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ABSTRACT

Shapley values have several desirable properties for explaining black-box model
predictions, which come with strong theoretical support. Traditionally, Shapley
values are computed post-hoc, leading to additional computational cost at infer-
ence time. To overcome this, we introduce ViaSHAP, a novel approach that learns
a function to compute Shapley values, from which the predictions can be derived
directly by summation. We explore two learning approaches based on the uni-
versal approximation theorem and the Kolmogorov-Arnold representation theo-
rem. Results from a large-scale empirical investigation are presented, in which
the predictive performance of ViaSHAP is compared to state-of-the-art algorithms
for tabular data, where the implementation using Kolmogorov-Arnold Networks
showed a superior performance. It is also demonstrated that the explanations of
ViaSHAP are accurate, and that the accuracy is controllable through the hyperpa-
rameters.

1 INTRODUCTION

The application of machine learning algorithms in some domains requires communicating the rea-
sons behind predictions with the aim of building trust in the predictive models and, more importantly,
addressing legal and ethical considerations (Lakkaraju et al., 2017; Goodman & Flaxman, 2017).
Nevertheless, many state-of-the-art machine learning algorithms result in black-box models, pre-
cluding the user’s ability to follow the reasoning behind the predictions. Consequently, explainable
machine learning methods have gained notable attention as a means to acquire needed explainability
without sacrificing performance.

Machine learning explanation methods employ a variety of strategies to produce explanations, e.g.,
the use of local interpretable surrogate models (Ribeiro et al., 2016), generation of counterfactual
examples (Karimi et al., 2020; Dandl et al., 2020; Mothilal et al., 2020; Van Looveren & Klaise,
2021; Guo et al., 2021; Guyomard et al., 2022), selection of important features (Chen et al., 2018;
Yoon et al., 2019; Jethani et al., 2021), and approximation of Shapley values (Lundberg & Lee,
2017; Lundberg et al., 2020; Frye et al., 2021; Covert & Lee, 2021; Jethani et al., 2022). Methods
that generate explanations based on Shapley values are prominent since they offer a unique solution
that meets a set of theoretically established, desirable properties. The computation of Shapley values
can, however, be computationally expensive. Recent work has therefore focused on reducing the
running time (Lundberg & Lee, 2017; Lundberg et al., 2020; Jethani et al., 2022) and enhancing the
accuracy of approximations (Frye et al., 2021; Aas et al., 2021; Covert & Lee, 2021; Mitchell et al.,
2022; Kolpaczki et al., 2024). However, the Shapley values are computed post-hoc, and hence entail
a computational overhead, even when approximated, e.g., as in the case of FastSHAP. Generating
instance-based explanations or learning a pre-trained explainer always demands further data, time,
and resources. Nevertheless, to the best of our knowledge, computing Shapley values as a means to
form the prediction has not yet been considered.

The main contributions of this study are:

• a novel machine learning method, ViaSHAP, that trains a model to simultaneously provide
accurate predictions and Shapley values

• multiple implementations of the proposed method using the universal approximation theo-
rem and the Kolmogorov-Arnold representation theorem, followed by a large-scale empir-
ical investigation
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In the following section, we cover fundamental concepts about the Shapley value and, along the
way, introduce our notation. Section 3 describes the proposed method. In Section 4, results from a
large-scale empirical investigation are presented and discussed. Section 5 provides a brief overview
of the related work. Finally, in the concluding remarks, we summarize the main conclusions and
outline directions for future work.

2 PRELIMINARIES

2.1 THE SHAPLEY VALUE

In game theory, a game in coalitional form is a formal model for a scenario in which players form
coalitions, and the game’s payoff is shared between the coalition members. A coalitional game
focuses on the behavior of the players and typically involves a finite set of playersN = {1, 2, . . . , n}
(Manea, 2016). A coalitional game also involves a characteristic set function v : 2N → R that
assigns a payoff, a real number, to a coalition S ⊆ N such that: v(∅) = 0 (Owen, 1995.). Different
concepts can be employed to distribute the payoff among the players of a coalitional game to achieve
a fair and stable allocation. Such solution concepts include the Core, the Nucleolus, and the Shapley
Value (Manea, 2016; Ferguson, 2018).

The Shapley Value is a solution concept that allocates payoffs to the players according to their
marginal contributions across possible coalitions. The Shapley value ϕi(v) of player i in game v is
given by (Shapley, 1953):

ϕi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)).

The term
(

|S|!(n−|S|−1)!
n!

)
is a combinatorial weighting factor for the different coalitions that can

be formed for game v. The difference term (v(S ∪ {i})− v(S)) represents the additional value that
player i contributes to the coalition S, i.e., the marginal contribution of player i.

Given a game v, an additive explanation model µ is an interpretable approximation of v which can
be written as (Lundberg & Lee, 2017; Covert & Lee, 2021):

µ(S) = δ0(v) +
∑
i∈S

δi(v) with δ0(v) a constant and δi(v) the payoff of player i.

µ is a linear model whose weights are the payoffs of each player. Using the Shapley values as
the payoffs is the only solution in the class of additive feature attribution methods that satisfies the
following properties (Young, 1985):

• Property 1 (Local Accuracy): the solution matches the prediction of the underlying
model:

µ(N) =
∑
i∈N

ϕi(v) = v(N)

• Property 2 (Missingness): Players without impact on the prediction attributed a value of
zero. Let i ∈ N :

∀S ⊆ N \ {i}, v(S) = v(S ∪ {i}) ⇒ ϕi(v) = 0

• Property 3 (Consistency): The Shapley value grows or remains the same if a player’s
contribution grows or stays the same. Let v and v′ two games over N , let i ∈ N :

∀S ⊆ N \ {i}, v(S ∪ {i})− v(S) ≥ v′(S ∪ {i})− v′(S)

⇒ ϕi(v) ≥ ϕi(v
′)

2
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2.2 SHAP

In the context of explainable machine learning, the Shapley value is commonly computed post-hoc
to explain the predictions of trained machine learning models. Let f be a trained model whose
inputs are defined on n features and whose output y ∈ Y ⊆ R. We also define a baseline or neutral
instance, noted 0 ∈ X . For a given instance x, the Shapley value is computed over each feature to
explain the difference in output x ∈ X and the baseline. The baseline may be determined depending
on the context, but common examples include the average of all examples in the training set, or one
that is commonly used as a threshold (Izzo et al., 2021).

In this context, a coalitional game for S can be derived from the model, where the players are the
features, and the payoff is the difference in output wrt the baseline:

∀S ⊆ N, vx(S) = f(xS)− f(0),

where xSi = xi if i ∈ S, xSi = 0i otherwise. In this game, a player i getting picked for coalition S
means that its corresponding feature’s value is xi, otherwise it remains at its baseline value 0i. Note
that vx(∅) = f(0)− f(0) = 0, which makes vx a valid coalition game.

The Shapley values for this game can then be obtained as the solution of an optimization problem.
The objective is to determine a set of values that accurately represent the marginal contributions of
each feature while verifying properties 1 through 3. In the litterature, they were obtained by mini-
mizing the following weighted least squares loss function (Marichal & Mathonet, 2011; Lundberg
& Lee, 2017; Patel et al., 2021):

L(vx, µx) =
∑
S⊆N

ω(S)
(
vx(S)− µx(S)

)2

, (1)

where ω is a weighting kernel, the choice of the kernel can result in a solution equivalent to the Shap-
ley value (Covert & Lee, 2021; Covert et al., 2020). Therefore, Lundberg & Lee (2017) proposed
the Shapley kernel:

ωShap(S) =
(n− 1)(

n
|S|

)
· |S| · (n− |S|)

. (2)

Note that, for a d-dimensional output with d > 1, each output is considered as a different unidimen-
sional model. That is, each of the d dimensions will define a different game, and thus a different
set of n Shapley values. The explanation of the output is thus an n × d matrix of Shapley values,
providing the contribution of each input feature to each output game. This can trivially be obtained
through the same optimization process by stacking d loss functions such as in equation 1. Thus, we
will consider in the following that y be unidimensional unless otherwise specified.

2.3 KERNELSHAP

Computing the exact Shapley values is a demanding process as it requires evaluating all possible
coalitions of feature values. There are 2n − 1 possible coalitions for a model with n features,
each of which has to be evaluated to determine the features’ marginal contributions, which renders
the exact computation of Shapley values infeasible for models with a relatively large number of
features. Consequently, Lundberg & Lee (2017) proposed KernelSHAP as a more feasible method
to approximate the Shapley values. KernelSHAP samples a subset of coalitions instead of evaluating
all possible coalitions. The explanation model is learned by solving the following optimization
problem (Covert & Lee, 2021; Jethani et al., 2022):

ϕ(vx) = argmin
ϕx∈Rn

E
p(S)

[(
vx(S)− 1⊤

S ϕx

)2]
= argmin

ϕx∈Rn

E
p(S)

[(
f(xS)− f(0)− 1⊤

S ϕx

)2] (3)

3
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s.t. 1⊤ϕx = vx(N) = f(x)− f(0), (4)

where 1S is the mask corresponding to S, i.e. which takes value 1 for features in S and 0 otherwise,
and the distribution p(S) is proportional to the Shapley kernel (equation 2) (Covert & Lee, 2021;
Jethani et al., 2022). equation 4 is referred to as the efficiency constraint.

2.4 FASTSHAP

Although KernelSHAP provides a practical solution for the Shapley value estimation, the optimiza-
tion problem 3 must be solved separately for every prediction. Additionally, KernelSHAP requires
many samples to converge to accurate estimations for the Shapley values, and this problem is exac-
erbated with high dimensional data (Covert & Lee, 2021). Consequently, FastSHAP (Jethani et al.,
2022) has been proposed to efficiently learn a parametric Shapley value function and eliminate the
need to solve a separate optimization problem for each prediction. The model ϕfast : X → Rn,
parameterized by θ is then trained to produce the Shapley value for an input by minimizing the
following loss function:

L(θ) = E
p(x)

E
p(S)

[(
vx(S)− 1⊤S ϕfast(x; θ)

)2]
= E

p(x)
E

p(S)

[(
f(xS)− f(0)− 1⊤S ϕfast(x; θ)

)2]
,

(5)

where p(x) is the distribution of the input data, and p(S) is proportional to the Shapley kernel
defined in equation 2. In the case of a multidimensional output, a uniform sampling is done over the
possible output dimensions.

The accuracy of ϕfast in approximating the Shapley value depends on the expressiveness of the model
class employed as well as the data available for learning ϕfast as a post-hoc function.

3 VIASHAP

We introduce ViaSHAP, a method that formulates predictions via Shapley values regression. In con-
trast to the previous approaches, the Shapley values are not computed in a post-hoc setup. Instead,
the learning of Shapley values is integrated into the training of the predictive model and exploits
every data example in the training data. At inference time, the Shapley values are used directly
to generate the prediction. The following subsections describe how ViaSHAP is trained to predict
simultaneously both accurate predictions and the corresponding explanation through Shapley values.

3.1 PREDICTING SHAPLEY VALUES

Let X ⊆ Rn and Y ⊆ Rd respectively the input and output spaces, and M = {1, · · · , d} the set of
output dimensions. We define a model ViaSHAP : X → Y which, for a given instance x, computes
both the Shapley values and the predicted output in a single process.

First, ϕVia : X → Rn×d computes a matrix of values ϕVia(x; θ). Then, ViaSHAP predicts the output
vector as ViaSHAP(x) = 1⊤ϕVia(x; θ) i.e., summing column-wise. A link function σ can be applied
to accommodate a valid range of outputs

(
y = σ(1⊤ϕVia(x; θ)

)
, e.g., the sigmoid function for

binary classification or softmax for multi-class classification.

Figure 1: ViaSHAP generates predictions by
first estimating the Shapley values, whose
summation produces the final outcome.

ViaSHAP computes the Shapley values of each pre-
diction and uses the predicted Shapley values to for-
mulate the outcome, as illustrated in Figure 1. Sim-
ilar to KernelSHAP and FastSHAP (in equation (3)
and equation (5)), ϕVia is trained by minimizing the
weighted least squares loss of the predicted Shapley
values as follows:

4
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Lϕ(θ) =
∑
x∈X

∑
j∈M

E
p(S)

[(
ViaSHAP

j (xS)− ViaSHAP
j (0)− 1⊤S ϕ

Via
j (x; θ)

)2]
. (6)

Given that the ground truth Shapley values are inaccessible during training, the learning process
relies solely on sampling input features, based on the principle that unselected features should be
assigned a Shapley value of zero, while the prediction formulated using the selected features should
be equal to the sum of their corresponding Shapley values. Since ϕVia and ViaSHAP are essentially
the same model, coalition sampling for both functions is performed within the same model but at
different locations. For ViaSHAP(S), the sampling occurs on the input features before feeding them
to the model. While 1⊤S ϕVia sampling is applied to the predicted Shapley values, given the original
set of features as input to the model, as illustrated in Figure 2. In the following, we show that
the solution computed by the optimized ϕVia(x; θ∗) function maintains the desirable properties of
Shapley values for each output dimension. For ease of notation, we drop the subscript j below and
consider one output at a time. All proofs, unless otherwise specified, can be found in the Appendix.

Lemma 1 ϕVia(x; θ) satisfies the property of local accuracy wrt ViaSHAP.

Lemma 2 The global minimizer model, ϕVia(x; θ∗), of the loss function (6), assigns value zero to
features that have no influence on the outcome predicted by ViaSHAP(x) in the distribution p(S).

Lemma 3 Let two ViaSHAP models V and V ′ whose respective ϕVia are parameterized by θ∗ and
θ∗

′
, which globally optimize loss function (6) over two possibly different targets y and y′. Then,

given a feature i ∈ N :

∀S ⊆ N \ {i},V(xS∪{i})− V(xS) ≥ V ′(xS∪{i})− V ′(xS) ⇒ ϕVia
i (x; θ∗) ≥ ϕVia

i (x; θ∗
′
)

Theorem 1 The global optimizer function ϕVia(x; θ∗) computes the exact Shapley values of the
predictions of ViaSHAP(x).

Theorem 1 directly follows from Lemma 1, Lemma 2, and Lemma 3, which demonstrate that
ϕVia(x; θ∗) adheres to properties 1 through 3, as well as the fact that Shapley values provide the
sole solution for assigning credit to players while satisfying the properties from 1 to 3 (Young,
1985; Lundberg & Lee, 2017).

3.2 PREDICTOR OPTIMIZATION

The parameters of ViaSHAP are optimized with the following dual objective: to learn an optimal
function for producing the Shapley values of the predictions and to minimize the prediction loss
with respect to the true target. Therefore, the prediction loss is minimized using a function suitable
for the specific prediction task, e.g., binary cross-entropy for binary classification or mean squared
error for regression tasks. The following presents the loss function for multinomial classification:

L(θ) =
∑
x∈X

∑
j∈M

(
β ·

(
E

p(S)

[(
ViaSHAP

j (xS)−ViaSHAP
j (0)−1⊤S ϕ

Via
j (x; θ)

)2])
−
(
jlog(ĵ)

))
, (7)

where β is a predefined scaling hyperparameter and ĵ is the predicted probability of class j ∈M by
ViaSHAP. The optimization of ViaSHAP is illustrated in Figure 2 and summarized in Algorithm 1.

3.3 VIASHAP APPROXIMATOR

According to the universal approximation theorem, a feedforward network with at least one hidden
layer and sufficient units in the hidden layer can approximate any continuous function over a com-
pact input set to an arbitrary degree of accuracy, given a suitable activation function (Hornik et al.,
1989; Cybenko, 1989; Hornik, 1991). Consequently, neural networks and multi-layer perceptrons
(MLP) can be employed to learn ViaSHAP for prediction tasks where there is a continuous mapping
function from the input dataset to the true targets, which also applies to the true Shapley values as a
continuous function.

5
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+

Apply the same
set of samples

Figure 2: The optimization of ViaSHAP is conducted using a dual-objective loss function that aims
to learn an optimal function for generating the Shapley values while minimizing the prediction loss.

Liu et al. (2024) recently proposed Kolmogorov–Arnold Networks (KAN), as an alternative ap-
proach to MLPs inspired by the Kolmogorov-Arnold representation theorem. According to the
Kolmogorov-Arnold representation theorem, a multivariate continuous function on a bounded do-
main can represented by a finite sum of compositions of continuous univariate functions (Kol-
mogorov, 1956; 1957; Liu et al., 2024), as follows:

f(x) = f(x1, . . . , xn) =

2n+1∑
q=1

Ψq

( n∑
p=1

ψq,p(xp)
)
,

where ψq,p : [0, 1] → R is a univariate function and Ψq : R → R is a univariate continuous function.
Liu et al. (2024) defined a KAN layer as a matrix of one-dimensional functions: Ψ = {ψq,p}, with
p = 1, 2, . . . , nin and q = 1, 2, . . . , nout. Where nin and nout represent the dimensions of the layer’s
input and output, respectively, and ψq,p are learnable functions parameterized as splines. A KAN
network is a composition of L layers stacked together; subsequently, the output of KAN on instance
x is given by:

y = KAN(x) = ΨL−1 ◦ΨL−2 ◦ · · · ◦Ψ1 ◦Ψ0(x).

The degree of each spline and the number of splines for each function are both hyperparameters.

4 EMPIRICAL INVESTIGATION

We evaluate both the predictive performance of ViaSHAP and the feature importance attribution with
respect to the true Shapley value. This section begins with outlining the experimental setup. Then,
the predictive performance of ViaSHAP is evaluated. Afterwards, we benchmark the similarity be-
tween the feature importance obtained by ViaSHAP and the ground truth Shapley values. We also
evaluate the predictive performance and the accuracy of Shapley values on image data. Finally, we
summarize the findings of the ablation study.

4.1 EXPERIMENTAL SETUP

We employ 25 publicly available datasets in the experiments, each divided into training, validation,
and test subsets 1. The training set is used to train the model, the validation set is used to detect
overfitting and determine early stopping, and the test set is used to evaluate the model’s performance.
All the learning algorithms are trained using default settings without hyperparameter tuning. The
training and validation sets are combined into a single training set for algorithms that do not utilize

1The details of the datasets are available in Table 13
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a validation set for performance tracking. During data preprocessing, categorical feature categories
are tokenized with numbers starting from one, reserving zero for missing values. We use standard
normalization so the average value over each feature is 0 and masking the value of feature i with
0 is equivalent to setting its value to E(xi). We follow the interventional approach to approximate
Shapley values, as it is computationally more efficient and tend to be more ”true” to the data, as
suggested by Chen et al. (2020). We experimented with four different implementations of ViaSHAP,
using Kolmogorov–Arnold Networks (KANs) and feedforward neural networks:

Algorithm 1: ViaSHAP

Data: training data X , labels Y , scalar β
Result: model parameters θ
Initialize V : ViaSHAP(ϕVia(x; θ))
while not converged do
L ← 0
for each x ∈ X and y ∈ Y do

sample S ∼ p(S)
y′ ← V(x)
Lpred ← prediction loss(y′,y)

Lϕ ←
(
Vy(xS)−Vy(0)−1⊤

S ϕ
Via
y (x; θ)

)2

L +← Lpred + β · Lϕ

end
Compute gradients∇θL
Update θ ← θ −∇θL

end

1- KANVia: Based on the method proposed by
Liu et al. (2024) using a computationally effi-
cient implementation2. Uses spline basis func-
tions and consists of an input layer, two hidden
layers, and an output layer. Layer dimensions:
Input layer maps n features to 64 dimensions,
the first hidden layer to 128 dimensions, the
second hidden layer to 64 dimensions, and the
output layer to n× (number of classes).

2- KANVia
ϱ : Replaces the spline basis in the

original KANs with Radial Basis Functions
(RBFs)3. The architecture matches that of
KANVia.

3- MLPVia: A multi-layer perceptron (MLP)
with identical input and output dimensions as
the KAN-based implementations. Incorpo-
rates batch normalization after each layer and uses ReLU activation functions.

4- MLPVia
θ : Similar to MLPVia but increases the number of units in the hidden layers to match the

total number of parameters in the KANVia models since KANVia always results in models with more
parameters than the remaining implementations. Hidden layer dimensions are adjusted based on the
dataset.

The four implementations were trained with the β of equation 7 set to 10 and used 32 sampled
coalitions per instance. The above hyperparameters were determined in a quasirandom manner.

For the evaluation of the predictive performance, the four ViaSHAP approximators (KANVia,
KANVia

ϱ , MLPVia, and MLPVia
θ ) are compared against XGBoost, Random Forests, and TabNet (Arik

& Pfister, 2021). All the compared algorithms are trained using the default hyperparameters settings
without tuning, as it has been shown by Shwartz-Ziv & Armon (2022) that deep models typically
require more extensive tuning on each tabular dataset to match the performance of tree ensemble
models, e.g., XGBoost. If the model’s performance varies with different random seeds, it will be
trained using five different seeds, and the average result will be reported alongside the standard devi-
ation. In binary classification tasks with imbalanced training data, the minority class in the training
subset is randomly oversampled to match the size of the majority class, a common strategy to ad-
dress highly imbalanced data (Koziarski et al., 2017; ao Huang et al., 2022). On the other hand,
no oversampling is applied to multinomial classification datasets. The area under the ROC curve
(AUC) is used for measuring predictive performance since it is invariant to classification thresh-
olds. For multinomial classification, we compute the AUC for each class versus the rest and then
weighting it by the class support. If two algorithms achieve the same AUC score, the model with a
smaller standard deviation across five repetitions with different random seeds is considered better.
For the explainability evaluation, we generate ground truth Shapley values by running KernelSHAP
until it converges since it has been demonstrated that KernelSHAP will converge to the true Shapley
value when given a sufficiently large number of data samples (Covert & Lee, 2021).4 We measure
the similarity of the approximated Shapley values by ViaSHAP to the ground truth using cosine
similarity and Spearman rank (Spearman, 1904) correlation, where cosine similarity measures the
alignment between two explanation vectors, while Spearman rank correlation measures the consis-

2https://github.com/Blealtan/efficient-kan
3https://github.com/ZiyaoLi/fast-kan
4https://github.com/iancovert/shapley-regression
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tency in feature rankings. The results are presented as mean values with standard deviations across
all data instances in the test set.

For image experiments, we use the CIFAR-10 dataset (Krizhevsky et al., 2014). We provide three
ViaSHAP implementations for image classification: ResNet50Via, ResNet18Via, and U-NetVia based
on ResNet50, ResNet18 (He et al., 2016), and U-Net (Ronneberger et al., 2015), respectively. The
accuracy of the Shapley values is estimated by measuring the effect of excluding and including the
top important features on the prediction, similar to the approach followed by Jethani et al. (2022).

4.2 PREDICTIVE PERFORMANCE EVALUATION

We evaluated the performance of the seven algorithms (KANVia, KANVia
ϱ , MLPVia, MLPVia

θ , Tab-
Net, Random Forests, and XGBoost) across the 25 datasets, with detailed results presented in Table
1. The results show that KANVia obtains the highest average rank with respect to AUC. KANVia

ϱ
came in second place, closely followed by XGBoost, with only a slight difference between them.
We employed the Friedman test (Friedman, 1939) to determine whether the observed performance
differences are statistically significant. We tested the null hypothesis that there is no difference in
predictive performance. The Friedman test allowed the rejection of the null hypothesis, indicating
that there is indeed a difference in predictive performance, as measured by AUC, at the 0.05 sig-
nificance level. Subsequently, the post-hoc Nemenyi (Nemenyi, 1963) test was applied to identify
which pairwise differences are significant, again at the 0.05 significance level. The results of the
post-hoc test, summarized in Figure 3, indicate that the differences between ViaSHAP using KAN
implementations and the tree ensemble models, i.e., XGBoost and Random Forests, are statistically
insignificant, given the sample size of 25 datasets. However, the differences in predictive perfor-
mance between KANVia and MLP variants (MLPVia and MLPVia

θ ) are statistically significant. It is
also noticeable that the MLP variants of ViaSHAP underperform compared to all other competitors,
even when the MLP models have an equivalent number of parameters to KANVia. We also evaluated
the impact of incorporating Shapley loss on the predictive performance of a KAN model by com-
paring KANVia to an identical KAN classifier trained without the Shapley loss. The results show
that KANVia significantly outperforms identical KAN architecture that is not optimized to compute
Shapley values. The detailed results are available in Appendix G.

Figure 3: The average rank of the 7 predictors on the 25 datasets with respect to the AUC (the
lower rank is better). The critical difference (CD) is the largest statistically insignificant difference.

4.3 EXPLAINABILITY EVALUATION

The explainability of the various ViaSHAP implementations is evaluated by measuring the similarity
of ViaSHAP’s Shapley values (ϕVia(x; θ) to the ground truth Shapley values (ϕ), computed by the
unbiased KernelSHAP, as discussed in Subsection 4.1, taking ViaSHAP as the black-box model. We
present results for models trained with the default values for the hyperparameters. The effect of
these settings are further investigated in the ablation study.

The evaluation of the alignment between ϕVia(x; θ) and ϕ using cosine similarity generally shows a
high degree of similarity between the generated Shapley values and the ground truth as illustrated in
Figure 4. The ranking of the compared variants of ViaSHAP with respect to their cosine similarity to
the ground truth Shapley values shows that MLPVia

θ is ranked first, followed by KANVia, KANVia
ϱ ,

and MLPVia, respectively. However, the Friedman test does not indicate any significant difference
between the different approaches to compute Shapley values. At the same time, the results of ranking
the four variants of ViaSHAP based on their Spearman rank correlation with the ground truth Shapley
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Figure 4: The similarity between KANVia and KernelSHAP’s approximations. KernelSHAP
initially provides approximations that differ remarkably from the values of ViaSHAP. However, as
KernelSHAP refines its approximations with more samples, the similarity to ViaSHAP’s values grows.

values reveal that KANVia ranks first, followed by a tie for second place between KANVia
ϱ and

MLPVia
θ , and MLPVia placing last. In order to find out whether the differences are significant, the

Friedman test is applied once again, which allows for the rejection of the null hypothesis, indicating
that there is indeed a difference between the compared models in their ϕVia(x; θ) correlations to the
ground truth ϕ, at 0.05 significance level. The post-hoc Nemenyi test, at 0.05 level, indicates that
differences between MLPVia and the remaining models are significant, as summarized in Figure 6.
Overall, KANVia is found to be a relatively stable approximator across the 25 datasets when both
similarity metrics (cosine similarity and Spearman rank correlation) are considered. Detailed results
can be found in Tables 2 and 3 in Appendix E. We also compare the accuracy of the Shapley values
generated by ViaSHAP to those produced by FastSHAP, with ViaSHAP models utilized as black-boxes
within FastSHAP. The results in Appendix I show that ViaSHAP significantly outperforms FastSHAP
in terms of similarity to the ground truth.

4.4 IMAGE EXPERIMENTS

We evaluated the predictive performance of ResNet50Via, ResNet18Via, and U-NetVia on the
CIFAR-10 dataset. All models were trained from scratch (without transfer learning). The results,
summarized in Table 4, demonstrate that ViaSHAP can perform accurately in image classification
tasks. We also compared the accuracy of the explanations obtained by ViaSHAP implementations
with those obtained by FastSHAP (where ViaSHAP models were treated as black boxes). The results
in Table 5 and Figure 7 show that ViaSHAP consistently provides more accurate Shapley value ap-
proximations than the explanations obtained using FastSHAP. The experiment details can be found
in Appendix F.

ResNet18Via FastSHAP( ResNet18Via ) ResNet50Via FastSHAP( ResNet50Via ) U-Net50Via FastSHAP( U-Net50Via )

Figure 5: The explanation of the predicted class using two random images from the CIFAR-10.

4.5 ABLATION STUDY

The ablation study was conducted after the empirical evaluation to ensure that no prior knowledge
of the data or models influenced the experimental setup. In the ablation study, we assessed the
impact of the scaling hyperparameter β and the number of sampled coalitions. The detailed results
of the ablation study are provided in Appendex H. We began by examining the effect of β on both
predictive performance and the similarity of computed Shapley values to the ground truth. The
results demonstrate that predictive performance remains robust to changes in β, unless β is raised to
an exceptionally large value, e.g., ≥200-fold. A more remarkable observation is that the similarity
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of the computed Shapley values to the ground truth improves as β grows. However, the model fails
to learn properly with substantially large β. Afterwards, we evaluated the effect of the number of
sampled coalitions per data instance on the performance of the learned models. The results suggest
that the number of samples has little impact on both predictive performance and the similarity of
the computed Shapley values to the ground truth compared to beta, i.e., ViaSHAP can be effectively
trained with as few as one sample per data instance. We also study the effect of a link function on
both predictive performance and the accuracy of Shapley values of ViaSHAP. Finally, we examined
the impact of β on the progression of training and validation loss during the training phase. The
results indicate that ViaSHAP tends to require a longer time to converge as β values increase.

5 RELATED WORK

In addition to KernelSHAP and the real-time method FastSHAP, alternative approaches have been
proposed to reduce the time required for Shapley value approximation. Methods that exploit specific
properties of the explained model can provide faster computations, e.g., TreeSHAP (Lundberg et al.,
2020) and DASP (Ancona et al., 2019), while others limit the scope to specific problems, e.g.,
image classifications or text classification (Chen et al., 2019; Teneggi et al., 2022). Additionally,
directions to improve Shapley value approximation by enhancing data sampling have also been
explored (Frye et al., 2021; Aas et al., 2021; Covert et al., 2021; Mitchell et al., 2022; Chen et al.,
2023; Kolpaczki et al., 2024). Nevertheless, traditional methods for computing Shapley values have
typically been considered post-hoc solutions for explaining predictions, requiring additional time,
data, and resources to generate explanations. In contrast, ViaSHAP computes Shapley values during
inference, eliminating the need for a separate post-hoc explainer.

Research on generating explanations using pre-trained models has explored several approaches.
Chen et al. (2018), Yoon et al. (2019), and Jethani et al. (2021) trained models for important features
selection. Schwab & Karlen (2019) trained a model to estimate the influence of different inputs
on the predicted outcome. Situ et al. (2021) proposed to distill any explanation algorithm for text
classification. Pretrained explainers, similar to other post-hoc methods, require further resources for
training, and the fidelity of their explanations to the underlying black-box model can vary.

Many approaches for creating explainable neural networks have been proposed in the literature.
Such approaches not only generate predictions but also include an integrated component that pro-
vides explanations, which is trained alongside the predictor (Lei et al., 2016; Alvarez Melis &
Jaakkola, 2018; Guo et al., 2021; Al-Shedivat et al., 2022; Sawada & Nakamura, 2022; Guyomard
et al., 2022). Explainable graph neural networks (GNNs) have also been studied for graph-structured
data, which typically exploit the internal properties of their models to generate explanations, e.g., the
similarity between nodes (Dai & Wang, 2021), finding patterns and common graph structures(Feng
et al., 2022; Zhang et al., 2022; Cui et al., 2022), or analyzing the behavior of different components
of the GNN (Xuanyuan et al., 2023). Explanations generated by explainable neural networks do
not correspond to Shapley values or meet the properties inherent to Shapley values, in contrast to
ViaSHAP. Moreover, the explanations are offered without fidelity guarantees and do not elaborate
on how exactly the predictions are computed, whereas ViaSHAP generates predictions directly from
their Shapley values.

6 CONCLUDING REMARKS

We have proposed ViaSHAP, an algorithm that computes Shapley values during inference. We evalu-
ated the performance of ViaSHAP using implementations based on the universal approximation the-
orem and the Kolmogorov-Arnold representation theorem. We have presented results from a large-
scale empirical investigation, in which ViaSHAP was evaluated with respect to predictive perfor-
mance and the accuracy of the computed Shapley values. ViaSHAP using Kolmogorov-Arnold Net-
works showed superior predictive performance compared to multi-layer perceptron variants while
competing favorably with state-of-the-art algorithms for tabular data XGBoost and Random Forests.
ViaSHAP estimations showed a high similarity to the ground truth Shapley values, which can be
controlled through the hyperparameters. One natural direction for future research is to implement
ViaSHAP using state-of-the-art algorithms.Another direction is to use ViaSHAP to study possible
adversarial attacks on a predictive model.
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A PROOF OF LEMMA 1

By definition of ViaSHAP:

ViaSHAP(x) = 1⊤ϕVia(x; θ) =
∑
i∈N

ϕVia
i (x; θ)

This is the definition of local accuracy for the game v : S 7→ ViaSHAP(xS).

B PROOF OF LEMMA 2

Assume that the global minimizer ϕVia(x; θ∗) of the loss function (6) does not satisfy the missing-
ness property, i.e., there exists a feature i that has no impact on the prediction:

ViaSHAP(xS∪{i}) = ViaSHAP(xS), ∀S ⊆ N \ {i} (8)

However, the Shapley value ϕi assigned by ϕVia(x; θ∗) is not zero (ϕi ̸= 0).

We recall the optimized loss function:

Lϕ(θ) =
∑
x∈X

E
p(S)

[(
ViaSHAP(xS)− ViaSHAP(0)− 1⊤S ϕ

Via(x; θ)
)2]

,

This loss is non-negative, and is thus minimized for a value of 0, implying all terms in the expectancy
are equal to 0. In particular, for any set S ⊆ N \ {i}, we have:

0 =

{
ViaSHAP(xS∪{i})− ViaSHAP(0)− 1⊤

S∪{i}ϕ
Via(x; θ)

ViaSHAP(xS)− ViaSHAP(0)− 1⊤S ϕVia(x; θ)

⇒ ViaSHAP(xS∪{i})− 1⊤
S∪{i}ϕ

Via(x; θ) = ViaSHAP(xS)− 1⊤S ϕ
Via(x; θ)

⇒ ViaSHAP(xS)− 1⊤
S∪{i}ϕ

Via(x; θ) = ViaSHAP(xS)− 1⊤
S ϕ

Via(x; θ)

⇒
∑

j∈S∪{i}

ϕVia
j (x; θ∗) =

∑
j∈S

ϕVia
j (x; θ∗)

⇒ ϕVia
i (x; θ∗) = 0

In practice, it is unlikely for a loss to exactly reach its global optimum. Instead, it approximates it.
We assume here that the loss has reached a value ϵ2 for an ϵ ≥ 0. We propose an upper bound on
ϕVia
i (x; θ) conditioned on ϵ.

Since the loss is composed only of non-negative terms, this means that:

∀S ⊆ N,
(
ViaSHAP(xS)− ViaSHAP(0)− 1⊤

S ϕ
Via(x; θ)

)2

≤ ϵ2

⇒
∣∣∣ViaSHAP(xS)− ViaSHAP(0)− 1⊤S ϕ

Via(x; θ)
∣∣∣ ≤ ϵ

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

ϵ ≥


∣∣∣ViaSHAP(xS∪{i})− ViaSHAP(0)− 1⊤

S∪{i}ϕ
Via(x; θ)

∣∣∣∣∣∣ViaSHAP(xS)− ViaSHAP(0)− 1⊤S ϕVia(x; θ)
∣∣∣

⇒
∣∣∣ViaSHAP(xS∪{i})− ViaSHAP(0)− 1⊤S∪{i}ϕ

Via(x; θ)− ViaSHAP(xS) + ViaSHAP(0) + 1⊤
S ϕ

Via(x; θ)
∣∣∣ ≤ 2ϵ

⇒
∣∣∣ViaSHAP(xS)− 1⊤S∪{i}ϕ

Via(x; θ)− ViaSHAP(xS) + 1⊤
S ϕ

Via(x; θ)
∣∣∣ ≤ 2ϵ by equation 8

⇒
∣∣∣ ∑
j∈S∪{i}

ϕVia
j (x; θ)−

∑
j∈S

ϕVia
j (x; θ)

∣∣∣ ≤ 2ϵ

⇒
∣∣∣ϕVia

i (x; θ)
∣∣∣ ≤ 2ϵ

⇒
∣∣∣ϕVia

i (x; θ)
∣∣∣ ≤ 2Lϕ(θ)

Thus, as the loss function converges to 0, so does the importance attributed to features with no
influence on the outcome.

C PROOF OF LEMMA 3

Since both V and V ′ optimize their respective targets, they satisfy efficiency, i.e.:

∀S ⊆ N, V(xS) = 1⊤S ϕ
Via(x; θ∗); V ′(xS) = 1⊤

S ϕ
′Via(x; θ∗

′
) (9)

Then:

∀S ⊆ N \ {i},
V(xS∪{i})− V(xS) ≥ V ′(xS∪{i})− V ′(xS)

⇒
∑

j∈S∪{i}

ϕVia
j (x; θ∗)−

∑
j∈S

ϕVia
j (x; θ∗) ≥

∑
j∈S∪{i}

ϕVia
j (x; θ∗

′
)−

∑
j∈S

ϕVia
j (x; θ∗

′
)

⇒ϕVia
i (x; θ∗) ≥ ϕVia

i (x; θ∗
′
)

In the same way as for the Lemma 2, the proof assumes perfect minimization of the loss. Thus, we
propose a relaxed variant, where the loss term Lϕ(θ) was minimized down to ϵ2 with ϵ ≥ 0. Thus,
following similar reasoning as in the proof of Lemma 2, we have that ∀S:∣∣∣ViaSHAP(xS)− ViaSHAP(0)− 1⊤S ϕ

Via(x; θ)
∣∣∣ ≤ ϵ

We also have:

∣∣∣ViaSHAP(xS)− 1⊤
S ϕ

Via(x; θ)
∣∣∣ = ∣∣∣ViaSHAP(xS)− 1⊤S ϕ

Via(x; θ)− ViaSHAP(0) + ViaSHAP(0)
∣∣∣

By the triangle inequality on the right-hand side:

∣∣∣ViaSHAP(xS)− 1⊤S ϕ
Via(x; θ)

∣∣∣ ≤ ∣∣∣ViaSHAP(xS)− 1⊤S ϕ
Via(x; θ)− ViaSHAP(0)

∣∣∣+ ∣∣∣ViaSHAP(0)
∣∣∣

But observe that all features in 0 are non-contributive since, ∀S ⊆ N , 0S = 0 by definition of
the masking operation. Thus, by the bound found in Lemma 2: ∀i ∈ N,

∣∣∣ϕi(0, θ)∣∣∣ ≤ 2ϵ. Thus∣∣∣ViaSHAP(0)
∣∣∣ ≤ 2nϵ.
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Thus: ∣∣∣ViaSHAP(xS)− 1⊤S ϕ
Via(x; θ)− ViaSHAP(0)

∣∣∣+ ∣∣∣ViaSHAP(0)
∣∣∣ ≤ ϵ+ 2nϵ

and we thus derive the following upper bound on the ϕi-wise error as:∣∣∣ViaSHAP(xS)− 1⊤S ϕ
Via(x; θ)

∣∣∣ ≤ ϵ(2n+ 1)

.

D PREDICTIVE PERFORMANCE

We evaluated the performance of the four variants of ViaSHAP implementations mentioned in the
experimental setup, i.e., KANVia, KANVia

ϱ , MLPVia, and MLPVia
θ , are compared to the following

algorithms for structured data: Random Forests, XGBoost, and TabNet, where Random Forests and
XGBoost result in black-box models, while TabNet is explainable by visualizing feature selection
masks that highlight important features. The predictive performance evaluation is conducted using
25 datasets. The results show that KANVia comes in first place as the best-performing classifier,
followed by XGBoost and KANVia

ϱ , based on AUC values.

The Friedman test confirmed that the differences in predictive performance are statistically signif-
icant at the 0.05 level. A subsequent post-hoc Nemenyi test revealed that while the differences
between KAN-based implementations and tree ensemble models (XGBoost and Random Forests)
are statistically insignificant, the performance differences between KANVia and MLP variants are
significant. Moreover, the differences between KANVia and TabNet are also statistically significant.
The ranking of the seven models on the 25 datasets and the results of the post-hoc Nemenyi test are
illustrated in Figure 3. The detailed results on the 25 datasets are shown in Table 1.

While the MLP variants of ViaSHAP significantly underperformed compared to the KAN variants,
their performance can still be enhanced by using, for instance, deeper and more expressive models,
particularly for datasets with high dimensionality and large training sets. However, we defer the task
of improving MLP-based ViaSHAP implementations to future work, as the core concept of ViaSHAP

can be integrated with any deep learning model. More importantly, ViaSHAP is not limited to struc-
tured data and can be incorporated easily into the training loop of models in computer vision and
natural language processing.
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Table 1: The AUC of KANVia, KANVia
ϱ , MLPVia, and MLPVia

θ , TabNet, Random Forests, and
XGBoost. The best-performing model is colored in light green , and the second best-performing is

colored in light blue .
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E EXPLANATIONS ACCURACY EVALUATION

The explainability of the four implementations of ViaSHAP, based on MLP and KAN, were eval-
uated by comparing their Shapley values (ϕVia(x; θ)) to the ground truth Shapley values (ϕ). As
mentioned in the experimental set, the ground truth Shapley values were generated by KernelSHAP
after convergence on each example in the test set. In the explainability evaluation, we used the mod-
els trained with default hyperparameters in the predictive performance evaluation, which generally
showed high similarity to the ground truth, as demonstrated by the cosine similarity measurements.
The Friedman test found no significant differences in the cosine similarity between the compared
algorithms over the 25 datasets. The detailed results are available in Table 2.

Table 2: The cosine similarity of the ground truth Shapley values to the Shapley values obtained from
KANVia, KANVia

ϱ , MLPVia, and MLPVia
θ . The best-performing model is colored in light green .

Dataset KANVia KANVia
ϱ MLPVia MLPVia

θ

Abalone 0.969 ± 0.0166 0.966 ± 0.013 0.647 ± 0.21 0.807 ± 0.214
Ada Prior 0.935 ± 0.046 0.982 ± 0.006 0.663 ± 0.142 0.908 ± 0.045
Adult 0.931 ± 0.049 0.992 ± 0.011 0.574 ± 0.16 0.947 ± 0.032
Bank32nh 0.779 ± 0.163 0.713 ± 0.187 0.794 ± 0.166 0.876 ± 0.084
Electricity 0.970 ± 0.02 0.971 ± 0.017 0.912 ± 0.131 0.913 ± 0.09
Elevators 0.966 ± 0.024 0.966 ± 0.026 0.976 ± 0.025 0.976 ± 0.02
Fars 0.886 ± 0.253 0.886 ± 0.28 0.95 ± 0.104 0.943 ± 0.058
Helena 0.856 ± 0.092 0.715 ± 0.157 0.840 ± 0.099 0.789 ± 0.104
Heloc 0.844 ± 0.111 0.671 ± 0.182 0.759 ± 0.176 0.832 ± 0.125
Higgs 0.917 ± 0.068 0.925 ± 0.062 0.92 ± 0.093 0.912 ± 0.097
LHC Identify Jet 0.971 ± 0.021 0.952 ± 0.065 0.97 ± 0.042 0.972 ± 0.041
House 16H 0.919 ± 0.048 0.922 ± 0.043 0.927 ± 0.06 0.944 ± 0.048
Indian Pines 0.796 ± 0.121 0.241 ± 0.07 0.304 ± 0.077 0.325 ± 0.084
Jannis 0.852 ± 0.141 0.546 ± 0.189 0.675 ± 0.13 0.439 ± 0.164
JM1 0.88 ± 0.044 0.667 ± 0.217 0.795 ± 0.203 0.839 ± 0.159
Magic Telescope 0.922 ± 0.067 0.935 ± 0.058 0.973 ± 0.035 0.962 ± 0.058
MC1 0.466 ± 0.268 0.794 ± 0.084 0.777 ± 0.127 0.887 ± 0.055
Microaggregation2 0.938 ± 0.049 0.610 ± 0.149 0.840 ± 0.099 0.81 ± 0.096
Mozilla4 0.953 ± 0.023 0.948 ± 0.016 0.975 ± 0.018 0.979 ± 0.022
Satellite 0.841 ± 0.116 0.870 ± 0.077 0.766 ± 0.159 0.861 ± 0.093
PC2 0.534 ± 0.183 0.905 ± 0.053 0.786 ± 0.137 0.827 ± 0.098
Phonemes 0.811 ± 0.162 0.868 ± 0.082 0.873 ± 0.126 0.916 ± 0.083
Pollen 0.952 ± 0.059 0.945 ± 0.023 0.464 ± 0.476 0.592 ± 0.439
Telco Customer Churn 0.81 ± 0.108 0.904 ± 0.051 0.43 ± 0.189 0.592 ± 0.231
1st order theorem proving 0.725 ± 0.179 0.464 ± 0.517 0.387 ± 0.182 0.539 ± 0.144

We also measured similarity in ranking the important features between the computed Shapley values
(ϕVia(x; θ)) and the ground truth Shapley values (ϕ) using the Spearman rank correlation coefficient.
KANVia is ranked first with respect to the correlation values across the 25 datasets, followed by both
KANViaϱ and MLPViaθ in the second place, and MLPVia in the last place. The Spearman rank
test revealed that the observed differences are significant. Subsequently, the post-hoc Nemenyi test
confirmed that MLPVia significantly underperformed the compared algorithms, while the differences
between the remaining algorithms are insignificant. Overall, if both the cosine similarity and the
Spearman rank are considered, KANVia proved to be a more stable approximator, as detailed in
Tables 2 and 3.
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Figure 6: The average rank of KANVia, KANVia
ϱ , MLPVia, and MLPVia

θ on the 25 datasets with
respect to the Spearman correlation between the ground truth Shapley values and the values obtained
from the compared models. A lower rank is better and the critical difference (CD) represents the
largest difference that is not statistically significant.

Table 3: The Spearman rank correlation between the ground truth Shapley values and the
Shapley values obtained from KANVia, KANVia

ϱ , and MLPVia. The best-performing model is
colored in light green .

Dataset KANVia KANVia
ϱ MLPVia MLPVia

θ

Abalone 0.663 ± 0.234 0.879 ± 0.14 0.529 ± 0.246 0.649 ± 0.236
Ada Prior 0.876 ± 0.088 0.962 ± 0.025 0.576 ± 0.163 0.869 ± 0.081
Adult 0.959 ± 0.035 0.932 ± 0.034 0.398 ± 0.214 0.864 ± 0.084
Bank32nh 0.432 ± 0.151 0.433 ± 0.139 0.349 ± 0.15 0.486 ± 0.129
Electricity 0.798 ± 0.183 0.838 ± 0.142 0.751 ± 0.206 0.848 ± 0.137
Elevators 0.920 ± 0.064 0.888 ± 0.072 0.883 ± 0.07 0.902 ± 0.06
Fars 0.347 ± 0.328 0.106 ± 0.133 0.512 ± 0.164 0.491 ± 0.115
Helena 0.669 ± 0.152 0.475 ± 0.188 0.656 ± 0.159 0.660 ± 0.168
Heloc 0.741 ± 0.147 0.673 ± 0.159 0.589 ± 0.173 0.701 ± 0.143
Higgs 0.674 ± 0.12 0.718 ± 0.112 0.535 ± 0.143 0.568 ± 0.139
LHC Identify Jet 0.857 ± 0.119 0.726 ± 0.184 0.737 ± 0.164 0.724 ± 0.146
House 16H 0.888 ± 0.092 0.858 ± 0.102 0.823 ± 0.112 0.864 ± 0.095
Indian Pines 0.699 ± 0.116 0.057 ± 0.054 0.099 ± 0.07 0.181 ± 0.056
Jannis 0.477 ± 0.131 0.314 ± 0.174 0.343 ± 0.132 0.227 ± 0.137
JM1 0.756 ± 0.202 0.682 ± 0.223 0.59 ± 0.188 0.715 ± 0.189
Magic Telescope 0.9 ± 0.098 0.91 ± 0.087 0.882 ± 0.098 0.828 ± 0.141
MC1 0.621 ± 0.157 0.885 ± 0.088 0.619 ± 0.169 0.716 ± 0.108
Microaggregation2 0.876 ± 0.096 0.411 ± 0.183 0.656 ± 0.159 0.705 ± 0.2
Mozilla4 0.942 ± 0.092 0.971 ± 0.063 0.909 ± 0.161 0.913 ± 0.137
Satellite 0.746 ± 0.212 0.786 ± 0.151 0.677 ± 0.208 0.8 ± 0.132
PC2 0.733 ± 0.161 0.924 ± 0.09 0.675 ± 0.154 0.737 ± 0.135
Phonemes 0.941 ± 0.103 0.954 ± 0.083 0.807 ± 0.213 0.862 ± 0.159
Pollen 0.285 ± 0.442 0.171 ± 0.484 0.297 ± 0.498 0.407 ± 0.545
Telco Customer Churn 0.848 ± 0.098 0.938 ± 0.043 0.262 ± 0.297 0.471 ± 0.211
1st order theorem proving 0.623 ± 0.188 0.082 ± 0.145 0.183 ± 0.146 0.367 ± 0.14
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F IMAGE EXPERIMENTS

We implemented ViaSHAP for image classification using three architectures: ResNet50 (He et al.,
2016) (ResNet50Via), ResNet18 (ResNet18Via), and U-Net (Ronneberger et al., 2015) (U-NetVia).
The predictive performance of these models was evaluated using Top-1 Accuracy, with the results
summarized in Table 4. All models were trained on the CIFAR-10 (Krizhevsky et al., 2014) dataset
without transfer learning or pre-trained weights (i.e., trained from scratch) using four masks (sam-
ples) per data instance. The training incorporated early stopping, terminating after ten epochs with-
out improvement on a validation split (10% of the training data). The results of evaluating the per-
formance of the trained models on the test set demonstrate that ViaSHAP can achieve high predictive
performance on standard image classification tasks.

Table 4: A comparison of the predictive performance of ResNet50Via, ResNet18Via, and U-NetVia

measured in AUC.
Dataset AUC 0.95 Confidence Interval

U-NetVia 0.983 (0.981, 0.986)
ResNet18Via 0.968 (0.964, 0.971)
ResNet50Via 0.96 (0.956, 0.964)

In order to assess the accuracy of the Shapley values computed by ViaSHAP implementations, we
followed a methodology similar to Jethani et al. (2022). Specifically, we selected the top 50%
most important features identified by the explainer and evaluated the predictive performance of the
explained model under two conditions: using only the selected top features (Inclusion Accuracy)
and excluding the top features (Exclusion Accuracy).

We compared the accuracy of Shapley value approximations of the three models (ResNet50Via,
ResNet18Via, and U-NetVia). We also evaluated the accuracy of FastSHAP’s approximations where
the three ViaSHAP implementations for image classification are provided as black boxes to FastSHAP.
The results indicate that the ViaSHAP implementations consistently provide more accurate Shapley
value approximations than those generated by FastSHAP, as shown in Table 5. We also show the
effects of using different percentages of the top features considered for inclusion and exclusion on
the top-1 accuracy in Figure 7.

Table 5: The accuracy of the Shapley values is evaluated using the top 50% of the most important
features (according to their Shapley values). The Inclusion AUC (higher values are better) and the
Exclusion AUC (lower values are better) are computed using the top 1 accuracy.

Dataset Exclusion AUC 0.95 Confidence Interval Inclusion AUC 0.95 Confidence Interval

U-NetVia 0.773 (0.747, 0.799) 0.988 (0.981, 0.995)
FastSHAP(U-NetVia) 0.864 (0.843, 0.885) 0.978 (0.969, 0.987)
ResNet18Via 0.611 (0.581, 0.642) 0.99 (0.983, 0.996)
FastSHAP(ResNet18Via) 0.755 (0.728, 0.782) 0.954 (0.941, 0.967)
ResNet50Via 0.554 (0.523, 0.585) 0.997 (0.994, 1.0)
FastSHAP(ResNet50Via) 0.778 (0.753, 0.804) 0.978 (0.969, 0.987)
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Figure 7: The inclusion and exclusion curves of ViaSHAP implementations as well as their Fast-
SHAP explainers. We show how the top-1 accuracy of the predictive model changes as we exclude
or include an increasing share of the important features, where the important features are determined
by each explainer in the comparison.

Figure 8: The explanations of ResNet18Via for 10 randomly selected predictions on the CIFAR-
10 dataset. Each column corresponds to a CIFAR-10 class, and the predicted probability by
ResNet18Via displayed beneath each image.
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G A COMPARISON BETWEEN VIASHAP AND A KAN MODEL WITH THE
SAME ARCHITECTURE

We conducted an experiment to assess the impact of incorporating Shapley loss in the optimization
process on predictive performance of a KAN model. Consequently, we compared KANVia to a KAN
model with an identical architecture that does not compute Shapley values. As summarized in Table
6, the results indicate that KANVia generally outperforms the KAN model with the same architec-
ture. In order to determine the statistical significance of these results, the Wilcoxon signed-rank
test (Wilcoxon, 1945) was employed to test the null hypothesis that no difference exists in predictive
performance, as measured by AUC, between KANVia and the identical KAN model without Shapley
values. The test results allowed for the rejection of the null hypothesis, indicating that KANVia sig-
nificantly outperforms the KAN architecture that is not optimized to compute Shapley values with
respect to the predictive performance as measured by the AUC.

Table 6: A comparison between the predictive performance of KANVia and a KAN model with an
identical architecture to KANVia but does not compute the Shapley values. The results are reported
in AUC.

Dataset KAN KANVia

Abalone 0.882 ± 0.001 0.87 ± 0.003
Ada Prior 0.895 ± 0.005 0.89 ± 0.005
Adult 0.917 ± 0.001 0.914 ± 0.003
Bank32nh 0.886 ± 0.001 0.878 ± 0.001
Electricity 0.924 ± 0.005 0.93 ± 0.004
Elevators 0.935 ± 0.003 0.935 ± 0.002
Fars 0.957 ± 0.001 0.96 ± 0.0003
Helena 0.883 ± 0.001 0.884 ± 0.0001
Heloc 0.793 ± 0.002 0.788 ± 0.002
Higgs 0.801 ± 0.002 0.801 ± 0.001
LKC Identify Jet 0.944 ± 0.0003 0.944 ± 0.0001
House 16H 0.948 ± 0.001 0.949 ± 0.0007
Indian Pines 0.935 ± 0.001 0.985 ± 0.0004
Jannis 0.860 ± 0.002 0.864 ± 0.001
JM1 0.725 ± 0.008 0.732 ± 0.003
Magic Telescope 0.931 ± 0.001 0.929 ± 0.001
MC1 0.933 ± 0.019 0.94 ± 0.003
Microaggregation2 0.783 ± 0.002 0.783 ± 0.002
Mozilla4 0.967 ± 0.001 0.968 ± 0.0008
Satellite 0.987 ± 0.003 0.996 ± 0.001
PC2 0.458 ± 0.049 0.827 ± 0.009
Phonemes 0.945 ± 0.002 0.946 ± 0.003
Pollen 0.491 ± 0.005 0.515 ± 0.006
Telco Customer Churn 0.848 ± 0.005 0.854 ± 0.003
1st order theorem proving 0.805 ± 0.005 0.822 ± 0.002
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H ABLATION STUDY

In this section, we explore the influence of key hyperparameters on the performance and behavior of
ViaSHAP. Specifically, we investigate the effects of the scaling hyperparameter β and the number of
sampled coalitions per data instance. We begin by analyzing how variations in β impact both pre-
dictive performance and the accuracy of the Shapley values generated by ViaSHAP. We then examine
the role of the number of sampled coalitions in model performance, followed by an evaluation of
how changes in β affect the progress of the computed loss values during training. The findings pro-
vide valuable insights into the robustness and efficiency of ViaSHAP under different hyperparameter
settings.

H.1 THE IMPACT OF SCALING HYPERPARAMETER β ON THE PERFORMANCE OF VIASHAP

We evaluated the performance of the models trained with different β values (in equation 7), where
exponentially increasing values are tested. The models were trained using the default hyperparame-
ter settings described in the experimental setup, except for the values of β. The AUC of the trained
models is measured on the test set, as well as the similarity of the predicted Shapley values to the
ground truth. The results indicate that the predictive performance of ViaSHAP, as measured by the
area under the ROC curve, remains largely unaffected by the value of β, even when β is increased ex-
ponentially. On the other hand, the similarity between the computed Shapley values and the ground
truth improves as β increases. However, the model struggles to learn effectively after β exceeds 200,
as shown in Figures 9 and 10.

Figure 9: The effect of different values of β on the predictive performance (AUC), alignment with
the true Shapley values (cosine similarity), and the similarity in the order of features to the ground
truth (Spearman rank).
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Figure 10: The effect of different values of β on the predictive performance (AUC), alignment with
the true Shapley values (cosine similarity), and the similarity in the order of features to the ground
truth (Spearman rank).

H.2 THE NUMBER OF SAMPLES

We assessed the impact of the number of sampled coalitions per data example on the performance
of ViaSHAP, retraining the model using the default hyperparameters with the exception of the sample
size. We investigated an exponentially increasing range of sample sizes (2s), from 1 to 128. The
findings suggest that the number of samples has a smaller effect on the performance of the trained
models compared to β, which allows for effective training of ViaSHAP models with as few as one
sample per data instance. The results are illustrated in Figures 11 and 12.

Figure 11: The effect of different number of samples on the predictive performance (AUC), align-
ment with the true Shapley values (cosine similarity), and the similarity in the order of features to
the ground truth (Spearman rank).
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Figure 12: The effect of different number of samples on the predictive performance (AUC), align-
ment with the true Shapley values (cosine similarity), and the similarity in the order of features to
the ground truth (Spearman rank).

H.3 THE EFFECT OF APPLYING A LINK FUNCTION TO THE PREDICTED OUTCOME

To examine the impact of employing a link function on the predictive performance of ViaSHAP and
the accuracy of its Shapley value approximations, we trained KANVia without applying a link func-
tion at the output layer and compared the predictive performance to that of KANVia with the default
settings mentioned in the experimental setup. The results of the predictive comparison are summa-
rized in Table 7. To evaluate the null hypothesis that there is no difference in predictive performance,
measured by the AUC, between KANVia with and without a link function, the Wilcoxon signed-rank
test was employed, given that only two methods were compared. The results indicate that the null
hypothesis can be rejected at the 0.05 significance level. Therefore, the results indicate that the
presence of a link function does not significantly influence predictive performance in general.

The similarity between the ground truth and the approximated Shapley values by KANVia, both with
and without link functions, are reported in Table 8. The similarity of KANVia’s approximations to
the ground truth is measured using the cosine similarity and the Spearman’s Rank as described in
the experimental setup, which allow for measuring the similarity even if two explanations are not on
the same scale, since ViaSHAP allows for applying a link function to accommodate a valid range of
outcomes which can lead ViaSHAP’s approximations to be on a different scale than the ground truth
obtained using the unbiased KernelSHAP. However, since we measure the effect of using the link
function on the accuracy of Shapley values, we can also apply a metric that measures the similarity
on the same scale for models without a link function. Therefore, we also apply R2 as a similarity
metric to the ground truth Shapley values for models without link functions. The results presented
in Table 8 demonstrate that ViaSHAP without a link function significantly outperforms its counterpart
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with a link function. In order to test the null hypothesis that no difference exists in the accuracy of
Shapley value approximations by KANVia with and without a link function, the Wilcoxon signed-
rank test was applied. The test results confirm that the null hypothesis can be rejected in both
cases, whether Spearman’s rank or cosine similarity is used as the similarity metric. Furthermore,
the results show that R2 as a similarity metric is consistent with both Spearman’s rank and cosine
similarity.

Table 7: The effect of the link function on the predictive performance of KANVia as measured by
AUC. The best-performing model is colored in light green .

Dataset KANVia (without a link function) KANVia (default settings)

Abalone 0.883 ± 0.0002 0.87 ± 0.003
Ada Prior 0.898 ± 0.003 0.89 ± 0.005
Adult 0.919 ± 0.0005 0.914 ± 0.003
Bank32nh 0.883 ± 0.003 0.878 ± 0.001
Electricity 0.934 ± 0.004 0.93 ± 0.004
Elevators 0.936 ± 0.002 0.935 ± 0.002
Fars 0.958 ± 0.001 0.96 ± 0.0003
Helena 0.868 ± 0.006 0.884 ± 0.0001
Heloc 0.792 ± 0.001 0.788 ± 0.002
Higgs 0.801 ± 0.001 0.801 ± 0.001
hls4ml lhc jets hlf 0.939 ± 0.0005 0.944 ± 0.0001
House 16H 0.949 ± 0.001 0.949 ± 0.0007
Indian Pines 0.982 ± 0.001 0.985 ± 0.0004
Jannis 0.861 ± 0.001 0.864 ± 0.001
JM1 0.686 ± 0.024 0.732 ± 0.003
Magic Telescope 0.921 ± 0.002 0.929 ± 0.001
MC1 0.952 ± 0.011 0.94 ± 0.003
Microaggregation2 0.764 ± 0.008 0.783 ± 0.002
Mozilla4 0.965 ± 0.001 0.968 ± 0.0008
Satellite 0.944 ± 0.01 0.996 ± 0.001
PC2 0.659 ± 0.06 0.827 ± 0.009
Phonemes 0.923 ± 0.003 0.946 ± 0.003
Pollen 0.501 ± 0.002 0.515 ± 0.006
Telco Customer Churn 0.857 ± 0.003 0.854 ± 0.003
1st order theorem proving 0.810 ± 0.006 0.822 ± 0.002

H.4 THE PROGRESS OF TRAINING AND VALIDATION LOSSES

In this subsection, we report the progression of training and validation losses with different values
of the hyperparameter β using six datasets. A common trend observed across models trained on the
six datasets is that, with different values of β, the Shapley loss (scaled by β) consistently decreases
quickly below the level of the classification loss, except for the First Order Theorem Proving dataset
(Figure 14), which is a multinomial classification dataset. For the First Order Theorem Proving
dataset, the Shapley loss remains at a scale determined by the β factor throughout the training time.
However, the model for the First Order Theorem Proving dataset can still learn a function that
estimates Shapley values with good accuracy, as shown in Tables 2 and 3. Moreover, it benefits
from larger β values to achieve accurate Shapley value approximations, as illustrated in Figure 9.
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Table 8: The effect of the link function on the similarity of the approximated Shapley values by
KANVia. The best-performing model is colored in light green .
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Additionally, the results indicate that ViaSHAP generally tends to take longer to converge as β values
increase.

Figure 13: The effect of β value on the progress of the training and the validation loss values.
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Figure 14: The effect of β value on the progress of the training and the validation loss values.
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Figure 15: The effect of β value on the progress of the training and the validation loss values.
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Figure 16: The effect of β value on the progress of the training and the validation loss values.
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Figure 17: The effect of β value on the progress of the training and the validation loss values.
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Figure 18: The effect of β value on the progress of the training and the validation loss values.
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I A COMPARISON BETWEEN VIASHAP AND FASTSHAP

We compared the accuracy of ViaSHAP’s Shapley value approximations to FastSHAP, using ViaSHAP

as a black-box model within the FastSHAP framework. ViaSHAP is implemented using KANVia

without a link function, while FastSHAP is using the default settings. The evaluation employed
metrics such as R2, cosine similarity, and Spearman’s rank correlation to measure the similarity
between the computed Shapley values and the ground truth. The results demonstrate that ViaSHAP

achieves significantly higher similarity to the ground truth compared to FastSHAP. This conclusion
is supported by the Wilcoxon signed-rank test, which enabled rejection of the null hypothesis that
there is no difference in similarity to the ground truth Shapley values between ViaSHAP and Fast-
SHAP. The test confirmed significant differences using all evaluated similarity metrics, including
R2, cosine similarity, and Spearman’s rank correlation. The detailed results are available in Table
10.

J A COMPARISON BETWEEN THE INFERENCE TIME OF VIASHAP AND
KERNELSHAP

In Table 9, we report the time required to explain 1000 instances using KernelSHAP and ViaSHAP
(KANVia) on six datasets using an NVIDIA Tesla V100f GPU and 16 cores of an Intel Xeon Gold
6338 processor.

Table 9: The time (in seconds) required to explain 1000 predictions from 6 different datasets using
KernelSHAP and ViaSHAP.

Dataset KernelSHAP KANVia

Adult 56.92 0.0026
Elevators 54.22 0.0021
House 16 53.12 0.0052
Indian Pines 43124.66 0.0023
Microaggregation 2 79.97 0.0022
First order proving theorem 436.25 0.0022
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Table 10: A comparison between ViaSHAP and FastSHAP with respect to the similarity of
the approximated Shapley values to the ground truth values. The best-performing model is
colored in light green .
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K COMPUTATIONAL COST

The experiments were conducted using an NVIDIA Tesla V100f GPU and 16 cores of an Intel
Xeon Gold 6338 processor. The training time required for both KANVia and MLPVia are recorded
on 1,000 data examples with varying numbers of coalitions (Table 11). The inference time is also
recorded on 1,000 data example for both KANVia and MLPVia as shown in Table 12. All the results
are reported as the mean and standard deviation across five different runs. Generally, MLPVia is
faster than KANVia in both training and inference. Additionally, while the number of samples per
data example increased exponentially, the computational cost during training did not rise at the same
rate, as depicted in Figure 19.

Figure 19: The training time and prediction time on 1000 data instance of KANVia and MLPVia.
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Table 11: The training time in seconds for 1000 data instances using KANVia and MLPVia.
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Table 12: The prediction running time in seconds for 1000 data instances using KANVia and
MLPVia.

Dataset KANVia MLPVia

Abalone 0.0024 ± 0.0003 0.0004 ± 0.00003
Ada Prior 0.003 ± 0.0008 0.0006 ± 0.000005
Adult 0.0026 ± 0.0004 0.0006 ± 0.000005
Bank32nh 0.0021 ± 0.0002 0.0004 ± 0.0001
Electricity 0.0024 ± 0.0003 0.0005 ± 0.0002
Elevators 0.0021 ± 0.0002 0.0005 ± 0.0003
Fars 0.0031 ± 0.0005 0.0009 ± 0.0001
Helena 0.0023 ± 0.0004 0.0004 ± 0.0001
Heloc 0.0022 ± 0.0002 0.0003 ± 0.000005
Higgs 0.0022 ± 0.0002 0.0003 ± ´0.00001
LHC Identify Jet 0.0023 ± 0.0004 0.0004 ± 0.00001
House 16H 0.0052 ± 0.0005 0.0004 ± 0.0001
Indian Pines 0.0023 ± 0.0003 0.0004 ± 0.0001
Jannis 0.0023 ± 0.0003 0.0004 ± 0.00001
JM1 0.0026 ± 0.0012 0.0003 ± 0.00001
MagicTelescope 0.0022 ± 0.0002 0.0003 ± 0.00001
MC1 0.0023 ± 0.0003 0.0004 ± 0.0001
Microaggregation 2 0.0022 ± 0.0002 0.0004 ± 0.00001
Mozilla 4 0.0022 ± 0.0002 0.0004 ± 0.0001
Satellite 0.0022 ± 0.0003 0.0004 ± 0.0001
PC2 0.0021 ± 0.0003 0.0003 ± 0.00001
Phonemes 0.0021 ± 0.0001 0.0003 ± 0.000005
Pollen 0.0022 ± 0.0003 0.0004 ± 0.0001
Telco Customer Churn 0.003 ± 0.0005 0.0009 ± 0.0001
1st Order Theorem Proving 0.0022 ± 0.0003 0.0004 ± 0.000004
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L DATASET DETAILS

Table 13 presents an overview of the datasets used in the experiments. The table includes the number
of classes, number of features, dataset size, training, validation, and test split sizes. Additionally,
the table provides the corresponding dataset ID from OpenML.

Table 13: The dataset information.
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