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ABSTRACT

3D molecule generation is crucial for drug discovery and material design. While
prior efforts focus on 3D diffusion models for their benefits in modeling contin-
uous 3D conformers, they overlook the advantages of 1D SELFIES-based Lan-
guage Models (LMs), which are able to generate 100% valid molecules and lever-
age the billion-scale 1D molecule datasets. To combine these advantages for 3D
molecule generation, we propose a foundation model – NEXT-Mol: 3D Diffu-
sion Meets 1D Language Modeling for 3D Molecule Generation. NEXT-Mol
uses an extensively pretrained molecule LM for 1D molecule generation, and sub-
sequently predicts the generated molecule’s 3D conformers with a 3D diffusion
model. We enhance NEXT-Mol’s performance by scaling up the LM’s model size,
refining the diffusion neural architecture, and applying 1D to 3D transfer learning.
Notably, we demonstrate that incorporating 1D representations from our molecule
LM improves the 3D diffusion model’s conformer prediction by 1.3% coverage-
recall on GEOM-DRUGS. Given these improvements, NEXT-Mol achieves lead-
ing performances in de novo 3D molecule generation, 3D conformer prediction,
and conditional 3D molecule generation, demonstrating its effectiveness and ver-
satility as a foundation model in the field. Our codes and pretrained checkpoints
are available at https://anonymous.4open.science/r/NEXT-Mol.

1 INTRODUCTION

Molecule discovery is crucial for designing new drugs and materials. To efficiently navigate the
astronomical chemical space of molecules, generative deep learning methods have been extensively
explored. While promising progress has been made in generating 2D molecular graphs (Jin et al.,
2018; Vignac et al., 2023a), recent research has shifted toward 3D molecule generation due to its
broader application scope. For example, understanding the 3D molecular geometry is crucial for
structure-based drug design (Zhang et al., 2023), prediction of molecular quantum chemical proper-
ties (Zhou et al., 2023), and molecular dynamic simulation (Hansson et al., 2002).

3D molecule generation aims to predict 3D molecular conformers along with their 2D
graphs (Hoogeboom et al., 2022). These generated 3D molecules are typically evaluated based
on their molecular validity and stability, ensuring adherence to the chemical valency rules. Recent
advancements in 3D diffusion models (Vignac et al., 2023b; Hua et al., 2023; Huang et al., 2024)
have improved these metrics by better modeling continuous 3D conformers, yet they still occasion-
ally generate invalid molecules. This hinders learning other molecular attributes beyond validity, like
functional groups, which are defined only for valid structures. For improvement, we draw inspiration
from 1D molecule generation (Fang et al., 2024; Polykovskiy et al., 2020) studies, which reliably en-
sure 100% validity. By representing 2D molecular graphs as linear strings of SELFIES (Krenn et al.,
2020), these approaches typically leverage 1D language models (LMs) for 2D molecule generation.
Due to SELFIES’ inherent robustness, the generated molecules are guaranteed to be 100% valid.
Inspired by these studies, a natural solution for improving 3D molecule generation is to incorporate
a 1D SELFIES-based LM into a 3D diffusion model (Jing et al., 2022), thus leveraging the chemical
validity of 1D representations while improving 3D conformer prediction. To our best knowledge,
few prior research has thoroughly explored this incorporation for 3D molecule generation.

To bridge the research gap above, we explore a two-step solution for 3D molecule generation: ini-
tially generating a 1D molecule (a subset of a 3D molecule) using an LM and subsequently predict-
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Figure 1: Overview of our NEXT-Mol foundation model for 3D molecule generation. NEXT-Mol
consists of three key components: (1) MoLlama, a large LM for generating 1D molecule sequences;
(2) DMT, a diffusion model to predict 3D conformers from the 1D sequences; and (3) NEXT-Mol
leverages transfer learning to enhance DMT’s 3D prediction with MoLlama’s 1D representations.

ing its 3D conformer with a diffusion model. Here we focus on three key strategies — scaling up
1D molecular LMs, refining the architecture of 3D diffusion models, and utilizing transfer learning
between 1D and 3D modeling — to resolve the following three challenges faced by prior studies:

• The Development of An Effective 1D Molecular LM. This can be done by training an autore-
gressive transformer LM (Vaswani et al., 2017) on a large SELFIES corpus. However, existing
studies have the following limitations: some use non-autoregressive pretraining, rendering them
unsuitable for de novo generation (Fang et al., 2024; Irwin et al., 2022; Born & Manica, 2023;
Yüksel et al., 2023); some do not have 100% validity (Bagal et al., 2021); and others are con-
strained by small model sizes and employ non-transformer architectures, limiting their scalabil-
ity (Polykovskiy et al., 2020; Eckmann et al., 2022; Arús-Pous et al., 2019; Jin et al., 2018).

• The Design of A Powerful 3D Diffusion Model. This is to accurately generate the 3D conformers
for the 1D molecules generated by the 1D molecular LM in the earlier step. However, existing
works either exhibit limited performance (Jing et al., 2022; Corso et al., 2024; Xu et al., 2022;
Ganea et al., 2021) or are not open-source (Wang et al., 2024), preventing their adaptation for
future research. Moreover, the neural architecture in the prominent MCF study (Wang et al.,
2024) can be improved by leveraging the full information of 2D molecular graphs.

• Transfer Learning between 1D Molecule Sequences and 3D Conformers. It has the potential
to offer a significant improvement to 3D conformer prediction, given the greater availability of 1D
sequences compared to high-accuracy 3D conformers, which are typically derived by expensive
DFT calculations. For example, the ZINC22 (Tingle et al., 2023) database now includes over 54.9
billion 1D molecule sequences and the GEOM (Axelrod & Gomez-Bombarelli, 2022) database
holds only 37 million 3D conformers. Although this 1D to 3D transfer learning has been success-
fully applied to 3D protein structure prediction (Lin et al., 2023; Wu et al., 2022), similar methods
remain mostly unexplored for small molecules, indicating a significant research opportunity.

To address the challenges above, we propose a foundation model – NEXT-Mol: 3D Diffusion Meets
1D Language Modeling for 3D Molecule Generation, as illustrated in Figure 1. NEXT-Mol consists
of three key components: (1) To achieve effective autoregressive 1D molecule generation, we pre-
train a Molecular Llama LM (MoLlama) (Touvron et al., 2023; Zhang et al., 2024) on a large
collection of 1.8B SELFIES sequences. This extensive pretraining empowers MoLlama to effec-
tively capture the desired 1D/2D molecular patterns (e.g., scaffolds and fragments) in downstream
datasets, laying a strong foundation for the subsequent 3D conformer prediction. (2) To achieve
high-accuracy 3D conformer prediction, we introduce a novel diffusion model – Diffusion Molecular
Transformer (DMT). DMT combines the power of a scalable neural architecture (Wang et al., 2024)
and retains the full information of 2D molecular graphs by incorporating the Relational Multi-Head
Self-Attention (Huang et al., 2024) that extends the standard self-attention by incorporating pair in-
formation describing atomic interactions. Our results demonstrate that DMT could achieve leading
performance for 3D conformer prediction, accurately revealing 3D structures of MoLlama-generated
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1D molecules with improved performance across six 3D-metrics of stability and geometric similar-
ity. (3) We demonstrate that transfer learning between 1D molecular sequences and 3D conformers
significantly improves the conformer prediction performance. Specifically, we leverage MoLlama’s
1D representations to enhance DMT’s 3D prediction. We bridge the gap between MoLlama and
DMT through a cross-modal projector and the corresponding training strategy (Liu et al., 2024).

Collectively, our NEXT-Mol foundation model is a versatile multi-task learner, and demonstrates
leading performances for de novo 3D molecule generation, 3D conformer prediction, and conditional
3D molecule generation on the GEOM-DRUGS, GEOM-QM9 (Axelrod & Gomez-Bombarelli,
2022) and QM9-2014 (Ramakrishnan et al., 2014) datasets. The strong performance highlights
NEXT-Mol’s effectiveness and its potential impact as a foundation model in the field. We further
present extensive ablation studies to demonstrate the significance of each component of NEXT-Mol.

2 RELATED WORKS

A complete molecule includes atoms, bonds, and the 3D coordinates of atoms (i.e., 3D conformer).
However, due to the expensive computation for obtaining high-accuracy 3D conformers (Axelrod &
Gomez-Bombarelli, 2022), many studies focus on generating atoms and bonds without 3D conform-
ers, representing molecules as 1D sequences or 2D graphs. Here we begin by reviewing 1D and 2D
molecule generation, then discuss 3D molecule generation and 3D conformer prediction.

1D and 2D Molecule Generation aims to generate the atoms and bonds of a molecule. 1D gener-
ation works are mostly based on LMs. However, they usually apply non-autoregressive pretraining
such as span-prediction (Irwin et al., 2022; Fang et al., 2024; Born & Manica, 2023), making them
unsuitable for de novo generation. Other works use non-transformer architecture (Arús-Pous et al.,
2019; Polykovskiy et al., 2020; Flam-Shepherd et al., 2022; Gómez-Bombarelli et al., 2018; Eck-
mann et al., 2022; Popova et al., 2018), which are unsuitable for scale-up (Vaswani et al., 2017).
2D molecule generation works typically decompose molecular graphs as functional fragments (or
atoms), and train models to recurrently generate or edit these fragments (Jin et al., 2018; Xie et al.,
2021; Luo et al., 2021; Shi et al., 2020; Sun et al., 2022; Liu et al., 2018; You et al., 2018; Popova
et al., 2019; Jin et al., 2019). However, due to their non-transformer architectures and domain-
specialized training methods, these 2D generation models also face challenges with scalability and
transfer learning. We refer readers to (Du et al., 2022) for a comprehensive survey in this area.

3D Molecule Generation is dominated by diffusion models (Hoogeboom et al., 2022; Bao et al.,
2023; Huang et al., 2023a; 2024; 2023b; Vignac et al., 2023b; Hua et al., 2023). While autoregres-
sive methods have been explored (Gebauer et al., 2019; 2022; Luo & Ji, 2022; Simm et al., 2020),
they underperform diffusion models, potentially due to their inability to model bonds and the error
accumulation when autoregressively generating 3D coordinates. Diffusion models typically employ
3D equivariant neural networks (Satorras et al., 2021) to denoise the variables of atoms, bonds, and
3D coordinates within a single diffusion process. However, they predict molecules without validity
constraints and are limited by insufficient 3D data. To address these issues, we aim to integrate the
two advantages of 1D SELFIES sequences – 100% validity and the more abundant dataset (Sterling
& Irwin, 2015; Tingle et al., 2023) – into 3D molecule generation for improvement.

3D Conformer Prediction is to predict the 3D conformer given the atoms and bonds of a
molecule (Xu et al., 2022; Ganea et al., 2021; Zhou et al., 2023; Jing et al., 2022; Corso et al.,
2024). The current state-of-the-art approach scales up a diffusion model using a general-purpose
transformer architecture (Wang et al., 2024), but it overlooks the chemical bond information and
uses a lossy representation of molecular structures. We address these issues by introducing the DMT
architecture that maintains scalability and retains the full information of 2D molecular graphs.

3 3D DIFFUSION MEETS 1D LM FOR 3D MOLECULE GENERATION

NEXT-Mol for 3D Molecule Generation. NEXT-Mol is a foundation model that generates 3D
molecules with a two-step method: initially generating the 1D molecule sequence using the MoL-
lama LM and subsequently predicting its 3D conformer using the DMT diffusion model. Here we
begin by introducing the MoLlama LM for 1D molecule generation and then proceed to the DMT
diffusion model. Finally, we detail the transfer learning method to incorporate MoLlama’s 1D repre-
sentation to enhance DMT’s 3D conformer prediction. Appendix C includes implementation details.
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G(0)

(a) DMT’s diffusion process.  (b) Detailed view of each DMT layer.

Figure 2: Overview of DMT’s neural architecture. (a) DMT is a diffusion model learning to denoise
random Gaussian perturbations ϵ applied on the 3D coordinates of atoms. (b) DMT relies on the
RMHA module to iteratively update atom representations H and pair representations E.

3.1 1D MOLECULE GENERATION WITH MOLECULAR LLAMA LM

Data Preparation. Following (Irwin et al., 2022), we collect 1.8 billion molecules from the ZINC-
15 database (Sterling & Irwin, 2015), significantly more than the 100 million molecules used in
previous studies (Irwin et al., 2022; Fang et al., 2024). We preprocess the molecules to transform
them into SELFIES and perform data filtering to avoid overlap with the downstream datasets. The
resulting dataset contains 90 billion SELFIES tokens.

Pretraining MoLlama. Our MoLlama is a 960M parameter LM with the popular decoder-only
Llama-2 (Touvron et al., 2023) architecture. We pretrain it from scratch for 1D molecule generation
with the next-token prediction objective. The pretraining takes 555K global steps, processing 145
billion tokens, which amounts to approximately 1.6 passes through the pretraining dataset.

Randomized SELFIES Augmentation. We use randomized SELFIES as data augmentations dur-
ing fine-tuning MoLlama for 1D molecule generation. A molecule can have multiple valid SELFIES,
because they are generated by traversing the 2D molecular graph in different orders. Randomized
SELFIES are generated by traversing in random orders. This approach improves sample diversity
and mitigates overfitting compared to using the canonical traversal order (Arús-Pous et al., 2019).
The intuition is that the atoms in a molecule are inherently unordered, therefore an ideal LM should
generate different orderings of the same molecule with equal likelihood.

3.2 3D CONFORMER PREDICTION WITH DIFFUSION MOLECULAR TRANSFORMER

Here we elaborate on the three key components of our proposed DMT: (1) the diffusion process
governing the training and inference; (2) the neural architecture; and (3) the rotation augmentation.

Diffusion Process. A molecule G = (x,h, e) is represented by its 3D coordinates x ∈ RN×3,
atom features h ∈ RN×d1 (e.g., atom types), and pair features e ∈ RN×N×d2 (e.g., chemical
bonds), where N is the number of atoms and d1 and d2 are the feature dimensions. For 3D con-
former prediction, we use a continuous-time diffusion model (Kingma et al., 2021) that denoises a
molecule’s 3D coordinates x based on its atom and pair features. As Figure 2a shows, in the for-
ward diffusion process, noises are gradually applied to the original 3D coordinates x(0) = x such
that q(x(t)|x(0)) = N (x(t);

√
ᾱ(t)x(0), (1−ᾱ(t))I), where t ∈ (0, 1] is the diffusion’s time-step, and

ᾱ(t) is a hyperparameter controlling the noise scale at the t step. Based on the reparameterization
trick (Ho et al., 2020), we can sample x(t) =

√
ᾱ(t)x(0) +

√
1− ᾱ(t)ϵ(t), where ϵ(t) ∼ N (0, I).

Given the perturbed coordinates x(t), DMT is trained to predict the noise ϵ(t) by minimizing the
MSE loss L = ∥ϵ(t) − DMT(G(t), t)∥22, where G(t) = (x(t),h, e). After training, DMT can be
employed for 3D conformer prediction through ancestral sampling (Ho et al., 2020).

Neural Architecture. As Figure 2b illustrates, DMT adopts Relational Multi-Head Self-Attention
(RMHA) (Huang et al., 2024) and adaptive layernorm (adaLN) (Perez et al., 2018; Peebles & Xie,
2023). adaLN replaces the learnable scale and shift parameters in standard layernorm (Ba, 2016)
with adaptive ones that are generated from the condition embedding C, which combines the time-
step and optionally a desired chemical property. For simplicity, we omit adaLNs in discussion below.

The philosophy behind DMT’s neural architecture generally follows the “bitter lesson” recently re-
vealed by MCF (Wang et al., 2024) that large scalable models outperform domain-specific inductive
biases. Notably, MCF shows that it is unnecessary to have an architecture of built-in 3D equivari-
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ance for conformer prediction. However, MCF is limited to employing a lossy representation of
2D molecular structures and overlooks bond information, by relying on the top-k eigenvectors of the
graph Laplacian (Maskey et al., 2022) to represent 2D molecular graphs. To address this issue, DMT
retains the full information of 2D molecular graphs in its atom representation H ∈ RN×d and pair
representation E ∈ RN×N×d, and then applies RMHA to learn and distinguish the 2D graph struc-
tures. Specifically, the atom representations H are initialized by concatenating the atom features h
and the perturbed 3D coordinates x(t), the pair representations E are initialized by concatenating
the pair features e and the distances between each atom pair. H and E are then iteratively refined
by RMHA. The single-head RMHA is defined below with the multi-head version in Appendix C.2:

[Q;K;V] = [Wq;Wk;Wv]H
⊤, (1) [QE ;VE ] = tanh([Weq;Wev]E

⊤), (2)

ai,j = softmaxj(
(QE

i,j ⊙Qi)K
⊤
j√

d
), (3) Oi =

N∑
j=1

ai,j(V
E
i,j ⊙Vj), (4)

where ⊙ denotes element-wise product; softmaxj denotes softmax along the j dimension; linear
projectors Wq , Wk, and Wv generate queries, keys, and values for atom representations, Weq and
Wev generate queries and values for pair representations; Oi is RMHA’s output for the i-th atom;
and QE

i,j ,V
E
i,j ∈ Rd are the query and value for the atom pair representation (i, j).

RMHA uses the pair-level query QE
ij and key VE

ij of E to modify the nodel-level query Qi and value
Vj through element-wise multiplication (⊙), enabling RMHA to fully incorporate pair representa-
tions. Specifically, the pair E affects attention scores via (QE

ij ⊙Qi)K
⊤
j , and affects the aggregated

attention values via VE
ij⊙Vj . In this way, the output O is adaptively informed by the structural and

interaction information in E. After RMHA, Oi is passed to an MLP to update the atom representa-
tion Hi, and the linear combination of Oi and Oj is used to update the pair representation Ei,j . As
Figure 2b illustrates, residual connections and adaLNs are included for improved performance.

Random Rotation Augmentation. Following AlphaFold3 (Abramson et al., 2024), we apply the
same random rotation augmentation on both the input 3D coordinates (x(t)) and the target 3D co-
ordinates (ϵ(t)) to help DMT obtain equivariance to rotated inputs by learning. While (Wang et al.,
2024) report decreased performance given random rotations, DMT benefits from it, potentially due
to the improved neural architecture.

3.3 MOLLAMA REPRESENTATIONS IMPROVE DMT’S 3D CONFORMER PREDICTION

We explore the transfer learning between molecular 1D sequences and 3D conformers. As Figure 3
illustrates, we leverage MoLlama’s pretrained representation to improve DMT’s 3D conformer pre-
diction. This is achieved by our cross-modal projector and the corresponding training paradigm.

Cross-Modal Projector. This projector enables DMT to effectively leverage MoLlama for atom
representation, addressing two challenges: (1) MoLlama uses causal self-attention, where each to-
ken only perceives preceding tokens, limiting the representation quality; and (2) SELFIES tokens
do not map directly to individual atoms. Mitigating the first issue, we feed MoLlama’s SELFIES
representations into a single-layer bi-directional self-attention (Vaswani et al., 2017), expanding the
receptive field for every SELFIES token. Further, we program the SELFIES-to-atom mapping using
the SELFIES and RDKit software. For atoms corresponding to multiple SELFIES tokens, we obtain
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its representation by mean pooling; for hydrogen atoms without corresponding SELFIES tokens, we
use a learnable token as a replacement. The output of the SELFIES-to-atom mapping is then fed into
an MLP and concatenated with DMT’s original atom representations for 3D conformer prediction.

Training Strategy. As Figure 3b illustrates, we fine-tune a pretrained DMT to incorporate MoLlama
representations, instead of training a new DMT from scratch using MoLlama representations, to
save computation. Throughout the process, MoLlama uses LoRA tuning (Hu et al., 2021) to save
memory. The training strategy consists of three stages. In the first stage, we train a standalone DMT
without MoLlama until convergence. In the second stage, we attach MoLlama and the cross-modal
projector to the pretrained DMT, keeping the DMT parameters frozen, and train for 10 epochs to
warmup the random parameters in the projector and LoRA. This step prevents the gradients from
the random parameters from distorting the pretrained DMT parameters (Kumar et al., 2022). In the
final stage, we fine-tune the entire integrated model until convergence.

When incorporating MoLlama representations into DMT, we find that canonical SELFIES performs
better than randomized SELFIES. This may be because bridging the gap between 1D MoLlama and
3D DMT is challenging, and using the fixed canonical representations leads faster convergence.

4 EXPERIMENT

In this section, we evaluate NEXT-Mol’s performance on de novo 3D molecule generation, 3D
conformer prediction, and conditional 3D molecule generation. We also present ablation studies to
demonstrate the effectiveness of each component of NEXT-Mol.

4.1 EXPERIMENTAL SETTINGS

Table 1: Datasets for each task.

Task Dataset

De novo 3D Mol Gen GEOM-DRUGS, QM9-2014
3D Conformer Pred GEOM-DRUGS, GEOM-QM9
Conditional 3D Mol Gen QM9-2014

Datasets. As Table 1 shows, we evaluate
on the popular GEOM-DRUGS (Axelrod &
Gomez-Bombarelli, 2022), GEOM-QM9 (Ax-
elrod & Gomez-Bombarelli, 2022), and QM9-
2014 (Ramakrishnan et al., 2014) datasets.
Among them, we focus on GEOM-DRUGS,
which is the most pharmaceutically relevant and largest one. Due to different tasks incorporating
different dataset splits, we separately fine-tune NEXT-Mol for each task without sharing weights.

Baselines. For de novo and conditional 3D molecule genration tasks, we compare NEXT-Mol
with baselines of CDGS (Huang et al., 2023a), JODO (Huang et al., 2024), MiDi (Vignac et al.,
2023b), G-SchNet (Gebauer et al., 2019), G-SphereNet (Luo & Ji, 2022), E-NF (Garcia Satorras
et al., 2021), EDM (Hoogeboom et al., 2022), MDM (Huang et al., 2023b), GeoLDM (Xu et al.,
2023), EEGSDE (Bao et al., 2023), EQGAT-diff (Le et al., 2024), MolGPT (Bagal et al., 2021),
and MolGen (Fang et al., 2024). For 3D conformer prediction, we report baseline performances
of RDKit (Landrum, 2013), OMEGA (Hawkins, 2017), GeoMol (Ganea et al., 2021), GeoDiff (Xu
et al., 2022), Torsional Diffusion (Jing et al., 2022), Particle Guidance (Corso et al., 2024), and
MCF (Wang et al., 2024). More details on experimental settings are in Appendix D.

NEXT-Mol. Throughout the section, NEXT-Mol fine-tunes the pretrained 960M MoLlama for 1D
molecule generation. We have trained two versions of DMT: DMT-B of 55 million parameters
and DMT-L of 150 million. For the de novo and conditional 3D generation molecule tasks (cf.
Section 4.2 and Section 4.4), NEXT-Mol uses DMT-B. DMT uses 100 sampling steps by default.

4.2 De Novo 3D MOLECULE GENERATION

Experimental Setting. Generating a complete 3D molecule involves generating the 2D molecular
graph and the corresponding 3D conformer. Therefore, we evaluate both the predicted 2D molecu-
lar graphs (i.e., 2D-Metric), and the predicted 3D coordinates (i.e., 3D-Metric), following (Hooge-
boom et al., 2022; Huang et al., 2024). 2D-Metrics can be roughly grouped into three types: (1)
stability and validity: atom stability, molecule stability, and validity & completeness (V&C); (2)
diversity: validity & uniqueness (V&U), and validity & uniqueness & novelty (V&U&N); and (3)
distribution similarity between the generated molecules and the test set: similarity to nearest neigh-
bor (SNN), fragment similarity (Frag), scaffold similarity (Scaf), and Fréchet ChemNet Distance
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Table 2: Performances for de novo 3D molecule generation. * denotes our reproduced results using
their source codes. Other baseline results are borrowed from (Huang et al., 2024). 2D-Metric
evaluates the directly predicted 2D molecular graphs, whereas the 3D-Metric evaluates the predicted
3D coordinates or the 2D molecular graphs reconstructed from the 3D coordinates.

(a) Performances on the GEOM-DRUGS dataset.

2D-Metric FCD↓ AtomStable MolStable V&C V&U V&U&N SNN Frag Scaf

Train 0.251 1.000 1.000 1.000 1.000 0.000 0.585 0.999 0.584
MolGPT* 0.888 0.957 0.957 0.957 0.955 0.918 0.520 0.991 0.539
MolGen* 0.655 1.000 0.995 1.000 0.993 0.759 0.513 0.993 0.549
CDGS 22.051 0.991 0.706 0.285 0.285 0.285 0.262 0.789 0.022
JODO 2.523 1.000 0.981 0.874 0.905 0.902 0.417 0.993 0.483
MiDi* 7.054 0.968 0.822 0.633 0.654 0.652 0.392 0.951 0.196
EQGAT-diff* 6.310 0.999 0.998 0.959 0.993 0.702 0.368 0.986 0.147
NEXT-Mol, ours 0.334 1.000 0.999 1.000 0.999 0.945 0.529 0.999 0.552

3D-Metric FCD↓ AtomStable Bond length↓ Bond angle↓ Dihedral angle↓
Train 13.73 0.861 1.56E-04 1.81E-04 1.56E-04
EDM 31.29 0.831 4.29E-01 4.96E-01 1.46E-02
JODO 19.99 0.845 8.49E-02 1.15E-02 6.68E-04
MiDi* 23.14 0.750 1.17E-01 9.57E-02 4.46E-03
EQGAT-diff* 25.89 0.846 1.23E-01 5.29E-02 2.17E-03
NEXT-Mol, ours 14.69 0.848 2.05E-02 8.18E-03 2.31E-04

(b) Performances on the QM9-2014 dataset.

2D-Metric FCD↓ AtomStable MolStable V&C V&U V&U&N SNN Frag Scaf

Train 0.063 0.999 0.988 0.989 0.989 0.000 0.490 0.992 0.946
MolGPT* 0.461 0.975 0.975 0.975 0.936 0.763 0.523 0.958 0.923
MolGen* 0.085 1.000 0.988 1.000 0.955 0.479 0.500 0.988 0.934
CDGS 0.798 0.997 0.951 0.951 0.936 0.860* 0.493 0.973 0.784
JODO 0.138 0.999 0.988 0.990 0.960 0.780* 0.522 0.986 0.934
MiDi* 0.187 0.998 0.976 0.980 0.954 0.769 0.501 0.979 0.882
EQGAT-diff* 2.157 1.000 0.972 1.000 0.996 0.695 0.479 0.949 0.707
NEXT-Mol, ours 0.070 1.000 0.989 1.000 0.967 0.802 0.530 0.992 0.945

3D-Metric FCD↓ AtomStable Bond length↓ Bond angle↓ Dihedral angle↓
Train 0.877 0.994 5.44E-04 4.65E-04 1.78E-04
E-NF 4.452 0.847 6.17E-01 4.20E-01 5.60E-03
G-SchNet 2.386 0.957 3.62E-01 7.27E-02 4.20E-03
G-SphereNet 6.659 0.672 1.51E-01 3.54E-01 1.29E-02
EDM 1.285 0.986 1.30E-01 1.82E-02 6.64E-04
MDM 4.861 0.992 2.74E-01 6.60E-02 2.39E-02
JODO 0.885 0.992 1.48E-01 1.21E-02 6.29E-04
MiDi* 1.100 0.983 8.96E-01 2.08E-02 8.14E-04
EQGAT-diff* 1.519 0.988 4.09E-01 1.91E-02 1.14E-03
NEXT-Mol, ours 0.879 0.993 1.15E-01 7.32E-03 1.95E-04

(FCD) (Polykovskiy et al., 2020). For 3D-Metrics, we follow (Hoogeboom et al., 2022) to evaluate
the predicted 3D molecules by assessing atom stability, and FCD of the 2D molecular graphs re-
constructed from predicted 3D coordinates. Additionally, 3D-Metrics includes the maximum mean
discrepancy (MMD) (Gretton et al., 2012) for bond lengths, bond angles, and dihedral angles to
evaluate geometric similarity to the test set. We also report training set performance for reference.
The experimental results are presented in Table 2. We can observe that:

Obs. 1: NEXT-Mol Demonstrates Leading Performances for 3D Molecule Generation. It
achieves the best performance across all metrics on GEOM-DRUGS, and achieves the best per-
formance in 14 out of 15 metrics on QM9-2014. Although CDGS shows a higher novelty score on
QM9-2014, it significantly underperforms NEXT-Mol for other metrics. This observation shows that
NEXT-Mol is highly effective at generating chemically valid and diverse 3D molecular structures.
Its strong performance on both large (i.e., GEOM-DRUGS) and small (i.e., QM9-2014) molecules
highlights its robustness and potential as a foundation model for various tasks.
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Table 3: 3D conformer prediction results. Baseline results are from (Jing et al., 2022; Corso et al.,
2024; Wang et al., 2024). * denotes reproduction using their codes. -R←Recall and -P←Precision.
(a) Performances on the GEOM-DRUGS dataset. TD w/ PG denotes torsional diffusion with particle guidance.

COV-R (%)↑ AMR-R ↓ COV-P (%)↑ AMR-P ↓
Method Model Size Mean Median Mean Median Mean Median Mean Median

Model size ≤ 100M
RDKit - 38.4 28.6 1.058 1.002 40.9 30.8 0.995 0.895
OMEGA - 53.4 54.6 0.841 0.762 40.5 33.3 0.946 0.854
GeoMol 0.3M 44.6 41.4 0.875 0.834 43.0 36.4 0.928 0.841
GeoDiff 1.6M 42.1 37.8 0.835 0.809 24.9 14.5 1.136 1.090
Torsional Diffusion 1.6M 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729
TD w/ PG 1.6M 77.0 82.6 0.543 0.520 68.9 78.1 0.656 0.594
TD w/ PG* 1.6M 73.8 79.3 0.566 0.539 65.2 70.8 0.680 0.615
MCF-S 13M 79.4 87.5 0.512 0.492 57.4 57.6 0.761 0.715
MCF-B 64M 84.0 91.5 0.427 0.402 64.0 66.2 0.667 0.605
DMT-B, ours 55M 85.4 92.2 0.401 0.375 65.2 67.8 0.642 0.577

Model size > 100M
MCF-L 242M 84.7 92.2 0.390 0.247 66.8 71.3 0.618 0.530
DMT-L, ours 150M 85.8 92.3 0.375 0.346 67.9 72.5 0.598 0.527

(b) Performances on the GEOM-QM9 dataset.

COV-R (%)↑ AMR-R ↓ COV-P (%)↑ AMR-P ↓
Method Model size Mean Median Mean Median Mean Median Mean Median

RDKit - 85.1 100.0 0.235 0.199 86.8 100.0 0.232 0.205
OMEGA - 85.5 100.0 0.177 0.126 82.9 100.0 0.224 0.186
GeoMol 0.3M 91.5 100.0 0.225 0.193 86.7 100.0 0.270 0.241
GeoDiff 1.6M 76.5 100.0 0.297 0.229 50.0 33.5 0.524 0.510
Torsoinal Diffusion 1.6M 92.8 100.0 0.178 0.147 92.7 100.0 0.221 0.195
MCF-B 64M 95.0 100.0 0.103 0.044 93.7 100.0 0.119 0.055
DMT-B, ours 55M 95.2 100.0 0.090 0.036 93.8 100.0 0.108 0.049

Table 4: Incorporating MoLlama’s 1D representations to improve DMT’s 3D conformer prediction.

COV-R (%)↑ AMR-R ↓ COV-P (%)↑ AMR-P ↓
Dataset Method Mean Median Mean Median Mean Median Mean Median

GEOM-
DRUGS

DMT-B 85.4 92.2 0.401 0.375 65.2 67.8 0.642 0.577
+MoLlama 86.1 92.1 0.383 0.367 66.2 68.6 0.626 0.566

DMT-L 85.8 92.3 0.375 0.346 67.9 72.5 0.598 0.527
+MoLLama 87.1 93.0 0.360 0.334 68.1 71.8 0.595 0.525

GEOM-
QM9

DMT-B 95.2 100.0 0.090 0.036 93.8 100.0 0.108 0.049
+MoLlama 95.6 100.0 0.083 0.036 94.2 100.0 0.097 0.044

Obs. 2: NEXT-Mol is Powerful in Capturing 1D/2D Molecular Characteristics, including SNN,
Frag, Scaf, and FCD. Notably, it improves the FCD from 0.655 to 0.334 on GEOM-DRUGS, achev-
ing a 49% relative improvement. This good performance is attributed to MoLlama’s extensive pre-
training, which lays a strong foundation for the subsequent 3D conformer prediction.

4.3 3D MOLECULAR CONFORMER PREDICTION

Experimental Setting. The setting follows (Jing et al., 2022). Evaluation metrics include Average
Minimum RMSD (AMR), which measures the distance between a predicted conformer and a ground
truth, and Coverage (COV), which measures the proportion of predicted conformers that are suffi-
ciently close to a ground truth. Due to a 2D molecule can have multiple ground truth and predicted
conformers, we report both precision (comparing a prediction to its most similar ground truth) and
recall (comparing a ground truth to its most similar prediction) for AMR and Coverage.

Obs. 3: DMT Demonstrates Leading Performance for 3D Conformer Prediction. Table 3 com-
pares DMT and baselines for 3D conformer prediction. We can observe that DMT-B outperforms
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Table 5: Performance of conditional 3D molecule generation on the QM9-2014 dataset. We report
MAE ↓ between the desired properties and the predicted properties of the generated samples. Base-
line results are from (Huang et al., 2024). We bold the best performance.

Method µ (D) α (Bohr3) Cv

( cal
mol K

)
εHOMO (meV) εLUMO (meV) ∆ε (meV)

EDM 1.123 2.78 1.065 371 601 671
EEGSDE 0.777 2.50 0.941 302 447 487
GeoLDM 1.108 2.37 1.025 340 522 587
JODO 0.628 1.42 0.581 226 256 335
NEXT-Mol, ours 0.507 1.16 0.512 205 235 297
L-Bound 0.043 0.09 0.040 39 36 65

5 10 20 50 100
Sampling Step (log scale)

0.10

0.12

A
M

R

GEOM-QM9
AMR-Recall
AMR-Precision

5 10 20 50 100
Sampling Step (log scale)
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0.6

0.7

A
M
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GEOM-Drugs

AMR-Recall
AMR-Precision

Figure 4: Effect of sampling steps on AMR↓ for 3D conformer prediction using DMT-B.

MCF-B, and DMT-L surpasses MCF-L, even though DMT-L is only 60% of the size of MCF-L. This
improvement demonstrates that DMT can better utilize 2D molecular graph structures than MCF.
Further, DMT-L improves upon DMT-B, demonstrating DMT’s scalability. Both the improvements
above are attributed to DMT’s meticulously designed architecture, combining the power of scalabil-
ity while effectively leveraging the full information of 2D molecular graphs.

Obs. 4: MoLlama’s 1D Representation Improves DMT’s 3D Conformer Prediction. As Ta-
ble 4 shows, MoLlama enhances DMT on both GEOM-DRUGS and GEOM-QM9 datasets. This
observation demonstrates the potential to leverage the abundant 1D molecule sequences to improve
3D generation and design tasks, mitigating their data scarcity issue. Further, this observation high-
lights MoLlama’s value to generate expressive molecule representations for 3D tasks, beyond its 1D
molecule generation ability. Although MoLlama is pretrained only on 1D molecules, we hypothe-
size that large-scale pretraining helps it develop chemical heuristics useful for 3D prediction.

4.4 CONDITIONAL 3D MOLECULE GENERATION WITH QUANTUM CHEMICAL PROPERTIES

Adatping NEXT-Mol for Conditional Generation. We employ NEXT-Mol for conditional 3D
molecule generation targeting quantum chemistry properties. To adapt NEXT-Mol to incorporate
numerical conditions, the desired property values are encoded into vector embeddings using MLPs.
These embeddings are prepended to the SELFIES sequences during MoLlama fine-tuning, serving
as a soft-prompt to condition its output (Li & Liang, 2021), and are also fed into the DMT through
the condition MLP module (cf. Figure 2). See Appendix D.4 for details of this methodology.

Remark. Quantum chemical properties (e.g., HOMO-LUMO gap) often vary across a molecule’s
different 3D conformers. As a result, the 1D molecules generated by MoLlama alone cannot achieve
errors lower than the average across a molecule’s different conformers. To address this, we condition
DMT on the desired property value when predicting the 3D conformer, enabling DMT to find the
conformer that best matches the target property.

Experimental Settings. Following (Hoogeboom et al., 2022; Huang et al., 2024), we focus on six
properties of heat capacity Cv , dipole moment µ, polarizability α, highest occupied molecular orbital
energy ϵHOMO, lowest unoccupied molecular orbital energy ϵLUMO, and HOMO-LUMO gap ∆ϵ. For
evaluation, we report the mean absolute error (MAE) between the desired property values and the
predicted values of the generated molecules, using a property classifier network ϕc (Hoogeboom
et al., 2022). QM9-2014’s training set is split into two halves: Da and Db, each containing 50k
molecules. ϕc is trained on Da and NEXT-Mol is trained on Db. We report ϕc’s performance on Db

as the performance’s lower-bound (L-Bound). Table 5 shows the results.
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Table 6: Enhancing 3D molecule generation with MoLlama representations on GEOM-DRUGS.

Method 3D Pred. AtomStable MolStable FCD↓ Bond length↓ Bond angle↓ Dihedral angle↓

NEXT-Mol DMT-B 0.848 0.027 14.69 2.05E-02 8.18E-03 2.31E-04
+MoLLama 0.852 0.027 14.32 1.48E-02 8.08E-03 1.81E-04

Table 7: Ablating random rotation augmentation for 3D conformer prediction on GEOM-QM9.

COV-R (%)↑ AMR-R ↓ COV-P (%)↑ AMR-P ↓
Method Mean Median Mean Median Mean Median Mean Median

DMT-B 95.2 100.0 0.090 0.036 93.8 100.0 0.108 0.049
w/o rand rot aug. 95.2 100.0 0.095 0.040 93.3 100.0 0.113 0.053

Table 8: Ablating randomized SELFIES augmentations for 1D molecule generation on QM9-2014.

2D metrics AtomStable MolStable V&C V&U V&U&N SNN Frag Scaf FCD↓
MoLlama 1.000 0.989 1.000 0.967 0.802 0.530 0.992 0.945 0.070
w/o randomized aug. 1.000 0.988 1.000 0.948 0.395 0.491 0.989 0.939 0.074

Obs. 5: NEXT-Mol Outperforms Baselines for Conditional 3D Molecule Generation. The
improvements are consistent and significant, demonstrating NEXT-Mol’s ability to capture quantum
chemical properties. This good performance is partially attributed to DMT, which finds the 3D
conformer that best matches the desired property.

4.5 ABLATION STUDY

Sampling Steps. As shown in Figure 4, we observe an improving trend in AMR for both recall and
precision as the sampling steps increase from 5 to 100. The most significant improvements occur
between 5 and 20 steps, with diminishing returns beyond 50 steps. This indicates that our model can
half the inference cost by trading off a small amount of performance.

Enhancing 3D Molecule Generation with MoLlama Representations. For de novo 3D molecule
generation, NEXT-Mol uses DMT-B without MoLlama for conformer prediction by default. Here
we show that adding MoLlama representations to DMT-B further improves its performance on 3D-
metrics. As Table 6 shows, the improvements are consistent, with significant gains in geometric
measures (i.e., bond lengths, angles, and dihedral angles), highlighting MoLlama’s ability to en-
hance DMT’s prediction on 3D geometry.

Random Rotation Augmentation. Table 7 shows that DMT benefits from random rotation aug-
mentations. Unlike MCF (Wang et al., 2024), which relies on fixed canonical rotations, this is a key
improvement because real data may be out-of-distribution and do not follow canonical rotations.

Random SELFIES Augmentation. As Table 8 shows, using randomized SELFIES augmentation
significantly improves the novelty (i.e., V&U&N) of the generated samples. It also improves other
metrics, like SNN and FCD, highlighting its importance for 1D molecule generation.

5 CONCLUSION AND FUTURE WORKS

In this work, we presented NEXT-Mol, a foundation model for 3D molecule generation that inte-
grated the strengths of 1D SELFIES-based LMs and 3D diffusion models. NEXT-Mol demonstrated
leading performances in de novo 3D molecule generation, 3D conformer prediction, and conditional
3D molecule generation. These good performances are attributed to our focus on incorporating
chemical inductive biases without compromising model scalability, and they highlight NEXT-Mol’s
promising potential as a foundation model in the field. Additionally, NEXT-Mol showed that trans-
fer learning between 1D molecule sequences and 3D conformers can significantly improve 3D con-
former prediction performance, underscoring the value of leveraging the abundant 1D molecular
data to enhance 3D prediction tasks. Looking ahead, we plan to extend NEXT-Mol to process mul-
tiple molecular inputs, aiming to tackle structure-based molecule design and modeling interactions
between small molecules and proteins or RNAs, with real-world applications in drug discovery.
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6 ETHICS STATEMENT

Our research advances 3D molecule generation with the NExT-Mol model, aiming to enhance gener-
ative deep learning methods for molecular design. This work is primarily technical and foundational,
with applications in drug discovery and materials science. We have carefully considered potential
societal impacts and do not foresee any direct, immediate, or negative consequences. We are com-
mitted to the ethical dissemination of our findings and encourage their responsible use.

7 REPRODUCIBILITY STATEMENT

All the results in this work are reproducible. We provide all the necessary code to replicate our results
in an anonymous GitHub repository https://anonymous.4open.science/r/NEXT-Mol. The repository
includes environment configurations, run scripts, and other relevant materials.

We discuss the experimental settings for various tasks in Section 4, including details on parameters
such as sampling steps. Additionally, detailed experimental settings are provided in Appendix D.
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A LIMITATIONS

NEXT-Mol has several limitations that have not been addressed due to our limited computational
resources and other technical challenges. We outline these limitations below:

Explore Randomized SELFIES Data Augmentation in Pretraining. Although randomized
SELFIES augmentation shows promising results when fine-tuning MoLlama for 1D molecule gener-
ation, we do not use this augmentation technique during pretraining due to our limited computational
resources. We believe applying this technique in pretraining could lead to different outcomes. We
leave this exploration for future work.

Explore Pretrained Molecular Large LM with Bi-directional Self-Attention. MoLlama uses
causal self-attention, where each token can only attend to previous tokens. While this approach is a
good fit for 1D molecule generation, it constrains MoLlama’s potential for molecule representation
learning. To mitigate this issue, we have attached a bi-directional self-attention layer after MoLlama
(cf. Figure 3). However, a more natural solution would be to use a molecular LM with built-in bi-
directional self-attention. Due to resource constraints, we do not pursue this, and existing works are
often limited in scale (Irwin et al., 2022; Zheng & Tomiura, 2024). We hope this work draws more
attention to this area and encourages the development of more foundation models for biochemistry.

Explore NEXT-Mol for Struture-based Molecule Generation. We do not explore NEXT-Mol
for structure-based molecule generation (Zhang et al., 2023) due to the limited scope of this work.
However, NEXT-Mol could be extended for this task by conditioning the generation process on the
structural embeddings of target pockets, potentially using techniques like cross-attention, adaptive
layer normalization (Peebles & Xie, 2023), or soft-prompting (Li & Liang, 2021). We leave this
exploration for future work.

Limited Exploration on Diffusion Guidance. Our DMT model utilizes i.i.d. sampling, without
exploring advanced sampling method like classifier guidance () and particle guidance (Corso et al.,
2024). However, particle guidance demonstrates that a well-tuned guidance method can improve the
conformer prediction by 10% precision. This is because the 3D molecular conformational space is
large, and a guidance method with appropriate chemical inductive bias can improve the sampling
efficiency. We leave this exploration as a future work.

Computational Cost when Incorporating MoLlama for 3D Conformer Prediction. Incorporat-
ing MoLlama, a large LM with 960M parameters, increases training time. For example, training
DMT-B alone (55M parameters) takes 52 seconds per epoch on an A100 GPU, while DMT-B with
MoLlama takes 210 seconds. We mitigated this problem by using a pretrained DMT-B, instead of
training it from scratch, to reduce the training epochs when incorporating MoLlama. Yet, we will
need improvement when transferring 1D representations from a large LM.

Quadratic Memory Complexity of DMT’s Pair Representation. This pair representation incurs
an additional O(N2) GPU memory cost than the standard transformer, compared to the standard
transformer’s O(N) memory complexity when using FlashAttention, where N is the node number
of molecular graphs. While we encountered no memory issues on the GEOM-DRUGS dataset
(molecules with hundreds of nodes), this could be a bottleneck for molecules with thousands of
nodes. Potential solutions include smaller batch sizes and model parallelism.

B MORE EXPERIMENTAL RESULTS

B.1 ABLATION STUDY

Ablating MoLlama Pretraining. As Table 9 shows, pretraining significantly improves MoLlama’s
performances on the 1D distribution similarity metrics of SNN, Scaf and FCD, but slightly decreases
novelty score (V&U&N). This may be because the model without pretraining prefers a more random
sampling, increasing the novelty but reducing the similarity to the desired molecule distribution.
Pretraining does not significantly influence stability and validity measures, because they are mostly
guaranteed by the SELFIES representations.
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Table 9: Ablation study for the MoLlama pretraining for 1D molecule generation on the GEOM-
DRUGS dataset.

Method AtomStable MolStable V&C V&U V&U&N SNN Frag Scaf FCD↓
MoLlama 1.000 0.999 1.000 0.999 0.945 0.529 0.999 0.552 0.334
w/o pretraining 1.000 0.995 1.000 0.999 0.974 0.495 0.999 0.534 0.586

Table 10: Molecule property regression results on four MoleculeNet datasets (Wu et al., 2018).
Baseline results are from (Rollins et al., 2024). Lower↓ is better.

Method FreeSolv (RMSE) ESOL (RMSE) Lipo (RMSE) QM7 (MAE)

GNN-based methods
RF (Wang et al., 2022) 2.03±0.22 1.07±0.19 0.88±0.04 122.7±4.2
SVM (Wang et al., 2022) 3.14±0.00 1.50±0.00 0.82±0.00 156.9±0.0
GCN (Kipf & Welling, 2017) 2.87±0.14 1.43±0.05 0.85±0.08 122.9±2.2
GATv2 (Brody et al., 2022) 3.14±0.00 1.41±0.00 0.89±0.00 113.3±0.0
GIN (Xu et al., 2019) 2.76±0.18 1.45±0.02 0.85±0.07 124.8±0.7
SchNet (Schütt et al., 2018) 3.22±0.76 1.05±0.06 0.91±0.10 74.2±6.0
3D Infomax (Stärk et al., 2022) 2.23±0.26 0.95±0.04 0.74±0.01 -
MGCN (Lu et al., 2019) 3.35±0.01 1.27±0.15 1.11±0.04 77.6±4.7
D-MPNN (Yang et al., 2019) 2.18±0.91 0.98±0.26 0.65±0.05 105.8±13.2

Pretrained GNN-based methods
Pretrain-GNN (Hu et al., 2020) 2.83±0.12 1.22±0.02 0.74±0.00 110.2±6.4
MolCLR (Wang et al., 2022) 2.20±0.20 1.11±0.01 0.65±0.08 87.2±2.0

LM-based methods
ChemBERTa-2 (Ahmad et al., 2022) 2.047±0.00 0.889±0.00 0.798±0.00 172.8±0.00
MolPROP (Rollins et al., 2024) 1.70±0.09 0.777±0.02 0.733±0.02 151.8±10.0
MoLlama, ours 1.59±0.04 0.740±0.01 0.627±0.01 63.5±1.6

B.2 MOLECULE PROPERTY PREDICTION RESULTS FOR MOLLAMA

Experimental Settings. To evaluate MoLlama’s capabilities beyond 1D molecule generation, we
apply it to molecular property prediction tasks, highlighting the quality of its molecular representa-
tions. Following the setup in (Rollins et al., 2024), we fine-tune MoLlama on four MoleculeNet (Wu
et al., 2018) datasets: FreeSolv, ESOL, Lipo, and QM7. We adopt the same experimental settings
and dataset splits as (Rollins et al., 2024), reporting mean performance and standard deviation over
10 random seeds. For each run, MoLlama is trained for 100 epochs, with test performance selected
based on the validation dataset. We use a fixed learning rate of 1e-4 with the AdamW optimizer, and
fine-tune MoLlama using LoRA (Hu et al., 2021) (LoRA r = 8 and α = 32) applied to all linear
layers of the model. Following Section 3.3, we attach a single-layer bi-directional self-attention
layer after MoLlama to improve its encoding ability. After that, we apply a linear layer on the mean
embedding of all molecule tokens for property prediction.

Observation. As shown in Table 10, MoLlama significantly outperforms baseline methods, achiev-
ing relative improvements of 6.5%, 4.7%, 3.5%, and 16.9% on the FreeSolv, ESOL, Lipo, and QM7
datasets, respectively. Notably, our baselines include LM-based, GNN-based, and pretrained GNN-
based methods, and MoLlama’s better performance demonstrates its advantages derived from the
extensive pretraining.

B.3 INFLUENCE OF HYPERPARAMETERS

Different Noise Schedules at Inference Time. We test DMT-B’s robustness to different noise
schedulers at inference, using two representative options: the linear (Ho et al., 2020) and poly-
nomial (Hoogeboom et al., 2022) schedulers. The original noise scheduler, based on the cosine
function, follows (Nichol & Dhariwal, 2021). In this study, we use the existing DMT-B checkpoint
without retraining the model with these new schedulers, so the results are suboptimal.
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Table 11: DMT-B’s 3D conformer prediction performances on the GEOM-DRUGS dataset when
using different noise schedulers at inference time.

COV-R (%) ↑ AMR-R ↓ COV-P (%) ↑ AMR-P ↓
Noise schedule Mean Median Mean Median Mean Median Mean Median

linear 62.7 62.7 0.648 0.634 60.3 60.6 0.726 0.624
cosine, original 85.4 92.2 0.401 0.375 65.2 67.8 0.642 0.577
polynomial 84.9 91.7 0.454 0.421 64.5 66.2 0.685 0.619

Table 12: DMT-B’s 3D conformer prediction performances on the GEOM-DRUGS dataset when
using different batch sizes.

COV-R (%) ↑ AMR-R ↓ COV-P (%) ↑ AMR-P ↓
Batch size Mean Median Mean Median Mean Median Mean Median

128 85.5 92.4 0.395 0.366 65.1 68.0 0.644 0.575
256, original 85.4 92.2 0.401 0.375 65.2 67.8 0.642 0.577
512 85.1 92.0 0.410 0.377 64.9 67.7 0.645 0.582
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Figure 5: Comparison of conformer generation time on the test set of the GEOM-Drugs dataset
using various methods.

Observation. As shown in Table 11, the polynomial scheduler achieves performance close to the
cosine scheduler, likely because their curve shapes are similar. However, the linear scheduler results
in a significant performance drop, suggesting that retraining DMT-B with the linear scheduler is
necessary to achieve better results.

The Influence of Batch Size to 3D Conformer Prediction. We evaluate the performance of DMT-
B with different batch sizes. The original batch size of 256 was chosen to maximize GPU utilization.
To assess the impact of batch size, we tested two variations: (1) reducing the batch size to 128, and
(2) increasing it to 512 using gradient accumulation.

Observation. As shown in Table 12, the performance with a 512 batch size is slightly worse than
the original model. This is likely due to underfitting caused by fewer training steps. We keep the
number of training epochs the same as the original experiment (256 batch size), therefore the larger
batch size results in fewer gradient updates, leading to reduced model performance. Other than this
observation, using the 128 batch size does not lead to significant difference than the original model.

B.4 COMPUTATIONAL TIME COMPARISON

We conducted a time comparison between our model and representative baselines for conformer
generation on the test set of the GEOM-Drugs dataset, which includes 1000 molecules. The base-
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Table 13: 3D Molecule stability performances. * denotes our reproduced results.

(a) GEOM-DRUGS dataset.

3D-Metric MolStable

Train 0.953
E-NF 0.045
G-SchNet 0.681
G-SphereNet 0.134
EDM 0.817
MDM 0.896
JODO 0.934
MiDi* 0.842
EQGAT 0.889
NExT-Mol, ours 0.946

(b) QM9-2014 dataset.

3D-Metric MolStable

Train 0.028
EDM 0.002
JODO 0.010
MiDi* 0.003
EQGAT 0.025
NExT-Mol, ours 0.027

lines include the OpenEye Omega (OpenEye, Cadence Molecular Sciences), TD w/ PG (Corso et al.,
2024), and xTB1. The results are shown in Figure 5.

These experiments were performed on a platform with an 8-core Intel Xeon Processor@2.90GHz
CPU and an NVIDIA A100 GPU and the time is measured in minutes and seconds. Please note that
the Omega and xTB are run on the CPU only, while DMT and Mollama are run on the GPU. So the
results may vary depending on the hardware.

B.5 3D MOLECULAR STABILITY PERFORMANCE

We do not report the 3D molecule stability metric (Hoogeboom et al., 2022) in the main part of this
work, because this metric presents a significant limitation on the GEOM-DRUGS dataset, showing
only 2.8% for the ground truth training set. We present the results here for backup purposes.

B.6 VISUALIZATION OF RANDOM SAMPLES

Visualizations of complete molecules sampled from NEXT-Mol on GEOM-Drugs and QM9 are
shown in Figure 6 and Figure 7, respectively. These samples are randomly selected to illustrate
the diversity and effectiveness of our model. The visualization includes 1D SELFIES sequences,
2D molecular graphs, and 3D conformers highlighting the spatial arrangement of atoms within the
molecules. Notably, in the complex GEOM-Drugs dataset, NEXT-Mol demonstrates its robustness
by consistently generating molecules without disconnected components and effectively preserving
the stable geometric planes of aromatic ring structures. These visualizations not only demonstrate
the fidelity of the molecules generated by NEXT-Mol with 1D SELFIES sequences along with 3D
spatial coordinates, but also emphasize the ability of our model to produce stable and chemically
valid conformers accommodating a wide range of molecular weights.

C FURTHER DETAILS ON METHODOLOGY

C.1 1D MOLECULE GENERATION WITH MOLECULAR LLAMA LM

Data Preparation. Following (Irwin et al., 2022), we collect 1.8 billion molecules from the ZINC-
15 database (Sterling & Irwin, 2015), significantly more than the 100 million molecules used in
previous studies (Irwin et al., 2022; Fang et al., 2024). We keep only molecules with molecular
weight≤500 Daltons and LogP≤5 (Flynn, 1980), and transform them into SELFIES (Krenn et al.,
2020) sequences. After canonicalizing the SELFIES and removing hydrogen atoms, the dataset
contains 90 billion tokens. We further filter the molecules in the valid and test sets of the GEOM-
QM9 and GEOM-DRUGS datasets (Axelrod & Gomez-Bombarelli, 2022) and randomly sampled
1% of the remaining data as the validation set.

1https://xtb-docs.readthedocs.io/en/latest/

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 6: Visualization of random samples generated by NEXT-Mol trained on GEOM-DRUGS.

Table 14: Hyperparameter for pretraining MoLlama.

hidden size 2048 hidden act silu
intermediate size 5632 batch size 512
max position embeddings 512 warmup steps 2000
num attention heads 32 min lr 4.00E-05
num hidden layers 22 init lr 4.00E-04
num key value heads 4 weight decay 1.00E-01
n query groups 4 grad clip 1.0

Randomized SELFIES Augmentation Details. In order to generate randomized SELFIES, we
first generate the randomized SMILES (Weininger, 1988), and transform the SMILES into SELF-
IES. We follow (Arús-Pous et al., 2019) for the implementation details of random SMILES, and
use a restricted random sampling of SMILES. Similarly, we also generate canonical SELFIES by
transforming canonical SMILES.

Pretraining Details. We train MoLlama from scratch for 1D molecule generation using a next-token
prediction objective. The code and hyperparameters are based on (Zhang et al., 2024), utilizing
Flash-Attention (Dao, 2024) and FSDP (Zhao et al., 2023) for faster training. We use a max context
length of 512, concatenating multiple SELFIES sequences into the same context, with any overflow
trimmed and used in the next context. We use the AdamW optimizer and a scheduler with linear
warmup and cosine decay. The key parameters are included in Table 14. We train the model for
555k global steps. The training was done on 4 NVIDIA A100-40G GPUs and took approximately
two weeks. The training log is shown in Figure 8.
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Figure 7: Visualization of random samples generated by NEXT-Mol trained on QM9-2014.

On the Advantages of Acheving 100% Validity beyond Validity Itself. We employ the 1D SELF-
IES representation for LM training. Here we elaborate on the other advantages beyond 100% valid-
ity, which are also crucial for real-world applications:

• Improving validity could improve other 2D metrics, like SNN, Frag, and Scaf. These metrics
measure the distributional similarity of 2D molecular structures of valid molecules. If a model still
generate invalid molecules, it is likely the model does not capture the true target distribution, which
contain only valid molecules. 100% validity helps the model learn from and sample from the valid
molecular structures, which is essential for molecule generation tasks. This is demonstrated by
our improved FCD, SNN, Frag, and Scaf metrics in Table 2.

• Improving validity could improve 3D geometry learning. The improved validity also leads to
better learning of 3D molecular geometry, because it grounds 3D structure prediction on valid
2D structures. Other joint 2D and 3D prediction methods (Huang et al., 2024; Vignac et al.,
2023b) can easily encounter invalid 2D structures when sampling 3D structures, therefore leads to
worse 3D structure prediction. This is demonstrated by NEXT-Mol’s significant improvements in
geometry similarity metrics (e.g., bond angle and bond length) in Table 2.

C.2 3D CONFORMER PREDICTION WITH DIFFUSION MOLECULAR TRANSFORMER

Diffusion Process. Here we elaborate on the details of our diffusion process. Following (Nichol &
Dhariwal, 2021; Huang et al., 2024), we use the cosine scheduler controlling the noise scale for the
diffusion process:

ᾱt =
f(t)

f(0)
, f(t) = cos

(
t+ s

1 + s
· π
2

)
, (5)
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Figure 8: Visualization of MoLlama’s training and validation PPL log during pretraining.

where t ∈ (0, 1] is the time step, and s is a hyperparameter empirically set to 0.008, follow-
ing (Nichol & Dhariwal, 2021).

Our pseudo codes for training and sampling are shown in Algorithm 1 and Algorithm 2 below.
Following (Ho et al., 2020), we have the following hyperparameters used in the pseudo-codes for
training and sampling:

α(t) = ᾱ(t)/ᾱ(t−1), σ(t) =
√
1− α(t). (6)

Algorithm 1 Training

1: t ∼ U(0, 1] {Sample a time step}
2: G(0) = (x(0),h, e) ∼ Training Set {Sample a 3D molecule}
3: x(0) ← x(0) − x̄(0) {Centering molecule coordinates}
4: x(0) ← x(0)R, where R ∈ SO(3) is randomly sampled {Random rotation augmentation}
5: ϵ(t) ∼ N (0|I)
6: x(t) =

√
ᾱ(t)x(0) +

√
1− ᾱ(t)ϵ(t) {Forward diffusion}

7: G(t) ← (x(t),h, e)
8: Minimize loss L = ||ϵ(t) − DMT(G(t), t)||22

Algorithm 2 Sampling 3D Conformers

Require: time steps {ti}Mi=1, a 2D molecular graph G2D ← (h, e)
1: x(t1) ∼ N (0, I) {Set the initial noise conformer}
2: for i← 1 to M do
3: t← ti−1, s← ti {Set time step}
4: G(t) ← (x(t),h, e)
5: z ∼ N (0, I) if i < M else z = 0

6: x(s) = 1√
αt

(
x(t) − 1−α(t)√

1−ᾱ(t)
DMT(G(t), t)

)
+ σ(t)z {Update conformer}

7: end for
8: return x(M)

RMHA. Here we define the multi-head version of RMHA. Similar to the single-head version, we
first generate the queries, keys, and values for atom representation H, and generate the queries and
values for pair representation E:

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

[Q;K;V] = [Wq;Wk;Wv]H
⊤, (7) [QE ;VE ] = tanh([Weq;Wev]E

⊤), (8)

Subsequently, we define the Relational-Attention (R-Attention) module, which is the combination
of Equation 3 and Equation 4:

O = R-Attention(Q,K,V,QE ,VE), (9)

where Oi =

N∑
j=1

ai,j(V
E
i,j ⊙Vj), (10)

ai,j = softmaxj(
(QE

i,j ⊙Qi)K
⊤
j√

d
). (11)

After this, the muli-head version of RMHA can be written as:

RMHA(Q,K,V,QE ,VE) = Concat(O1, ...,Oh)Wo (12)

where Of = R-Attention(WqfQ,WkfK,WvfV,WeqfQ
E ,WevfV

E),
(13)

where h is the number of head; f ∈ [1, h]; Wo is the linear projector combining outputs of different
heads; and Wqf , Wkf , and Wvf are linear projectors for the f -th head of atom representations;
and Weqf and Weqf are linear projectors for the f -th head of the pair representation.

C.3 MOLLAMA REPRESENTATIONS IMPROVE DMT’S 3D CONFORMER PREDICTION

Details of SELFIES-to-Atom Mapping. The mapping process is not straightforward with existing
software, so we have to manually code a significant portion. For details on the full implementation,
please refer to our code. In brief, the SELFIES software provides a mapping between SELFIES and
SMILES tokens, and RDKit gives the atom order when generating SMILES. We manually convert
this atom order into a mapping between SMILES and atom indices, then combine the SELFIES-
to-SMILES and SMILES-to-atom mappings into the SELFIES-to-atom mapping. Additionally, we
handle missing hydrogen atoms in both SMILES and SELFIES during the mapping process.

Rationale behind Transfer Learning between 1D Molecule Sequences and 3D Conformers. The
final goal of this transfer learning is to leverage the billion-scale 1D/2D molecule dataset to improve
the 3D conformer prediction performance, which is constrained by limited 3D data. For clarity, we
decompose the rationale into the following chain of arguments:

• 3D conformers are theoretically governed by 2D molecular graphs under quantum mechan-
ics (QM). 3D molecular properties and structures are fundamentally rooted in QM. Using (ap-
proximated) QM-based methods, like DFT, we can accurately predict 3D conformers from 2D
molecular graphs, though at high computational cost. This establishes the critical role of 2D
representations in determining 3D structures.

• 3D conformer prediction relies on high quality 2D molecule representations. Deep learning
models predict 3D conformers from 2D graphs, and their performance is heavily influenced by the
quality of 2D molecular representations. Transfer learning can enhance 2D molecular representa-
tions, as demonstrated by prior works (Hu et al., 2020; Liu et al., 2022; Hou et al., 2022).

• 1D molecular representations can be converted to 2D molecular representations, and con-
tribute to 3D prediction. 1D molecule sequences encode the same information as 2D molecular
graphs, and the 1D to 2D transformation can be achieved by deterministic toolkit, like RDkit.
Leveraging RDkit and our proposed cross-modal projector (cf. Section 3.3), we can transform
1D molecular representations to 2D molecular representations, and therefore contribute to the 3D
prediction. We have demonstrated this improvement in Table 4, where using the pretrained 1D
representations improve 3D conformer prediction.

• 1D pretraining scales more effectively than 2D. Given the billion-scale 1D/2D molecule dataset,
we mostly prioritize the scalability when selecting the pretraining method. After literature review,
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Table 15: Hyperparameters of the DMT-B and DMT-L models.

DMT-B DMT-L

n layers 10 12
atom hidden size 512 768
atom intermediate size 2048 3072
pair hidden size 128 192
pair intermediate size 512 768
n heads 8 8
total params 55M 150M
optimizer AdamW
init lr 1.00E-04
min lr 1.00E-05
warmup lr 1.00E-06
warmup steps 1000
weight decay 0.05

we find that 1D LM-based pretraining methods, like Llama (Touvron et al., 2023) and BERT (De-
vlin et al., 2019), are extensively demonstrated for scalability and effectiveness. Therefore, we opt
to 1D pretraining instead of 2D pretraining.

D EXPERIMENTAL DETAILS

D.1 DMT CONFIGURATIONS

Hyperparameter. Table 15 shows the key hyperparameters used for training the DMT-B and DMT-
L models. Other hyperparameters, like batch size and training epochs, are separately listed for each
task in the following sections.

Features. We use the same atom features and pair features as (Jing et al., 2022). For the GEOM-
DRUGS dataset, the atom feature has 74 dimensions; for the QM9-2014 and GEOM-QM9 datasets,
the atom feature has 44 dimensions. The bond feature has 4 dimensions.

D.2 TASK: De Novo MOLECULE GENERATION

For De Novo molecule generation, we separately train NEXT-Mol for the GEOM-DRUGS and the
QM9-2014 datasets. This process involve training both the MoLlama and DMT of NExT-Mol.

MoLlama Settings. For QM9-2014, we use a batch size of 512 and train for 100 epochs, while
for GEOM-DRUGS, we use a batch size of 256 and train for 20 epochs. For sampling, we employ
a sampling temperature of 1.0 and, beam size of 1, and we sample 10,000 molecules for evalua-
tion. We use the AdamW optimizer and a learning rate scheduler with linear warmup and cosine
decay. The optimizer hyperparameters are as follows: init lr=1e-4, min lr=1e-5, warmup lr=1e-6,
warmup steps=1000, and weight decay=0.05.

DMT Settings. We use a dropout rate of 0.1 for QM9-2014 and 0.05 for GEOM-DRUGS. Follow-
ing (Huang et al., 2024), we select only the conformer with the lowest energy for training on the
GEOM-DRUGS dataset. For both datasets, we train DMT-B for 1000 epochs. The batch size for
QM9-2014 is 2048 and the batch size for GEOM-DRUGS is 256.

Details on the Evaluation Metrics. We use the MMD distance when computing the distributional
similarity of bond lengths, bond angles, and dihedral angles. Kekulization is performed when com-
puting molecule and atom stability for 2D molecules, but not 3D molecules. We use canonicalized
SMILES for both the generated molecules and the training dataset when computing novelty and
uniqueness of molecules. All the baselines are consistently evaluated under the same setting above.
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D.3 TASK: 3D CONFORMER PREDICTION

Training Details. We elaborate the training details for each of the three training stages in Sec-
tion 3.3.

• Stage 1: DMT Training. For GEOM-QM9, we train the DMT-B model for 2000 epochs with a
batch size of 2048. For GEOM-DRUGS, we train both the DMT-B and DMT-L models for 3000
epochs with batch size 256. Note that, for each epoch, we randomly sample a 3D conformer for
each molecule, but not enumerate all the 3D conformers of that molecule. The resulting models
(i.e., DMT-B and DMT-L) are used directly for evaluation in Table 3.

• Stage 2: Projector Warmup. For both datasets, we train only the LoRA weights of MoLlama,
and the cross-modal projector for 10 epochs. The pretrained weights of DMT and MoLlama are
frozen throughout the process.

• Stage 3: Integrated Fine-tuning. For both datasets, we train the integrated model for 500 epochs.
We train the LoRA weight of MoLlama, the cross-modal pojector, and the DMT model. The
pretrained weights of MoLlama are frozen throughout the process.

Evaluation. Following (Wang et al., 2024; Jing et al., 2022), we use the dataset split of
243473/30433/1000 for GEOM-DRUGS and 106586/13323/1000 for GEOM-QM9, provided
by (Ganea et al., 2021). For a molecule with K ground truth conformers, we generate 2K con-
formers as predictions.

Evaluation Metrics. Let {C∗
l }l∈[1,L] be the L predicted conformers and let {Ck}k∈[1,K] be the K

ground truth conformers. The evaluation metrics AMR-R (AMR-Recall) and COV-R (COV-Recall)
can be formally defined as follows:

COV-R :=
1

L
|{l ∈ [1..L] : ∃k ∈ [1..K],RMSD(Ck, C

∗
l ) < δ}|, (14)

AMR-R :=
1

L

∑
l∈[1..L]

min
k∈[1..K]

RMSD(Ck, C
∗
l ), (15)

where δ is a threshold that is set to 0.75Å for GEOM-DRUGS and set to 0.5Å for GEOM-QM9, fol-
lowing (Wang et al., 2024; Jing et al., 2022). AMR-P (AMR-Precision) and COV-P (COV-Precision)
can be similarly defined by swapping the ground truth conformers and predicted conformers.

D.4 TASK: CONDITIONAL MOLECULE GENERATION

Details for Adapting NExT-Mol for Conditional Generation. For conditional molecule gener-
ation on the QM9-2014 dataset, we modify the NEXT-Mol architecture to incorporate property-
specific information into both the MoLlama language model and the DMT conformer prediction
model. This approach allows us to generate molecules with desired properties in both 1D sequence
and 3D structure spaces.

• Condioning MoLlama. We implement a condition MLP to encode property information into a
soft prompt. This MLP consists of two linear layers with a GELU activation function in between.
It transforms a single property value into a 4-token sequence embedding, each token having the
same dimensionality as the model’s hidden size. The resulting soft prompt is prepended to the
input sequence embeddings of SELFIES before being fed into the language model. We adjust the
attention mask accordingly to ensure the model attends to these conditional tokens.

• Condioning DMT. We use an MLP to process the property value, followed by a linear projection
to match the time embedding dimension. This processed condition is then added to the time
embedding, allowing the diffusion process to be guided by the desired property throughout the
denoising steps.

MoLlama Setting. For conditional molecule generation, we train MoLlama with a batch size of
256 for 100 epochs on the QM9-2014 dataset. We use a sampling temperature of 1.0, beam size of
5, and we sample 10,000 molecules for evaluation of each desired property.

DMT Setting. For the DMT-B model, we train with a batch size of 512 for 1000 epochs on the
QM9-2014 dataset. We employ a dropout rate of 0 with 100 sampling steps for evaluation.
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The optimizer and learning rate schedule are consistent with the de novo generation task, using
AdamW with a linear warmup followed by cosine decay. We train the conditional generation model
for six different quantum properties using the same optimization strategy as in the de novo generation
task. Each model is trained on 4 NVIDIA A100-80GB GPUs.
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