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ABSTRACT

We tackle the problem of domain adaptation in object detection, where the main
challenge lies in significant domain shifts between source (one domain with su-
pervision) and target (a domain of interest without supervision). Although the
teacher-student framework (a student model learns from pseudo labels generated
from a teacher model) has been adopted to enable domain adaptation and yielded
accuracy gains on the target domain, the teacher model still generates a large
number of low-quality pseudo labels (e.g., false positives) due to its bias toward
source domain. This leads to sub-optimal domain adaptation performance. To ad-
dress this issue, we propose Adaptive Unbiased Teacher (AUT), a teacher-student
framework leveraging adversarial learning (on features derived from backbone)
and weak-strong data augmentation to address domain shifts. Specifically, we em-
ploy feature-level adversarial training, ensuring features extracted from the source
and target domains share similar statistics. This enables the student model to cap-
ture domain-invariant features. Furthermore, we apply weak-strong augmentation
and mutual learning of the teacher for target domain and student model for both
domains. This enables the updated teacher model to gradually benefit from the
student model without suffering domain shift. We show that AUT demonstrates
superiority over all existing approaches and even Oracle (fully-supervised) mod-
els by a huge margin. For example, we achieve 50.9% (49.3%) mAP on Foggy
Cityscape (Clipart1K), which is 9.2% (5.2%) and 8.2% (11.0%) higher than pre-
vious state of the arts and Oracle, respectively.

1 INTRODUCTION

As the task of object detection is bringing pervasive impact on various real-world applications, col-
lecting large-scale and diverse datasets with bounding box annotations still remains challenging
since the labeling process is usually labor intensive. Thus, developing algorithms that can transfer
the knowledge learned from one labeled dataset (i.e., source domain) to another unlabeled dataset
(i.e., target domain) becomes increasingly important. Researchers have proposed various meth-
ods, such as domain classifier and adversarial learning, to address the task of cross-domain adap-
tation (Chen et al., 2018a; Zhu et al., 2019; Saito et al., 2019; He & Zhang, 2019; Xu et al., 2020;
Chen et al., 2020; Su et al., 2020) (Ganin & Lempitsky, 2015). Even though these methods have led
to accuracy improvement on the target domain, there is generally still a large performance gap from
the Oracle model (fully supervision).

To further improve the model’s performance after domain adaptation, researchers start to exploit
and extend teacher-student self-training method from semi-supervised learning to domain adapta-
tion (Tarvainen & Valpola, 2017). These approaches typically involves a teacher model to gen-
erate pseudo labels thus to allow a student model to learn without annotations. These methods
have led to notable accuracy gains in the domain adaptation scenario. For example, MTOR (Cai
et al., 2019) adapts the Mean Teacher (MT) (Tarvainen & Valpola, 2017) to explore object relation
in region-level consistency, inter-graph consistency, and intra-graph consistency. Unbiased Mean
Teacher (UMT) (Deng et al., 2021) proposed to augment the teacher-student framework with Cycle-
GAN (Zhu et al., 2017) and achieved further performance improvement.

Despite the accuracy gain, the teacher-student framework still face a major challenge upon the set-
tings of domain adaptation: unlike semi-supervised learning, the pseudo label generated from the
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(a) True positive ratio on pseudo labels
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(b) False positive ratio on pseudo labels

Figure 1: The effectiveness of domain loss and weak-strong augmentation on pseudo labeling
by Teacher model. The figure shows the true positive and false positive ratio on the entire train-
ing set of Clipart1k (target) with PASCAL VOC as source. Due to inherent domain shift in the
Teacher model, the Teacher model without domain loss generates noisy pseudo labels. The weak
augmentation is able to stabilize pseudo labeling.

teacher model usually contains a substantial amount of errors and false positives, as shown in Fig-
ure 1 (b). This is because the scenario of domain adaptation typically involve a large domain gap
between the labeled data (source domain) and unlabeled data (target domain). The teacher model is
trained on, biased to, and only able to capture features on the source domain, hence unable to pro-
vide high-quality pseudo labels in the target domain. As a result, direct applying the teacher-student
framework only leads to sub-optimal adaptation performance.

To address this problem, we propose a framework named Adaptive Unbiased Teacher (AUT) to mit-
igate the domain shift and improve the pseudo labeling quality on target domain leveraging adver-
sarial learning and mutual learning. Our model comprises of two separate modules: target-specific
Teacher model and cross-domain Student model. We also apply weak augmentation (only strong
augmentation in Student model) and feed images from target domain into the Teacher model. In
addition, to mitigate the domain bias toward source domain in the Student model, we apply adver-
sarial learning by introducing a discriminator with gradient reverse layer to align the distribution
across two domains in the Student model. With all the techniques, we observe the pseudo label
quality improved significantly, as shown in Figure 1, where the true positive ratio is improved by
up to 1.8× compared to the vanilla teacher-student framework. Meanwhile, the false positive ratio
is suppressed by up to 35%. This further leads to substantial accuracy gain across all the domain
adaptation experiments and outperforms all existing methods.

We summarize the contributions of this paper as follows:

• We demonstrate the limitation of the teacher-student framework in the domain adaptation
scenario: the teacher model is biased toward the source domain and only able to produce
low-quality pseudo labels on the target domain.

• We propose a framework based on Mean Teacher and leverage adversarial learning aug-
mented mutual learning and weak-strong augmentation to address domain shift in cross-
domain object detection.

• Our method is able to deal with domain shift and able to outperformed existing SOTA by
a large margin. For example, we achieve 50.9% mAP on Foggy Cityscape, which is 9.2%
and 8.2% higher than SOTA and Oracle (fully supervision).

2 RELATED WORKS

Object Detection. Recent years have witnessed remarkable progress in object detection with deep
learning such as a series of two-stage paradigm: R-CNN (Girshick et al., 2014), Fast R-CNN (Gir-
shick, 2015), and Faster R-CNN Ren et al. (2015) which advances selective search with an accurate
and efficient Region Proposal Networks (RPN). Next, a few sub-sequent works (Dai et al., 2016;
2017; Hu et al., 2018; Lin et al., 2017a; Peng et al., 2018; Singh et al., 2018) strive to improve
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the accuracy and speed of two-stage detectors. Another line of works builds detectors in one-stage
manner by skipping region proposal stage. YOLO (Redmon et al., 2016) jointly predicts bounding
boxes and confidences of multiple categories as regression problem. SSD (Liu et al., 2016) fur-
ther improves it by utilizing multiple feature maps at different scales. Numerous extensions (Fu
et al., 2017; Lin et al., 2017b; Redmon & Farhadi, 2017; 2018) to the one-stage scheme have been
proposed. In this work, we adopt Faster R-CNN as the detection backbone for its robustness and
flexibility.

Unsupervised Domain Adaptation. As for the literature on domain adaptation, while it is quite
vast, the most relevant category to our work is unsupervised domain adaptation in deep architectures.
Recent works have involved discrepancy-based methods that guide the feature learning by minimiz-
ing the domain discrepancy with Maximum Mean Discrepancy (MMD) (Long et al., 2015; 2017;
2016). Another branch is to exploit the domain confusion by learning a domain discriminator (Ganin
& Lempitsky, 2015; Ganin et al., 2016; Tzeng et al., 2017; Sankaranarayanan et al., 2018). Later,
self-ensembling (French et al., 2017) extends Mean Teacher (Tarvainen & Valpola, 2017) for domain
adaptation and establishes new records on several cross-domain recognition benchmarks. All of the
aforementioned works focus on the domain adaptation for recognition, and recently much attention
has been paid to domain adaptation in other tasks, e.g., semantic segmentation (Chen et al., 2018b;
Hoffman et al., 2016; Zhang et al., 2018). However, the output of object detection is richer and more
complex, consisting of both the class labels and the bounding box locations. Comparing with the
above vision tasks, we aim at handling the more challenging task of cross-domain object detection.

Cross-domain Object Detection. Recently, many works have been proposed to address cross-
domain object detection with different techniques. Several approaches utilize adversarial learn-
ing (discriminator) with a gradient reverse layer to obtain domain-invariant feature in (Chen et al.,
2018a; Zhu et al., 2019; Saito et al., 2019; He & Zhang, 2019; Xu et al., 2020; Chen et al., 2020; Su
et al., 2020). The annotation-level adaptation (Khodabandeh et al., 2019; Kim et al., 2019a; Roy-
Chowdhury et al., 2019) has also been proposed for the task. Recently, another direction is to utilize
Mean Teacher (MT) (Tarvainen & Valpola, 2017) which is originally proposed for semi-supervised
learning on this task. MTOR (Cai et al., 2019) performs MT to explore object relation in region-
level consistency, inter-graph consistency and intra-graph consistency. Similarly, Unbiased Mean
Teacher (UMT) (Deng et al., 2021) has been proposed to reduce the domain shift by augmenting the
training samples with CycleGAN (Zhu et al., 2017). However, the above approaches are likely to
suffer the inherent issue in Mean Teacher (MT), generating pseudo labels of low quality on target
domain.

3 ADAPTIVE UNBIASED TEACHER

3.1 PROBLEM FORMULATION AND OVERVIEW

For the problem of unsupervised domain adaptation in object detection, we are given Ns labeled
images Ds = {(Xs, Bs, Cs)} in source domain and Nt unlabeled images Dt = {Xt} in target
domain, where Bs = {bis}

Ns
i=1 denotes the bounding box annotations and Cs = {cis}

Ns
i=1 denotes

corresponding class labels for source image Xs = {xi
s}

Ns
i=1. There is no annotations for the target

image Xt = {xj
t}

Nt
j=1. The ultimate goal of cross-domain object detection is to design domain-

invariant detectors by leveraging Ds and Dt.

We show an overview of our framework in Figure 2. Our Adaptive Unbiased Teacher consists of two
modules: target-specific Teacher model and cross-domain Student model. The Teacher model only
takes into the weakly-augmented images from target domain (Dt) while the Student model takes
strongly-augmented images from both domains (Ds and Dt). We train our model using two training
streams which are the Teacher-Student mutual learning and the adversarial learning. To begin with,
we simply train the object detector using the available source data to initialize the feature encoder
and detector. At the stage of mutual learning (Sec. 3.2), we duplicate the initialized detector into two
models (Teacher and Student models). Then the Teacher generates pseudo labels to train the Student
while the Student updates the knowledge it learned back to the Teacher via exponential moving
average (EMA). Iteratively, the pseudo-labels for training the Student are improved. Furthermore,
for the adaptive learning (Sec. 3.3), the discriminator and the Gradient Reverse Layer (GRL) (Ganin
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Figure 2: Overview of our proposed Adaptive Unbiased Teacher (AUT). Our model consists of
two modules: 1) target-specific Teacher model for taking weakly-augmented images from target do-
main and 2) cross-domain Student model for taking strongly-augmented images from both domains.
We train our model using two training streams, which are the Teacher-Student mutual learning and
the adversarial learning. The Teacher generates pseudo-labels to train the Student while the Stu-
dent updates the Teacher via exponential moving average (EMA). The discriminator with GRL is
employed to align the distributions across two domains in Student model.

& Lempitsky, 2015) are employed to align the distributions across two domains in Student model
via adversarial learning process. This allows the Student model to reduce domain shifts and benefits
the Teacher model to generate more accurate pseudo-labels.

3.2 MUTUAL LEARNING BETWEEN TEACHER AND STUDENT

Following the teacher-student framework initially proposed for semi-supervised object detection,
our model also consists of two models with identical architecture: a Student model and a Teacher
model. The Student model is trained using standard gradient back-propagation algorithm, and the
Teacher model is updated with the exponential moving average (EMA) weights of the student model.
To generate precise and accurate pseudo labels for target domain images, we feed the images with
weakly augmentation as input of the Teacher to provide reliable pseudo-labels while images with
strongly augmentation as inputs of the Student.

Initialization. It is significant to have a good initialization for both Student and Teacher models
since we rely on the Teacher to generate pseudo-labels for target domain to train the Student. To
achieve this, we first use the available supervised source data Ds = {(Xs, Bs, Cs)} to optimize
our model with the supervised loss Lsup. Therefore the loss for training the student model with the
labeled source samples can be written as:

Lsup(Xs, Bs, Cs) = Lrpn
cls (Xs, Bs, Cs) + Lrpn

reg (Xs, Bs, Cs)

+Lroi
cls (Xs, Bs, Cs) + Lroi

reg(Xs, Bs, Cs),
(1)

where RPN loss Lrpn is for the Region Proposal Network (RPN) module which is used for the
candidate proposals generation, and ROI loss Lroi is for the prediction branch which performs
bounding box regression and classification.

Optimize Student with Pseudo-Labeling. To address the lack of ground-truth labels for data in
target domain, we adapt the pseudo-labeling method to generate labels for training the Student with
images from target domain. To prevent the consecutively detrimental effect of noisy pseudo-labels,
we set a confidence threshold δ of predicted bounding boxes to filter predicted bounding boxes of
low-confidence, which are possibly the false positive samples. In addition, we remove duplicated
boxes prediction by applying class-wise non-maximum suppression (NMS). After obtaining the
pseudo-labels from Teacher model on the images of target domain, we can construct an unsupervised
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loss on Student model as:

Lunsup(Xt, Ĉt) = Lrpn
cls (Xt, Ĉt) + Lroi

cls (Xt, Ĉt), (2)

where Ĉt denotes the pseudo labels generated by the Teacher model on target domain. Not that, fol-
lowing (Liu et al., 2021), we do not apply unsupervised losses for the bounding box regression since
the confidence thresholding would not be able to filter the pseudo-labels that are potentially incorrect
for bounding box regression. Meanwhile, the target samples are augmented with random horizon-
tal flip and crop for weak augmentation in Teacher model and randomly color jittering, grayscale,
Gaussian blur, and cutout patches for strong augmentations as perturbations.

Update Teacher via Exponential Moving Average. To obtain more stable pseudo-labels from
the target images following Mean Teacher (MT) (Tarvainen & Valpola, 2017), we apply Exponential
Moving Average (EMA) to gradually update the Teacher model. The update can be written as:

θt ← αθt + (1− α)θs, (3)

where θt and θs denote the network parameters of Teacher and Student, respectively.

3.3 ADVERSARIAL LEARNING TO BRIDGE DOMAIN BIAS

However, since annotations are only available on source data, both of the Teacher and the Student
can be easily biased towards the source domain during the mutual learning process. To be particular,
the pseudo labels generated on target images from Teacher model are basically derived using the
knowledge of the model trained with labels from source domain. As a result, we need to bridge the
domain bias across source and target domains unless the Teacher model would generate noisy labels
on target images and make the learning process collapse. Since we found that adversarial loss is able
to reduce the false positive ratio on Teacher model in Figure 1, we introduce adversarial learning
into the framework for aligning the distributions across two domains.

Since only Student model takes images from both domains, the adversarial loss is applicable on
Student model. To achieve adversarial learning, we place a domain discriminator, denoting D, after
the feature encoder, denoting E (shown in Figure 2) on the Student model. The main objective of the
discriminator is to discriminate whether the feature E(X) is from the source or the target domain.
Through this discriminator, the probability of each sample belonging to the target domain is obtained
as D(E(X)). We then apply a binary cross-entropy loss to D(E(X)) based on the domain label d
of the input image, where images from the source distributions are given the label d = 0 and the
target images receive label d = 1. The discriminator loss Ldis can be formulated as:

Ldis = d logD(E(X)) + (1− d) log(1−D(E(X))), (4)

Furthermore, adversarial learning in the discriminator is achieved using the Gradient Reverse Layer
(GRL) (Ganin & Lempitsky, 2015) to produce reverse gradient on the feature encoder to learn the
domain-invariant feature E(X). That is, GRL is placed in between the discriminator and the detec-
tion network. During back propagation, GRL negates the gradients that flow through and the feature
encoder E receives gradients that force it to update in an opposite direction which maximizes the
discriminator loss. This allows E to produce features that fools the discriminator D while D tries to
distinguish the domain of the features. Hence, the min-max loss function of the adaptive detection
model is defined as the following:

Ladv = min
E

max
D
Ldis. (5)

With the above domain loss, our Student model resolves the domain bias in visual features and helps
Teacher to generate precise pseudo labels after several EMA updates.

We would like to note that, the design of adversarial learning in the Student model of our Adaptive
Unbiased Teacher is reasonable for two reasons. First, since we only feed images from target domain
into Teacher model to avoid domain bias on Teacher model, the process of aligning two domains
could be preferable in Student model which takes images across two domains. Feeding images from
source domain like (Cai et al., 2019; Deng et al., 2021) may bring more bias toward source domain
to both Teacher and Student models. Second, adversarial learning is a min-max learning problem
and requires loss function to update the model. Since Student model is updated via objective losses,
applying adversarial loss to the Student model is a simple and suitable way in the standard learning
of the Mean Teacher.
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Table 1: The average precision (AP, in %) on all classes from different methods for cross-domain
object detection on the Clipart1k test set for PASCAL VOC→Clipart1k adaptation. The backbone
is ResNet-101. We compare our method with SCL (Shen et al., 2019), SWDA (Saito et al., 2019),
DM (Kim et al., 2019b), CRDA (Xu et al., 2020),HTCN (Chen et al., 2020), UMT (Deng et al.,
2021), Source (F-RCNN), and Oracle (F-RCNN).

Method aero bcycle bird boat bottle bus car cat chair cow table dog hrs m-bike prsn plnt sheep sofa train tv mAP

Source 23.0 39.6 20.1 23.6 25.7 42.6 25.2 0.9 41.2 25.6 23.7 11.2 28.2 49.5 45.2 46.9 9.1 22.3 38.9 31.5 28.8 (-16.2)

SCL 44.7 50.0 33.6 27.4 42.2 55.6 38.3 19.2 37.9 69.0 30.1 26.3 34.4 67.3 61.0 47.9 21.4 26.3 50.1 47.3 41.5 (-3.5)
SWDA 26.2 48.5 32.6 33.7 38.5 54.3 37.1 18.6 34.8 58.3 17.0 12.5 33.8 65.5 61.6 52.0 9.3 24.9 54.1 49.1 38.1 (-6.9)
DM 25.8 63.2 24.5 42.4 47.9 43.1 37.5 9.1 47.0 46.7 26.8 24.9 48.1 78.7 63.0 45.0 21.3 36.1 52.3 53.4 41.8 (-3.2)
CRDA 28.7 55.3 31.8 26.0 40.1 63.6 36.6 9.4 38.7 49.3 17.6 14.1 33.3 74.3 61.3 46.3 22.3 24.3 49.1 44.3 38.3 (-6.7)
HTCN 33.6 58.9 34.0 23.4 45.6 57.0 39.8 12.0 39.7 51.3 21.1 20.1 39.1 72.8 63.0 43.1 19.3 30.1 50.2 51.8 40.3 (-4.7)
UMT 39.6 59.1 32.4 35.0 45.1 61.9 48.4 7.5 46.0 67.6 21.4 29.5 48.2 75.9 70.5 56.7 25.9 28.9 39.4 43.6 44.1 (-0.9)

AUT 33.8 60.9 38.6 49.4 52.4 53.9 56.7 7.5 52.8 63.5 34.0 25.0 62.2 72.1 77.2 57.7 27.2 52.0 55.7 54.1 49.3 (+4.3)

Oracle 33.3 47.6 43.1 38.0 24.5 82.0 57.4 22.9 48.4 49.2 37.9 46.4 41.1 54.0 73.7 39.5 36.7 19.1 53.2 52.9 45.0

3.4 FULL OBJECTIVE AND INFERENCE

The total loss L for training our proposed AUT is summarized as follows:

L = Lsup + λunsup · Lunsup + λdis · Ladv, (6)

where λunsup and λdis are the hyper-parameters used to control the weighting of the corresponding
losses. We note that Lsup and Lunsup are developed to learn the feature encoder and detector in
the Student model while Ladv is introduced to update the feature encoder and discriminator. The
Teacher model is only updated through EMA discussed in the Sec 3.2.

With the interaction between the Teacher and the Student, both models can evolve jointly and con-
tinuously to improve detection accuracy. With the improvement on detection accuracy, this also
means that the Teacher generates more accurate and stable pseudo-label for target domain. In an-
other perspective, we can also regard the Teacher as the temporal ensemble of the cross-domain
Student models in different time steps, which aligns the observation that the accuracy of the Teacher
on target domain is consistently higher than the Student (noted in (Liu et al., 2021)). As the result,
during the inference stage we only keep the target-specific Teacher model for evaluating on the target
testing dataset.

4 EXPERIMENT

4.1 DATASETS

We conduct our experiments on five public datasets, including Cityscapes (Cordts et al., 2016)),
Foggy Cityscapes (Sakaridis et al., 2018), PASCAL VOC (Everingham et al., 2010), Clipart1k (In-
oue et al., 2018), and Watercolor2k (Inoue et al., 2018).

Cityscapes. Cityscapes (Cordts et al., 2016) focuses on capturing high variability of outdoor street
scenes in common weather conditions from different cities. It contains 2,975 training images and
500 validation images with dense pixel-level labels. We transform the instance segmentation anno-
tations into bounding boxes for our experiments.

Foggy Cityscapes. Foggy Cityscapes (Sakaridis et al., 2018) is built upon the images in the
Cityscapes. This dataset simulates the foggy weather using depth maps provided in Cityscapes
with three levels of foggy weather, and thus is suitable to conduct weather adaptation experiments.

PASCAL VOC. PASCAL VOC (Everingham et al., 2010) is a real-world dataset containing 20
categories of common objects with bounding box annotations. Following (Saito et al., 2019; Shen
et al., 2019), we employ PASCAL VOC 2007 and 2012 training and validation images (16,551
images in total) for experiments.

Clipart1k. Clipart1k (Inoue et al., 2018) contains 1k clipart images, which shares the same instance
categories with PASCAL VOC but exhibits a large domain shift. We follow the practice in Saito
et al. (2019); Shen et al. (2019) and split it into training and test sets, containing 500 images each.

Watercolor2k. Watercolor2k (Inoue et al., 2018) contains 2k watercolor images, which consists of
2,000 images from 6 classes in common with the PASCAL VOC dataset. Following the practice
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Table 2: The average precision (AP, in %) on all classes from different methods for cross-domain
object detection on the Watercolor2k test set for PASCAL VOC→Watercolor2k adaptation. The
backbone is ResNet-101.

Method bicycle bird car cat dog person mAP

Source (F-RCNN) 84.2 44.5 53.0 24.9 18.8 56.3 46.9 (-3.7)

SCL (Shen et al., 2019) 82.2 55.1 51.8 39.6 38.4 64.0 55.2 (+4.8)
SWDA (Saito et al., 2019) 82.3 55.9 46.5 32.7 35.5 66.7 53.3 (+2.7)
UMT (Deng et al., 2021) 88.2 55.3 51.7 39.8 43.6 69.9 58.1 (+7.5)

AUT (Ours) 93.6 56.1 58.9 37.3 39.6 73.8 59.9 (+9.3)

Oracle (F-RCNN) 51.8 49.7 42.5 38.7 52.1 68.6 50.6

in Saito et al. (2019); Shen et al. (2019), we split it into training set and test sets, containing 1000
images each.

4.2 IMPLEMENTATION DETAILS

Following Chen et al. (2018a) and Saito et al. (2019), we take the Faster RCNN (Ren et al., 2015)
as the base detection model in our Adaptive Unbiased Teacher. The ResNet-101 (He et al., 2016)
or VGG16 (Simonyan & Zisserman, 2014) model pre-trained on ImageNet (Deng et al., 2009) is
used as the backbone. Following the implementation of Faster RCNN with ROI-alignment (He
et al., 2017), we rescale all images by setting the shorter side of the image to 600 while keeping
the image aspect ratios. For the hyperparameter, we set the λunsup = 1.0 and λdis = 0.1 for
all the experiments. We set the confidence threshold as δ = 0.8. During the initialization stage
described in Sec. 3.2, we train the Faster RCNN using the source labels for 10k iterations. Then we
copy the weights to both Teacher and Student models in the beginning of mutual learning and train
the adaptive unbiased teacher for 50k iterations. We set the learning rate as 0.04 during the entire
training stage without applying any learning rate decay. We optimize the network using Stochastic
Gradient Descent (SGD). For the data augmentation. We apply random horizontal flip for weak
augmentation and randomly add color jittering, grayscale, Gaussian blur, and cutout patches for
strong augmentations. The weight smooth coefficient parameter of the exponential moving average
(EMA) for the teacher model is set to 0.9996. Each experiment is conducted on 8 Nvidia GPU V100
with the batch size of 16 and implemented in PyTorch.

4.3 EXPERIMENTAL SETTINGS AND EVALUATION

We report the average precision (AP) of each class as well as the mean AP over all classes for object
detection following existing works (Chen et al., 2018a; Saito et al., 2019) for all of the experimental
settings, which are described as follows:

Real to Artistic Adaptation. To begin with, we would like to benchmark the effectiveness of our
model for addressing the large domain gap. In this setting, we test our model with domain shift
between the real image domain and the artistic image domain. We utilize Pascal VOC as the real
source domain and the Clipart1k or Watercolor2k as the target domain. The backbone of ResNet-
101 (He et al., 2016) is used following existing settings.

Weather Adaptation. In this setting, we test our model with domain shift between the image
in normal weather and the image with adverse weather (foggy). The training set of the Cityscapes
dataset is used as the source domain while the Foggy Cityscapes dataset is used as the target domain.
We take labeled Cityscapes train set images and unlabeled Foggy Cityscapes train set images in our
experiment and report the evaluated results on the validation set of Foggy Cityscapes. Although there
exists a one-to-one correspondence between images in Cityscapes and Foggy Cityscapes datasets,
we do not leverage such information in all of the experiments. The backbone of VGG16 (Simonyan
& Zisserman, 2014) is used following previous settings.
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Table 3: The average precision (AP, in %) on all classes from different methods for cross-domain
object detection on the Foggy Cityscapes test set for Cityscapes→ Foggy Cityscapes adaptation.
The backbone is VGG-16.

Method bus bicycle car mcycle person rider train truck mAP

Source (F-RCNN) 20.1 31.9 39.6 16.9 29.0 37.2 5.2 8.1 23.5 (-19.2)

SCL (Shen et al., 2019) 41.8 36.2 44.8 33.6 31.6 44.0 40.7 30.4 37.9 (-4.8)
DA-Faster (Chen et al., 2018a) 35.3 27.1 40.5 20.0 25.0 31.0 20.2 22.1 27.6 (-15.1)
SCDA (Zhu et al., 2019) 39.0 33.6 48.5 28.0 33.5 38.0 23.3 26.5 33.8 (-8.9)
SWDA (Saito et al., 2019) 36.2 35.3 43.5 30.0 29.9 42.3 32.6 24.5 34.3 (-8.4)
DM (Kim et al., 2019b) 38.4 32.2 44.3 28.4 30.8 40.5 34.5 27.2 34.6 (-8.1)
MTOR (Cai et al., 2019) 38.6 35.6 44.0 28.3 30.6 41.4 40.6 21.9 35.1 (-7.6)
MAF (He & Zhang, 2019) 39.9 33.9 43.9 29.2 28.2 39.5 33.3 23.8 34.0 (-8.7)
iFAN (Zhuang et al., 2020) 45.5 33.0 48.5 22.8 32.6 40.0 31.7 27.9 35.3 (-7.4)
CRDA (Xu et al., 2020) 45.1 34.6 49.2 30.3 32.9 43.8 36.4 27.2 37.4 (-5.3)
HTCN (Chen et al., 2020) 47.4 37.1 47.9 32.3 33.2 47.5 40.9 31.6 39.8 (-2.9)
UMT (Deng et al., 2021) 56.5 37.3 48.6 30.4 33.0 46.7 46.8 34.1 41.7 (-1.0)

AUT (Ours) 56.3 51.9 64.2 38.5 45.5 55.1 54.3 35.0 50.9 (+8.2)

Oracle (F-RCNN) 50.3 40.7 61.3 32.5 43.1 49.8 35.1 28.6 42.7

4.4 RESULTS AND COMPARISONS

In this section, we report the performance of our Adaptive Unbiased Teacher and other state-of-
the-art approaches in Table 1 and Table 3. We additionally report the source-only model denoted
“Source (F-RCNN)” by training a Faster RCNN model using only source images as the lower bound
adaptation. On the other hand, we also include an oracle model denoted “Oracle (F-RCNN)” by
training a Faster RCNN model using the same images with target domain but with the ground truth
annotations, which can be viewed as a reference for the upper bound adaptation performance.

Real to Artistic Adaptation. The results of the setting: real to artistic adaptation on Clipart1k is
presented in Table 1 and the one on Watercolor2k is presented in Table 2. We compare our method
with several state-of-the-art approaches and report the performance gap between the oracle model
(fully supervision) and each of the competitors. We observed that, first, our model achieves state-
of-the-art performance at 49.3% mAP and outperforms the recent competitor UMT by 5.2% and
other methods by a large margin. We note that, UMT using Mean Teacher already had significant
performance improvement with augmented-styled training images. Yet, due to the inherent issue
with the quality of pseudo labels in Mean Teacher on target domain, their model may also suffer
large domain shift between real and artistic images when generate pseudo labels. On the other hand,
our model mitigates the domain gap and achieve largely improved performance. Second, our model
is the only one exceeding the oracle model on Clipart1k dataset, showing that the mutual learning
adopted form Mean Teacher plus adversarial learning is capable to bridge the domain gap. Similar
observations can be found on experiments conducted on Watercolor2k.

Weather Adaptation. The results of the setting: normal weather to adverse weather adaptation is
presented in Table 3. We also report the performance gap between the oracle model (fully supervi-
sion) and each of the competitors. When comparing to the state of the arts, we can see that, first,
our model also outperforms all of the state-of-the-art approaches by a large margin (more than 9%).
Among these methods, MTOR (Cai et al., 2019) and UMT (Deng et al., 2021) are the two methods
adopting Mean Teacher in their model. However, due to the problems discussed earlier regarding
the augmentation in Teacher model and bias to source domain, both of their model suffer from gen-
erating noisy labels and lead to performance gap between our adaptive unbiased teacher. Second,
the performance of our model also exceeds the oracle model by a large margin, showing that the
clear weather images with high visibility are useful for boosting the limitation of the object detec-
tion in the adverse foggy weather with low visibility, without requiring any annotations on those low
visibility images.

4.5 ABLATION STUDIES

We further conduct ablation studies on each of important componenets in Table 4 and also present
the qualitative studies of pseudo labels in Figure 3.
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Table 4: The ablation studies on each of the losses and modules. We report mean average precision
(mAP, in %) on each of the experimental datasets.

Source:
Target:

PASCAL VOC
Clipart1k

PASCAL VOC
Watercolor2k

Cityscapes
Foggy Cityscapes

AUT 49.3 59.9 50.9
AUT w/o Ldis 40.6 (-8.7) 55.5 (-4.4) 48.7 (-2.2)
AUT w/o Weak-Strong Augmentation 45.3 (-4.0) 55.1 (-4.8) 45.9 (-5.0)
AUT w/o Lunsup & EMA 31.6 (-17.7) 50.2 (-9.7) 36.0 (-14.9)

(a) Mean Teacher (MT) (d) AUT (Ours)(b) AUT w/o ℒ𝒅𝒊𝒔 (c) AUT w/o Aug.

Figure 3: Qualitative ablation studies on pseudo labels generated on the image from the train-
ing set of Clipart1k. This figure show the importance of adversarial loss Ldis and weak-strong
augmentation on pseudo labeling.

Adversarial loss Ldis. To further analyze the importance of adversarial learning in our Adaptive
Unbiased Teacher, we exclude the loss Ldis in discriminator and report the performance on three
experimental settings. It can be observed that the 8.7% and 4.4% performance drop appears on
Clipart1k and Watercolor2k in the scenario with larger domain gap (real to artistic adaptation). Yet,
in another scenario with smaller domain gap (weather adaptation), only 2.2% performance drop is
observed. We can also observe thatLdis is able to largely reduce the ratio of false positives in pseudo
labels generated by the Teacher model in Figure 3.

Augmentation pipeline. We also benchmarked the effectiveness of weak-strong augmentation in
our Adaptive Unbiased Teacher, and around 4% to 5% performance drop is observed when it is
excluded (Table 4). This demonstrates that the simple modification on the training pipeline (weak
and strong augmentation for Teacher and Student, respectively) is vital. We can also observe that
such augmentation pipeline is able to reduce the ratio of false positives in pseudo labels generated
by the Teacher model in Figure 3.

Lunsup & EMA. Similarly, we ablated the importance of utilizing Mean Teacher as previous works
(i.e., excluding the mutual learning and the Teacher model from our model) and report the perfor-
mance of the Student model for cross-domain training with only strong augmentation and adversarial
loss Ldis. We can see that there is a significant performance drop, thus the performance gain mainly
came from the mutual learning with pseudo labels on target domain.

5 CONCLUSION

In this paper, we proposed an novel framework to address the task of cross-domain object detection.
With the introduced target-domain Teacher model and cross-domain Student model, the framework
is able to generate correct pseudo labels on the target domain via mutual learning. Our design of
training pipeline with proper augmentation strategies and adversarial learning also resolve the bias
toward source domain in both Teacher and Student model. The experiments on two benchmarks
confirmed the effectiveness and superiority of our model for cross-domain object detection. The
extensive experiments of ablation studies also demonstrated our proposed model without supervision
on target domain outperform the Oracle model with fully supervision.

9
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A APPENDIX

A.1 QUALITATIVE COMPARISON

To further justify the effectiveness of our propose adaptive unbiased teacher (AUT), we present the
qualitative results of object detection on the testing set in Figure 4, Figure 5, and Figure 6. We
compare our AUT with Source (F-RCNN) model and Oracle (F-RCNN) model. For the setting of
weather adaptation, we can observe that there are many missing detections on source model when the
fog is serious. Yet, our model is able to achieve the comparable detection result than Oracle model,
which demonstrates our model is able to handle domain bias successfully without supervision on
target domain. For the setting of real to artistic adaptation, both the Source (F-RCNN) model and
Oracle (F-RCNN) model shows missing or incorrect detections in the two given samples. Our AUT
instead produce more correct detected bounding boxes than both of the models.

Ground Truth

Source Only

Oracle

AUT (Ours)

Figure 4: Qualitative results and comparisons on Foggy Cityscapes.
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Ground Truth

Source Only

Oracle

AUT (Ours)

Figure 5: Qualitative results and comparisons on Clipart1k.
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Ground Truth

Source Only

Oracle

AUT (Ours)

Figure 6: Qualitative results and comparisons on Watercolor2k.
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A.2 MORE ABLATION STUDIES

We also analyze the weight λdis of the adversarial loss Ldis in in Figure 7. We can see that, first,
increasing weights can lead to improved performance, which supports the effectiveness of the dis-
criminator in our model. Second, we see that with a sufficient weight of discriminator loss, the
model will be able to have satisfactory performance. Third, the performance with the adversarial
loss Ldis shows to be stable without decreasing drastically as the one without the loss.
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Figure 7: Mutual Learning curve on Clipart1k dataset. Increasing weights of λdis can achieve
improved performance and stable learning curve.
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