Knowledge Retrieval in LLM Gaming: A Shift from Entity-Centric to
Goal-Oriented Graphs

Anonymous ACL submission

Abstract

Large Language Models (LLMs) demonstrate
impressive general capabilities but often strug-
gle with step-by-step reasoning, especially in
complex applications such as games. While
retrieval-augmented methods like GraphRAG
attempt to bridge this gap through cross-
document extraction and indexing, their frag-
mented entity-relation graphs and overly dense
local connectivity hinder the construction of co-
herent reasoning. In this paper, we propose
a novel framework based on Goal-Oriented
Graphs (GoGs), where each node represents a
goal and its associated attributes, and edges en-
code logical dependencies between goals. This
structure enables explicit retrieval of reason-
ing paths by first identifying high-level goals
and recursively retrieving their subgoals, form-
ing coherent reasoning chains to guide LLM
prompting. Our method significantly enhances
the reasoning ability of LLMs in game-playing
tasks, as demonstrated by extensive experi-
ments on the Minecraft testbed, outperforming
GraphRAG and other baselines.

1 Introduction

Leveraging the extensive knowledge embedded in
Large Language Models (LLMs) within game en-
vironments has the potential to benefit and trans-
form a wide range of sectors, including virtual as-
sistants, non-player characters (NPCs), and other
interactive applications. Recent studies have ex-
plored the application of LLMs in strategic games
such as chess (Feng et al., 2023) and poker (Huang
et al., 2024). Building on this progress, agents de-
signed to tackle more challenging open-ended envi-
ronments like Minecraft—such as Voyager (Wang
et al., 2024) and GITM (Zhu et al., 2023)—have
played a pivotal role in advancing the capabilities
of LLM-based agents.

Since LLMs are generally trained for broad,
general-purpose tasks and often exhibit limited

MineCraft Knowledge Base

‘To make a wooden pickaxe in Minecraft, the player must first chop down a tree!
to collect logs. These logs are then crafted into wooden planks, which are :
further used to create sticks. The player then crafts a crafting table using '
iadditional planks. Finally, by combining sticks and planks on the crafting table, :
Ethe wooden pickaxe is crafted and ready for use. H

: player, chop down, tree
' tree, yield, logs
1 logs, crafted into, wooden planks

GraphRAG

E(l) craft a wooden pickaxe;
H stick, planks, crafting
Etablc; a wooden pickaxe

E W('mden p'lanks, u;ed 1? create, sticks ' craft a crafting table; ..

1 player, craft, crafting table |

. ) (3) craft planks; ....

' crafting table, crafted from, wooden planks :(4) mine log:

1 player, combine, sticks and planks H :(5) craft :tifl’(;‘”

1 sticks and planks, used to craft, wooden pickaxe E H A 0 GoG
ur Go'

E wooden pickaxe, crafted on, crafting table

VLY £ GRT
player chop down tre ! 4
d',’f" Sod NS h
,\‘ o craftedinto wooden planks | ‘. then | wooden planks.

Crafting
E g

Finally, by combining
icks and planks on

ol
ting table, the woode

Figure 1: GraphRAG extracts an excessive number of
low-granularity entity—relation triples, which hinders ef-
fective reasoning over fragmented information. In con-
trast, our GoG captures procedural knowledge through
goal hierarchies, thereby supporting coherent and struc-
tured reasoning.

domain-specific knowledge in games, various ap-
proaches have been proposed to incorporate ex-
ternal game knowledge—either through retrieval
from specialized databases (Gao et al.; Edge et al.,
2025) or by directly fine-tuning the LLMs for game-
specific purposes (Zhai et al., 2024). Notably,
GraphRAG-based methods (Guo et al., 2024; Wu
et al., 2024) have achieved superior results due to
their efficient extraction, organization, and index-
ing of entity—entity—relation triples, which enable
effective retrieval across multiple heterogeneous
game documents.

However, GraphRAG suffers from several no-
table limitations, particularly in tasks that require
extensive reasoning, such as Minecraft, where
agents must plan and act over multiple steps. A
key issue is that GraphRAG fragments documents



into very small pieces, as it prioritizes local entity-
level connections over global narrative coherence.
For example, in our Minecraft setting, GraphRAG
extracts 12,388 nodes and 18,347 edges from the
source materials, which hinders the construction of
coherent reasoning chains during retrieval. More-
over, the abundance of entities results in overly
dense 1-hop neighborhoods, especially around fre-
quently occurring entities. Consequently, many
retrieved nodes may be irrelevant to the input query
and only loosely related to the central entity. This
excessive retrieval introduces noise and can signifi-
cantly degrade performance—a pitfall we observed
when comparing GraphRAG to vanilla retrieval
without graph augmentation.

As the saying goes, “tearing paper is easy,
putting it back together is hard”—a metaphor that
aptly reflects the difficulty of reconstructing reason-
ing chains in fragmented knowledge graphs. This
motivates us to design an efficient knowledge ex-
traction and organization framework that can effec-
tively support multi-step reasoning. In this paper,
we propose to construct a directed, goal-oriented
graph (GoG), where each node represents a goal
along with its associated attributes, and each edge
encodes the logical relationship between two goals.
Leveraging this novel graph structure, we design
an effective retrieval strategy that first retrieves the
most relevant goals and then iteratively retrieves
their corresponding subgoals, thereby forming a
complete reasoning chain. This reasoning chain
significantly enhances the capabilities of LLMs in
game-playing tasks compared to GraphRAG and
its variants, as demonstrated by our extensive ex-
periments on the Minecraft testbed.

The comparison between GraphRAG and our
method GoG is illustrated in the Figure 1. In this
toy example, GraphRAG extracts 9 triples, making
it difficult to summarize the logical reasoning re-
quired to craft a wooden pickaxe. In contrast, our
method extracts only 5 goals and subgoals, which
are logically structured to clearly support the rea-
soning process for online inference.

Our contributions are summarized as follows:

* We introduce an alternative framework to tra-
ditional entity-relationship knowledge graphs-
Goal-Oriented Graphs (GoGs), designed to facil-
itate multi-step reasoning.

* We propose a goal-driven retrieval that identifies
the most relevant goals and recursively retrieves
their subgoals, explicitly forming a reasoning
chain to guide LLM prompting.

» Extensive experiments on Minecraft environ-
ments demonstrate that our method achieves
superior performance compared to baseline ap-
proaches.

2 Related Work

LLM-Based Agents have been proposed for
Minecraft. For example, Voyager is an agent that
learns skills via lifelong learning (Wang et al.,
2024). MP5 (Qin et al., 2024) focuses on leverag-
ing multimodal LLMs to perform planning based
on what the agent sees. Unlike these methods, our
method aims to improve an agent’s performance by
using goal-oriented knowledge extracted from text
sources. Two methods that are more closely related
to ours are GITM (Zhu et al., 2023) and Optimus-
1 (Lietal., 2024). GITM uses text knowledge from
the Minecraft Wiki and in-game recipes, as does
our method. However, we focus on the construc-
tion of Goal-Oriented Graphs from text sources
and the retrieval process for planning. On the other
hand, GITM is presented as a unified agent sys-
tem. Optimus-1 is a Minecraft agent that contains
a hierarchical knowledge graph that is used to de-
compose goals into subgoal. However, the process
in which their graph is created is different from
ours, and their agent is focused on the utilization
of multimodal memory.

Reasoning using LLMs is a popular research
area that aims to enable LLMs to handle more com-
plex tasks. There are a wide variety of methods,
including those that alter the prompt to encour-
age the LLM to output intermediate steps (Wei
et al., 2022), provide feedback from the environ-
ment to the LLM so that it can adjust its behaviour
accordingly (Yao et al., 2023b; Shinn et al., 2023),
maintaining and expanding multiple generated rea-
soning sequences (Yao et al., 2023a), and using
majority choice voting (Wang et al., 2023).

RAG-Based Systems aim to address LLMs’
knowledge gaps. RAG maintains a vector database
of source documents that can be retrieved a given
to the LLM as context information according the
embedding similarity of the source documents a
given query (Lewis et al., 2020). However, if the
answer to a given query spans across several docu-
ments, then the retrieval process may fail to contain
the answer. Therefore, GraphRAG and its variants
were proposed to address this issue (Edge et al.,
2025; Wu et al., 2024; Guo et al., 2024).

Hierarchical Decomposition is a traditional



method in Al to break complex problems into
smaller sub-problems that has been used in areas
including planning (Ghallab et al., 2004; Erol et al.,
1994) and reinforcement learning (Dietterich et al.,
1998; Sutton et al., 1999). These methods typically
rely on domain knowledge or hand-crafted rules to
establish the hierarchy of tasks. In this work, we
aim to construct a hierarchy of goals in the form of
a graph by constructing it from text data sources.

3 Methodology

Our method, illustrated in Figure 2, consists of two
main phases: goal-oriented knowledge base con-
struction and reasoning-aware inference. In the first
phase, we construct a directed graph whose nodes
represent goals such as “craft a wooden pickaxe”
and edges represent subgoal relationships between
goals. During inference, we use the constructed
knowledge base to recursively search for step-by-
step reasoning paths, which are followed to guide
LLM prompting for the given task.

In the following subsections, we describe the two
phases of our proposed method, using Minecraft as
the testbed for illustration.

3.1 Goal Knowledge Base Construction

In the first phase of our method, we construct a di-
rected graph G = (V, E'), where V is a set of nodes
and £ C V x V is a set of edges from source to
target nodes. Each node in the graph represents a
goal, and each one is associated with a set of at-
tributes consisting of its name, aliases, description,
preconditions, and postconditions. The names of
the nodes in our graph are goal-oriented phrases
that succinctly describe the action involved and
expected outcome of the goal, which is detailed fur-
ther in the node’s description. The preconditions
are a list of prerequisites that are needed before
the goal can be pursued, and postconditions explic-
itly describe the expected outcome of achieving
the goal. Edges represent subgoal relationships
between goals, and each edge is associated with
a description to briefly explain how two goals are
related.

In the case of Minecraft, to craft a wooden
pickaxe, our constructed graph includes a set of
goals such as “craft a wooden pickaxe” and “craft
planks.” Since both planks and sticks are required,
the graph contains directed edges from the “craft
a wooden pickaxe” node to the “craft sticks” and
“craft planks” nodes, as shown on the right side of

Figure 2. Furthermore, the goal “craft planks” de-
pends on acquiring logs, introducing an additional
subgoal relationship. In this manner, high-level
goals are recursively decomposed into subgoals
until they reach atomic operations. Preconditions,
such as required tools and materials, are also en-
coded in the graph to represent dependencies for
actions like crafting tools or mining ores.

To extract the goal-related information from
large text-based data sources, we utilize LLMs.
However, LLMs have a limit to the amount of to-
kens that they can process in one query, and there-
fore the source text needs to be split into smaller
chunks that can fit an LLM’s context size. For each
chunk, we use an LLM to extract goals, their at-
tributes, and subgoal relationships between goals.
The prompt used for goal extraction is provided in
Appendix B.

3.2 Goal Merge and Subgoal Derivation

After extracting goals and subgoals from all text
chunks, two critical challenges must be addressed:
(1) duplicate goals may be extracted from differ-
ent chunks—how can they be effectively merged?
and (2) a goal identified in one chunk may have
a subgoal relationship with a goal from another
chunk—how can the complete subgoal relations be
derived?

The equivalence between new and existing goals
is determined by the similarity between their name
embeddings, and further verified using the precon-
ditions and postconditions of each goal pair. To
perform the aggregation process, we use an text
embedding function f : 7 — R? to map a given
textt € 7 to a d-dimensional vector. In particu-
lar, for each newly extracted goal, we retrieve the
most similar goals from existing goal base by com-
paring the cosine similarity between their name
embeddings. Then, we compare the pre- and post-
conditions of the pairs of new goals and their most
similar existing goals. For a given new goal and
its most similar goal, we sort each of their lists of
preconditions and postconditions in alphabetical
order, and then we calculate the cosine similarity
between the embeddings of the pair after sorting.
We define a threshold to binarize the similarity of
text embedding.

If all pairs of corresponding conditions (precon-
ditions and postconditions) have similarity scores
above a threshold 6, the new goal is considered
equivalent to an existing one. Otherwise, the new
goal is added to the goal base as a distinct entry.



(2) Goal Extraction
Goal

An egg is an item

that
*Cookies are food 1 Name: Goal
thmi[em,s A pickaxe is i Name: Goal
obtaina tool that is o | .
XXX Descript Name: Craft a wooden pickaxe

icquaﬂmrequlred to mine XXXX
hal1Ot TeSmost types

or satuof stone, ore, and
signifiblocks crafted from

stone or ore. ...

Description: Craft a wooden

Offline

Pre-Con xxxxxx
XXXX

Pre-Con | ores.
Post-Co| XXXXX

Post-Con sticks, 3 planks

(1) MineCraft Knowledge Base

Lbecccccancbdecccccccaa

Actions

Online

States

pickaxe, which is used to mine basic

Pre-Conditions: | crafting table, 2

Post-Conditions: 1 wooden pickaxe

(3) Merge Goals and Construct Goal Graph

1
1
1
1
1 [Craﬁ a wooden pickaxe z] [Craﬁ an iron sword ﬂ
1
1
1
1
1

\/

== (Craft planks ] Craft sticks /" Smelt iron ingot @
Mine logs ‘ [Mine iron ore e] [Craﬁ a furnace ‘] H

Query
s i
E < Task: Craft a @
— Goals, 3 e | wooden pickaxe

Subgoals Minc logs @)

Figure 2: An overview of our proposed method GoG. First, we construct a knowledge base of goals from source
text documents. Then, given a task instruction, we retrieve goal-oriented knowledge from the knowledge base to use

for plan generation.

In cases where the condition similarity is high but
the name embedding similarity is lower than 6, we
treat the new goal as an alias and append its name
to the existing goal’s alias list. If both condition
and name similarities are high, the goals are treated
as identical.

Once we have added a newly extracted goal to
the knowledge base, the next step is to determine
whether it has any subgoal relationships with any
existing goals in our knowledge base. To do this,
we use a process similar to the goal equivalence
comparison described previously, but instead we
will match preconditions of the goal to the postcon-
ditions of existing goals, and vice versa. If there is
a match, then we add a new edge to the knowledge
base.

After deduplicating goals and completing sub-
goal relations across all chunks, we obtain a di-
rected goal-oriented graph from the knowledge
source, as shown in Figure 2.

3.3 Goal Selection and Planning

After constructing the knowledge base, we lever-
age it to extract goal-oriented knowledge for down-
stream tasks such as planning. The overall process
is illustrated in Figure 3.

Given a task query, such as “craft a wooden
sword”, we retrieve the top-k goals from the our
knowledge base according to the cosine similarity
between the query and the goals’ names in the
knowledge base. If £ > 1, we need to determine
which goal is the best match for the query. To do

this, we utilize LLMs to select the goal from the
top-k retrieved options by giving it the goal names,
descriptions, and postconditions. The prompt given
to an LLM to select the best matching goal from
the k candidates is provided in Appendix B.

After selecting the goal that matches the query,
we retrieve all subgoals using depth-first search
(DFS) starting from the selected goal. We avoid in-
finite loops caused by cyclical subgoal relations by
not going deeper when a node that has already been
visited is seen again. After retrieving subgoals, it
may be the case that there are multiple ways to
achieve the overall goal. In this case, a procedure
to select the best set of subgoals is needed, which
may depend on the use case scenario.

With the set of goals, their attributes, and edges
indicating subgoal relationships, we end up with a
goal tree. We traverse the tree to obtain a complete
list of preconditions which, in Minecraft, is a list
of materials and tools needed to achieve the overall
goal. At last, we perform planning by providing
this information to an LLM and prompting it to
generate a plan. The planning prompt we use is
provided in Appendix B.

3.4 GraphRAG vs GoG

Here we summarize the major differences between
GraphRAG and our proposed GoG. GraphRAG
organizes knowledge into fragmented, low-
granularity entity—relation triples, which limits its
ability to support coherent reasoning—much like
trying to reconstruct evidence from shredded pieces

EN



Goal-oriented Graph

0
O &

A
> 000
(1) Goal Retrieval Q09 (5) Return Subgoals
OO0 oo
(2) Return (4) Subgoal
Top-K Goals Retrieval
Y
A Retrieved Subgoals
Retrieved Goal Selected Goal
Task etrieve: oals (3) Goal electe oals (1) Craﬂ p]anks
A

(1) Craft a wooden
pickaxe
(2) Craft a stone

AA D

i Make a wooden
| pickaxe for me

Inference

>

(2) Craft stick
(3) Chop a tree

Craft a wooden
pickaxe

“)

Figure 3: The query pipeline. For a given task, the top-k goals based on embedding similarity between the query

and the goals’ names are retrieved.

of paper. In contrast, we explicitly model abstract
goals and subgoals as graph nodes, preserving the
task hierarchy and enabling multi-step reasoning.
For example, our GoG consists of 703 nodes and
1,653 edges, whereas the knowledge graph con-
structed using GraphRAG contains 12,388 nodes
and 18,347 edges from the same source. This more
compact and structured goal graph is better tailored
for goal achievement and planning, as evidenced
by the following results on the Minecraft testbed.

4 Experiments

4.1 Experimental Setup

In this work, we use the Minecraft environment and
tasks provided by (Li et al., 2024) to develop and
evaluate our method. There are 66 tasks that are
categorized into 7 groups: wood, stone, iron, gold,
diamond, redstone, and armor. The difficulty of the
task groups from easiest to hardest is wood, stone,
iron, gold, then diamond. The redstone and armor
groups contain tasks of mixed difficulty ranging
from iron to diamond. More difficult tasks require
longer plans to be generated and require the agent
to find rarer materials. The agent has a limited
number of in-game steps, defined based on the
task’s group, to complete the task. The complete
list of tasks and details can be found in Appendix C.
Baselines. We compare our proposed method GoG
to three baselines:

Vanilla. This method uses few-shot examples
of tasks and directly generate plans for given tasks
from a given task instruction, without any further
context information.

GraphRAG. We prompt GPT-40 mini to con-

struct a knowledge graph from the Minecraft Wiki
pages provided by MineDojo (Fan et al., 2022)
and in-game recipes using the method proposed
by Edge et al. (2025). During goal inference and
planning, context information is retrieved using lo-
cal search and inserted into the prompt given to
the LLM. This method uses the same source as our
GoG.

Hierarchical Knowledge Graph (HKG). This
baseline constructs a knowledge graph from in-
game recipe files as implemented by Li et al.
(2024), where each node is an item and edges are
dependencies between them. For a given task, the
HKG matches the task to a node and extracts a list
of materials and tools, which is given to an LLM
to produce a plan. We exclude the multimodal
memory module proposed by Li et al. (2024) from
this baseline as we aim to compare the knowledge
graphs used by each method.

Crafting recipes in the Minecraft Wiki are dis-
played as images. Therefore, we supplement the
Wiki pages with recipes from the Minecraft game
files to provide a text-based representation of the
recipes. We remove pages that are unrelated to
our experimental setting, such as those about real
people related to the game, or game patch notes.
Additionally, we filter pages by including those
that have titles including the names of items con-
tained in the in-game recipe files, or if the title is
included in the name of the item. We only include
text from the Wiki pages, leaving out images asso-
ciated with the pages. The final set of documents
used to construct our knowledge base consists of
514 Minecraft Wiki pages and 859 recipe files.



Models. We utilize three LLMs in our experiments:
Llama 3.2-Vision 90b, Gemma 3 27b, and Qwen
2.5-VL 32b. We use multimodal LLMs because we
provide game frames to the LLM when prompting
them to perform goal inference and planning. We
use a temperature of 0, context length of 32K, 6 =
0.92 with nomic-text-embed-v1.5 (Nussbaum et al.,
2024) as the embedding model, and use k = 3 for
both GraphRAG and our method.

Evaluation metrics. For our main experiments, we
report the success rates of completing tasks and the
number of in-game steps used by the agent over 30
runs of each task for each combination of baseline
method and LLM. Higher success rates and lower
required steps indicate better performance.

We conduct an ablation study in Section 4.4 and
use metrics based on classical planning literature to
assess the quality of the plans generated (Ghallab
et al., 2004). We use goal satisfaction, soundness,
completeness, and efficiency. The definitions of the
metrics can be found in Appendix E. The metrics
are calculated using information from the retrieved
goal tree for a given task. Using these metrics
instead of success rate and in-game steps allows
us to focus on the differences in generated plans
without needing to consider other factors that may
cause the agent to fail, such as the stochasticity of
environment.

After we generate a plan using the baselines and
our method, we adopt STEVE-1 to convert text
instructions into keyboard and mouse controls (Lif-
shitz et al., 2023). However, STEVE-1 is incapable
of directly performing complex tasks that require
multiple steps, hence the need for a planner that
can decompose complex tasks into simpler ones.
More details about the experimental setup can be
found in Appendix D.

4.2 Main Results

The main results in Table 1 show that GoG per-
forms much better than the baseline models in more
complex task groups. For simpler task groups (e.g.,
wood and stone), all methods achieve comparable
performance in terms of success rate and the aver-
age number of steps required to complete the tasks.
However, for more challenging task groups—such
as iron, gold, and armor—our GoG demonstrates a
significant advantage over the baselines. For exam-
ple, the success rate on the gold task is three times
higher than that of HKG, and on the armor task,
GoG outperforms HKG by 57.84% with Llama 3.2
Vision model. For the most difficult tasks, such

as gold and diamond, all baseline methods consis-
tently fail to achieve the goal within the maximum
allowed in-game steps. In contrast, our method gen-
erally maintains a success rate above 50%, demon-
strating its robustness in long-horizon planning sce-
narios. These successful results empirically demon-
strate that our GoG enhances the LLM’s reasoning
capabilities by providing goal structures and ma-
terial lists that fill knowledge gaps and support
accurate planning.

A key observation from our experiments is a
notable pitfall of GraphRAG: it sometimes per-
forms even worse than the Vanilla baseline, despite
having access to additional retrieved content. The
retrieval process of GraphRAG returns many irrele-
vant but connected nodes from the 1-hop neighbour-
hood. For example, a general entity such as stone
can be used to craft many different tools. When
tasked with making a stone axe, the LLM often
lacks the reasoning to select the appropriate objects
from its neighbourhood and instead returns all con-
nected entities. This results in highly noisy context,
which can significantly degrade downstream task
execution. As illustrated by our example of crafting
a stone axe, the community reports of GraphRAG
fail to translate into practical benefits—even with
additional computational costs for clustering and
summarization. This outcome echoes the old say-
ing: reconstructing evidence from shredded pieces
remains inherently difficult.

4.3 Hyperparameter Analysis of &

Here, we analyze the effect of £ when retrieving
candidates to match a given query to a goal in our
GoG. In test tasks, all of the text instructions of
the tasks are provided in a similar structure in the
form of “<verb> <item>" with a limited number
of verbs, such as “craft a wooden pickaxe”. There-
fore, in order to increase the diversity of the task
instructions for this analysis, we use GPT 40-mini
to generate 10 rewordings for each of the 66 task
instructions used in our experiments. Then, for
each of the 660 generated instructions, we retrieve
the top-k goals from our GoG, and use a vLLM to
select the best match from the retrieved goals. In
the case of £ = 0, no retrieval is performed and
the LLLM is directly asked to determine the goal.
For k = 1, the LLM is not required to perform any
selection because there is only one option, hence
the results for £ = 1 are the same across all LLMs.

The results in Table 2 show the accuracies of var-
ious combinations of k¥ and LLMs in determining



Table 1: The results of our main experiments. Bolded numbers are the best result of each task group.

‘ . ‘ Llama 3.2 Vision | Gemma
Group Metric
| Vanilla  GraphRAG ~ HKG GoG | Vanilla GraphRAG ~ HKG GoG
Wood SRt 83.67 80.00 93.67 95.67 88.67 91.00 95.67 93.33
AS| 1268.69 1497.273 1004.17  1027.21 1264.81 1080.68 989.55 1044.69
Ston SRt 57.41 37.77 46.67 80.00 47.41 47.78 71.11 69.63
one AS| 3898.67 4610.74 4371.23  3079.80 | 4311.94 4296.61 3456.20  3405.20
I SRt 19.79 19.17 54.38 74.17 15.94 11.78 57.01 66.11
ron AS| | 2134094  21137.67 14857.19 10770.56 | 21459.40  22523.79  14049.04 12215.19
Gold SRt 5.28 0.00 0.00 70.00 0.00 0.00 5.56 72.22
AS] | 35321.25 00 00 15886.11 00 00 34448.38 15336.51
Diamond SRt 0.00 0.00 0.00 66.11 11.49 3.33 0.00 31.39
© AS| 00 00 00 19717.08 | 34601.33  35940.58 00 27361.79
Redstone SRt 0.00 0.00 14.85 49.44 0.00 0.00 12.65 47.46
AS| 00 00 32188.80 22309.15 00 00 32733.51 25633.46
Armor SRt 25.83 26.15 34.44 54.36 23.59 6.15 35.38 55.30
AS] | 28507.39 2833548  25785.84 20668.21 | 29774.12  34177.48  25652.54 20244.88

- success rate (SR), average step (AS), oo (failed after reaching the max steps).

k | Gemma3 | Qwen 2.5 VL | Llama 3.2
0| 8742 9258 9515
1| 9712 9712 9712
2| 9846 9879 9879
3| 9879 9894 9864
4| 9818 9862 9863
5| 9879 9954 9848

Table 2: Accuracies for different values of k using var-
ious LLMs on goal inference for our retrieval method.
The bolded numbers are the best results in each column.

the correct goal by checking that the postcondi-
tion of the selected goal matches the task. First,
we observe that when k£ > 1, our goal inference
clearly improves the retrieval of matching goals
compared to the case of k& = 0, where the LLM
must rely solely on its own knowledge to infer the
postconditions for the query task. Notably, Gemma
3 exhibited the lowest performance at k = 0, but its
accuracy increased significantly—approaching that
of other LLMs—when given access to our knowl-
edge base. Second, we find that increasing k leads
to only a marginal improvement in query accuracy,
highlighting the robustness of our goal matching
strategy, which remains effective even with a small
number of retrieved goals.

When k£ = 0, corresponding to the baseline
methods that rely solely on internal knowledge to
infer the next steps, a significant question arises:
why does performance vary considerably in our
main experiments between GoG and baselines,
even though retrieval performance remains rela-

tively consistent across models? We attribute this
performance gap to the recursive retrieval of sub-
goals in our algorithm, which explicitly constructs
a reasoning path—something the baselines lack.
However, there is still room for improvement in
our approach, which motivates us to further explore
how to enable deeper, more structured reasoning
over tasks, rather than relying on superficial ques-
tion analysis.

4.4 Plan Quality Ablation

Remember that two main components are extracted
in our inference stage: the goal tree and the ma-
terials and tools list in Section 3.3. In this study,
we analyze the effects of the two main components
of the prompt for plan generation. We generate
a plan for each of the 66 tasks for each LLM in
the ablation study, and alter the information given
in the prompt based on the components removed
according to the corresponding variant. We experi-
ment with 4 variants: full context information, goal
tree information only, material and tool list only,
and neither. The detailed evaluation is introduced
in Appendix E.

The results are presented in Table 3. The
material list refers to the set of materials re-
quired to achieve the target goal, and its inclu-
sion significantly improves all four evaluation
scores—particularly in terms of using the correct
materials, in the correct order, and with greater
efficiency—across all three LLMs. Overall, pro-
viding both goal information and the material list



Goal

Material

Goal

LLM Info List Satisfaction Soundness Completeness Efficiency
X X 3231 7901 8152 3589
. v X 1385 3819 3263 1385
Llama 3.2 Vision v 9538 9850 9891 9538
v v 1.000 1.000 1.000 1.000
X X 2615 7705 7893 2939
v X 2154 7622 7511 2301
Qwen 2.5 VL X v 9692 9947 9970 9534
v v 9846 9983 9982 9843
X X 3231 8197 8253 3417
Gemma 3 v X 3692 7804 8083 3438
X v 9538 9905 9940 8769
v v 8308 8704 19088 8292

Table 3: Plan quality ablation results, where bolded numbers show the highest scores on each metric for each LLM.

enables the LLM to generate higher-quality plans,
as the incorporation of the goal tree—a topological
structure that captures goal dependencies—further
enhances multi-step reasoning. An exception is
observed with Gemma 3, where adding the goal
tree slightly reduces performance—Ilikely due to
difficulty handling hierarchical input or increased
context length from overlapping information with
the material list. We leave further investigation of
this issue to future work.

4.5 Use-case Demonstration

To illustrate why our method performs better than
the baselines, we compare the plans generated by
our method and the baselines on the “craft a di-
amond axe” task using Llama 3.2-Vision in Ap-
pendix F.1. Two types of errors are observed from
the plans generated by the baselines.

First, we observe hallucinations occurring in
intermediate planning steps. For example, the
plan generated by HKG includes the step “smelt
diamond,” in Table 5, which is invalid under
Minecraft’s rules—diamonds cannot be smelted.
We hypothesize that this error stems from the
LLM’s lack of understanding of game mechan-
ics. Although HKG supplies a list of materials
and tools, this information alone is insufficient for
constructing a valid plan. In contrast, our top-down
approach provides structured goal decomposition,
which better aligns with the procedural nature of
in-game tasks.

Second, both GraphRAG and the vanilla base-
line exhibit similar shortcomings in long-horizon
planning. In particular, both generate plans that
produce too few sticks, forcing the agent to replan
and ultimately fail to complete the task, as shown in

Tables 7, 8. This limitation arises from the LLM’s
inability to reason about quantities—successfully
completing the task requires both knowledge of
crafting recipes and the capacity to compute the
required number of items based on those recipes.

Our GoG is constructed from practical Minecraft
resources, such as the Minecraft Wiki and in-game
crafting recipes, which provide rich information
about both crafting procedures and the quantities of
required materials. Unlike the baselines, GoG not
only models goal-to-goal dependencies but also ex-
plicitly encodes preconditions and postconditions
for each goal—for example, “I crafting table, 2
sticks, and 3 planks” for crafting a wooden pick-
axe. This structured representation significantly
mitigates the two types of errors identified in our
analysis, as shown in Table 6.

5 Conclusion

We proposed a novel framework for constructing
Goal-Oriented Graphs (GoGs) from source doc-
uments to support planning tasks. We show that
existing GraphRAG-based approaches are ill-suited
for such domains due to the extremely fine granular-
ity of entity—relation triple extraction, which makes
it difficult to retrieve concise and complete reason-
ing paths. To address this, our GoGs represent
goals at different abstraction levels as nodes, with
edges indicating logical relationships between con-
nected goals. This design streamlines retrieval by
allowing all relevant subgoals of a target goal to be
efficiently identified. Experiments on the Minecraft
testbed demonstrate that our method significantly
outperforms GraphRAG and its variants, especially
on complex tasks that require long-horizon reason-
ing.



Limitations

In this work, we focused on constructing a goal-
oriented graph that explicitly facilitates reasoning
for complex tasks in Minecraft. While our ap-
proach achieves superior performance compared to
baseline methods, several limitations remain.

First, our approach is currently tailored to the
Minecraft environment, where goals and craft-
ing logic are well-defined and richly documented.
Applying GoG to less structured or poorly docu-
mented domains may require additional adaptation
or domain-specific tuning.

Second, the construction of GoG relies on LLMs
to extract goals, subgoals, and pre/postconditions.
Errors in this extraction process—such as misinter-
preting instructions or failing to capture implicit
dependencies—can propagate through the graph
and affect downstream performance. Future work
could pay more attention to reduce the construction
erTors.

Lastly, as the number of knowledge sources in-
creases, the number of goals and their interdepen-
dencies also grows. This can lead to increasingly
complex graphs, potentially introducing retrieval
inefficiencies or injecting noisy context during in-
ference. We plan to explore the scalability of our
approach in future work to ensure its effectiveness
in larger and more diverse domains.

References

Thomas G Dietterich and 1 others. 1998. The maxq
method for hierarchical reinforcement learning. In
ICML, volume 98, pages 118-126.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and
Jonathan Larson. 2025. From local to global: A
graph rag approach to query-focused summarization.
Preprint, arXiv:2404.16130.

Kutluhan Erol, James Hendler, and Dana S Nau. 1994.
Htn planning: Complexity and expressivity. In AAAI
volume 94, pages 1123—-1128.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man-
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar.
2022. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In Advances in
Neural Information Processing Systems, volume 35,
pages 18343-18362. Curran Associates, Inc.

Xidong Feng, Yicheng Luo, Ziyan Wang, Hongrui Tang,
Mengyue Yang, Kun Shao, David Mguni, Yali Du,
and Jun Wang. 2023. Chessgpt: Bridging policy

learning and language modeling. In Advances in
Neural Information Processing Systems, volume 36,
pages 7216-7262. Curran Associates, Inc.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Jiawei Sun, and Haofen Wang.
Retrieval-augmented generation for large language
models: A survey.

Malik Ghallab, Dana Nau, and Paolo Traverso. 2004.
Automated Planning: theory and practice. Elsevier.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao
Huang. 2024. Lightrag: Simple and fast retrieval-
augmented generation.

Chenghao Huang, Yanbo Cao, Yinlong Wen, Tao
Zhou, and Yanru Zhang. 2024. Pokergpt: An
end-to-end lightweight solver for multi-player texas
hold’em via large language model. arXiv preprint
arXiv:2401.06781.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459—
9474. Curran Associates, Inc.

Zaijing Li, Yuquan Xie, Rui Shao, Gongwei Chen,
Dongmei Jiang, and Liqgiang Nie. 2024. Optimus-
1: Hybrid multimodal memory empowered agents
excel in long-horizon tasks. In The Thirty-eighth An-
nual Conference on Neural Information Processing
Systems.

Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy
Ba, and Sheila Mcllraith. 2023. Steve-1: A gen-
erative model for text-to-behavior in minecraft. In
Advances in Neural Information Processing Systems,
volume 36, pages 69900-69929. Curran Associates,
Inc.

Zach Nussbaum, John X Morris, Brandon Duderstadt,
and Andriy Mulyar. 2024. Nomic embed: Training
a reproducible long context text embedder. arXiv
preprint arXiv:2402.01613.

Yiran Qin, Enshen Zhou, Qichang Liu, Zhenfei Yin,
Lu Sheng, Ruimao Zhang, Yu Qiao, and Jing Shao.
2024. Mp5: A multi-modal open-ended embodied
system in minecraft via active perception. In 2024
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 16307-16316.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Advances in Neural Information Process-
ing Systems, volume 36, pages 8634—8652. Curran
Associates, Inc.


https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://proceedings.neurips.cc/paper_files/paper/2022/file/74a67268c5cc5910f64938cac4526a90-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/74a67268c5cc5910f64938cac4526a90-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/74a67268c5cc5910f64938cac4526a90-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/16b14e3f288f076e0ca73bdad6405f77-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/16b14e3f288f076e0ca73bdad6405f77-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/16b14e3f288f076e0ca73bdad6405f77-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://openreview.net/forum?id=XXOMCwZ6by
https://openreview.net/forum?id=XXOMCwZ6by
https://openreview.net/forum?id=XXOMCwZ6by
https://openreview.net/forum?id=XXOMCwZ6by
https://openreview.net/forum?id=XXOMCwZ6by
https://proceedings.neurips.cc/paper_files/paper/2023/file/dd03f856fc7f2efeec8b1c796284561d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/dd03f856fc7f2efeec8b1c796284561d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/dd03f856fc7f2efeec8b1c796284561d-Paper-Conference.pdf
https://doi.org/10.1109/CVPR52733.2024.01543
https://doi.org/10.1109/CVPR52733.2024.01543
https://doi.org/10.1109/CVPR52733.2024.01543
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf

Richard S Sutton, Doina Precup, and Satinder Singh.
1999. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning.
Artificial intelligence, 112(1-2):181-211.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2024. Voyager: An open-ended
embodied agent with large language models. Trans-
actions on Machine Learning Research.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Junde Wu, Jiayuan Zhu, Yunli Qi, Jingkun Chen, Min
Xu, Filippo Menolascina, and Vicente Grau. 2024.
Medical graph rag: Towards safe medical large lan-
guage model via graph retrieval-augmented genera-
tion. arXiv preprint arXiv:2408.04187.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023a. Tree of thoughts: Deliberate problem solving
with large language models. In Advances in Neural

Information Processing Systems, volume 36, pages
11809-11822. Curran Associates, Inc.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao.
2023b. React: Synergizing reasoning and acting
in language models. In The Eleventh International
Conference on Learning Representations.

Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Sheng-
bang Tong, Yifei Zhou, Alane Suhr, Saining Xie,
Yann LeCun, Yi Ma, and Sergey Levine. 2024. Fine-
tuning large vision-language models as decision-
making agents via reinforcement learning. In The
Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Wei-
jie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei Lu,
Xiaogang Wang, Yu Qiao, Zhaoxiang Zhang, and
Jifeng Dai. 2023. Ghost in the minecraft: Gener-
ally capable agents for open-world environments via
large language models with text-based knowledge
and memory. Preprint, arXiv:2305.17144.

10


https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=nBjmMF2IZU
https://openreview.net/forum?id=nBjmMF2IZU
https://openreview.net/forum?id=nBjmMF2IZU
https://openreview.net/forum?id=nBjmMF2IZU
https://openreview.net/forum?id=nBjmMF2IZU
https://arxiv.org/abs/2305.17144
https://arxiv.org/abs/2305.17144
https://arxiv.org/abs/2305.17144
https://arxiv.org/abs/2305.17144
https://arxiv.org/abs/2305.17144
https://arxiv.org/abs/2305.17144
https://arxiv.org/abs/2305.17144

A LLM in Goal Selection and Planning

As shown in Figure 4, we prompt the LLM to
first select the most appropriate goal (e.g., “craft
a wooden pickaxe”) and retrieve relevant subgoals
from the goal-oriented graph. We then prompt the
LLM again to convert the selected goal and its sub-
goals into a coherent multi-step plan.

B Prompts

In this section, we provide various prompts used
by our method.

C Experimental Tasks

Table 4 presents the list of tasks for each task group,
along with the corresponding maximum number of
in-game steps allowed. In total, there are 66 tasks,
categorized into seven groups: wood, stone, iron,
gold, diamond, redstone, and armor. As expected,
more complex tasks require a greater number of
steps to complete.

D Additional Experiment Details

In this section, we provide more details about ours
experimental settings.

At the start of each experimental run, the agent
starts with an empty inventory and is given an
instruction as a string, such as “craft a wooden
sword”. Then, as described in the previous section,
we retrieve the top-k goals from our knowledge
base and use an LLM to perform goal inference by
selecting a candidate from the top-k. Based on the
selected goal, we retrieve all subgoals for the goal.
Items in Minecraft often have multiple ways to be
crafted, resulting in many possible ways to craft
an item. However, almost all such variations are
cyclical. For example, it is possible to obtain the
“iron ingot” item from a “block of iron”, however,
a “block of iron” is obtained by combining “iron
ingots”, resulting in a cyclical relationship. Given
that the agent in our experiments starts with an
empty inventory, we exclude such paths from the
result of DFS. This results in only 1 set of subgoals
that achieve the given task.

After retrieving the subgoals, we parse the re-
sulting goal tree, which consists of the goal, its sub-
goals, and all their attributes, to produce a list of
items and materials needed to accomplish the task.
Then, we provide the goal tree and list of items
to an LLM to produce a plan to accomplish the
task. The prompt used for planning can be found

11

in Appendix B. The plan consists of a sequence of
subtasks and expected items to obtain from each
subtask. This plan is given to the agent, which then
attempts to execute the plan in Minecraft.

During execution of the plan, if a step fails due
to missing tool or materials, the Minecraft envi-
ronment provides feedback to the agent about the
missing item and quantity. This triggers the agent
to replan, which follows a similar procedure as the
original planning step at the beginning of the tra-
jectory. For GoG, the list of materials and tools for
the missing item is calculated from the goal tree,
which is then given to the LLM to produce a plan to
obtain missing materials. All baseline methods are
able to perform replanning, with HKG also gener-
ating a list of materials using its knowledge graph.
The generated replanning steps are then inserted
into the original plan.

E Plan Quality Metrics

Here we provide the definitions of the metrics used
in the plan quality ablation study.

Goal Satisfaction assesses overall plan quality
by measuring whether a plan, when executed, can
possibly achieve the overall task. This means that
the plan must include steps to obtain all required
tools and materials, and the ordering of the steps
should be such that pre-conditions of each step
are not violated. We assign a satisfaction score
g € {0,1} to a given plan, with O representing a
plan that cannot achieve the given task.

Soundness checks that each step of a plan is
formulated correctly and is executed with all pre-
conditions being satisfied. For example, “mine
a wooden sword” would be an invalid plan step.
A plan is assigned a soundness score s € {0, 1},
where 0 indicates that at least one step is invalid.
Soundness is an upper bound on goal satisfaction;
a plan cannot satisfy a goal if it is not sound. How-
ever, a sound plan does not necessarily mean that
it will satisfy the goal.

Completeness measures the proportion of mate-
rials and tools needed to achieve a task are obtained
by a plan. More formally, the score is assigned as:

e = i ( 1).

This means that if a plan obtains more materials
than necessary, it can still obtain a completeness
score of 1.

Efficiency determines whether the plan contains
more steps than required. A plan may have high

Tobtained (1)

>
TNneeded



Retrieved Goals ( N Selected Goals |

4

(1) Craft a wooden pickaxe
(2) Craft a stone pickaxe

i | (3) Craft a wooden axe
E '@' Executable Steps
E Retrieved Subgoals

Y

Goal Inference

Craft a wooden pickaxe |

ok Step 1:{task: chop a tree, goal: [logs, 4]}
(1) Craft planks

|| Step 2:{task: craft planks, goal: [planks, 12]}

(2) Craft stick Plannlng Step 3:{task: craft stick, goal: [stick, 8]}
(3) Chop a tree Step 4:{task: craft crafting table, goal:
[C L ) [crafting_table, 1]}

Step 5: {task: craft wooden pickaxe, goal:
[wooden pickaxe, 1]}

,

Figure 4: The LLM used during goal selection and planning stage.

Prompt for Extracting Goals and Subgoals, Part 1

-Goal-

Given a portion of a document and relevant in-game recipes about the game Minecraft, extract actionable
in-game goals that a player can achieve. Use only the content from the given document and in-game recipe
JSONS to construct goals and subgoals. Do not infer or add goals beyond what is explicitly described. Focus
solely on the core Minecraft experience. Exclude any content related to Minecraft spinoff games (e.g.,
Minecraft Dungeons, Minecraft Legends).

-Steps-

1. Identify relevant goals that a player can achieve in the game. For each goal, extract the following attributes:
- name: Name of the goal. Use short, specific names in the form of “<action> <minecraft_item>", such as
“craft planks”, “mine cobblestone”, or “smelt charcoal”. For tools with different grades such as “wooden” or
“stone”, use “<action> <grade> <minecraft_tool>", such as “craft a wooden pickaxe” or “craft a stone
sword”.

- description: A concise explanation of what the goal entails.

- req_tools: Needed tools to complete the goal, as a JSON object where keys are Minecraft tools and values
are 1. For tools with multiple grades (e.g. wooden or stone), specify the tool grade and only include the
lowest grade needed. Crafting tables and furnaces are considered as tools, and their usage can be determined
by document text, recipes, and summaries. Smelting using a furnace always requires “fuel” as a tool. Use
“None” (just as a standalone string, not as a JSON object or set or list) if no tools are needed.

- req_materials: Needed materials to complete the goal, as a JSON object where keys are Minecraft items and
values are needed quantities of that item. If no materials are needed, set this to “None” (just as a standalone
string, not as a JSON object or set or list).

- postconditions: The resulting state or item after completing the goal, as a JSON object where the keys are
Minecraft items and values are the quantity. If there are no post-conditions, set this to “None” (just as a
standalone string, not as a JSON object or set or list).

Before writing each goal, generate reasoning as to where the information about the goal comes from. If it
comes from a shaped crafting recipe, you must use the format as described above, otherwise write a brief
sentence.

Format each goal as a tuple:

(“goal”{tuple_delimiter } “<name>"{tuple_delimiter } “<description>"{tuple_delimiter}
“<req_tools>"{tuple_delimiter } “<req_materials>"{tuple_delimiter }““<postconditions>"")

... (continued in Figure 6) ...
\ Y,

Figure 5: The prompt used to extract goals and subgoals from source texts to build our knowledge base.

12



Prompt for Extracting Goals and Subgoals, Part 2

2. From the goals identified in step 1, identify subgoals that are needed for the achievement of the goal.
For every goal, establish subgoal relationships between the goal and associated subgoals for each required
material and tool that must be obtained or crafted, as identified by <req_tools> or <req_materials>. For
each goal-subgoal relationship, extract the following information:

- goal_name: Name of the higher-level goal, which must exist in the goals identified in step 1.

- subgoal_name: Name of the subgoal that is used by the goal.

- relationship_description: Explanation as to how and why the higher-level goal and the subgoal are related to
each other.

Format each relationship as a tuple:

(“subgoal”{tuple_delimiter }*“<goal_name>"{tuple_delimiter } ““<subgoal_name>"{tuple_delimiter}
“<relationship_description>")

3. Return a single list of tuples of all goals and subgoals as extracted from steps 1 and 2. Use
**{record_delimiter} ** as the list delimiter. If either tools or materials are ambiguous or missing, omit the
goal. Do not repeat the same goal in the list.

4. When finished, output {completion_delimiter}.

Only output the list as instructed without any explanation, summary, or other text. If there is no relevant
information in the document, just output {completion_delimiter}.

Here are some examples:

{examples}

HHHHHHHEHE R

-Real Data-

AR

Document Text:

{input_text}

— End of Document —

Goals and Subgoals:
N J

Figure 6: The second part of the prompt used to extract goals and subgoals from source texts to build our knowledge
base.

13



Task Group

#Tasks

Task description

Max Steps

Wood

10

craft a wooden shovel, craft a wooden pickaxe, craft a
wooden axe, craft a wooden hoe, craft a stick, craft a craft-
ing table, craft a wooden sword, craft a chest, craft a bowl,
craft a ladder

2400

Stone

craft a stone shovel, craft a stone pickaxe, craft a stone axe,
craft a stone hoe, smelt a charcoal, craft a smoker, craft a
stone sword, craft a furnace, craft a torch

6000

Iron

16

craft a iron shovel, craft a iron pickaxe, craft a iron axe,
craft a iron hoe, craft a bucket, craft a hopper, craft a rail,
craft a iron sword, craft a shears, craft a smithing table, craft
a tripwire hook, craft a chain, craft an iron bars, craft an
iron nugget, craft a blast furnace, craft a stonecutter

24000

Gold

craft a golden shovel, craft a golden pickaxe, craft a golden
axe, craft a golden hoe, craft a golden sword, smelt and
craft a gold ingot

36000

Diamond

craft a diamond shovel, craft a diamond pickaxe, craft a
diamond axe, craft a diamond hoe, craft a diamond sword,
craft a jukebox

36000

Redstone

craft a piston, craft a redstone torch, craft an activator rail,
craft a compass, craft a dropper, craft a note block

36000

Armor

13

craft shield, craft iron chestplate, craft iron boots, craft iron
leggings, craft iron helmet, craft diamond helmet, craft dia-
mond chestplate, craft diamond leggings, craft diamond
boots, craft golden helmet, craft golden leggings, craft
golden boots, craft golden chestplate

36000

Table 4: Tasks used in our main experiments.

14



Prompt for Goal Inference

You are a MineCraft game expert and you can guide agents to complete complex tasks. For a given game
screen, task, and context information, you need to complete “goal inference” and “visual inference”.

The context information is a set of possible goals to choose from for “goal inference”.

“goal inference”: According to the task, you need to select the goal from given options that best matches the
given query.

“visual inference”: According to the game screen, you need to infer the following aspects: health bar, food
bar, hotbar, environment.

{Examples}

Here is a game screen and task, you MUST respond in JSON format as shown in the example outputs
WITHOUT further explanation, introduction, or extra text. Complete “goal inference” by setting it to the
value of the “name” of the option that best matches the given task as shown in the example. Other fields
should be completed based on the given game screen.

<task>: {task}

<context>:

{context}

Output:

Figure 7: The prompt used for goal inference for our proposed method. “Context” consists of the top-k retrieved
goals from the knowledge base.

goal satisfaction, soundness, and completeness if ~ F.2 Retrieved Content
it obtains much more materials than required, but
this would not mean that it is a good plan. There-
fore, efficiency checks that a plan consists of only
necessary steps, measured as:

In this section, we show the retrieved contents for
various methods.

Splan

2

{sminimal if5plan 2 Sminimals
e =

0 otherwise.

The efficiency of a plan is O if the number of steps
in the plan spa, is less than the minimum steps
required Sminimal because that would mean that the
plan would fail.

To assign scores using these metrics, we use the
goal tree retrieved from our knowledge base for a
given task. From the goal tree, we calculate the
required list of items to complete the task, and the
order that the items should be obtained used the
preconditions of the goals. We use the goal names
in the tree to determine correct wordings, as the
goal names are in the form of “<action> <item>".

F Craft a Diamond Axe Case Study

F.1 Plans

In this section, we provide plans generated using
Llama3.2-Vision 90b for the “craft a diamond axe”
task.

15



Prompt for Plan Generation

You are a MineCraft game expert and you can guide agents to complete complex tasks. For a given overall
goal, game screen, hierarchy of goals, and list of needed materials, construct a ordered plan that completes the
given task. The goal hierarchy is structured as a JSON object whose keys are names of goals, and values are
information about the goal and its and subgoals. You will be given a list of tools and materials and amounts
needed for you to obtain and craft to complete the overall goal. Based on the information from the goal
hierarchy and the list of tools and materials, create a plan in JSON format as shown in the following example:
HAHHR RS

-Example-

HHHIAHHRE RS

{example}

HHHHHHAHHEARE RS

HAHHRHHH RS

-Real Task-

HEHHRHHHHH RS

<goal>

{goal}

<visual info>

{visual_info}

<goal hierarchy >

{goal_hierarchy}

<materials and tools>

{materials_and_tools}

<planning>

Complete <planning> for the given overall <goal> with valid JSON as instructed and in the format shown
in the example. Use the information in the goal hierarchy, game screen, and list of tools and materials and
their amounts to generate “task” and “goal” in each step of the plan. Use the same wording styles and patterns
for the “task” in each step as shown in the example plan. Only output the plan as a valid JSON object with no

additional text, introduction, or explanation. Do not use Markdown.
g J

Figure 8: The prompt used for planning for our proposed method.

16



Step Instruction Target Item Amount
0 chop a tree logs 9
1 craft planks planks 27
2 craft stick stick 8
3 craft crafting table crafting table 1
4 craft wooden pickaxe wooden pickaxe 1
5 equip wooden pickaxe wooden pickaxe 1
6 dig down and break down cobblestone cobblestone 19
7 craft stone pickaxe stone pickaxe 1
8 equip stone pickaxe stone pickaxe 1
9 craft furnace furnace 1
10 dig down and break down iron ore iron ore 3
11 smelt iron ore iron ingot 3
12 craft iron pickaxe iron pickaxe 1
13 equip iron pickaxe iron pickaxe 1
14 dig down and mine diamond diamond ore 3
15 smelt diamond diamond 3
16 craft diamond axe diamond axe 1

Table 5: A plan generated using HKG for “craft a diamond axe”. At step 15, the plan tries to “smelt diamond”,

which is unnecessary and invalid.

Step Instruction Target Item Amount
0 chop a tree logs 4
1 craft planks planks 12
2 craft stick stick 8
3 craft crafting table crafting table 1
4 craft wooden pickaxe wooden pickaxe 1
5 equip wooden pickaxe wooden pickaxe 1
6 dig down and break down cobblestone cobblestone 11
7 craft stone pickaxe stone pickaxe 1
8 equip stone pickaxe stone pickaxe 1
9 dig down and break down iron ore iron ore 3
10 craft a furnace furnace 1
11 smelt iron ingot iron ingot 3
12 craft an iron pickaxe iron pickaxe 1
13 equip iron pickaxe iron pickaxe 1
14 | dig down and break down diamond ore diamond 3
15 craft diamond axe diamond axe 1

Table 6: A plan generated using our proposed method for “craft a diamond axe”, which leads to a successful
completion of the task.

17



Step Instruction Target Item Amount
0 chop a tree logs 5
1 craft planks planks 15
2 craft stick stick 3
3 craft crafting table crafting table 1
4 craft wooden pickaxe wooden pickaxe 1
5 equip wooden pickaxe wooden pickaxe 1
6 dig down and break down cobblestone cobblestone 11
7 craft stone pickaxe stone pickaxe 1
8 equip stone pickaxe stone pickaxe 1
9 craft furnace furnace 1
10 dig down and break down iron ore iron ore 2
11 smelt iron ore iron ingot 2
12 chop tree logs 2
13 craft planks planks 2
14 craft sticks stick 2
15 craft wooden pickaxe wooden pickaxe 1
16 mine iron ore iron ore 1
17 smelt iron ore iron ingot 1
18 craft iron pickaxe iron pickaxe 1
19 equip iron pickaxe iron pickaxe 1
20 | dig down and break down diamond ore diamond ore 3
21 craft diamond axe diamond axe 1

Table 7: A plan generated using GraphRAG for “craft a diamond axe”. The plan contains replanning steps because

the plan failed to obtain enough sticks in step 3.

18



Step Instruction Target Item Amount
0 chop a tree logs 5
1 craft planks planks 16
2 craft stick stick 4
3 craft crafting table crafting table 1
4 craft wooden pickaxe wooden pickaxe 1
5 equip wooden pickaxe wooden pickaxe 1
6 dig down and break down cobblestone cobblestone 11
7 craft stone pickaxe stone pickaxe 1
8 equip stone pickaxe stone pickaxe 1
9 craft furnace furnace 1
10 dig down and break down iron ore iron ore 2
11 smelt iron ore iron ingot 2
12 chop tree logs 2
13 craft planks planks 2
14 craft sticks sticks 2
15 craft stone pickaxe stone pickaxe 1
16 mine iron ore iron ore 1
17 smelt iron ore iron ingot 1
18 craft iron pickaxe iron pickaxe 1
19 equip iron pickaxe iron pickaxe 1
20 | dig down and break down diamond ore diamond ore 3
21 craft diamond axe diamond axe 1

. logs: 4

. planks: 12

. stick: 8

. crafting_table: 1
. wooden_pickaxe: 1
. cobblestone: 11

. stone_pickaxe: 1
. iron_ore: 3

9. furnace: 1

10. iron_ingot: 3
11. iron_pickaxe: 1
12. diamond: 3

13. diamond_axe: 1

0NN AW

Table 8: A plan generated using vanilla prompting for “craft a diamond axe”. The plan contains replanning steps
because the plan failed to obtain enough sticks in step 3.

Table 9: The generated material list for “craft a diamond axe” using our proposed method. The list is generated by
parsing the goal tree and calculating all required materials.

19



Listing 1 A portion of the retrieved goal tree for “craft a diamond axe” using our proposed method.

{
"craft a diamond axe": {
"description”: "Crafts a diamond axe, which is used for chopping wood.",
"aliases": [],
"tools": {
"crafting_table": 1
}’
"materials”: {
"stick": 2,
"diamond”: 3
}’
"postconditions”: {
"diamond_axe": 1
}!
"subgoals": [
{
"subgoal”: "craft a crafting table”,
"relationship_description”: "craft a crafting table is used by craft a diamond axe"”
b
{
"subgoal”: "craft sticks”,
"relationship_description”: "craft sticks is used by craft a diamond axe”
}’
{
"subgoal”: "mine diamond ore”,
"relationship_description”: "Diamonds are required to craft a diamond axe"
}
]
}’
"craft a crafting table": {
"description”: "Craft a crafting table, which is used to craft more complex items.”,
"aliases": [],
"tools"”: "None”,
"materials”: {
"planks”: 4
}!
"postconditions”: {
"crafting_table": 1
}!
"subgoals”: [
{
"subgoal”: "craft planks”,
"relationship_description”: "craft planks is used by craft a crafting table”
}
]
})
"craft planks”: {
"description”: "Craft planks, a basic crafting material.”,
"aliases": [],
"tools": "None",
"materials”: {
"logs": 1
}!
"postconditions”: {
"planks”: 4
}’
"subgoals"”: [
{
"subgoal”: "mine log",
"relationship_description”: "mine log is used by craft planks”
}
]
})
(continued) ...

20



## Role of Toolsmith Villagers

Toolsmith villagers play a significant role in the community by trading various axes for emeralds. This
relationship highlights the economic aspect of resource management, where players can acquire high-
quality tools through trade. The presence of toolsmith villagers emphasizes the importance of community
interactions and resource exchange in enhancing gameplay.

## Utility of Different Axe Materials

Each type of axe, from wooden to netherite, offers varying levels of efficiency and durability, impacting
how players approach resource gathering. For instance, diamond axes are known for their high efficiency,
while wooden axes are less durable but easier to craft. Understanding the utility of different axe materials
allows players to make informed decisions based on their resource availability and gameplay needs.

## Sound and Interaction Events

The community includes various sound events associated with logs and axes, such as breaking and placing
sounds. These auditory cues enhance the immersive experience of gameplay, providing feedback to
players as they interact with the environment. The relationship between sound events and actions taken
with axes and logs contributes to the overall engagement of players in the game.

## Crafting Efficiency and Strategy

The crafting relationships among axes, logs, and other materials necessitate strategic planning for resource
management. Players must consider the most efficient ways to gather materials and craft tools, balancing
their immediate needs with long-term resource sustainability. This strategic element adds depth to
gameplay, encouraging players to think critically about their actions.

## Environmental Interactions

Axes and logs interact with various environmental elements, such as beehives and vines, showcasing their
versatility in gameplay. For example, axes are the most efficient tool for breaking beehives, allowing
players to harvest honey quickly. This interaction with the environment emphasizes the importance of axes
in not only resource gathering but also in engaging with the game’s ecosystem." 2, "# Axe Community
and Its Variants

The community revolves around various types of axes, including the standard AXE and the high-quality
DIAMOND AXE, along with their associated enchantments and crafting materials. These entities are
interconnected through crafting relationships and usage in gameplay, highlighting their importance in
resource gathering and combat.

## Central Role of the AXE

The AXE serves as a fundamental tool in the community, primarily used for chopping wood and dealing
damage to entities. Its versatility allows players to gather resources efficiently, making it a crucial item
for crafting and building. The AXE can be crafted using various materials, including sticks and different
types of ingots, which further emphasizes its importance in the game.

## DIAMOND AXE as a High-Quality Variant

The DIAMOND AXE is a high-tier variant of the standard AXE, crafted from diamonds, which makes it
the most durable and efficient option for chopping wood. Its crafting requires both diamonds and sticks,
and it is highly sought after for its superior performance in resource gathering and combat scenarios. The
DIAMOND AXE'’s significance is underscored by its ability to be enchanted, enhancing its capabilities
even further.

Table 10: A portion of the community reports generated for “craft a diamond axe” using GraphRAG.

21




The formula to find the total lifetime damage is (durability + 2) x damage per hit = minimum lifetime
damage. The durability is halved because axes take double durability when used as a weapon. The formula
also ignores enchantments and critical hits, and assumes each attack is performed at maximum charge.
Enchantments

An axe can receive the following enchantments:
— Table Start —

Headers: Name, Max Level, Method

Cells:

Fortune[note 1], III,

Silk Touch[note 1], I,

Efficiency, V,

Unbreaking, III,

Sharpness[note 2], V,

Smite[note 2], V,

Bane of Arthropods[note 2], V,

Fire Aspect[upcoming: JE Combat Tests], II,

Looting[upcoming: JE Combat Tests], III,

Knockback[upcoming: JE Combat Tests], II,

Cleaving[upcoming: JE Combat Tests][note 2], III,

Sweeping Edge[upcoming: JE Combat Tests][note 3], III,

Mending, I,

Curse of Vanishing, I,

— Table End —

Silk Touch and Fortune are mutually exclusive.

Sharpness, Smite, Bane of Arthropods, and Cleaving[upcoming: JE Combat Tests] are mutually exclusive.
Sweeping edge currently exists, but it can be used only for swords.

Fuel

Wooden axes can be used as a fuel in furnaces, smelting 1 item per axe.

Smelting ingredient

— Table Start —

Headers: Name, Ingredients, Smelting recipe, Iron Nugget or

Gold Nugget

Cells:

Iron Axe or

Golden Axe +

Any fuel, 0.1

— Table End —

Table 11: A portion of the retrieved documents for “craft a diamond axe” using GraphRAG.

22




	Introduction
	Related Work
	Methodology
	Goal Knowledge Base Construction
	Goal Merge and Subgoal Derivation
	Goal Selection and Planning
	GraphRAG vs GoG

	Experiments
	Experimental Setup
	Main Results
	Hyperparameter Analysis of k
	Plan Quality Ablation
	Use-case Demonstration

	Conclusion
	LLM in Goal Selection and Planning
	Prompts
	Experimental Tasks
	Additional Experiment Details
	Plan Quality Metrics
	Craft a Diamond Axe Case Study
	Plans
	Retrieved Content


