exp

(
−x

2

2
+ (R− b)x+ c− R2

2
− log

√
2π

)
x

(i)
=

 1 + (R− b) exp
(
b2

2 −Rb+ c− log
√

2π
)

+ 1
(b−R)2+1 exp

(
−R

2

2 + c− log
√

2π
)
, R− b > 0

1 + 1
(b−R)2+1 exp

(
−R

2

2 + c− log
√

2π
)
, R− b < 0

= O(1).
(D.38)

Step (i) omits a factor of 1√
2π

and uses:∫
x>0

exp

(
−x

2

2
+ (R− b)x+ c− R2

2
− 2 log

√
2π

)
x

= exp

(
(R− b)2

2
− R2

2
+ c− log

√
2π

)∫
x>0

exp

(
− (x− (R− b))2

2

)
x

= exp

(
(R− b)2

2
− R2

2
+ c− log

√
2π

)[∫
x>−(R−b)

exp

(
−x

2

2

)
x+ (R− b)

∫
x>−(R−b)

exp

(
−x

2

2

)]

'

 (R− b) exp
(
b2

2 −Rb+ c− log
√

2π
)

+ 1
(b−R)2+1 exp

(
−R

2

2 + c− log
√

2π
)

R− b > 0

1
(b−R)2+1 exp

(
−R

2

2 + c− log
√

2π
)
, R− b < 0

(D.39)

For b < 0, we similarly have ‖∇L(τ)‖2= O(max{R,−b}). The calculations are similar to the
b > 0 case and hence omitted.

We are now ready to prove Lemma D.2, which we restate below.

Lemma D.3 (Lemma D.2, restated). Let η = o(1). For any τ s.t. ‖τ − τ∗‖≥ 0.2R, let τ ′ denote the
point after one step of gradient descent from τ , then ‖τ ′ − τ∗‖> 0.15R.

Proof of Lemma D.3. We will prove by contradiction. First assume that we can go from τ where
‖τ − τ∗‖2≥ 0.2R to some τ ′ where ‖τ ′ − τ∗‖2≤ 0.15R. Then ‖τ ′ − τ∗‖ is lower bounded as:

‖τ ′ − τ∗‖≥‖τ − τ∗‖−η‖∇L(τ)‖
(i)

≥ |b−R|−η‖∇L(τ)‖
(ii)

≥ |b−R|−32ηb =

(∣∣∣∣1− R

b

∣∣∣∣− 32η

)
b

(D.40)

where step (i) uses ‖τ − τ∗‖≥ |τ [1]− τ∗[1]|≥ ||τ1|−|τ∗1 || = |b−R|, and step (ii) is by Claim D.1.

On the other hand, we have ‖τ ′− τ∗‖≤ 0.15R by assumption, which when combined with equation
D.40 gives b ≤ 0.15R

|1−Rb |−32η
, or b = O(R). This means ‖τ − τ∗‖−‖τ ′ − τ∗‖≤ η‖∇L(τ)‖= o(1) ·

O(max{R, |b|}) = o(R). However, we also have ‖τ − τ∗‖−‖τ ′ − τ∗‖≥ 0.05R = Θ(R) by
assumption. This is a contradiction, which means the assumption must be false, i.e. τ ′ cannot
satisfy ‖τ ′ − τ∗‖2≤ 0.15R.

D.4 PROOF OF LEMMA 4.1 AND LEMMA 4.2

We prove Lemmas 4.1 and 4.2 in this section. First recall the lemma statements:

31

Published as a conference paper at ICLR 2022

Lemma D.4 (Smoothness at P = P ∗, Lemma 4.1 restated). Consider the 1d Gaussian mean es-
timation task with R := |θ∗ − θq|� 1. Then the smoothness at P = P∗ is upper bounded as:

σ∗max :=σmax(∇2L(τ∗)) ≤
R√
2π

exp(−R2/8). (D.41)

We will also need a bound on the strong convexity constant (i.e. smallest singular value) at P = P ∗:

Lemma D.5 (Strong convexity at P = P ∗, Lemma 4.2 restated). Under the same setup as lemma
4.1, the minimum singular value at P = P∗ is σ∗min(∇2L(τ∗)) = Θ

(
1
R exp

(
−R

2

8

))
.

D.4.1 PROOF OF LEMMA 4.1 (SMOOTHNESS AT P = P∗)

We will show the smoothness constant (i.e. σmax(∇2L)) is exponentially small at the optimum, i.e.
when P = P∗. The Hessian at the optimum is:

∇2L(τ) =
1

2

∫
x

p∗q

p∗ + q
T (x)T (x)>dx =

1

2

∫
x

p∗q

p∗ + q
[x,−1]

>
[x,−1] dx. (D.42)

Recall that θq = 0 w.l.o.g, and assume θ∗ = R� 1. Then

∇2L(τ) =
1

2

∫
x≤R/2

p∗q

p∗ + q
T (x)T (x)>dx+

1

2

∫
x>R/2

p∗q

p∗ + q
T (x)T (x)>dx

.
1

2

∫
x≤R/2

p∗T (x)T (x)>dx+
1

2

∫
x>R/2

qT (x)T (x)>dx.

(D.43)

Let S1 ⊂ R2 denote the circle centered as the origin with radius 1. The maximum singular value is
upper bounded by

σ∗max := max
[a1,a2]∈S1

1

2

∫
x

p∗q

p∗ + q
(a1x− a2)

2
dx

≤1

2
max

[a1,a2]∈S1

[∫
x≤R/2

p∗ (a1x− a2)
2
dx+

∫
x>R/2

q (a1x− a2)
2
dx

]

=
1

2
max

[a1,a2]∈S1

[∫
x≤R/2

p∗
(
a2

1x
2 − 2a1a2x+ a2

2

)
dx+

∫
x>R/2

q
(
a2

1x
2 − 2a1a2x+ a2

2

)
dx
]

=
1

2
max

[a1,a2]∈S1

[(∫
x≤R2

p∗x
2 +

∫
x>R

2

qx2

)
︸ ︷︷ ︸

T2

·a2
1 −

(∫
x≤R2

p∗x+

∫
x>R

2

qx

)
︸ ︷︷ ︸

T1

2a1a2

+

(∫
x≤R2

p∗ +

∫
x>R

2

q

)
︸ ︷︷ ︸

T0

a2
3

]

(i)

≤ 1

2
T2 + T1 +

T0

2

(ii)

≤
(
R

2
+

1

R
+ 2 +

2

R

)
· 1√

2π
exp

(
−R

2

8

)
=

(
R

2
+ 2 +

3

R

)
· 1√

2π
exp

(
−R

2

8

)
≤ R√

2π
exp

(
−R

2

8

)
,

(D.44)

32

Published as a conference paper at ICLR 2022

where (i) substitutes in 1 or −1 for a1, a2 and uses the fact that the upper bounds for T0, T1, T2 are
positive. (ii) uses the calculations on T0 to T2 shown below. We note that these calculations rely on
properties of Gaussian and do not extend to general exponential families.

T0 =2

∫
x>R/2

q ≤ 4

R
· 1√

2π
exp

(
−R

2

8

)
T1 =

∫
x≤R/2

1√
2π

exp

(
− (x− θ)2

2

)
xdx+

∫
x>R/2

1√
2π

exp

(
−x

2

2

)
xdx

=

∫
x′≥R/2

1√
2π

exp

(
− (x′)2

2

)
(R− x′)dx+

∫
x>R/2

1√
2π

exp

(
−x

2

2

)
xdx

=R

∫
x≥R/2

qdx ≤ 2√
2π

exp

(
−R

2

8

)
(D.45)

For T2, denote PR/2 := P∗

({
x : x ≤ R

2

})
= PQ

({
x : x ≥ R

2

})
; Gaussian tail bound gives

PR/2 ≤ 2√
2π

1
R exp

(
−R

2

8

)
. Then we can calculate each term in T2 as:

∫
x≤R2

p∗(x)x2dx =

∫
x≤R2

1√
2π

exp
(
− (x−R)2

2

)
x2dx

=

∫
x≤R2

1√
2π

exp
(
− (x−R)2

2

)
(x−R) · xdx+R

∫
x≤R2

1√
2π

exp
(
− (x−R)2

2

)
xdx

=

−exp
(
− (x−R)2

2

)
x

√
2π


R
2

−∞

+

∫
x≤R2

exp
(
− (x−R)2

2

)
√

2π
(x−R)dx

+R

(
R · PR/2 −

1√
2π

exp

(
−R

2

8

))
=−

(R
2

+ 1
)
· 1√

2π
exp

(
−R

2

8

)
+R

(
R · PR/2 −

1√
2π

exp

(
−R

2

8

))
=−

(3R

2
+ 1
)
· 1√

2π
exp

(
−R

2

8

)
+R2 · PR/2

≤− 3R

2
· 1√

2π
exp

(
−R

2

8

)
+R2 · PR/2

(D.46)

∫
x≥R2

q(x)x2dx =

∫
x≥R2

1√
2π

exp

(
−x

2

2

)
x2dx =

[
−

exp(−x
2

2)x
√

2π

]∞
R
2

+ PR/2

=
1√
2π

R

2
exp

(
−R

2

8

)
+ PR/2

(D.47)

Hence T2 ≤ −R · 1√
2π

exp
(
−R

2

8

)
+ (R2 + 1)PR/2 ≤

(
R+ 2

R

)
1√
2π

exp
(
−R

2

8

)
33

Published as a conference paper at ICLR 2022

D.4.2 PROOF OF LEMMA 4.2 (STRONG CONVEXITY AT P = P∗)

Lower bounding σ∗min follows a similar calculation as for upper bounding σ∗max:

σ∗min := min
[a1,a2]∈S1

1

2

∫
x

p∗q

p∗ + q
(a1x− a2)2 dx & min

[a1,a2]∈S1

1

4

∫
x

p∗q

max{p∗, q}
(a1x− a2)2 dx

=
1

4
min

[a1,a2]∈S1

[∫
x≤R/2

p∗ (a1x− a2)2 dx+

∫
x>R/2

q (a1x− a2)2 dx

]

=
1

4
min

[a1,a2]∈S1

[∫
x≤R/2

p∗
(
a1x

2 − 2a1a2x+ a2
2

)
dx+

∫
x>R/2

q
(
a1x

2 − 2a1a2x+ a2
2

)
dx
]

=
1

4
min

[a1,a2]∈S1

[(∫
x≤R

2

p∗x
2 +

∫
x>R

2

qx2

)
︸ ︷︷ ︸

T2

·a2
1 −

(∫
x≤R

2

p∗x+

∫
x>R

2

qx

)
︸ ︷︷ ︸

T1

2a1a2

+

(∫
x≤R

2

p∗ +

∫
x>R

2

q

)
︸ ︷︷ ︸

T0

a2
2

]

(i)

≥ 1

4

1√
2π

exp

(
−R

2

8

)
min

[a1,a2]∈S1

[(
R

2
+

1

R

)
a2

1 − 4a1a2 +
1

R
a2

2

]

=
1

4

1√
2π

exp

(
−R

2

8

)
min
a∈[0,1]

[(
R

2
+

1

R

)
a2 − 4a

√
1− a2 +

1

R
(1− a2)

]

=
1

4

1√
2π

exp

(
−R

2

8

)
min
a∈[0,1]

[
R

2
a2 − 4a

√
1− a2 +

1

R

]

=
1

4

1√
2π

exp

(
−R

2

8

)
min
a∈[0,1]

[
a

(
R

2
a− 4

√
1− a2

)
+

1

R

]
(ii)

≥ 1

4R

1√
2π

exp

(
−R

2

8

)
(D.48)

where (i) uses the calculations on T0 to T2 stated in equation D.45 and D.46. Step (ii) replaces
a = 0 to remove the O(R) term.

D.5 PROOF OF LEMMA 4.3 (CURVATURE AT P = Q)

Lemma D.6 (Smoothness at P = Q, Lemma 4.3 restated). Under the same setup as Lemma 4.1,
the smoothness at P = Q is lower bounded as σmax(∇2L(τq)) ≥ R2

2 .

Proof. The result follows from direct calculation of the Hessian at P = Q:

∇2L(τ) =
1

2

∫
x

p∗ + q

4
T (x)T (x)>dx =

1

8

(
E∗(T (x)T (x)>) + EQ(T (x)T (x)>)

)
=

1

8

(
E∗
([

x
−1

]
[x,−1]

)
+ EQ

([
x
−1

]
[x,−1]

))
=

1

8

[
E∗x2 + EQx2 0

0 2

]
=

1

8

[
R2 + 2 0

0 2

]
.

(D.49)

Hence σmax(∇2
τL) ≥ e>1 ∇2L(τ)e1 ≥ R2

2 .

D.6 PROOF OF THEOREM 4.2 (LOWER BOUND FOR SECOND-ORDER METHODS)

The proof of Theorem 4.2 is similar to that of Theorem 4.1, where we show that there is a ring of
width Θ(R) in which the amount of progress at each step is exponentially small, hence the number
of steps required to cross this ring is exponential.

34

Published as a conference paper at ICLR 2022

We show that starting from τ0 = τq , the optimization path will necessarily steps into A:

Lemma D.7. Let η := O(
λρ
λM

), where λρ := minθ∈Θ σmin(∇2L(τθ)), λM :=

maxθ∈Θ σmax(∇2L(τθ)) as defined in Section 4. For any τ s.t. ‖τ − τ∗‖≥ 0.2R, let τ ′ denote
the point after one step of gradient descent from τ , then ‖τ ′ − τ∗‖2> 0.15R.

Proof. First note that ∀τ , the next point after one step of Newton update is:

τt′ = τ − η(∇2L(τ))−1∇L(τ) = τ − η
[〈

(∇2L(τ))−1∇L(τ),
τ − τ∗
‖τ − τ∗‖2

〉
· τ − τ∗
‖τ − τ∗‖2

+ v
]

(D.50)

where v := (∇2L(τ))−1∇L(τ)−〈(∇2L(τ))−1∇L(τ), τ−τ∗
‖τ−τ∗‖2 〉 ·

τ−τ∗
‖τ−τ∗‖2 is orthogonal to τ − τ∗.

Hence

‖τ − τ∗‖−‖τ ′ − τ∗‖= η
〈

(∇2L(τ))−1∇L(τ),
τ − τ∗
‖τ − τ∗‖2

〉
− η‖v‖

≤ η

σmin(∇2L(τ))
·
∣∣∣∣〈∇L(τ),

τ − τ∗
‖τ − τ∗‖2

〉∣∣∣∣ ≤ η‖∇L(τ)‖2
σmin(∇2L(τ))

(i)

≤ 32ηmax{R, |b|}
σmin(∇2L(τ))

(ii)

≤ 32
λρ

σmin(∇2L(τ))

max{R, |b|}
λM

≤ 32 max{R, |b|}
λM

≤ 64 max{R, |b|}
R2

(D.51)

where step (i) uses Claim D.1, and step (ii) follows from the choice of η.

Suppose ‖τ ′ − τ∗‖2< 0.15R, then

0.05R ≤ ‖τ − τ∗‖−‖τ ′ − τ∗‖≤
64 max{R, |b|}

R2
⇒ b = Ω(R3). (D.52)

However, ‖τ ′− τ∗‖2 entails b = Θ(R), which is a contradiction. Hence it must be that ‖τ ′− τ∗‖2>
0.15R.

Proof of Theorem 4.2. By Lemma D.7, the optimization path will go to a point τ ′ ∈ A s.t. ‖τ ′ −
τ∗‖2> 0.15R. From any such τ ′, the shortest way to exit the annulus A is to project onto the inner
circle defining A, i.e. the circle centered at τ∗ with radius 0.1R which is a convex set. Denote
this inner circle as B(τ∗, 0.1R) whose projection is ΠB(τ∗,0.1R), then the shortest path is the line
segment τ ′−ΠB(τ∗,0.1R)(τ

′). Further, this line segment is of length 0.05R since ‖τ ′− τ∗‖> 0.15R
by Lemma D.7.

However, the decrease of the parameter distance (i.e. ‖τ − τ∗‖) is exponentially small at any point
in A:

‖τt − τ∗‖−‖τt+1 − τ∗‖
(i)

≤ η

σmin(∇2L(τt))

∣∣∣∣〈∇L(τt),
τt − τ∗
‖τt − τ∗‖2

〉∣∣∣∣
(ii)

≤

∣∣∣〈∇L(τt),
τt−τ∗
‖τt−τ∗‖2

〉∣∣∣
λM

(iii)

≤ O
(exp (− κ(b,c)R2

8)

R3

) (D.53)

where step (i) uses the calculations in equation D.51; step (ii) use the choice of η; and step (iii)
uses Lemma D.1.

Hence the number of steps to exit A is lower bounded by 0.05R

O(2
R2 exp

(
−R2

8

)
)

= Ω
(
R3 exp

(
R2

8

))
.

E ADDITIONAL NOTES ON EXPERIMENTS

E.1 IMPLEMENTATION DETAILS

Parameterization: For the 1-dimensional Gaussian, we take P∗, Q to have mean µ∗ = 16, µq = 0,
and unit variance σ2

∗ = σ2
q = 1; see Figure 4a for an illustration of the flat loss landscape. We

35

Published as a conference paper at ICLR 2022

(a) 1d Gaussian mean estimation with σ2 = 1 and
means µq = 0, µ∗ = 16. The x and y axis cor-
respond to the estimated mean µ and the NCE loss.
The left and right vertical lines show µq and µ∗, and
the red and green curves show the pdfs ofQ and P∗.

(b) 2d Gaussian mean estimation with σ2 = 1 and
means µq = 0, µ∗ = 8. The blue surface shows
the NCE loss surface, and the orange and green sur-
faces show the pdfs of Q and P∗.

Figure 4: An illustration of the flat landscape caused by the “density chasm" NCE loss quickly
flattens out for 1d and 2d Gaussian mean estimation.

use h(x) := exp(−x
2

2), T (x) := [x,−1] to be consistent with the notation in Section 4. For the
16-dimensional Gaussian, P∗, Q share the same mean µ∗ = µq = 0 but have different covariance
with Covq = Id and Covp = diag([s1, ..., sd]), where si = Uniform[8× 0.75, 8× 1.5]. 8

For MNIST, we adapt the TRE implementation by Rhodes et al. (2020). We model the log density
ratio log(p/q) by a quadratic of the form g(x) := −f(x)>W f(x) − b>f(x) − c, where f is
ResNet-18, and W , b, c are trainable parameters with W constrained to be positive definite.

Implementation notes: We include some tricks we found useful for implementation:

• Calculation in log space: instead of dividing two pdfs, we found it more numerically stable to use
subtraction between the log pdfs and then exponentiate.

• Removing common additive factors: the empirical loss is the average loss over a batch of samples
where overflow can happen. 9 We found it more stable to calculate the mean by first subtract the
largest value of the batch, calculate the mean of the remaining values, then add back the large
value—akin to the usual log-sum-exp trick. For example, mean([a, b]) = max(a, b) + mean([a−
max(a, b), b−max(a, b)]).

• Per-sample gradient clipping: it is sometimes helpful to limit the amount of gradient contributed
by any data point in a batch. We ensure this by limiting the norm of the gradient, that is, the
gradient from a sample x is now min{1, K

‖∇`(x)‖}∇`(x) for some prespecified constant K (Tsai
et al., 2021).

• Per-sample log ratio clipping: an alternative to per-sample gradient clipping is to upper threshold
the absolute value of the log density ratio on each sample, before passing it to the loss function.
Setting a proper threshold prevents the loss from growing too large, and consequently prevents a
large gradient update.

E.2 ADDITIONAL RESULTS

Results for training with a larger computation budget: We provide additional results on Gaussian
mean estimation and MNIST, both trained with a larger computation budget.

Figure 5 shows results similar to those of Figure 1, except that we now run the optimization process
for 5 times longer than in Figure 1, and additionally show results on eNCE optimized with gradient
descent (GD). The conclusion is the same as that of Figure 1: for both NCE and eNCE , normalized

8Generally, for d-dimensional Gaussian with mean µ and a diagonal covariance matrix
Σ := diag([σ2

1 , ..., σ
2
d]), the exponential parametrization is τ = [1

σ2
1
, ..., 1

σ2
d
, µ1

σ2
1
, ...µd

σ2
d
, µ
>Σ−1µ

2
+

1
2

log((2π)d det(Σ)].
9This is because the mean function is internally implemented as the sum of all entries divided by the batch

size, and the sum of a large batch size where each value is also large can lead to overflow.

36

Published as a conference paper at ICLR 2022

Figure 5: Results for estimating 1d (left) and 16d (right) Gaussians, plotting mint∈[T]‖τ∗− τt‖2 (y-
axis) against the number of updates T (x-axis). Normalized gradient descent (NGD) significantly
outperforms vanilla gradient descent (GD) for both NCE and eNCE . In addition, eNCE decays
faster than NCE when optimized with NGD. The results are averaged over 5 runs, with shaded areas
showing the standard deviation.

Figure 6: Results on MNIST, plotting loss value (y-axis, log scale) against the number of update
steps (x-axis). The left plot shows NCE optimized by GD (black) and NGD (yellow), and the right
shows eNCE optimized by GD (black) and NGD (blue). The setup is the same as that for Figure 2
except that we now let training run 4 times longer. NGD outperforms GD in both cases, consistent
with the results in Figure 2.

gradient descent (NGD) significantly outperforms GD. Moreover, eNCE performs competitively
compared to NCE when optimized with NGD.

Similarly, we train with a large computation budget on MNIST, whose results are shown in Figure
6. The results are again consistent with those in Figure 2.

MNIST samples We run annealed importance sampling (AIS) Neal (2001) following Rhodes et al.
(2020) on the models trained on NCE and eNCE , optimized with GD or NGD. Figure 7, 8 show
samples generated with 4k or 10k sampling steps, from different random initialization. We can
see that eNCE gives much sharper results than NCE, and eNCE with NGD results in more diverse
samples. A downside though is that eNCE samples seem to show signs of mode collapse. However,
it is unclear whether this is a problem with the model or due to the sampling procedure.

Results for training with other normalized optimization method: One interesting question to
ask is, whether the results of NGD generalize to other optimizers that perform some form of nor-
malization. One example that is commonly used in practice is the RMSprop, which performs per-
coordinate normalization on the gradient. Specifically, at the tth step with gradient gt, RMSprop
first updates a cumulative term vt := αvt−1 + (1 − α)g2

t , where α ∈ [0, 1] is a hyperparameter

(a) NCE, GD (b) NCE, NGD (c) eNCE , GD (d) eNCE , NGD

Figure 7: MNIST samples from 4000 sampling steps

37

Published as a conference paper at ICLR 2022

(a) NCE, GD (b) NCE, NGD (c) eNCE , GD (d) eNCE , NGD

Figure 8: MNIST samples from 10000 sampling steps

Figure 9: Results for estimating 1d Gaussian with NCE (left) or eNCE (right), using GD (gray),
NGD (yellow for NCE, blue for eNCE), or RMSprop (green). The effectiveness of RMSprop
seems to depend on the task: RMSprop performs the best for NCE, but falls short than NGD for
eNCE.

controlling how much to “damp" the current gradient, and the square on gt is applied entrywise. It
then normalizes the gradient as g̃t := gt/vt, with division applied entry-wise.

Figure 9 compares RMSprop with GD or NGD on 1d Gaussian estimation task. The results suggest
that how well RMSprop performs may be task-specific: RMSprop performs the best when optimiz-
ing for NCE, but only slightly better than GD when optimizing for eNCE . Moreover, NCE favors a
higher value of α where the best performance is achieved by α = 0.99, whereas eNCE prefers α to
be small with α = 0.01 performing the best.

It is not yet clear what the theoretical answer should be for normalized methods in general: though
methods like RMSprop perform certain form of normalization (e.g. per-coordinate normalization),
so does Newton’s method, and Theorem 4.2 has shown that it still suffers from an exponentially bad
convergence rate (at least with standard choices of step size). It is unclear what quantity replaces the
condition number of the Hessian for RMSProp, which governs the convergence of NGD. Theoretical
guarantees for these optimization methods is an interesting open question.

38

	Introduction
	Related Work

	Preliminaries
	Overview of results
	Flatness of the NCE loss
	Properties of the NCE loss
	Lower bounds on first- and second-order methods

	Normalized gradient descent for well-conditioned losses
	Example: 1d Gaussian mean estimation
	Bounds on the condition number of NCE

	Analyzing eNCE : NCE with an exponential loss
	Proof of Lemma 6.1

	Empirical verification
	Conclusion and Discussions
	Proof of convexity of NCE (Lemma 2.2)
	Proofs for section 6 (eNCE)
	Proof of Lemma 6.2

	Proofs for Section 5 (NGD and condition number at the optimum)
	Proof of Theorem 5.1 (NGD convergence rate)
	Proof of Lemma 5.1
	Proof of Theorem 5.2 (Convergence rate in terms of Bhattacharyya coefficient)
	Proof of Lemma C.2
	Proof for Lemma C.3 (Bound on the Bhattacharyya coefficient)

	Proof of Lemma 5.2 (Bound on the Bhattacharyya coefficient)

	Proofs for Section 4 (negative results of NCE)
	Proof of Theorem 4.1 (Lower bound for gradient-based methods)
	Proof of Lemma D.1
	Calculation details for equation D.6 and D.8
	Calculations for b less than 0

	Proof of Lemma D.2
	Proof of Lemma 4.1 and Lemma 4.2
	Proof of Lemma 4.1 (smoothness at the optimum)
	Proof of Lemma 4.2 (strong convexity at the optimum)

	Proof of Lemma 4.3 (curvature at P=Q)
	Proof of Theorem 4.2 (lower bound for second-order methods)

	Additional notes on experiments
	Implementation details
	Additional results

