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Abstract001

Large Language Models (LLMs) demonstrate002
impressive general capabilities but often strug-003
gle with step-by-step reasoning, especially in004
complex applications such as games. While005
retrieval-augmented methods like GraphRAG006
attempt to bridge this gap through cross-007
document extraction and indexing, their frag-008
mented entity-relation graphs and overly dense009
local connectivity hinder the construction of co-010
herent reasoning. In this paper, we propose011
a novel framework based on Goal-Oriented012
Graphs (GoGs), where each node represents a013
goal and its associated attributes, and edges en-014
code logical dependencies between goals. This015
structure enables explicit retrieval of reason-016
ing paths by first identifying high-level goals017
and recursively retrieving their subgoals, form-018
ing coherent reasoning chains to guide LLM019
prompting. Our method significantly enhances020
the reasoning ability of LLMs in game-playing021
tasks, as demonstrated by extensive experi-022
ments on the Minecraft testbed, outperforming023
GraphRAG and other baselines.024

1 Introduction025

Leveraging the extensive knowledge embedded in026

Large Language Models (LLMs) within game en-027

vironments has the potential to benefit and trans-028

form a wide range of sectors, including virtual as-029

sistants, non-player characters (NPCs), and other030

interactive applications. Recent studies have ex-031

plored the application of LLMs in strategic games032

such as chess (Feng et al., 2023) and poker (Huang033

et al., 2024). Building on this progress, agents de-034

signed to tackle more challenging open-ended envi-035

ronments like Minecraft—such as Voyager (Wang036

et al., 2024) and GITM (Zhu et al., 2023)—have037

played a pivotal role in advancing the capabilities038

of LLM-based agents.039

Since LLMs are generally trained for broad,040

general-purpose tasks and often exhibit limited041

To make a wooden pickaxe in Minecraft, the player must first chop down a tree
to collect logs. These logs are then crafted into wooden planks, which are
further used to create sticks. The player then crafts a crafting table using
additional planks. Finally, by combining sticks and planks on the crafting table,
the wooden pickaxe is crafted and ready for use.

MineCraft Knowledge Base 

player, chop down, tree
tree, yield, logs
logs, crafted into, wooden planks
wooden planks, used to create, sticks
player, craft, crafting table
crafting table, crafted from, wooden planks
player, combine, sticks and planks
sticks and planks, used to craft, wooden pickaxe
wooden pickaxe, crafted on, crafting table

(1) Goal: craft a wooden pickaxe;
Pre-con: stick,  planks, crafting
table; Post-con: a wooden pickaxe
(2) Goal: craft a crafting table; ...
(3) Goal: craft planks; ....
(4) Goal: mine log; ....
(5) Goal: craft sticks; ...

GraphRAG

Our GoG

Figure 1: GraphRAG extracts an excessive number of
low-granularity entity–relation triples, which hinders ef-
fective reasoning over fragmented information. In con-
trast, our GoG captures procedural knowledge through
goal hierarchies, thereby supporting coherent and struc-
tured reasoning.

domain-specific knowledge in games, various ap- 042

proaches have been proposed to incorporate ex- 043

ternal game knowledge—either through retrieval 044

from specialized databases (Gao et al.; Edge et al., 045

2025) or by directly fine-tuning the LLMs for game- 046

specific purposes (Zhai et al., 2024). Notably, 047

GraphRAG-based methods (Guo et al., 2024; Wu 048

et al., 2024) have achieved superior results due to 049

their efficient extraction, organization, and index- 050

ing of entity–entity–relation triples, which enable 051

effective retrieval across multiple heterogeneous 052

game documents. 053

However, GraphRAG suffers from several no- 054

table limitations, particularly in tasks that require 055

extensive reasoning, such as Minecraft, where 056

agents must plan and act over multiple steps. A 057

key issue is that GraphRAG fragments documents 058
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into very small pieces, as it prioritizes local entity-059

level connections over global narrative coherence.060

For example, in our Minecraft setting, GraphRAG061

extracts 12,388 nodes and 18,347 edges from the062

source materials, which hinders the construction of063

coherent reasoning chains during retrieval. More-064

over, the abundance of entities results in overly065

dense 1-hop neighborhoods, especially around fre-066

quently occurring entities. Consequently, many067

retrieved nodes may be irrelevant to the input query068

and only loosely related to the central entity. This069

excessive retrieval introduces noise and can signifi-070

cantly degrade performance—a pitfall we observed071

when comparing GraphRAG to vanilla retrieval072

without graph augmentation.073

As the saying goes, “tearing paper is easy,074

putting it back together is hard”—a metaphor that075

aptly reflects the difficulty of reconstructing reason-076

ing chains in fragmented knowledge graphs. This077

motivates us to design an efficient knowledge ex-078

traction and organization framework that can effec-079

tively support multi-step reasoning. In this paper,080

we propose to construct a directed, goal-oriented081

graph (GoG), where each node represents a goal082

along with its associated attributes, and each edge083

encodes the logical relationship between two goals.084

Leveraging this novel graph structure, we design085

an effective retrieval strategy that first retrieves the086

most relevant goals and then iteratively retrieves087

their corresponding subgoals, thereby forming a088

complete reasoning chain. This reasoning chain089

significantly enhances the capabilities of LLMs in090

game-playing tasks compared to GraphRAG and091

its variants, as demonstrated by our extensive ex-092

periments on the Minecraft testbed.093

The comparison between GraphRAG and our094

method GoG is illustrated in the Figure 1. In this095

toy example, GraphRAG extracts 9 triples, making096

it difficult to summarize the logical reasoning re-097

quired to craft a wooden pickaxe. In contrast, our098

method extracts only 5 goals and subgoals, which099

are logically structured to clearly support the rea-100

soning process for online inference.101

Our contributions are summarized as follows:102

• We introduce an alternative framework to tra-103

ditional entity–relationship knowledge graphs-104

Goal-Oriented Graphs (GoGs), designed to facil-105

itate multi-step reasoning.106

• We propose a goal-driven retrieval that identifies107

the most relevant goals and recursively retrieves108

their subgoals, explicitly forming a reasoning109

chain to guide LLM prompting.110

• Extensive experiments on Minecraft environ- 111

ments demonstrate that our method achieves 112

superior performance compared to baseline ap- 113

proaches. 114

2 Related Work 115

LLM-Based Agents have been proposed for 116

Minecraft. For example, Voyager is an agent that 117

learns skills via lifelong learning (Wang et al., 118

2024). MP5 (Qin et al., 2024) focuses on leverag- 119

ing multimodal LLMs to perform planning based 120

on what the agent sees. Unlike these methods, our 121

method aims to improve an agent’s performance by 122

using goal-oriented knowledge extracted from text 123

sources. Two methods that are more closely related 124

to ours are GITM (Zhu et al., 2023) and Optimus- 125

1 (Li et al., 2024). GITM uses text knowledge from 126

the Minecraft Wiki and in-game recipes, as does 127

our method. However, we focus on the construc- 128

tion of Goal-Oriented Graphs from text sources 129

and the retrieval process for planning. On the other 130

hand, GITM is presented as a unified agent sys- 131

tem. Optimus-1 is a Minecraft agent that contains 132

a hierarchical knowledge graph that is used to de- 133

compose goals into subgoal. However, the process 134

in which their graph is created is different from 135

ours, and their agent is focused on the utilization 136

of multimodal memory. 137

Reasoning using LLMs is a popular research 138

area that aims to enable LLMs to handle more com- 139

plex tasks. There are a wide variety of methods, 140

including those that alter the prompt to encour- 141

age the LLM to output intermediate steps (Wei 142

et al., 2022), provide feedback from the environ- 143

ment to the LLM so that it can adjust its behaviour 144

accordingly (Yao et al., 2023b; Shinn et al., 2023), 145

maintaining and expanding multiple generated rea- 146

soning sequences (Yao et al., 2023a), and using 147

majority choice voting (Wang et al., 2023). 148

RAG-Based Systems aim to address LLMs’ 149

knowledge gaps. RAG maintains a vector database 150

of source documents that can be retrieved a given 151

to the LLM as context information according the 152

embedding similarity of the source documents a 153

given query (Lewis et al., 2020). However, if the 154

answer to a given query spans across several docu- 155

ments, then the retrieval process may fail to contain 156

the answer. Therefore, GraphRAG and its variants 157

were proposed to address this issue (Edge et al., 158

2025; Wu et al., 2024; Guo et al., 2024). 159

Hierarchical Decomposition is a traditional 160
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method in AI to break complex problems into161

smaller sub-problems that has been used in areas162

including planning (Ghallab et al., 2004; Erol et al.,163

1994) and reinforcement learning (Dietterich et al.,164

1998; Sutton et al., 1999). These methods typically165

rely on domain knowledge or hand-crafted rules to166

establish the hierarchy of tasks. In this work, we167

aim to construct a hierarchy of goals in the form of168

a graph by constructing it from text data sources.169

3 Methodology170

Our method, illustrated in Figure 2, consists of two171

main phases: goal-oriented knowledge base con-172

struction and reasoning-aware inference. In the first173

phase, we construct a directed graph whose nodes174

represent goals such as “craft a wooden pickaxe”175

and edges represent subgoal relationships between176

goals. During inference, we use the constructed177

knowledge base to recursively search for step-by-178

step reasoning paths, which are followed to guide179

LLM prompting for the given task.180

In the following subsections, we describe the two181

phases of our proposed method, using Minecraft as182

the testbed for illustration.183

3.1 Goal Knowledge Base Construction184

In the first phase of our method, we construct a di-185

rected graph G = (V,E), where V is a set of nodes186

and E ⊆ V × V is a set of edges from source to187

target nodes. Each node in the graph represents a188

goal, and each one is associated with a set of at-189

tributes consisting of its name, aliases, description,190

preconditions, and postconditions. The names of191

the nodes in our graph are goal-oriented phrases192

that succinctly describe the action involved and193

expected outcome of the goal, which is detailed fur-194

ther in the node’s description. The preconditions195

are a list of prerequisites that are needed before196

the goal can be pursued, and postconditions explic-197

itly describe the expected outcome of achieving198

the goal. Edges represent subgoal relationships199

between goals, and each edge is associated with200

a description to briefly explain how two goals are201

related.202

In the case of Minecraft, to craft a wooden203

pickaxe, our constructed graph includes a set of204

goals such as “craft a wooden pickaxe” and “craft205

planks.” Since both planks and sticks are required,206

the graph contains directed edges from the “craft207

a wooden pickaxe” node to the “craft sticks” and208

“craft planks” nodes, as shown on the right side of209

Figure 2. Furthermore, the goal “craft planks” de- 210

pends on acquiring logs, introducing an additional 211

subgoal relationship. In this manner, high-level 212

goals are recursively decomposed into subgoals 213

until they reach atomic operations. Preconditions, 214

such as required tools and materials, are also en- 215

coded in the graph to represent dependencies for 216

actions like crafting tools or mining ores. 217

To extract the goal-related information from 218

large text-based data sources, we utilize LLMs. 219

However, LLMs have a limit to the amount of to- 220

kens that they can process in one query, and there- 221

fore the source text needs to be split into smaller 222

chunks that can fit an LLM’s context size. For each 223

chunk, we use an LLM to extract goals, their at- 224

tributes, and subgoal relationships between goals. 225

The prompt used for goal extraction is provided in 226

Appendix B. 227

3.2 Goal Merge and Subgoal Derivation 228

After extracting goals and subgoals from all text 229

chunks, two critical challenges must be addressed: 230

(1) duplicate goals may be extracted from differ- 231

ent chunks—how can they be effectively merged? 232

and (2) a goal identified in one chunk may have 233

a subgoal relationship with a goal from another 234

chunk—how can the complete subgoal relations be 235

derived? 236

The equivalence between new and existing goals 237

is determined by the similarity between their name 238

embeddings, and further verified using the precon- 239

ditions and postconditions of each goal pair. To 240

perform the aggregation process, we use an text 241

embedding function f : T → Rd to map a given 242

text t ∈ T to a d-dimensional vector. In particu- 243

lar, for each newly extracted goal, we retrieve the 244

most similar goals from existing goal base by com- 245

paring the cosine similarity between their name 246

embeddings. Then, we compare the pre- and post- 247

conditions of the pairs of new goals and their most 248

similar existing goals. For a given new goal and 249

its most similar goal, we sort each of their lists of 250

preconditions and postconditions in alphabetical 251

order, and then we calculate the cosine similarity 252

between the embeddings of the pair after sorting. 253

We define a threshold to binarize the similarity of 254

text embedding. 255

If all pairs of corresponding conditions (precon- 256

ditions and postconditions) have similarity scores 257

above a threshold θ, the new goal is considered 258

equivalent to an existing one. Otherwise, the new 259

goal is added to the goal base as a distinct entry. 260
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Figure 2: An overview of our proposed method GoG. First, we construct a knowledge base of goals from source
text documents. Then, given a task instruction, we retrieve goal-oriented knowledge from the knowledge base to use
for plan generation.

In cases where the condition similarity is high but261

the name embedding similarity is lower than θ, we262

treat the new goal as an alias and append its name263

to the existing goal’s alias list. If both condition264

and name similarities are high, the goals are treated265

as identical.266

Once we have added a newly extracted goal to267

the knowledge base, the next step is to determine268

whether it has any subgoal relationships with any269

existing goals in our knowledge base. To do this,270

we use a process similar to the goal equivalence271

comparison described previously, but instead we272

will match preconditions of the goal to the postcon-273

ditions of existing goals, and vice versa. If there is274

a match, then we add a new edge to the knowledge275

base.276

After deduplicating goals and completing sub-277

goal relations across all chunks, we obtain a di-278

rected goal-oriented graph from the knowledge279

source, as shown in Figure 2.280

3.3 Goal Selection and Planning281

After constructing the knowledge base, we lever-282

age it to extract goal-oriented knowledge for down-283

stream tasks such as planning. The overall process284

is illustrated in Figure 3.285

Given a task query, such as “craft a wooden286

sword”, we retrieve the top-k goals from the our287

knowledge base according to the cosine similarity288

between the query and the goals’ names in the289

knowledge base. If k > 1, we need to determine290

which goal is the best match for the query. To do291

this, we utilize LLMs to select the goal from the 292

top-k retrieved options by giving it the goal names, 293

descriptions, and postconditions. The prompt given 294

to an LLM to select the best matching goal from 295

the k candidates is provided in Appendix B. 296

After selecting the goal that matches the query, 297

we retrieve all subgoals using depth-first search 298

(DFS) starting from the selected goal. We avoid in- 299

finite loops caused by cyclical subgoal relations by 300

not going deeper when a node that has already been 301

visited is seen again. After retrieving subgoals, it 302

may be the case that there are multiple ways to 303

achieve the overall goal. In this case, a procedure 304

to select the best set of subgoals is needed, which 305

may depend on the use case scenario. 306

With the set of goals, their attributes, and edges 307

indicating subgoal relationships, we end up with a 308

goal tree. We traverse the tree to obtain a complete 309

list of preconditions which, in Minecraft, is a list 310

of materials and tools needed to achieve the overall 311

goal. At last, we perform planning by providing 312

this information to an LLM and prompting it to 313

generate a plan. The planning prompt we use is 314

provided in Appendix B. 315

3.4 GraphRAG vs GoG 316

Here we summarize the major differences between 317

GraphRAG and our proposed GoG. GraphRAG 318

organizes knowledge into fragmented, low- 319

granularity entity–relation triples, which limits its 320

ability to support coherent reasoning—much like 321

trying to reconstruct evidence from shredded pieces 322
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(3) Goal
 Inference

Task

Make a wooden
pickaxe for me

Goal-oriented Graph

Retrieved Goals

(1) Craft a wooden
pickaxe
(2) Craft a stone

...

(2) Return 
Top-K Goals

(1) Goal Retrieval

 Selected Goals

Craft a wooden
pickaxe

(4) Subgoal
       Retrieval

Retrieved Subgoals

(1) Craft planks
(2) Craft stick
(3) Chop a tree
(4) ......

(5) Return Subgoals

......

Query Flow

Figure 3: The query pipeline. For a given task, the top-k goals based on embedding similarity between the query
and the goals’ names are retrieved.

of paper. In contrast, we explicitly model abstract323

goals and subgoals as graph nodes, preserving the324

task hierarchy and enabling multi-step reasoning.325

For example, our GoG consists of 703 nodes and326

1,653 edges, whereas the knowledge graph con-327

structed using GraphRAG contains 12,388 nodes328

and 18,347 edges from the same source. This more329

compact and structured goal graph is better tailored330

for goal achievement and planning, as evidenced331

by the following results on the Minecraft testbed.332

4 Experiments333

4.1 Experimental Setup334

In this work, we use the Minecraft environment and335

tasks provided by (Li et al., 2024) to develop and336

evaluate our method. There are 66 tasks that are337

categorized into 7 groups: wood, stone, iron, gold,338

diamond, redstone, and armor. The difficulty of the339

task groups from easiest to hardest is wood, stone,340

iron, gold, then diamond. The redstone and armor341

groups contain tasks of mixed difficulty ranging342

from iron to diamond. More difficult tasks require343

longer plans to be generated and require the agent344

to find rarer materials. The agent has a limited345

number of in-game steps, defined based on the346

task’s group, to complete the task. The complete347

list of tasks and details can be found in Appendix C.348

Baselines. We compare our proposed method GoG349

to three baselines:350

Vanilla. This method uses few-shot examples351

of tasks and directly generate plans for given tasks352

from a given task instruction, without any further353

context information.354

GraphRAG. We prompt GPT-4o mini to con-355

struct a knowledge graph from the Minecraft Wiki 356

pages provided by MineDojo (Fan et al., 2022) 357

and in-game recipes using the method proposed 358

by Edge et al. (2025). During goal inference and 359

planning, context information is retrieved using lo- 360

cal search and inserted into the prompt given to 361

the LLM. This method uses the same source as our 362

GoG. 363

Hierarchical Knowledge Graph (HKG). This 364

baseline constructs a knowledge graph from in- 365

game recipe files as implemented by Li et al. 366

(2024), where each node is an item and edges are 367

dependencies between them. For a given task, the 368

HKG matches the task to a node and extracts a list 369

of materials and tools, which is given to an LLM 370

to produce a plan. We exclude the multimodal 371

memory module proposed by Li et al. (2024) from 372

this baseline as we aim to compare the knowledge 373

graphs used by each method. 374

Crafting recipes in the Minecraft Wiki are dis- 375

played as images. Therefore, we supplement the 376

Wiki pages with recipes from the Minecraft game 377

files to provide a text-based representation of the 378

recipes. We remove pages that are unrelated to 379

our experimental setting, such as those about real 380

people related to the game, or game patch notes. 381

Additionally, we filter pages by including those 382

that have titles including the names of items con- 383

tained in the in-game recipe files, or if the title is 384

included in the name of the item. We only include 385

text from the Wiki pages, leaving out images asso- 386

ciated with the pages. The final set of documents 387

used to construct our knowledge base consists of 388

514 Minecraft Wiki pages and 859 recipe files. 389
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Models. We utilize three LLMs in our experiments:390

Llama 3.2-Vision 90b, Gemma 3 27b, and Qwen391

2.5-VL 32b. We use multimodal LLMs because we392

provide game frames to the LLM when prompting393

them to perform goal inference and planning. We394

use a temperature of 0, context length of 32K, θ =395

0.92 with nomic-text-embed-v1.5 (Nussbaum et al.,396

2024) as the embedding model, and use k = 3 for397

both GraphRAG and our method.398

Evaluation metrics. For our main experiments, we399

report the success rates of completing tasks and the400

number of in-game steps used by the agent over 30401

runs of each task for each combination of baseline402

method and LLM. Higher success rates and lower403

required steps indicate better performance.404

We conduct an ablation study in Section 4.4 and405

use metrics based on classical planning literature to406

assess the quality of the plans generated (Ghallab407

et al., 2004). We use goal satisfaction, soundness,408

completeness, and efficiency. The definitions of the409

metrics can be found in Appendix E. The metrics410

are calculated using information from the retrieved411

goal tree for a given task. Using these metrics412

instead of success rate and in-game steps allows413

us to focus on the differences in generated plans414

without needing to consider other factors that may415

cause the agent to fail, such as the stochasticity of416

environment.417

After we generate a plan using the baselines and418

our method, we adopt STEVE-1 to convert text419

instructions into keyboard and mouse controls (Lif-420

shitz et al., 2023). However, STEVE-1 is incapable421

of directly performing complex tasks that require422

multiple steps, hence the need for a planner that423

can decompose complex tasks into simpler ones.424

More details about the experimental setup can be425

found in Appendix D.426

4.2 Main Results427

The main results in Table 1 show that GoG per-428

forms much better than the baseline models in more429

complex task groups. For simpler task groups (e.g.,430

wood and stone), all methods achieve comparable431

performance in terms of success rate and the aver-432

age number of steps required to complete the tasks.433

However, for more challenging task groups—such434

as iron, gold, and armor—our GoG demonstrates a435

significant advantage over the baselines. For exam-436

ple, the success rate on the gold task is three times437

higher than that of HKG, and on the armor task,438

GoG outperforms HKG by 57.84% with Llama 3.2439

Vision model. For the most difficult tasks, such440

as gold and diamond, all baseline methods consis- 441

tently fail to achieve the goal within the maximum 442

allowed in-game steps. In contrast, our method gen- 443

erally maintains a success rate above 50%, demon- 444

strating its robustness in long-horizon planning sce- 445

narios. These successful results empirically demon- 446

strate that our GoG enhances the LLM’s reasoning 447

capabilities by providing goal structures and ma- 448

terial lists that fill knowledge gaps and support 449

accurate planning. 450

A key observation from our experiments is a 451

notable pitfall of GraphRAG: it sometimes per- 452

forms even worse than the Vanilla baseline, despite 453

having access to additional retrieved content. The 454

retrieval process of GraphRAG returns many irrele- 455

vant but connected nodes from the 1-hop neighbour- 456

hood. For example, a general entity such as stone 457

can be used to craft many different tools. When 458

tasked with making a stone axe, the LLM often 459

lacks the reasoning to select the appropriate objects 460

from its neighbourhood and instead returns all con- 461

nected entities. This results in highly noisy context, 462

which can significantly degrade downstream task 463

execution. As illustrated by our example of crafting 464

a stone axe, the community reports of GraphRAG 465

fail to translate into practical benefits—even with 466

additional computational costs for clustering and 467

summarization. This outcome echoes the old say- 468

ing: reconstructing evidence from shredded pieces 469

remains inherently difficult. 470

4.3 Hyperparameter Analysis of k 471

Here, we analyze the effect of k when retrieving 472

candidates to match a given query to a goal in our 473

GoG. In test tasks, all of the text instructions of 474

the tasks are provided in a similar structure in the 475

form of “<verb> <item>” with a limited number 476

of verbs, such as “craft a wooden pickaxe”. There- 477

fore, in order to increase the diversity of the task 478

instructions for this analysis, we use GPT 4o-mini 479

to generate 10 rewordings for each of the 66 task 480

instructions used in our experiments. Then, for 481

each of the 660 generated instructions, we retrieve 482

the top-k goals from our GoG, and use a vLLM to 483

select the best match from the retrieved goals. In 484

the case of k = 0, no retrieval is performed and 485

the LLM is directly asked to determine the goal. 486

For k = 1, the LLM is not required to perform any 487

selection because there is only one option, hence 488

the results for k = 1 are the same across all LLMs. 489

The results in Table 2 show the accuracies of var- 490

ious combinations of k and LLMs in determining 491
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Table 1: The results of our main experiments. Bolded numbers are the best result of each task group.

Group Metric
Llama 3.2 Vision Gemma

Vanilla GraphRAG HKG GoG Vanilla GraphRAG HKG GoG

Wood
SR↑ 83.67 80.00 93.67 95.67 88.67 91.00 95.67 93.33
AS↓ 1268.69 1497.273 1004.17 1027.21 1264.81 1080.68 989.55 1044.69

Stone
SR ↑ 57.41 37.77 46.67 80.00 47.41 47.78 71.11 69.63
AS↓ 3898.67 4610.74 4371.23 3079.80 4311.94 4296.61 3456.20 3405.20

Iron
SR ↑ 19.79 19.17 54.38 74.17 15.94 11.78 57.01 66.11
AS↓ 21340.94 21137.67 14857.19 10770.56 21459.40 22523.79 14049.04 12215.19

Gold
SR↑ 5.28 0.00 0.00 70.00 0.00 0.00 5.56 72.22
AS↓ 35321.25 ∞ ∞ 15886.11 ∞ ∞ 34448.38 15336.51

Diamond
SR↑ 0.00 0.00 0.00 66.11 11.49 3.33 0.00 31.39
AS↓ ∞ ∞ ∞ 19717.08 34601.33 35940.58 ∞ 27361.79

Redstone
SR↑ 0.00 0.00 14.85 49.44 0.00 0.00 12.65 47.46
AS↓ ∞ ∞ 32188.80 22309.15 ∞ ∞ 32733.51 25633.46

Armor
SR↑ 25.83 26.15 34.44 54.36 23.59 6.15 35.38 55.30
AS↓ 28507.39 28335.48 25785.84 20668.21 29774.12 34177.48 25652.54 20244.88

- success rate (SR), average step (AS), ∞ (failed after reaching the max steps).

k Gemma 3 Qwen 2.5 VL Llama 3.2

0 .8742 .9258 .9515
1 .9712 .9712 .9712
2 .9846 .9879 .9879
3 .9879 .9894 .9864
4 .9818 .9862 .9863
5 .9879 .9954 .9848

Table 2: Accuracies for different values of k using var-
ious LLMs on goal inference for our retrieval method.
The bolded numbers are the best results in each column.

the correct goal by checking that the postcondi-492

tion of the selected goal matches the task. First,493

we observe that when k > 1, our goal inference494

clearly improves the retrieval of matching goals495

compared to the case of k = 0, where the LLM496

must rely solely on its own knowledge to infer the497

postconditions for the query task. Notably, Gemma498

3 exhibited the lowest performance at k = 0, but its499

accuracy increased significantly—approaching that500

of other LLMs—when given access to our knowl-501

edge base. Second, we find that increasing k leads502

to only a marginal improvement in query accuracy,503

highlighting the robustness of our goal matching504

strategy, which remains effective even with a small505

number of retrieved goals.506

When k = 0, corresponding to the baseline507

methods that rely solely on internal knowledge to508

infer the next steps, a significant question arises:509

why does performance vary considerably in our510

main experiments between GoG and baselines,511

even though retrieval performance remains rela-512

tively consistent across models? We attribute this 513

performance gap to the recursive retrieval of sub- 514

goals in our algorithm, which explicitly constructs 515

a reasoning path—something the baselines lack. 516

However, there is still room for improvement in 517

our approach, which motivates us to further explore 518

how to enable deeper, more structured reasoning 519

over tasks, rather than relying on superficial ques- 520

tion analysis. 521

4.4 Plan Quality Ablation 522

Remember that two main components are extracted 523

in our inference stage: the goal tree and the ma- 524

terials and tools list in Section 3.3. In this study, 525

we analyze the effects of the two main components 526

of the prompt for plan generation. We generate 527

a plan for each of the 66 tasks for each LLM in 528

the ablation study, and alter the information given 529

in the prompt based on the components removed 530

according to the corresponding variant. We experi- 531

ment with 4 variants: full context information, goal 532

tree information only, material and tool list only, 533

and neither. The detailed evaluation is introduced 534

in Appendix E. 535

The results are presented in Table 3. The 536

material list refers to the set of materials re- 537

quired to achieve the target goal, and its inclu- 538

sion significantly improves all four evaluation 539

scores—particularly in terms of using the correct 540

materials, in the correct order, and with greater 541

efficiency—across all three LLMs. Overall, pro- 542

viding both goal information and the material list 543
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LLM
Goal Material Goal

Soundness Completeness Efficiency
Info List Satisfaction

Llama 3.2 Vision

✗ ✗ .3231 .7901 .8152 .3589
✓ ✗ .1385 .3819 .3263 .1385
✗ ✓ .9538 .9850 .9891 .9538
✓ ✓ 1.000 1.000 1.000 1.000

Qwen 2.5 VL

✗ ✗ .2615 .7705 .7893 .2939
✓ ✗ .2154 .7622 .7511 .2301
✗ ✓ .9692 .9947 .9970 .9534
✓ ✓ .9846 .9983 .9982 .9843

Gemma 3

✗ ✗ .3231 .8197 .8253 .3417
✓ ✗ .3692 .7804 .8083 .3438
✗ ✓ .9538 .9905 .9940 .8769
✓ ✓ .8308 .8704 .9088 .8292

Table 3: Plan quality ablation results, where bolded numbers show the highest scores on each metric for each LLM.

enables the LLM to generate higher-quality plans,544

as the incorporation of the goal tree—a topological545

structure that captures goal dependencies—further546

enhances multi-step reasoning. An exception is547

observed with Gemma 3, where adding the goal548

tree slightly reduces performance—likely due to549

difficulty handling hierarchical input or increased550

context length from overlapping information with551

the material list. We leave further investigation of552

this issue to future work.553

4.5 Use-case Demonstration554

To illustrate why our method performs better than555

the baselines, we compare the plans generated by556

our method and the baselines on the “craft a di-557

amond axe” task using Llama 3.2-Vision in Ap-558

pendix F.1. Two types of errors are observed from559

the plans generated by the baselines.560

First, we observe hallucinations occurring in561

intermediate planning steps. For example, the562

plan generated by HKG includes the step “smelt563

diamond,” in Table 5, which is invalid under564

Minecraft’s rules—diamonds cannot be smelted.565

We hypothesize that this error stems from the566

LLM’s lack of understanding of game mechan-567

ics. Although HKG supplies a list of materials568

and tools, this information alone is insufficient for569

constructing a valid plan. In contrast, our top-down570

approach provides structured goal decomposition,571

which better aligns with the procedural nature of572

in-game tasks.573

Second, both GraphRAG and the vanilla base-574

line exhibit similar shortcomings in long-horizon575

planning. In particular, both generate plans that576

produce too few sticks, forcing the agent to replan577

and ultimately fail to complete the task, as shown in578

Tables 7, 8. This limitation arises from the LLM’s 579

inability to reason about quantities—successfully 580

completing the task requires both knowledge of 581

crafting recipes and the capacity to compute the 582

required number of items based on those recipes. 583

Our GoG is constructed from practical Minecraft 584

resources, such as the Minecraft Wiki and in-game 585

crafting recipes, which provide rich information 586

about both crafting procedures and the quantities of 587

required materials. Unlike the baselines, GoG not 588

only models goal-to-goal dependencies but also ex- 589

plicitly encodes preconditions and postconditions 590

for each goal—for example, “1 crafting table, 2 591

sticks, and 3 planks” for crafting a wooden pick- 592

axe. This structured representation significantly 593

mitigates the two types of errors identified in our 594

analysis, as shown in Table 6. 595

5 Conclusion 596

We proposed a novel framework for constructing 597

Goal-Oriented Graphs (GoGs) from source doc- 598

uments to support planning tasks. We show that 599

existing GraphRAG-based approaches are ill-suited 600

for such domains due to the extremely fine granular- 601

ity of entity–relation triple extraction, which makes 602

it difficult to retrieve concise and complete reason- 603

ing paths. To address this, our GoGs represent 604

goals at different abstraction levels as nodes, with 605

edges indicating logical relationships between con- 606

nected goals. This design streamlines retrieval by 607

allowing all relevant subgoals of a target goal to be 608

efficiently identified. Experiments on the Minecraft 609

testbed demonstrate that our method significantly 610

outperforms GraphRAG and its variants, especially 611

on complex tasks that require long-horizon reason- 612

ing. 613
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Limitations614

In this work, we focused on constructing a goal-615

oriented graph that explicitly facilitates reasoning616

for complex tasks in Minecraft. While our ap-617

proach achieves superior performance compared to618

baseline methods, several limitations remain.619

First, our approach is currently tailored to the620

Minecraft environment, where goals and craft-621

ing logic are well-defined and richly documented.622

Applying GoG to less structured or poorly docu-623

mented domains may require additional adaptation624

or domain-specific tuning.625

Second, the construction of GoG relies on LLMs626

to extract goals, subgoals, and pre/postconditions.627

Errors in this extraction process—such as misinter-628

preting instructions or failing to capture implicit629

dependencies—can propagate through the graph630

and affect downstream performance. Future work631

could pay more attention to reduce the construction632

errors.633

Lastly, as the number of knowledge sources in-634

creases, the number of goals and their interdepen-635

dencies also grows. This can lead to increasingly636

complex graphs, potentially introducing retrieval637

inefficiencies or injecting noisy context during in-638

ference. We plan to explore the scalability of our639

approach in future work to ensure its effectiveness640

in larger and more diverse domains.641
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A LLM in Goal Selection and Planning770

As shown in Figure 4, we prompt the LLM to771

first select the most appropriate goal (e.g., “craft772

a wooden pickaxe”) and retrieve relevant subgoals773

from the goal-oriented graph. We then prompt the774

LLM again to convert the selected goal and its sub-775

goals into a coherent multi-step plan.776

B Prompts777

In this section, we provide various prompts used778

by our method.779

C Experimental Tasks780

Table 4 presents the list of tasks for each task group,781

along with the corresponding maximum number of782

in-game steps allowed. In total, there are 66 tasks,783

categorized into seven groups: wood, stone, iron,784

gold, diamond, redstone, and armor. As expected,785

more complex tasks require a greater number of786

steps to complete.787

D Additional Experiment Details788

In this section, we provide more details about ours789

experimental settings.790

At the start of each experimental run, the agent791

starts with an empty inventory and is given an792

instruction as a string, such as “craft a wooden793

sword”. Then, as described in the previous section,794

we retrieve the top-k goals from our knowledge795

base and use an LLM to perform goal inference by796

selecting a candidate from the top-k. Based on the797

selected goal, we retrieve all subgoals for the goal.798

Items in Minecraft often have multiple ways to be799

crafted, resulting in many possible ways to craft800

an item. However, almost all such variations are801

cyclical. For example, it is possible to obtain the802

“iron ingot” item from a “block of iron”, however,803

a “block of iron” is obtained by combining “iron804

ingots”, resulting in a cyclical relationship. Given805

that the agent in our experiments starts with an806

empty inventory, we exclude such paths from the807

result of DFS. This results in only 1 set of subgoals808

that achieve the given task.809

After retrieving the subgoals, we parse the re-810

sulting goal tree, which consists of the goal, its sub-811

goals, and all their attributes, to produce a list of812

items and materials needed to accomplish the task.813

Then, we provide the goal tree and list of items814

to an LLM to produce a plan to accomplish the815

task. The prompt used for planning can be found816

in Appendix B. The plan consists of a sequence of 817

subtasks and expected items to obtain from each 818

subtask. This plan is given to the agent, which then 819

attempts to execute the plan in Minecraft. 820

During execution of the plan, if a step fails due 821

to missing tool or materials, the Minecraft envi- 822

ronment provides feedback to the agent about the 823

missing item and quantity. This triggers the agent 824

to replan, which follows a similar procedure as the 825

original planning step at the beginning of the tra- 826

jectory. For GoG, the list of materials and tools for 827

the missing item is calculated from the goal tree, 828

which is then given to the LLM to produce a plan to 829

obtain missing materials. All baseline methods are 830

able to perform replanning, with HKG also gener- 831

ating a list of materials using its knowledge graph. 832

The generated replanning steps are then inserted 833

into the original plan. 834

E Plan Quality Metrics 835

Here we provide the definitions of the metrics used 836

in the plan quality ablation study. 837

Goal Satisfaction assesses overall plan quality 838

by measuring whether a plan, when executed, can 839

possibly achieve the overall task. This means that 840

the plan must include steps to obtain all required 841

tools and materials, and the ordering of the steps 842

should be such that pre-conditions of each step 843

are not violated. We assign a satisfaction score 844

g ∈ {0, 1} to a given plan, with 0 representing a 845

plan that cannot achieve the given task. 846

Soundness checks that each step of a plan is 847

formulated correctly and is executed with all pre- 848

conditions being satisfied. For example, “mine 849

a wooden sword” would be an invalid plan step. 850

A plan is assigned a soundness score s ∈ {0, 1}, 851

where 0 indicates that at least one step is invalid. 852

Soundness is an upper bound on goal satisfaction; 853

a plan cannot satisfy a goal if it is not sound. How- 854

ever, a sound plan does not necessarily mean that 855

it will satisfy the goal. 856

Completeness measures the proportion of mate- 857

rials and tools needed to achieve a task are obtained 858

by a plan. More formally, the score is assigned as: 859

c = min

(
nobtained

nneeded
, 1

)
. (1) 860

This means that if a plan obtains more materials 861

than necessary, it can still obtain a completeness 862

score of 1. 863

Efficiency determines whether the plan contains 864

more steps than required. A plan may have high 865
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Goal Inference

Planning

Retrieved Goals

(1) Craft a wooden pickaxe
(2) Craft a stone pickaxe
(3) Craft a wooden axe

 Selected Goals

Craft a wooden pickaxe

Retrieved Subgoals

(1) Craft planks
(2) Craft stick
(3) Chop a tree
(4) ......

Executable Steps

 Step 1:{task: chop a tree, goal: [logs, 4]}
 Step 2:{task: craft planks, goal: [planks, 12]}
 Step 3:{task: craft stick, goal: [stick, 8]}
 Step 4:{task: craft crafting table, goal:
[crafting_table, 1]}
 Step 5:{task: craft wooden pickaxe, goal:
[wooden pickaxe, 1]}

LLM Module in Inference

Figure 4: The LLM used during goal selection and planning stage.

Prompt for Extracting Goals and Subgoals, Part 1

-Goal-
Given a portion of a document and relevant in-game recipes about the game Minecraft, extract actionable
in-game goals that a player can achieve. Use only the content from the given document and in-game recipe
JSONs to construct goals and subgoals. Do not infer or add goals beyond what is explicitly described. Focus
solely on the core Minecraft experience. Exclude any content related to Minecraft spinoff games (e.g.,
Minecraft Dungeons, Minecraft Legends).
-Steps-
1. Identify relevant goals that a player can achieve in the game. For each goal, extract the following attributes:
- name: Name of the goal. Use short, specific names in the form of “<action> <minecraft_item>”, such as
“craft planks”, “mine cobblestone”, or “smelt charcoal”. For tools with different grades such as “wooden” or
“stone”, use “<action> <grade> <minecraft_tool>”, such as “craft a wooden pickaxe” or “craft a stone
sword”.
- description: A concise explanation of what the goal entails.
- req_tools: Needed tools to complete the goal, as a JSON object where keys are Minecraft tools and values
are 1. For tools with multiple grades (e.g. wooden or stone), specify the tool grade and only include the
lowest grade needed. Crafting tables and furnaces are considered as tools, and their usage can be determined
by document text, recipes, and summaries. Smelting using a furnace always requires “fuel” as a tool. Use
“None” (just as a standalone string, not as a JSON object or set or list) if no tools are needed.
- req_materials: Needed materials to complete the goal, as a JSON object where keys are Minecraft items and
values are needed quantities of that item. If no materials are needed, set this to “None” (just as a standalone
string, not as a JSON object or set or list).
- postconditions: The resulting state or item after completing the goal, as a JSON object where the keys are
Minecraft items and values are the quantity. If there are no post-conditions, set this to “None” (just as a
standalone string, not as a JSON object or set or list).
Before writing each goal, generate reasoning as to where the information about the goal comes from. If it
comes from a shaped crafting recipe, you must use the format as described above, otherwise write a brief
sentence.
Format each goal as a tuple:
(“goal”{tuple_delimiter}“<name>”{tuple_delimiter}“<description>”{tuple_delimiter}
“<req_tools>”{tuple_delimiter}“<req_materials>”{tuple_delimiter}“<postconditions>”)
... (continued in Figure 6) ...

Figure 5: The prompt used to extract goals and subgoals from source texts to build our knowledge base.
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Prompt for Extracting Goals and Subgoals, Part 2

2. From the goals identified in step 1, identify subgoals that are needed for the achievement of the goal.
For every goal, establish subgoal relationships between the goal and associated subgoals for each required
material and tool that must be obtained or crafted, as identified by <req_tools> or <req_materials>. For
each goal-subgoal relationship, extract the following information:
- goal_name: Name of the higher-level goal, which must exist in the goals identified in step 1.
- subgoal_name: Name of the subgoal that is used by the goal.
- relationship_description: Explanation as to how and why the higher-level goal and the subgoal are related to
each other.
Format each relationship as a tuple:
(“subgoal”{tuple_delimiter}“<goal_name>”{tuple_delimiter}“<subgoal_name>”{tuple_delimiter}
“<relationship_description>”)
3. Return a single list of tuples of all goals and subgoals as extracted from steps 1 and 2. Use
**{record_delimiter}** as the list delimiter. If either tools or materials are ambiguous or missing, omit the
goal. Do not repeat the same goal in the list.
4. When finished, output {completion_delimiter}.
Only output the list as instructed without any explanation, summary, or other text. If there is no relevant
information in the document, just output {completion_delimiter}.
Here are some examples:
{examples}
######################
-Real Data-
######################
Document Text:
{input_text}
— End of Document —
Goals and Subgoals:

Figure 6: The second part of the prompt used to extract goals and subgoals from source texts to build our knowledge
base.
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Task Group #Tasks Task description Max Steps
Wood 10 craft a wooden shovel, craft a wooden pickaxe, craft a

wooden axe, craft a wooden hoe, craft a stick, craft a craft-
ing table, craft a wooden sword, craft a chest, craft a bowl,
craft a ladder

2400

Stone 9 craft a stone shovel, craft a stone pickaxe, craft a stone axe,
craft a stone hoe, smelt a charcoal, craft a smoker, craft a
stone sword, craft a furnace, craft a torch

6000

Iron 16 craft a iron shovel, craft a iron pickaxe, craft a iron axe,
craft a iron hoe, craft a bucket, craft a hopper, craft a rail,
craft a iron sword, craft a shears, craft a smithing table, craft
a tripwire hook, craft a chain, craft an iron bars, craft an
iron nugget, craft a blast furnace, craft a stonecutter

24000

Gold 6 craft a golden shovel, craft a golden pickaxe, craft a golden
axe, craft a golden hoe, craft a golden sword, smelt and
craft a gold ingot

36000

Diamond 6 craft a diamond shovel, craft a diamond pickaxe, craft a
diamond axe, craft a diamond hoe, craft a diamond sword,
craft a jukebox

36000

Redstone 6 craft a piston, craft a redstone torch, craft an activator rail,
craft a compass, craft a dropper, craft a note block

36000

Armor 13 craft shield, craft iron chestplate, craft iron boots, craft iron
leggings, craft iron helmet, craft diamond helmet, craft dia-
mond chestplate, craft diamond leggings, craft diamond
boots, craft golden helmet, craft golden leggings, craft
golden boots, craft golden chestplate

36000

Table 4: Tasks used in our main experiments.
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Prompt for Goal Inference

You are a MineCraft game expert and you can guide agents to complete complex tasks. For a given game
screen, task, and context information, you need to complete “goal inference” and “visual inference”.
The context information is a set of possible goals to choose from for “goal inference”.
“goal inference”: According to the task, you need to select the goal from given options that best matches the
given query.
“visual inference”: According to the game screen, you need to infer the following aspects: health bar, food
bar, hotbar, environment.
{Examples}
Here is a game screen and task, you MUST respond in JSON format as shown in the example outputs
WITHOUT further explanation, introduction, or extra text. Complete “goal inference” by setting it to the
value of the “name” of the option that best matches the given task as shown in the example. Other fields
should be completed based on the given game screen.
<task>: {task}
<context>:
{context}
Output:

Figure 7: The prompt used for goal inference for our proposed method. “Context” consists of the top-k retrieved
goals from the knowledge base.

goal satisfaction, soundness, and completeness if866

it obtains much more materials than required, but867

this would not mean that it is a good plan. There-868

fore, efficiency checks that a plan consists of only869

necessary steps, measured as:870

e =

{
sminimal
splan

ifsplan ≥ sminimal,

0 otherwise.
(2)871

The efficiency of a plan is 0 if the number of steps872

in the plan splan is less than the minimum steps873

required sminimal because that would mean that the874

plan would fail.875

To assign scores using these metrics, we use the876

goal tree retrieved from our knowledge base for a877

given task. From the goal tree, we calculate the878

required list of items to complete the task, and the879

order that the items should be obtained used the880

preconditions of the goals. We use the goal names881

in the tree to determine correct wordings, as the882

goal names are in the form of “<action><item>”.883

F Craft a Diamond Axe Case Study884

F.1 Plans885

In this section, we provide plans generated using886

Llama3.2-Vision 90b for the “craft a diamond axe”887

task.888

F.2 Retrieved Content 889

In this section, we show the retrieved contents for 890

various methods. 891
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Prompt for Plan Generation

You are a MineCraft game expert and you can guide agents to complete complex tasks. For a given overall
goal, game screen, hierarchy of goals, and list of needed materials, construct a ordered plan that completes the
given task. The goal hierarchy is structured as a JSON object whose keys are names of goals, and values are
information about the goal and its and subgoals. You will be given a list of tools and materials and amounts
needed for you to obtain and craft to complete the overall goal. Based on the information from the goal
hierarchy and the list of tools and materials, create a plan in JSON format as shown in the following example:
######################
-Example-
######################
{example}
######################
######################
-Real Task-
######################
<goal>
{goal}
<visual info>
{visual_info}
<goal hierarchy>
{goal_hierarchy}
<materials and tools>
{materials_and_tools}
<planning>
Complete <planning> for the given overall <goal> with valid JSON as instructed and in the format shown
in the example. Use the information in the goal hierarchy, game screen, and list of tools and materials and
their amounts to generate “task” and “goal” in each step of the plan. Use the same wording styles and patterns
for the “task” in each step as shown in the example plan. Only output the plan as a valid JSON object with no
additional text, introduction, or explanation. Do not use Markdown.

Figure 8: The prompt used for planning for our proposed method.
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Step Instruction Target Item Amount
0 chop a tree logs 9
1 craft planks planks 27
2 craft stick stick 8
3 craft crafting table crafting table 1
4 craft wooden pickaxe wooden pickaxe 1
5 equip wooden pickaxe wooden pickaxe 1
6 dig down and break down cobblestone cobblestone 19
7 craft stone pickaxe stone pickaxe 1
8 equip stone pickaxe stone pickaxe 1
9 craft furnace furnace 1
10 dig down and break down iron ore iron ore 3
11 smelt iron ore iron ingot 3
12 craft iron pickaxe iron pickaxe 1
13 equip iron pickaxe iron pickaxe 1
14 dig down and mine diamond diamond ore 3
15 smelt diamond diamond 3
16 craft diamond axe diamond axe 1

Table 5: A plan generated using HKG for “craft a diamond axe”. At step 15, the plan tries to “smelt diamond”,
which is unnecessary and invalid.

Step Instruction Target Item Amount
0 chop a tree logs 4
1 craft planks planks 12
2 craft stick stick 8
3 craft crafting table crafting table 1
4 craft wooden pickaxe wooden pickaxe 1
5 equip wooden pickaxe wooden pickaxe 1
6 dig down and break down cobblestone cobblestone 11
7 craft stone pickaxe stone pickaxe 1
8 equip stone pickaxe stone pickaxe 1
9 dig down and break down iron ore iron ore 3

10 craft a furnace furnace 1
11 smelt iron ingot iron ingot 3
12 craft an iron pickaxe iron pickaxe 1
13 equip iron pickaxe iron pickaxe 1
14 dig down and break down diamond ore diamond 3
15 craft diamond axe diamond axe 1

Table 6: A plan generated using our proposed method for “craft a diamond axe”, which leads to a successful
completion of the task.
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Step Instruction Target Item Amount
0 chop a tree logs 5
1 craft planks planks 15
2 craft stick stick 3
3 craft crafting table crafting table 1
4 craft wooden pickaxe wooden pickaxe 1
5 equip wooden pickaxe wooden pickaxe 1
6 dig down and break down cobblestone cobblestone 11
7 craft stone pickaxe stone pickaxe 1
8 equip stone pickaxe stone pickaxe 1
9 craft furnace furnace 1

10 dig down and break down iron ore iron ore 2
11 smelt iron ore iron ingot 2
12 chop tree logs 2
13 craft planks planks 2
14 craft sticks stick 2
15 craft wooden pickaxe wooden pickaxe 1
16 mine iron ore iron ore 1
17 smelt iron ore iron ingot 1
18 craft iron pickaxe iron pickaxe 1
19 equip iron pickaxe iron pickaxe 1
20 dig down and break down diamond ore diamond ore 3
21 craft diamond axe diamond axe 1

Table 7: A plan generated using GraphRAG for “craft a diamond axe”. The plan contains replanning steps because
the plan failed to obtain enough sticks in step 3.

18



Step Instruction Target Item Amount
0 chop a tree logs 5
1 craft planks planks 16
2 craft stick stick 4
3 craft crafting table crafting table 1
4 craft wooden pickaxe wooden pickaxe 1
5 equip wooden pickaxe wooden pickaxe 1
6 dig down and break down cobblestone cobblestone 11
7 craft stone pickaxe stone pickaxe 1
8 equip stone pickaxe stone pickaxe 1
9 craft furnace furnace 1

10 dig down and break down iron ore iron ore 2
11 smelt iron ore iron ingot 2
12 chop tree logs 2
13 craft planks planks 2
14 craft sticks sticks 2
15 craft stone pickaxe stone pickaxe 1
16 mine iron ore iron ore 1
17 smelt iron ore iron ingot 1
18 craft iron pickaxe iron pickaxe 1
19 equip iron pickaxe iron pickaxe 1
20 dig down and break down diamond ore diamond ore 3
21 craft diamond axe diamond axe 1

Table 8: A plan generated using vanilla prompting for “craft a diamond axe”. The plan contains replanning steps
because the plan failed to obtain enough sticks in step 3.

1. logs: 4
2. planks: 12
3. stick: 8
4. crafting_table: 1
5. wooden_pickaxe: 1
6. cobblestone: 11
7. stone_pickaxe: 1
8. iron_ore: 3
9. furnace: 1
10. iron_ingot: 3
11. iron_pickaxe: 1
12. diamond: 3
13. diamond_axe: 1

Table 9: The generated material list for “craft a diamond axe” using our proposed method. The list is generated by
parsing the goal tree and calculating all required materials.
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Listing 1 A portion of the retrieved goal tree for “craft a diamond axe” using our proposed method.

{
"craft a diamond axe": {

"description": "Crafts a diamond axe, which is used for chopping wood.",
"aliases": [],
"tools": {

"crafting_table": 1
},
"materials": {

"stick": 2,
"diamond": 3

},
"postconditions": {

"diamond_axe": 1
},
"subgoals": [

{
"subgoal": "craft a crafting table",
"relationship_description": "craft a crafting table is used by craft a diamond axe"

},
{

"subgoal": "craft sticks",
"relationship_description": "craft sticks is used by craft a diamond axe"

},
{

"subgoal": "mine diamond ore",
"relationship_description": "Diamonds are required to craft a diamond axe"

}
]

},
"craft a crafting table": {

"description": "Craft a crafting table, which is used to craft more complex items.",
"aliases": [],
"tools": "None",
"materials": {

"planks": 4
},
"postconditions": {

"crafting_table": 1
},
"subgoals": [

{
"subgoal": "craft planks",
"relationship_description": "craft planks is used by craft a crafting table"

}
]

},
"craft planks": {

"description": "Craft planks, a basic crafting material.",
"aliases": [],
"tools": "None",
"materials": {

"logs": 1
},
"postconditions": {

"planks": 4
},
"subgoals": [

{
"subgoal": "mine log",
"relationship_description": "mine log is used by craft planks"

}
]

},
... (continued) ...
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...
## Role of Toolsmith Villagers
Toolsmith villagers play a significant role in the community by trading various axes for emeralds. This
relationship highlights the economic aspect of resource management, where players can acquire high-
quality tools through trade. The presence of toolsmith villagers emphasizes the importance of community
interactions and resource exchange in enhancing gameplay.
## Utility of Different Axe Materials
Each type of axe, from wooden to netherite, offers varying levels of efficiency and durability, impacting
how players approach resource gathering. For instance, diamond axes are known for their high efficiency,
while wooden axes are less durable but easier to craft. Understanding the utility of different axe materials
allows players to make informed decisions based on their resource availability and gameplay needs.
## Sound and Interaction Events
The community includes various sound events associated with logs and axes, such as breaking and placing
sounds. These auditory cues enhance the immersive experience of gameplay, providing feedback to
players as they interact with the environment. The relationship between sound events and actions taken
with axes and logs contributes to the overall engagement of players in the game.
## Crafting Efficiency and Strategy
The crafting relationships among axes, logs, and other materials necessitate strategic planning for resource
management. Players must consider the most efficient ways to gather materials and craft tools, balancing
their immediate needs with long-term resource sustainability. This strategic element adds depth to
gameplay, encouraging players to think critically about their actions.
## Environmental Interactions
Axes and logs interact with various environmental elements, such as beehives and vines, showcasing their
versatility in gameplay. For example, axes are the most efficient tool for breaking beehives, allowing
players to harvest honey quickly. This interaction with the environment emphasizes the importance of axes
in not only resource gathering but also in engaging with the game’s ecosystem." 2, "# Axe Community
and Its Variants
The community revolves around various types of axes, including the standard AXE and the high-quality
DIAMOND AXE, along with their associated enchantments and crafting materials. These entities are
interconnected through crafting relationships and usage in gameplay, highlighting their importance in
resource gathering and combat.
## Central Role of the AXE
The AXE serves as a fundamental tool in the community, primarily used for chopping wood and dealing
damage to entities. Its versatility allows players to gather resources efficiently, making it a crucial item
for crafting and building. The AXE can be crafted using various materials, including sticks and different
types of ingots, which further emphasizes its importance in the game.
## DIAMOND AXE as a High-Quality Variant
The DIAMOND AXE is a high-tier variant of the standard AXE, crafted from diamonds, which makes it
the most durable and efficient option for chopping wood. Its crafting requires both diamonds and sticks,
and it is highly sought after for its superior performance in resource gathering and combat scenarios. The
DIAMOND AXE’s significance is underscored by its ability to be enchanted, enhancing its capabilities
even further.
...

Table 10: A portion of the community reports generated for “craft a diamond axe” using GraphRAG.
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The formula to find the total lifetime damage is (durability ÷ 2) × damage per hit = minimum lifetime
damage. The durability is halved because axes take double durability when used as a weapon. The formula
also ignores enchantments and critical hits, and assumes each attack is performed at maximum charge.
Enchantments
An axe can receive the following enchantments:
— Table Start —
Headers: Name, Max Level, Method
Cells:
Fortune[note 1], III,
Silk Touch[note 1], I,
Efficiency, V,
Unbreaking, III,
Sharpness[note 2], V,
Smite[note 2], V,
Bane of Arthropods[note 2], V,
Fire Aspect[upcoming: JE Combat Tests], II,
Looting[upcoming: JE Combat Tests], III,
Knockback[upcoming: JE Combat Tests], II,
Cleaving[upcoming: JE Combat Tests][note 2], III,
Sweeping Edge[upcoming: JE Combat Tests][note 3], III,
Mending, I,
Curse of Vanishing, I,
— Table End —
Silk Touch and Fortune are mutually exclusive.
Sharpness, Smite, Bane of Arthropods, and Cleaving[upcoming: JE Combat Tests] are mutually exclusive.
Sweeping edge currently exists, but it can be used only for swords.
Fuel
Wooden axes can be used as a fuel in furnaces, smelting 1 item per axe.
Smelting ingredient
— Table Start —
Headers: Name, Ingredients, Smelting recipe, Iron Nugget or
Gold Nugget
Cells:
Iron Axe or
Golden Axe +
Any fuel, 0.1
— Table End —

Table 11: A portion of the retrieved documents for “craft a diamond axe” using GraphRAG.
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