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Abstract

Several studies have explored various advan-001
tages of multilingual pre-trained models (e.g.,002
multilingual BERT) in capturing shared linguis-003
tic knowledge. However, their limitations have004
not been paid enough attention to. In this paper,005
we investigate the representation degeneration006
problem and outlier dimensions in multilingual007
contextual word representations (CWRs) of008
BERT. We show that though mBERT exhibits009
no outliers among its representations, its multi-010
lingual embedding space is highly anisotropic.011
Furthermore, our experimental results demon-012
strate that similarly to their monolingual coun-013
terparts, increasing the isotropy of multilingual014
embedding spaces can significantly improve015
their representation power and performance.016
Our analysis indicates that, although the degen-017
erated directions vary in different languages,018
they encode similar linguistic knowledge, sug-019
gesting a shared linguistic space among lan-020
guages.021

1 Introduction022

The multilingual BERT model (Devlin et al., 2019,023

mBERT), pre-trained on 104 languages with no024

supervision, has shown impressive ability in captur-025

ing linguistic knowledge across different languages026

(Pires et al., 2019). Many studies have explored the027

encoded knowledge in multilingual CWRs using028

probing tasks and under zero-shot setting (Wu and029

Dredze, 2019; K et al., 2020; Chi et al., 2020). Fol-030

lowing the probing studies, in this paper, we inves-031

tigate the multilingual embedding space of BERT,032

focusing on its geometry in terms of isotropy. Pre-033

vious research has shown that many pre-trained034

models, such as GPT-2 (Radford et al., 2019),035

BERT, and RoBERTa (Liu et al., 2019) have de-036

generated embedding spaces that downgrade their037

semantic expressiveness (Ethayarajh, 2019; Cai038

et al., 2021; Rajaee and Pilehvar, 2021). Several039

proposals have been put forward to overcome this040

challenge (Gao et al., 2019; Zhang et al., 2020).041

Figure 1: Degenerated (left) and isotropic (right) embed-
ding spaces for Arabic. Frequency-based distribution
can be easily detected using two top PCs in the space
(lighter colors indicate higher frequency). See Appendix
A for more languages.

However, to our knowledge, no study has so far 042

been conducted on the degeneration problem in the 043

multilingual embedding space. 044

Using two well-known metrics, we evaluate 045

isotropy in the mBERT embedding space for three 046

different languages: English, Arabic, and Span- 047

ish. We find that the representation spaces are 048

massively anisotropic in all these languages. Ex- 049

tending our study to other structural properties of 050

multilingual space, we investigate outliers, specific 051

dimensions with consistently high values, in mul- 052

tilingual CWRs (Kovaleva et al., 2021). Our find- 053

ings reveal that, as opposed to pre-trained BERT, 054

the multilingual space does not involve any ma- 055

jor outliers. This indicates that the suggestion of 056

Luo et al. (2021) on the role of positional embed- 057

dings on the emergence of outliers may not be 058

valid. Furthermore, we study the outliers’ effects 059

on similarity-based metrics (e.g., cosine similarity) 060

using multilingual CWRs. We show that, unlike 061

monolingual CWRs where a few dimensions domi- 062

nate the cosine similarity metric (Timkey and van 063

Schijndel, 2021a), all dimensions of multilingual 064

representations have almost a uniform contribution 065

to such metrics. Moreover, our analysis reveals 066

that word frequency plays an important role in the 067

distribution of the multilingual embedding space: 068

words with similar frequencies create distinct local 069

regions in the embedding space. 070
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In analyzing multilingual space, we take a fur-071

ther step toward making the space isotropic. By072

applying a cluster-based isotropy enhancement073

method (Rajaee and Pilehvar, 2021), we demon-074

strate that increasing isotropy of multilingual em-075

bedding space can result in significant performance076

improvements on downstream tasks. Our frequency077

analysis and the remarkable performance improve-078

ment in the zero-shot setting denote that the feature079

space of mBERT has a similar structure across dif-080

ferent languages.081

2 Isotropy082

In this section, we first provide reasons for the083

importance of isotropy in the embedding space.084

Then, we introduce the metrics used to quantify085

embedding space isotropy.086

Geometrically, in anisotropic embedding space,087

embeddings occupy a narrow cone. This brings088

about an over-estimation of the cosine similarity089

of word embeddings (Gao et al., 2019). In other090

words, randomly sampled words will have high091

cosine similarity. As a result, anisotropic distribu-092

tion reduces the effectiveness of similarity-based093

metrics.094

2.1 Metrics095

To quantify isotropy, we utilize two well-known096

metrics based on cosine similarity and principal097

components (PCs).098

Cosine Similarity. Ethayarajh (2019) used co-099

sine similarity between random embeddings as100

an approximation of isotropy in the space. As101

mentioned before, random embeddings with an102

isotropic distribution have near-zero cosine similar-103

ities. The metric can be formulated as follows:104

ICos(W) =
1

N

N∑
i=1,xi ̸=yi

Cos(xi, yi) (1)105

where xi ∈ X, yi ∈ Y , X and Y are the sets106

of randomly sampled embeddings, and W is the107

embedding matrix. N is the number of sampled108

pairs that is set to 1000 in our experiments. Lower109

ICos(W) values indicate higher isotropy.110

Principal Components. Mu and Viswanath111

(2018) have proposed a metric based on princi-112

pal components (PCs), which is approximated as113

follows:114

IPC(W) ≈ minu∈UF (u)

maxu∈UF (u)
(2)115

mBERT

BERT Arabic English Spanish

ICos(W) 0.38 0.35 0.34 0.36
IPC(W) 2.61E-06 8.99E-5 2.64E-06 3.39E-05

Table 1: The isotropy of BERT and mBERT on multi-
lingual STS, reporting based on ICos(W) and IPC(W).

116

F (u) =
M∑
i=1

exp(uTwi) (3) 117

where wi is the ith word embedding, M is the num- 118

ber of all representations in the space, U is the 119

set of eigenvectors of the embedding matrix, and 120

F (u) is the partition function described in Equation 121

3. Arora et al. (2016) proved that F (u) could be 122

approximated using a constant for isotropic embed- 123

ding spaces. Therefore, IPC(W) would be close 124

to one in an isotropic embedding space 125

3 Analysis 126

For all our experiments, we opted for the multilin- 127

gual BERT model (mBERT) which has a 12-layer 128

transformer-based architecture similar to English 129

BERT-base and has been trained on 104 languages. 130

As our evaluation benchmark, we experimented 131

with the multilingual and cross-lingual Semantic 132

Textual Similarity (Cer et al., 2017, STS) that in- 133

volves instances from Arabic, English, and Spanish 134

(appendix B). 135

In the first place, we assess the isotropy defined 136

as a desirable property in multilingual space and in- 137

vestigate outliers introduced as an influential factor 138

on isotropy. We also expand our study to rouge di- 139

mensions disrupting similarity-based metrics used 140

in measuring isotropy. Lastly, we analyze word 141

frequency bias, another destructive feature, in mul- 142

tilingual embedding space. 143

3.1 Probing isotropy 144

As the first step, we quantify the isotropy of the 145

mBERT and BERT embedding spaces using the 146

two metrics. For mBERT, we separately assess the 147

isotropy of each language in the embedding space. 148

The results in Table 1 reveal that the anisotropy 149

issue exists for the multilingual BERT embedding 150

space as well as the original BERT model. Aligned 151

with the numerical results, the illustration of multi- 152

lingual CWRs in the left column of Figure 1 gives 153

us a clear perspective of the degenerated distribu- 154

tion in space. 155
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Figure 2: The average representation in English BERT
(top) and mBERT (bottom). While an outlier has
emerged in the former, we do not see any major outliers
in the multilingual space.

3.2 Outlier Dimensions156

Kovaleva et al. (2021) have found that pre-trained157

LMs exhibit consistent outliers, peculiar dimen-158

sions with large values, in their contextual repre-159

sentations across all layers. Through several ex-160

periments, they have demonstrated that disabling161

these outliers can notably impair the performance162

of pre-trained and fine-tuned LMs. These rogue163

dimensions can easily make the models vulnerable164

to adversarial attacks. Luo et al. (2021) showed165

that removing positional embeddings disappears166

the outliers, concluding that the positional informa-167

tion is responsible for the emergence of outliers.168

We checked for rogue dimensions by averaging169

over all representations on the multilingual STS170

dataset. Results are shown in Figure 2. On top, the171

outlier dimension can be easily seen in the original172

BERT. However, interestingly, multilingual BERT173

exhibits no such outliers in its embedding space174

across different languages. It can be concluded that,175

in contrary to the suggestion of Luo et al. (2021),176

positional embeddings cannot be responsible for177

outliers, given that both multi- and mono-lingual178

spaces are constructed using the same training pro-179

cedure involving positional encodings. We leave180

further investigation of outliers in contextual em-181

bedding space to future work.182

3.3 Sensitivity to Rogue Dimensions183

As we discussed before, cosine similarity is a184

widely used metric to measure the degree of185

ICos(W) First Second Third

BERT 0.38 0.191 0.011 0.004

English 0.34 0.032 0.030 0.021
Arabic 0.35 0.040 0.022 0.020
Spanish 0.36 0.040 0.027 0.023

Table 2: The contribution of top-three dimensions to the
expected cosine similarity (ICos(W)).

isotropy in embedding space. Employing a 186

dimension-based similarity, Timkey and van Schi- 187

jndel (2021b) have shown that only a few dimen- 188

sions dominate the high cosine similarity between 189

any arbitrary representations in pre-trained LMs 190

(e.g., BERT, RoBERTa, and XLNET). Therefore, 191

anisotropy in such models is determined by a small 192

fraction of dimensions (Hence, not a global prop- 193

erty of the space). Following their approach, we 194

compute the contribution of the ith dimension in 195

the cosine similarity of two embeddings: 196

CCi =
xiyi

∥x∥∥y∥
(4) 197

We compute the average cosine similarity, 198

ICos(W), by randomly sampling 1000 token pairs 199

and report the average contribution of the top-three 200

dimensions to the average cosine similarity. 201

Table 2 summarizes the results. Unlike the mono- 202

lingual BERT, in which one dimension dominates 203

the cosine similarity, multilingual BERT has no 204

rogue dimensions. Hence, the anisotropic structure 205

of the multilingual space cannot be attributed to 206

certain dimensions. 207

3.4 Word frequency Bias 208

It has been shown that frequency plays an impor- 209

tant role in the distribution of CWRs. Frequency- 210

similar words make distinct local regions in the 211

embedding space (Gao et al., 2019), with high- 212

frequency and rare words being around the cen- 213

ter and far from the origin, respectively (Li et al., 214

2020). Frequency-based distribution is a factor 215

that hampers the expressiveness of the embedding 216

space. So, it is essential to investigate frequency 217

bias in the multilingual embedding space. 218

Figure 1 shows the distribution of word represen- 219

tations per word frequency.1 As can be observed on 220

the left, multilingual CWRs are biased toward their 221

frequency, where words with similar frequencies 222

1We used the wordfreq library (https://pypi.org/
project/wordfreq/). See Appendix C.
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Ar-Ar Ar-En Es-Es Es-En Es-En-WMT En-En

Baseline 51.76 (8E-5) 10.61 (1E-4) 64.15 (3E-5) 31.26 (5E-4) 11.39 (1E-4) 60.82 (2E-6)

Individual 64.26 (0.60) 23.10 (0.57) 70.88 (0.54) 46.23 (0.50) 13.47 (0.50) 71.99 (0.54)
Zero-shot 52.76 (6E-5) 19.36 (0.04) 65.69 (8E-4) 43.82 (0.09) 13.68 (8E-3) -

Table 3: STS performance (Spearman correlation percentage) on multi- and cross-lingual datasets using mBERT.
Isotropy is reported based on IPC(W) in parentheses. Applying the cluster-based method can improve the
performance on the multi- and cross-lingual datasets in both Individual and Zero-shot settings.

create clustered regions. A similar pattern can be223

observed for the English BERT CWRs (Rajaee and224

Pilehvar, 2021), with the only difference that in225

mBERT, low-frequency words are distributed near226

the origin and frequent words are far from it.227

4 Isotropy Enhancement228

Making the embedding space isotropic has theoret-229

ical and empirical benefits (Gao et al., 2019). In230

this section, we investigate the effect of isotropy231

enhancement for the multilingual embedding space.232

Several approaches have been proposed to improve233

isotropy in monolingual CWRs. Some requires a re-234

training of the model with additional objectives to235

address the degeneration problem (Gao et al., 2019;236

Li et al., 2020; Zhang et al., 2020), whereas oth-237

ers are applied as a light post-processing (Mu and238

Viswanath, 2018). We opted for the cluster-based239

approach of Rajaee and Pilehvar (2021) which is a240

recent example from the latter category. The pro-241

posed method splits the space into several clusters242

and discards dominant directions for each cluster.243

The approach also allows us to investigate the simi-244

larity of the clustered structure of the embedding245

space across different languages under a zero-shot246

setting. More details on this method can be found247

in Appendix D.248

4.1 Settings249

We run our experiments in two different settings.250

Individual. In this setting, we perform experi-251

ments individually on each language by clustering252

the corresponding space and applying the isotropy253

enhancement approach. The goal is to see whether254

increasing isotropy leads to performance improve-255

ment in the multilingual space and how the amount256

of improvement differs across cross- and multilin-257

gual tracks.258

Zero-shot. In this scenario, we are interested in259

evaluating the shared structural properties among260

languages, specifically, the similarity of the en- 261

coded linguistic knowledge in the dominant direc- 262

tions of different languages. To this end, we obtain 263

clusters, their means and dominant directions on 264

the English dataset and leverage these for isotropy 265

enhancement in other languages. 266

4.2 Results 267

The reported results in Table 3 show that increasing 268

the isotropy in the multilingual embedding space 269

can enhance the performance in all tracks (multi- 270

and cross-lingual). The improvement could be at- 271

tributed to the potential of the applied method in 272

adjusting embeddings’ distribution based on seman- 273

tic. The visualization of the embedding space after 274

isotropy enhancement, Figure 1 (right), clearly re- 275

veals that the frequency bias is faded after this pro- 276

cess. Moreover, the results of the zero-shot setting 277

suggest that the encoded information in dominant 278

directions is similar across the languages because 279

the improvement is compatible with the setting in 280

which the dominant directions are obtained in each 281

track individually. 282

5 Conclusion 283

In this paper, we provide comprehensive analyses 284

on the geometry of multilingual embedding space 285

through isotropy. We show that multilingual em- 286

bedding spaces are highly anisotropic, which limits 287

their semantic expressiveness. Our findings shed 288

light on the relation between anisotropy and out- 289

liers and demonstrate that despite its anisotropic 290

distribution, multilingual BERT has no disruptive 291

rouge dimensions. We also investigate the other 292

limitation of multilingual embeddings and show 293

that they have a biased structure towards word fre- 294

quency, and this distribution is similar across differ- 295

ent languages. By applying a cluster-based method 296

to increasing the isotropy, we significantly improve 297

the multilingual CWRs performance and address 298

their frequency bias. 299
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A Frequency-based Distribution422

Frequency-based distribution can negatively af-423

fect the expressiveness of space. Though it is a424

well-known bias in pre-trained LMs (e.g., BERT425

and GPT-2), it is not studied in a multilingual set-426

ting. As discussed in Section 3.4, we have studied427

frequency bias in mBERT and demonstrated that428

mBERT suffers frequency-based distribution in its429

space like pre-trained counterparts. The illustra-430

tion of this bias and the impact of the cluster-based431

approach on mitigating it can be found in Figure 3.432

(a) English

(b) Spanish

Figure 3: Degenerated (left) and isotropic (right) em-
bedding spaces for the two languages. Frequency-based
distribution can be easily detected using two top PCs
in the space (lighter colors indicate higher frequency).
Eliminating top dominant directions not only makes the
embedding space isotropic, but also removes frequency
bias in multilingual CWRs.

B Multilingual STS Task433

Multi and cross-lingual Semantic Textual Similar-434

ity (STS) is the main task in our experiments. STS435

is a paired sentence task in which samples have436

been labeled by a score in the continuous range of437

0 (irrelevant) to 5 (most semantic similarity). In the438

multilingual tracks, in a pair, both sentences are in 439

the same language, while sentences have different 440

languages in the cross-lingual tracks. The reason 441

behind choosing STS as the target task for our ex- 442

periments is that Multilingual BERT has a pretty 443

low performance on it. 444

In our experiments, we take the average of all 445

tokens in a sentence as the sentence representation 446

and consider the cosine similarity of the sentence 447

representations in a sample as the semantic similar- 448

ity score. 449

C Wordfreq 450

We have employed Wordfreq library to investigate 451

word frequency bias in out experiments. This li- 452

brary obtains word frequency from the corpus con- 453

taining eight different domains in 36 languages. 454

Our target languages are in the large category 455

which means their word lists cover rare words ap- 456

pearing at least once per 100 million words. As a 457

result, the wordfreq could be a suitable tool for our 458

purpose. 459

D Cluster-based Isotropy Enhancement 460

We pick the cluster-based approach (Rajaee and 461

Pilehvar, 2021) to improve the isotropy in multilin- 462

gual embedding space. In this method, the embed- 463

dings are clustered using the k-means clustering 464

algorithm, and then dominant directions of every 465

cluster are nulled out independently. Dominant di- 466

rections have been calculated employing Principal 467

Component Analysis (PCA). The primary key in 468

this method is obtaining dominant principal com- 469

ponents (PCs) of clustered areas in the embedding 470

space separately, which makes this approach suit- 471

able for exploring the clustered structure of the 472

multilingual CWRs. 473

We apply the cluster-based approach to multi 474

and cross-lingual CWRs with two different settings, 475

Individual and Zero-shot. The number of clusters 476

and discarded dominant directions are chosen 7 and 477

12, respectively. 478
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