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ABSTRACT

Recent advances in pre-trained vision-language models, e.g., CLIP, have demon-
strated remarkable success in domain generalization (DG) by tuning prompts. To
promote DG, one promising method is to explore how to design or learn more
sweet prompts, i.e., prompt learning. The implicit intuition of it is that a more
elaborate prompt learning method can lead to higher generalization performance.
The foundation intuition motivates us to raise a question: Prompt tuning is all we
need? To verify whether the intuition holds for DG, we design comprehensive
experiments on DG benchmarks. However, our experiments demonstrate a pes-
simistic conclusion that simply tuning prompts using training sets can achieve
comparable performance with that using test sets. Namely, even the optimal
prompts can hardly bring significant performance gain than a simple tuning strat-
egy. Our experiments show that this results from the non-separability of features
extracted by the image encoder. Thus, we propose image encoder tuning, named
Im-Tuning, for more separable image features. We conduct extensive experiments
on multiple DG benchmarks, demonstrating that Im-Tuning can consistently out-

perform the relevant state-of-the-art methods.

1 INTRODUCTION

Contrastive Language-Image Pretraining (CLIP) has shown remarkable capabilities in many down-
stream tasks (Radford et al.|[2021)), particularly in the field of domain generalization (DG), which is
a challenging task that aims to enable models to generalize well across different domains. Existing
CLIP-based DG methods (Zhou et al., 2021} |2022a) mainly focus on learning (or designing) proper
text prompts to extract the potential generalization ability of the CLIP model. The implicit intuition
of the prompt learning strategy is that more proper prompts may result in better alignments between
image and text features, which is consistent with the pre-training process of CLIP models.

The intuition motivates us to raise
a question: is prompt tuning all we
need for DG? Namely, we challenge
the necessity of optimal prompts
learned for DG. In particular, we con-
duct comprehensive experiments us-
ing DG benchmarks, e.g., Domain-
Net (Peng et al.| 2019) and Office-
Home (Venkateswara et al., 2017),
to investigate the priority of optimal
prompts than a hand-crafted prompt.
Our experimental results demonstrate
that simply tuning prompts using
training sets can achieve compara-
ble performance with that using test
sets. That is, slightly tuning prompts
can achieve comparable performance
with optimal prompts, which signifi-
cantly weakens the motivation for op-
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Figure 1: We con(ia)ct a small experiment to(bi/alidate if a
simple prompt turning strategy (e.g., CoOp) is suitable in
multi-source DG datasets. Figure 1(a) illustrates the results
on DomainNet. Figure 1(b) illustrates the results on Office-
Home.

timal prompts and guides us to explore new fine-tuning methods.
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Figure 2: The concept illustration of two different methods to apply CLIP in DG. (a) The prompt
tuning method only trains the prompt and freezes the visual backbone of CLIP. (b) Our Im-Tuning
method enables gradients to propagate jointly in both modalities to enhance their synergy.

Fortunately, our experiments have demonstrated that the optimal prompts do not achieve the desired
performance due to the inherent inseparability of image features. Taking DomainNet as an example,
the utilization of data exclusively from a single target domain, along with a simple prompt turning
strategy (e.g., CoOp (Zhou et al., 2022b)), results in the derivation of an optimal prompt that only
achieves an average accuracy of 79.3%. This improvement is only 4.9% higher than the accuracy
achieved by training the model using data from the source domain. This limitation can be attributed
to the indivisibility of image features, which hampers the ability to achieve higher accuracy. Subse-
quently, this insight has inspired us to shift our focus to the image encoder and explore methods to
enhance the separability of image features.

To make image features more separable, we propose tuning the image encoder, named Im-Tuning.
Fine-tuning the entire image encoder is one straightforward approach. However, due to the limited
availability of data, fine-tuning the entire model can easily disrupt its intrinsic information, leading
to performance degradation. Consequently, we have been inspired to explore the adjustment of
certain crucial statistical properties within the image encoder, i.e., scale and bias. Additionally, fine-
tuning the image encoder alone may introduce difficulties in aligning image and text features across
the entire model. To tackle this challenge, we propose utilizing prompts to generate scale and bias,
which influence the image features. Im-tuning is a novel method that enables gradient propagation
through both image and text encoders, thereby reducing the gap between fine-tuned image encoders
and frozen text encoders, which is illustrated in Figure

Through experimental validation, Im-tuning has been shown to acquire more separable image fea-
tures, leading to improved generalization performance. This is particularly evident with the optimal
prompt training on the test set, i.e., upper bound performance. Specifically, our method exhibits an
average improvement of 8.25% compared to CoOp on the upper bound performance. Subsequently,
we conducted experiments on three benchmark domain generalization datasets, where our method
demonstrates a performance improvement of over 1% when compared to alternative methods.

Our main contributions are summarized as follows:

* Our work challenges the necessity of prompt tuning, and shows that an optimal prompt
provides limited performance gain compared to a simple prompt. This can be attributed
to the separability of image features, which suggests a promising direction for promoting
domain generalization with clip models.

* We introduce a new method called Im-Tuning that manipulates the image features by modi-
fying the parameters of the image encoder. To bridge the image-text modalities, Im-Tuning
updates the parameters of the image encoder by the learned text prompt, enabling the bidi-
rectional propagation of gradients and enhancing synergy.

» Comprehensive experiments conducted on various datasets demonstrate that Im-Tuning
outperforms baseline methods, achieving state-of-the-art performance.

2 RELATED WORK

Domain generalization. The DG problem has various types. For example, multi-source DG (Gul-
rajani & Lopez-Paz, [2020) assumes multiple training domains, while single-source DG (Peng et al.|
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2022) assumes one. Most DG techniques tackle the domain shift issue in a closed-set setting , where
all domains have the same label set. Some methods address the more difficult heterogeneous DG
(Wang et al.} 2020), which has different labels between source and target domains.

More recently, |[Zhang et al.| (2021b)) evaluate the performance of CLIP (Radford et al.| 2021) on
data from multiple domains and proposed a domain prompt generator, where domain information is
inferred by averaging the batch-wise visual features from CLIP’s vision encoder. Besides using the
domain information, the method in|Zhang et al.|(2021b)) has some drawbacks: i) it captures domain
information from the final layer of the vision encoder, which encodes more semantic information
than domain-specific artifacts; ii) it works well with large batch sizes and may overfit for small
batches since estimating style from a small number of feature vectors is not feasible. Recent works
(Niu et al.,|2022) learn domain-invariant prompts by using text-based source domain knowledge or
image patches to learn the prompt input for ViT models, similar to visual prompt tuning (VPT) (Jia
et al.| [2022). Another recent line of research (Mancini et al., [2020) define the problem of visual
recognition for unknown domains and classes, combining DG with zero-shot learning (Xian et al.|
2017). Subsequent works use multimodal information (Chandhok et al.l|2021)) or disentangle feature
learning (Mangla et al.,|2021)) for this purpose.

Prompt learning. Foundation models learn semantically rich visual representations by using text
information and become prevalent in language processing (Devlin et al.|[2018) and computer vision
(Bommasani et al.,[2021)). The success of these models depends on the design of task-centric textual
descriptions for visual data (Henaff, [2020). While earlier prompting strategies were mostly manual,
subsequent works use prompt learning. For example, CoOp (Zhou et al., 2022b) optimize unified
and class-specific prompts in the continuous space with back propagation. To improve CoOp’s
generalization, CoCoOp (Zhou et al., |2022a) use input-conditioned prompt learning. While CoOp
Zhou et al.| (2022b) learn projectors for textual input, CLIP-Adapter (Gao et al., [2021) fine-tunes
feature adapters in both visual and language branches. ProGrad (Zhu et al.l 2022) use a similar
method to CoCoOp, preserving the knowledge learned from the foundation model. In |Shu et al.
(2022), test time prompt tuning (TPT) is proposed, where consistency among multiple views of the
same image is the supervision signal for prediction. Probabilistic and variational models also learn
prompt distributions that match the spreads of visual features (Liu et al.| 2023} Derakhshani et al.|
2022). Finally, MaPLe (Khattak et al., 2023)) enhances the compatibility between the encoders of
CLIP at different levels. However, these works only focus on learning a better prompt to improve
the model’s generalization ability. We think that the improvement from training the prompt alone is
limited. Therefore, we propose a new fine-tuning method to handle the domain shift.

3 METHODOLOGY

Our method focuses on fine-tuning the image branch of a pre-trained multimodal CLIP for improved
performance in domain generalization. Figure [3] presents the overall architecture of our proposed
Im-Tuning framework. Unlike previous works that solely concentrate on optimizing prompts, Im-
Tuning offers a pathway from the prompt to the image branch, allowing the model to learn more
separable image features while optimizing the prompt.

3.1 PROBLEM SETUP OF DG

The DG problem involves A labelled source domains S* = {xF,yF}o ~ PS. 1<i<WN,
where x; € X',y € Y;,and P$,,  denote the input data, label, and the joint distribution for the label
space, respectively. Furthermore, Pds(;m #* PdS;m,Vi, j €{1,2,--- ,N'}, showing that the source
domains are diverse. We call the setting single-source DG if N = 1, else it is known as multi-source
DG. We aim to train a model f : X — Y given S = {Sl}izl, that can generalize to a new target
domain SVt = {x} ,y,’f}zt:l unseen during training with x, € X" and y; € Y' and P} ,, as
the target distribution different from the source distributions. We assume a closed-set setting where
Y UY! =Y NY" For the base to new class generalization setting, we have Y N'Y? = ().



Under review as a conference paper at ICLR 2024

Learnable Context| 5
| vi ‘ v2 ‘ ‘ vm ‘ as o Text Encoder I
g
(]
o
Network g8 £ 8
2|~ e O

X1:Y1X1:Y2X1-¥3 -+ [ X1:¥n
X2:Y1 X2:Y2 Xo-Y3 - XY

X3.Y1 X3.Y2X2.Y3 oo X3:Yn

17 JaKeq Japooug

XnY1XnY2XnY3 - XnYn

] 19Ae J18poouy

m
el 3
P g
(5]
= ju
m b
= <
2 @
(0] —
a =

Image Image Encoder

Figure 3: Overview of our proposed Im-Tuning framework in V-L models. Im-Tuning trains context
prompts and allows prompts to learn scale and bias parameters through a linear network, which are
applied to image features at different layers.

3.2 REVIEW OF CoOprP IN DG

Context Optimization aims to address the inefficiency challenge in prompt engineering for better
adapting pre-trained vision-language models to downstream applications [Zhou et al.| (2022b)). The
key idea in Context Optimization is to model the context token as a continuous vector that can
be end-to-end learned from data. Specifically, instead of utilizing “a photo of a” as the context,
Context Optimization introduces M learnable contextual representation vectors, {v1,va,...,Var},
each having an identical dimension to the word embeddings. The prompt for the i-th class, denoted
as t;, now becomes t; = {v1,va,..., Vs, c;} where ¢; is the word embedding(s) for the class
name. The contextual representation vectors are shared across all classes. The predictive probability
is then

exp (cos (x, g (ty)/ ) 0
S exp (cos (x, g (t;) /7)

where cos(-, -) denotes cosine similarity , 7 is a learned temperature parameter and g(-) denotes the
frozen text encoder. The aims of Context Optimization is to learn better prompt.

ply|x)=

3.3 IM-TUNING

As demonstrated in the introduction section (see Figure ??), relying solely on prompt tuning is insuf-
ficient. Even the optimal prompts can barely improve the performance over a simple tuning strategy.
However, image tuning can directly affect the images, making the resulting image features more
separable. Thus, we emphasize the significance of image tuning for more effective optimization.

It is important to note that in the text branch, our settings are similar to CoOp (Zhou et al | [2022b)) due
to the absence of fine-tuning . Our objective is to amplify the distinctiveness of the image features
by fine-tuning the image branch. Furthermore, the deepest layers of a visual encoder usually capture
abstract object semantics for classification, but they miss local patterns such as edge orientations or
local shapes (Zheng et al.l |2016). Therefore, our approach focuses on fine-tuning different layers
of the image encoder, which brings about stronger generalization and transferability compared to
fine-tuning a single layer alone. Based on the feature sets from multiple levels and instance feature
statistics, we construct a continuous prompt embedding space through linear mapping, allowing the
learnable context to generate latent features in this embedding space, and further influence the multi-
level visual features in the image encoder. In addition, we fine-tune the image feature maps in the
first J layers of the visual branch (where J < K, and K represents the total number of layers in the
visual branch, which is 12 in VIT-B/16. The analysis of the hyper-parameters .J is in appendix).
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To perform image tuning, we first apply a linear mapping to the learnable prompt. The objective is
to obtain a shared hidden layer feature based on the prompt. Similar to CoOp, the prompt given to
the text encoder is designed with the following form

t=[VIi[V]s...[V]y[CLASS], @)

where [V],,(m € {1,..., M}) is a vector with the same dimension as word embeddings (i.e., 512
for CLIP), and M is a hyper-parameter specifying the number of context tokens.

Ly = LinerProj (t). 3)

We generate scale and bias parameters for each transformer block of the image encoder up to a
specific depth J by using different MLPs to process the latent features.

scale; = MLP;_4(Ly) 4
bias; = MLP;_,(L}) (

where each scale; and bias; (i € {1,...,J}) is a vector with the same dimension as the length of
the token (i.e, 768 for ViT-B/16). We then apply the resulting scale and bias to each channel of the
feature map output from the i-th layer.

F;, = (scale; + 1)7; (F;—1) + bias; i=1,2,---,J -
F,=T(F_) i=J+1,--- K )

where T; denotes the i-th layer of the image encoder. Next, we calculate the cosine similarity
between the refined image features and text features, which determines the categorization of each
image. We conduct experiments using two visual backbones, namely ResNet50 and ViT-B/16. In
this section, we will elaborate on our method with ViT-B/16 as the visual backbone. We follow a
similar method when using ResNet50 as the visual backbone, with the main distinction being that
the scale and bias dimensions in ResNet50 are dependent on the output channel number of the i-th
ResNet block. (e.g., the scale and bias dimensions are 256 after the first ResNet block in ResNet50,
matching the channel number of the output feature map ).

During training, we update the context vectors along with parameters of MLP;_; and MLP;_; (i €
{1,...,J}). In this work, these MLPs have a one-layer bottleneck structure (Linear-ReLU). We
leave the exploration of more advanced designs for future work.

4 EXPERIMENT

Our approach is evaluated in the following problem settings: 1) few-shot learning (Section [4.2))
2) generalization from base to new classes within a dataset (Section ; 3) cross-dataset transfer
(Section @; 4) domain generalization (Section @ All models used in our experiments are based
on CLIP. Before discussing the results, we provide details of the experimental setup below.

4.1 EXPERIMENTAL PROTOCOL

Datasets. For the first three settings, i.e., few-shot learning, base-to-new generalization, and
cross-dataset transfer, we use the 11 image recognition datasets as in [Zhou et al| (2022b), which
cover a diverse set of recognition tasks. Specifically, the benchmark includes ImageNet (Deng
et al., 2009) and Caltech101 (Fei-Fei et al., 2004)) for classification on generic objects; OxfordPets
(Parkhi et al.,[2012)), StanfordCars (Krause et al., 2013)),Flowers102 (Krause et al., |2013)), Food101
(Bossard et al., 2014) and FGVCAircraft (Maji et al., [2013)) for fine-grained classification; SUN397
(Xiao et al.l 2010) for scene recognition; UCF101 (Soomro et al.l 2012) for action recognition;
DTD (Cimpoi et al., 2014) for texture classification; and finally EuroSAT (Helber et al.l [2019)
for satellite imagery recognition. For domain generalization experiments, We evaluate over 3
benchmark datasets for multi-source DG. They are: (1) Office-Home (Venkateswara et al.,[2017) (2)
PACS (Li et al, [2017) (3) DomainNet (Peng et al.,|2019) . We conduct experiments on 4 domains
of DomainNet, i.e., Clipart, Painting, Real, and Sketch.

Hyper-parameters and model selection. Our codes are built on top of the open-source code of
CLIP and CoOp. We use the SGD optimizer (Bottou, |2012)) to train the model with a learning rate
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of 2e-3 and betas values (0.9, 0.999), which is decayed by the cosine annealing rule. Regarding
the prompt configuration, we set the prompt length to 4 in all experimental results. In the baseline
network with ResNet50 (He et all |2016), we use prompt embedding to generate scale and bias
parameters that influence the image feature maps obtained from the first two ResNet blocks. In the
baseline network using ViT-B/16 (Dosovitskiy et al., 2020), we use prompt embedding to modify
the feature maps obtained from the first .J layers of the transformer layer. In our experiments, we
set J to 9, and further discussion of the impact on length of context, number of layers, and model
selection can be found in the ablation study. Finally, we set the batch size to 16 and train the model
for 10 epochs. For all our training, we utilize only two RTX3090 GPUs. We report the average
top-1 classification performance on each dataset based on three different executions of our method.

Baseline. For few-shot learning, we compare Im-Tuning with CLIP zero-shot, and recent prompt
learning works including CoOp (Zhu et al., 2022)). For generalization form base to new and cross
dataset transfer, we compare Im-Tuning with CLIP zero-shot, CoOp (Zhu et al., 2022) and Co-CoOp
(Zhou et al) [2022a) . For domain generalization experiments, We consider various methods for
comparison, including M3SDA (Peng et al|2019), which is a traditional method that uses moment
matching to minimize the discrepancy between the source domain and target domain. Additionally,
a more basic method is zero-shot CLIP with the prompt “A Photo of a [CLS]”. Furthermore, we
choose to compare our method with several existing prompt tuning methods, e.g., CoOp, CoCoOp,
and DPL [Zhang et al.| (2021a). Finally, we also compare our method with a fine-tune method, e.g.,
CLIP-Adapter Gao et al.|(2021)), which fine-tunes adapters in both visual and language branches.

4.2 FEW-SHOT LEARNING

We follow the few-shot evaluation protocol adopted in CLIP, using 1, 2, 4, and 16 shots for training
respectively, and deploying models in the full test sets. The maximum epoch is set to 200 for 16
shots, 100 for 4/2 shots, and 50 for 1 shot (except for ImageNet where the maximum epoch is fixed
to 50). The context length in CoOp is set to 4. We report the average results over three runs with
different random seeds. Zero-shot CLIP is based on hand-crafted prompts, which is adopted in CLIP.

In general, our method outperforms CoOp and zero-shot CLIP on all 11 datasets, demonstrating
strong few-shot learning capabilities. Among the four settings of 11 datasets in total, Im-Tuning
achieves an average improvement of 6.58% over CoOp.

4.3 GENERALIZATION FROM BASE TO NEW CLASSES

We address the weak generalization problem of CoOp by proposing Im-Tuning, which can learn
from a subset of classes and generalize to unseen classes. We conduct experiments on 11 recognition
datasets, where we divide the classes into base and novel sets. We train the learning-based models,
i.e., CoOp, CoCoOp and Im-Tuning, on the base classes and evaluate them on both the base and
novel classes separately. Table [I| shows the results of this setting, where we compare Im-Tuning
with CLIP zero-shot, and other prompt learning methods such as CoOp and CoCoOp. For CLIP,
we use hand-crafted prompts that are tailored for each dataset. Im-Tuning outperforms CoCoOp on
both the base and novel classes on all 11 datasets, except for a slight decrease on the base classes of
Caltech101 and Food101. Im-Tuning also achieves better generalization to novel classes on 8§ out of
11 datasets, compared to CoCoOp. Im-Tuning improves the overall accuracy on all 11 datasets from
71.69% to 73.11%, and obtains an average gain of 1.57% over CoCoOp. These results demonstrate
the effectiveness of Im-Tuning in cross-class generalization.

4.4 CROSS-DATASET TRANSFER

To evaluate the cross-dataset generalization ability of Im-Tuning, which is a more challenging prob-
lem than within-dataset generalization as the data distribution and task domain may vary signifi-
cantly, we compare it with CLIP , CoOp and CoCoOp on 10 different datasets using ImageNet as
the source dataset. We use all 1,000 classes of ImageNet to learn the context for prompt learning
methods. Table [2] shows the results of this experiment. On ImageNet, CoOp achieves the highest
accuracy, but on the other datasets, Im-Tuning consistently outperforms CoOp and CoCoOp by a
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Figure 4: Main results of few-shot learning on the 11 datasets.

large margin. The high accuracy on Caltech101 and OxfordPets can be attributed to the fact that
ImageNet contains many object and dog classes that are relevant to these datasets.

4.5 DOMAIN GENERALIZATION

We present experimental results on the DomainNet, Office-Home, and PACS datasets using two vi-
sual backbones, ResNet50 and ViT-B/16 in Table[3] As expected, ViT-B/16, being a more powerful
backbone, outperforms ResNet50 in terms of performance. We observed that traditional algorithms
that do not utilize large foundation models, such as M3SDA, tend to have lower performance across
all three datasets (averaging around 10% lower compared to methods incorporating CLIP). Addition-
ally, the zero-shot CLIP method performs relatively poorly in domain generalization tasks, achieving
only 78.2% and 68.1% accuracy on the Office-Home and DomainNet datasets, respectively. These
results highlight a significant gap compared to prompt tuning methods like COOP, emphasizing the
effectiveness of prompt tuning in enhancing model generalization abilities.

Our method consistently surpasses the performance of existing methods across various datasets and
visual backbones, demonstrating its effectiveness and robustness. Among the methods with ViT-
B/16 as the visual backbone, our method achieves accuracy of 75.25%, 85.7%, and 98.0% on the
DomainNet, Office-Home, and PACS datasets, respectively. On average, our method shows an
improvement of over 1% compared to other methods.
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Table 1: Comparison with state-of-the-art methods on base-to-novel generalization. Im-Tuning
learns demonstrates strong comprehensive results over existing methods on 11 recognition datasets.

(a) Average over 11 datasets (b) ImageNet (c) Caltech101
Base  New H Base  New H Base  New H
CLIP 69.34  74.22 | 71.70 CLIP 7243 68.14 | 70.22 CLIP 96.84 94.00 | 95.40
CoOp 82.69 63.22 | 71.66 CoOp 7647 67.88 | 71.92 CoOp 98.00 89.81 | 93.73
CoCoOp 80.47 71.69 | 75.83 CoCoOp 75.98 7043 | 73.10 CoCoOp 97.96 93.81 | 95.84
Im-Tuning 82.23 73.11 | 77.40 Im-Tuning 76.23 70.11 | 73.04 Im-Tuning 97.92 94.44 | 96.15
(d) OxfordPets (e) StranfordCars (f) Flower102
Base  New H Base  New H Base  New H
CLIP 91.17 97.26 | 94.12 CLIP 63.37 74.89 | 63.65 CLIP 72.08 77.80 | 74.833
CoOp 93.67 95.29 | 94.47 CoOp 78.12 60.40 | 68.13 CoOp 97.60 59.67 | 74.06
CoCoOp 95.20 97.76 | 96.43 CoCoOp 7049 73.59 | 72.01 CoCoOp 94.87 71.75 | 81.71
Im-Tuning 9544 97.47 | 96.44 Im-Tuning 73.38 74.23 | 73.80 Im-Tuning 9583 72.29 | 82.41
(g) Food101 (h) FGVCAircraft (i) SUN397
Base  New H Base  New H Base  New H
CLIP 90.10  91.22 | 90.66 CLIP 27.19  36.29 | 31.09 CLIP 69.36 7535 | 72.23
CoOp 88.33 8226 | 85.19 CoOp 40.44 2230 | 28.75 CoOp 80.60 65.89 | 72.51

CoCoOp  90.70 91.29 | 90.99 CoCoOp 3341 23.71 | 27.74 CoCoOp  79.74 76.86 | 78.27
Im-Tuning 90.23 91.17 | 90.70 Im-Tuning 37.17 34.49 | 35.78 Im-Tuning 81.10 76.82 | 78.90

(G) DTD (k) EuroSAT (1) UCF101
Base New H Base  New H Base New H
CLIP 53.24  59.90 | 56.37 CLIP 56.48  64.05 | 60.03 CLIP 70.53 77.50 | 73.85
CoOp 79.44 41.18 | 54.24 CoOp 92.19 54.74 | 68.69 CoOp 84.69 56.05 | 67.46
CoCoOp 77.01 56.00 | 64.85 CoCoOp 87.49 60.04 | 71.21 CoCoOp 8233 7345 | 77.64
Im-Tuning  79.52 56.79 | 66.26 Im-Tuning 93.34 60.22 | 73.21 Im-Tuning 84.41 76.23 | 80.11

Table 2: Comparison of Im-Tuning with existing approaches on cross-dataset evaluation. Overall,
Im-Tuning achieves competitive performance providing the highest average accuracy, indicating
better generalization.

Source Target
& &
> o 5
> S 24 @] N
= N s ] o > o N & N v
g § & § & 5 FE s f & &
<§ g & & < S - &S & S ¥
CoOp 71.51 9370  89.14 64.51 6871 8530 1847 64.15 4192 4639 6655 63.88
Co-CoOp 71.02 94.43 90.14 65.32 71.88 86.06 2294 6736 4573 4537 6821 6574

Im-Tuning  71.21 94.45 90.37 64.86 7225 86.17 23.62 67.72 44.62 46.64 69.41 66.48

4.6 ABLATION STUDY

Length of context. In prompt tuning, the length of context is a crucial variable, and its optimal

Table 3: Comparison of our proposed method with the state-of-the-art methods on PACS, Office-
Home, and DomainNet datasets for multi-source DG.

Backbone Method PACS Office-Home DomainNet Avg
RNS50 M3SDA 85.1+1.1 672+1.2 56.1+1.1 69.5
ZS-CLIP 90205  70.1+0.4 58203 728

CoOp 923+£05 74804 624+04 765

CLIP CoCoOp 921+04 75104 626+04 76.6
RN50 DPL 919+03 75405 62.7+04 76.7
CLIP-Adapt 92.1+03  75.1+04 626+02 76.6

Im-Tuning 92.8+03 75.8+0.4 63.1+03 772

ZS-CLIP  959+02  80.6x0.3 682+0.1 81.6

CoOp 97.0£0.1 842+0.2 74102 851

CLIP CoCoOp 96.7+0.2  84.3+0.1 739+04 850
ViT-B/16 DPL 97.1+0.3 84.4+0.2 743+03 853
CLIP-Adapt  96.3 +0.1 83.6+0.2 74202 847

Im-Tuning 97.8+0.1  85.6 +0.2 752+£0.2 86.2
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Figure 5: Investigations on Im-Tuning’s context length and various vision backbones.

setting has been widely discussed in relevant literature. As is mentioned by the authors of CoOp
in their paper, continuously increasing the length of context for domain generalization can actually
lead to worse results. This may be due to overfitting caused by a smaller number of learnable
parameters. We also observe this phenomenon in CoOp. However, in our method, the introduction
of more learnable parameters has made our method less sensitive to the length of context. We do not
observe significant overfitting when increasing the length of context. The specific data regarding
this observation are presented in Figure 5|a).

Vision backbone. Many proposed DG methods are evaluated using the standard ResNet backbones.
However, more and more large models are being studied, and their validity is being experimentally
demonstrated. Therefore, we report the performance of ResNet50, ResNetl01, and several
variations of Vision Transformer (ViT). Figure [5]b) shows the results on DomainNet using these
backbones. The results are expected: the more advanced the backbone, the better the performance.
Our Im-Tuning outperforms CoOp across all architectures, especially in the ViT backbones.
Separable image feature. To investigate whether our Im-Tuning method can produce better image
features, we compare the image features of Im-Tuning and CoOp In Figure [6] (see the appendix).
The image features of CLIP, CoOp, and Co-CoOp are the same as they do not learn prompts in
the vision branch. The visualization shows that image features of Im-Tuning are more separable,
suggesting that tuning the image encoder improves the adaptation of CLIP.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

Large pre-trained vision-language models have shown their powerful capabilities in various down-
stream tasks. There is also extensive research in the domain generalization field on how to leverage
these models to overcome domain shift. Existing methods mainly rely on prompt tuning to address
domain shift, but they have limitations. In our paper, we propose a lightweight network that allows
the visual backbone of large models to participate in gradient backpropagation, thereby enhancing
their performance in domain generalization tasks.

While our method achieves promising results, it still lacks interpretability, and it is sensitive to
noisy labels. Performance can significantly decrease when facing poorly annotated data, which is a
common challenge for many methods based on large Vision-Language models.

Im-Tuning is a simple yet effective method that enables the visual backbone of large pre-trained
vision-language models to fine-tune on novel domains. This opens up many avenues for future re-
search, such as investigating the cross-dataset transferability and test-time adaptability of Im-Tuning.

In summary, our proposed method is simple, effective, and exhibits good scalability. We hope that
the findings of this research can pave the way for the application of various large Vision-Language
models in domain generalization tasks. It remains an interesting and practical research topic.
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A APPENDIX

A.1 DATASET DETAILS

We provide our experimental results on four variants of ImageNet in Table [5] and we also provide
detailed statistical information for these datasets in Tablgd} The source dataset is ImageNet. The
target datasets are ImageNetV2, ImageNet-Sketch, ImageNet-A, and ImageNet-R, all of which have
compatible class names with ImageNet. ImageNetV2 is a reproduced test set using different sources
while following ImageNet’s data collection process. ImageNet-Sketch contains sketch images be-
longing to the same 1,000 ImageNet classes. Both ImageNet-A and -R contain 200 classes derived
from a subset of ImageNet’s 1,000 classes.

A.2 EXPLANATION OF SYMBOLS

We have compiled a comprehensive list of special symbols used in the formulas throughout the
article and provided detailed explanations for each of them in table|[6]

12
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Table 4: Statistical information for four variants of ImageNet.

Dataset Classes Train  Val Test Hand-crafted prompt
ImageNetV2 1000 N/A N/A 10000
ImageNet-Sketch 1000 N/A  N/A 50889
ImageNet-A 200 N/A N/A 7500
ImageNet-R 200 N/A  N/A 30000

“a photo of a [CLASS].”

Table 5: Comparison of Im-Tuning with existing approaches in domain generalization setting.

Source Target
ImageNet ImageNetV2 ImageNet-S ImageNet-A ImageNet-R
CLIP 66.73 60.83 46.15 47.77 73.96
CoOp 71.51 64.20 47.99 49.71 75.21
Co-CoOp 71.02 64.07 48.75 50.63 76.18
Im-tuning 71.21 64.31 49.12 50.22 76.67

A.3 ABLATION ANALYSIS

Analysis of upper bound. Multi-modal large-scale models like CLIP have shown strong domain
generalization capabilities in the field of domain generalization. For instance, zero-shot CLIP
achieves an accuracy of 78% on the Office-Home dataset without any training, outperforming tradi-
tional domain generalization methods designed for the Office-Home dataset. Prompt tuning methods
based on CLIP have enhanced the accuracy of domain generalization. However, we have also seen
some unusual phenomena. In domain generalization tasks, prompt tuning methods sometimes have
lower training accuracy than testing accuracy in some domains. For instance, using CoOp for do-
main generalization on the DomainNet dataset, training on the other three domains, and generalizing
to the real domain, the training accuracy is only 71%, while the testing accuracy is 85%. Such a
phenomenon is unlikely to occur in traditional domain generalization methods.

We attribute this phenomenon partly to the inherent bias of large models like CLIP towards different
domains. This also suggests that current prompt tuning methods may have some limitations. To
measure these limitations, we introduce the concept of the upper bound. The upper bound is the
prompt trained on all the data from each domain of the multi-source DG datasets with enough epochs
until convergence (in this study, we train for 200 epochs). In Table |/} we compare the upper bounds
of CLIP fine-tuning methods, various prompt tuning methods, and our method on the DomainNet
dataset. Table [7| shows that the upper bound of CLIP fine-tuning methods is relatively low, only
76.2%. Prompt tuning methods have an advantage in this aspect, with CoOp and CoCoOp achieving
higher upper bounds. CoCoOp has a slightly higher upper bound due to the linear networks that
allow image features to influence the prompt. However, both CoOp and CoCoOp are prompt tuning
methods, with CoCoOp’s upper bound being only 81%. This implies that training on prompts alone
is not enough, as even the optimal prompt with known testing data can only reach 81% accuracy.
In contrast, our method can achieve an upper bound of 89.6%. This indicates that our method has
more room for improvement than prompt tuning methods.

Initialization. We experiment on the DomainNet and Office-Home datasets, using “a photo of a”
as the initialization vector to compare with the random initialization in our method (random ini-
tialization means being randomly initialized from a zero-mean Gaussian distribution with a standard
deviation of 0.02). The experimental results in Table[§]indicate that better initialization does not nec-
essarily lead to performance improvement, suggesting that there is no need to pay excessive attention
to the design of the prompt. The model can learn a good prompt in the process of backpropagation.

Number of layers. To observe the impact of the number of layers on the experimental results,
we use ViT B/16 as the backbone network. We investigate the effects of modifying the scale and
bias for different transformer layers, with a context length of 4/16. The results are recorded in the
Table[9] From the results, it can be observed that modifying transformer layers 1-9 yields the best
average results for the domain generalization task. Therefore, we adopt this configuration in our
experiments.
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Table 6: Description of key symbols in this paper

Symbol Description

St = {ak,yF }Z:l is the definition of source domain in DG problem

Ps. is the joint distribution concerning the data and the label space of source domain
SNFL = {af yF}'" s the definition of target domain in DG problem

Pt is the joint distribution concerning the data and the label space of target domain
g(*) is the text encoder in CLIP model

t is the prompt given to the text encoder in our method

Ly is the hidden layer features obtained through linear mapping of the learnable prompt.
J is the number of layers fine-tuned using our method in the image encoder.
scale;, bias; is the parameters applied to the image encoder layeri (i € {1,...,J})

F; is the output of the image encoder layeri (i € {1,...,J})

Table 7: Comparison of our proposed method with CLIP- based state-of-the-art methods for upper
bound on DomainNet and Office-Home. CLIP Liner is a model obtained by training an additional
linear classifier on top of CLIP

Method CLIP Liner CoOp CoCoOp Im-Tuning
upper bound on DomainNet 76.2 79.3 81.0 88.6
upper bound on Office-Home 86.2 88.1 89.2 94.5

Table 8: Investigations on initialization of our method. We report the average top-1 classification
performance for domain generalization on DomainNet and Office-Home.

Initialization DomainNet Office-Home
random initialization 75.2 85.6
“a photo of a” 75.2 85.5

(a) CoOp (b) Im-tuning
Figure 6: t-SNE plots of image features in prompt tuning method CoOp, and our Im-Tuning on
Office-Home dataset. Im-Tuning shows better separability.

Table 9: Ablation analysis of the number of layers in Im-Tuning using ViT-B/16 backbone (In%)

Baselines DomainNet
context length=4 transformer layer 1-3 74.3
context length=4,transformer layer 1-6 74.8
context length=4 transformer layer 1-9 75.2
context length=4 transformer layer 1-12 74.9
context length=16,transformer layer 1-3 74.2
context length=16,transformer layer 1-6 74.6
context length=16,transformer layer 1-9 75.0
context length=16,transformer layer 1-12 74.8

14



	Introduction
	Related work
	Methodology
	Problem Setup of DG
	Review of CoOp in DG
	Im-Tuning

	Experiment
	Experimental Protocol
	Few-Shot Learning
	Generalization From Base to New Classes
	Cross-Dataset Transfer
	Domain Generalization
	Ablation Study

	Conclusion, Limitations and Future Work
	Appendix
	DATASET DETAILS
	Explanation of Symbols
	Ablation Analysis


