
TimeSqueeze: Dynamic Patching for Efficient
Long-Context Time Series Forecasting

Anonymous Author(s)

Abstract

Recent progress in time series forecasting has produced large foundation models1

with strong generalization across domains. However, their effectiveness is con-2

strained by the computational cost of long-context processing. Existing designs3

face a core trade-off: point-wise embeddings preserve high-frequency information4

but scale quadratically with sequence length, while patch-based embeddings im-5

prove efficiency by downsampling, at the expense of discarding critical temporal6

details. We present TimeSqueeze, a hybrid forecasting architecture that resolves7

this trade-off through dynamic input compression. TimeSqueeze employs a two-8

stage process: (1) a lightweight Mamba encoder extracts fine-grained features at9

full resolution, and (2) an adaptive patching module assigns smaller patches to10

information-rich regions and larger patches to redundant segments. This produces11

a variable-resolution representation that allocates computation where it is most12

beneficial for forecasting. The compressed sequence is then passed to a Trans-13

former backbone, yielding substantial reductions in token length while retaining14

critical temporal features. Extensive experiments demonstrate that TimeSqueeze15

achieves comparable performance with substantially reduced computational cost,16

or alternatively, enables processing much longer contexts within the same bud-17

get for significantly improved accuracy. This results in an average zero-shot18

MSE reduction of up to 24% compared to equivalent point embedding models,19

while maintaining similar computational requirements. These results position20

TimeSqueeze as a scalable and effective architecture for next-generation time series21

foundation models.22

1 Introduction23

Accurate time series forecasting is vital across various domains, including energy, finance, climate,24

and healthcare. Traditional forecasting has long relied on task-specific statistical models, but recent25

breakthroughs in deep learning have enabled versatile generalist models capable of cross-domain26

transfer. Most notably, the emergence of time series foundation models, large, self-supervised models27

trained on heterogeneous datasets, promises flexible zero-shot and few-shot generalization across28

forecasting tasks. Yet a persistent bottleneck remains: efficiently modeling long historical contexts.29

Correctly forecasting long horizons often requires processing thousands of timesteps, which poses30

severe computational and memory challenges.31

Long-sequence architectures. Transformers [1] introduced attention-based sequence modeling32

to time series forecasting, achieving strong results but suffering quadratic complexity in context33

length. Subsequent innovations such as Informer, which introduces ProbSparse self-attention and34

distilling strategies, reduced this cost while retaining accuracy [2]. More recently, foundation-scale35

approaches such as Time-MoE exploit Mixture-of-Experts (MoE) routing to scale models to billions36

of parameters while maintaining tractable inference [3]. However, even with architectural efficiency,37

long-context modeling remains expensive.38

Under review at the NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models (BERT2S).
Do not distribute.

Patch-based compression. An influential line of work compresses long series into patches.39

PatchTST demonstrated that treating sub-series as tokens, with channel-independent modeling,40

reduces sequence length while preserving local semantics, improving scalability [4]. MOIRAI ex-41

tends this idea with multi-scale patching, any-variate attention, and masked self-supervision, enabling42

a single universal model to handle series from minute- to year-level resolution across diverse domains43

[5]. These methods highlight the promise of patching, but their reliance on fixed patch sizes inevitably44

discards high-frequency details in some regions while under-utilizing redundancy in others.45

Insights from language modeling. A parallel challenge appears in large language models (LLMs).46

Tokenization introduces biases and vulnerabilities, motivating the development of tokenizer-free,47

byte-level models. However, byte-level inputs lead to prohibitive sequence lengths [6]. To address48

this, adaptive compression has emerged: the Byte Latent Transformer (BLT) dynamically merges49

predictable byte spans into longer latent tokens, guided by entropy-based segmentation [7]. Similarly,50

H-Net [8], inspired by U-Net architectures [9], compresses and reconstructs sequences hierarchically,51

allocating resolution adaptively across text. These approaches demonstrate that allocating finer52

granularity to high-information regions and aggressive compression to redundant regions can yield53

both efficiency and fidelity.54

Our approach: TimeSqueeze. We introduce TimeSqueeze, a hybrid forecasting architecture55

that adapts these insights to time series. Unlike prior fixed-patch methods, TimeSqueeze employs56

dynamic, content-aware patching. First, a lightweight Mamba encoder extracts local fine-grained57

features at full resolution. Then, an adaptive patching module applies smaller patches to information-58

rich regions and larger patches to redundant ones, yielding a variable-resolution representation. This59

compressed sequence is processed by a Transformer backbone (e.g., Time-MoE), which dramatically60

reduces token length while preserving the salient temporal dynamics.61

Contributions. Our contributions are as follows:62

• We identify the core challenge in long-context forecasting: balancing efficiency and temporal63

fidelity under limited computational budgets.64

• We propose TimeSqueeze, the first forecasting architecture to incorporate dynamic, content-65

aware patching for adaptive compression.66

• We show that TimeSqueeze integrates seamlessly with strong backbones (e.g., Time-MoE),67

enabling either comparable accuracy with lower compute, or substantially longer context68

horizons at the same budget.69

• We validate TimeSqueeze across diverse zero-shot benchmarks, achieving up to 24% MSE70

improvements over point embedding baseline and establishing a scalable foundation archi-71

tecture for next-generation time series modeling.72

2 Methodology73

Problem Statement. The fundamental objective of a time-series forecasting model is to predict74

future values in a time series from its historical observations. Mathematically, given a sequence75

of T past data points, X1:T = (x1, x2, . . . , xT) ∈ RT , we aim to predict the next H values. This76

is accomplished by a model fθ, which maps the historical context to a future forecast, denoted as77

X̂T+1:T+H = fθ(X1:T) ∈ RH . By adopting the channel independence principle from [10], the78

model can process a multivariate input as a collection of univariate series. This versatility enables79

TimeSqueeze to tackle forecasting problems of any variate, making it broadly applicable to diverse80

real-world scenarios.81

2.1 Architectural Overview82

The architecture of TimeSqueeze is comprised of four key components. First, a low-complexity83

encoder-decoder, based on the Mamba architecture, to efficiently extract features from the input84

signal at full resolution. Second, patching and unpatching modules select a salient subset of features85

to be processed by the backbone. Third, the backbone is a decoder-only MoE transformer, responsible86

for computing causal and contextual representations. Finally, a multi-horizon forecasting head.87

2

𝐸
MoE

Transformer 𝐷

𝐻!

𝐻"

𝐻#

𝐻$

𝐻!

𝐻"

𝐻#

𝐻$

Residual connection

Fine-grained
features

Abstract
features

Upsampled
features

Encoder Patching Unpatching Decoder
Multi-horizon

forecasting

Figure 1: Architectural overview of TimeSqueeze. Input time series undergoes full-resolution processing by a
Mamba encoder, followed by dynamic compression that reduces token count before passing to the transformer
backbone, optimizing computational efficiency while preserving temporal fidelity.

Mamba Encoder-Decoder. The encoder and decoder modules are designed to process the input time88

series at its native resolution, preserving the fine-grained details crucial for accurate forecasting. This89

requirement presents a significant computational challenge, as the architecture must efficiently handle90

long, uncompressed sequences. Furthermore, the encoder must produce representations that are not91

only detailed but also structured for effective compression by the subsequent patching module.92

To address these constraints, we build our encoder and decoder using Mamba layers. As a State Space93

Model (SSM), Mamba is particularly well-suited for this task. Recent studies have shown that SSMs94

excel at processing high-resolution data while scaling nearly linearly with sequence length [11]. This95

choice enables our model to capture intricate local patterns from long contexts without incurring the96

quadratic complexity associated with traditional Transformer-based approaches.97

Dynamic Patching. After the encoder generates fine-grained representations, the patching module98

compresses the sequence of embeddings before it is passed to the transformer backbone. The objective99

is to allocate computational resources efficiently by creating a dynamic patching strategy that adapts100

to the signal’s local complexity. This strategy forms larger patches to compress regions of low101

information density and smaller patches to preserve detail in regions with high information content.102

Time-series data is uniquely suited for this approach because its local statistical properties, such as103

mean and variance, provide a reliable proxy for information density. We leverage this by implementing104

a simple yet effective metric: the deviation of a sample from a local mean. A detailed description and105

visualization of the patching and unpatching is presented in Appendix B.1 and B.3.106

MoE Transformer. The backbone of TimeSqueeze is based on a decoder-only Transformer taken107

from Time-MoE-50M, incorporating several enhancements to improve performance and stability.108

Similar to Time-MoE, the standard feed-forward network (FFN) is replaced with an MoE layer. This109

layer features a sparsely activated pool of N "non-shared" experts and one designated "shared" expert,110

which helps consolidate common knowledge across the experts. For each input token, a routing111

mechanism selects the top K non-shared experts to process the signal.112

Multi-horizon forecasting. To enhance forecasting flexibility and robustness, we utilize a multi-113

horizon forecasting head, as introduced in [3]. This component allows the model to predict outcomes114

across various horizons concurrently, unlike traditional models that operate at a single scale. This is115

achieved using multiple output projections, each a single-layer FFN dedicated to a different forecast116

duration. The model is trained on a composite loss function that aggregates errors from all horizons,117

a method designed to improve generalization.118

3 Experimental Results119

Baselines. Our primary objective is to demonstrate the efficiency and performance improvements120

over point embedding models through dynamic context compression. We use TimeMoE-50M as our121

primary baseline, pretrained following the training methodology from [3] with a maximum context122

length of 4096 and forecasting horizons {1, 8, 32, 64}, learning rate of 1e-3, AdamW optimizer,123

100,000 training steps, and a reduced batch size of 256 (versus 1024), due to computational constraints,124

3

using only 25% of the data. We refer to this model, trained with limited training data, as TimeMoE-125

limited and acknowledge that its performance is lower than that of the fully pretrained version in [3].126

For completeness, we also compare against MOIRAI-small [5], TimesFM [12], Moment [13], and127

Chronos-small [14], with results taken from [3].128

We specifically target a compression rate of 4 (average patch size of 4, maximum patch size of 8) for129

TimeSqueeze to balance computational savings with information preservation. The details of model130

training and the corresponding loss used are provided in Appendix B.2.131

Performance. Detailed zero-shot forecasting results are provided in Table 1. For TimeMoE-limited,132

we consider input context lengths of (512, 1024) and forecasting horizons of (96, 192), respectively.133

Since TimeSqueeze uses a context compression rate of 4×, we scale the input context lengths to134

(2048, 3904) respectively, to equalize the computational budget. Note that 3904 is the max input135

context length supported for forecasting horizon 192, before exceeding the total length of 4096.136

Despite significantly reduced pretraining data and computational budget, TimeSqueeze achieves137

comparable or superior zero-shot performance to state-of-the-art baselines across multiple datasets138

and forecasting horizons. Specifically, when compared with an equivalent point embedding baseline139

trained with the same amount of data, TimeMoE-limited, TimeSqueeze shows a reduction of up140

to 24% in MSE, demonstrating substantial improvements by leveraging dynamic compression to141

optimally allocate computational resources during inference while processing much longer contexts.142

Table 1: Performance comparison of zero-shot forecasting. Bold for best and underscore for 2nd best.

Models Metrics
Time-MoElimited TimeSqueeze (Ours) Moiraismall TimesFM Moment Chronossmall

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.373 0.398 0.367 0.399 0.401 0.402 0.414 0.404 0.688 0.557 0.466 0.409

192 0.414 0.425 0.402 0.419 0.435 0.421 0.465 0.434 0.688 0.560 0.530 0.450

Avg. 0.393 0.411 0.370 0.394 0.418 0.411 0.419 0.443 0.688 0.559 0.498 0.429

ETTh2

96 0.434 0.438 0.308 0.359 0.297 0.336 0.315 0.349 0.342 0.396 0.307 0.356

192 0.623 0.527 0.405 0.425 0.368 0.381 0.388 0.395 0.354 0.402 0.376 0.401

Avg. 0.528 0.428 0.348 0.369 0.332 0.358 0.351 0.372 0.339 0.399 0.341 0.378

ETTm1

96 0.393 0.409 0.328 0.363 0.418 0.392 0.361 0.370 0.654 0.527 0.511 0.423

192 0.453 0.451 0.385 0.403 0.431 0.405 0.414 0.405 0.662 0.532 0.618 0.485

Avg. 0.423 0.430 0.329 0.369 0.424 0.398 0.387 0.387 0.658 0.529 0.564 0.454

ETTm2

96 0.413 0.439 0.201 0.297 0.214 0.270 0.202 0.288 0.260 0.335 0.209 0.288
192 0.615 0.544 0.304 0.374 0.284 0.332 0.289 0.321 0.289 0.350 0.280 0.341

Avg. 0.514 0.491 0.285 0.357 0.249 0.310 0.245 0.295 0.274 0.343 0.245 0.316

Weather

96 0.175 0.233 0.166 0.219 0.198 0.222 0.243 0.255 0.211 0.243

192 0.246 0.296 0.230 0.279 0.247 0.265 0.278 0.329 0.263 0.294

Avg. 0.210 0.298 0.208 0.295 0.275 0.286 0.294 0.326 0.300 0.318

Global Temp

96 0.213 0.343 0.200 0.333 0.227 0.354 0.255 0.375 0.363 0.472 0.234 0.361

192 0.266 0.397 0.228 0.364 0.269 0.396 0.313 0.423 0.387 0.489 0.276 0.400

Avg. 0.239 0.370 0.214 0.348 0.285 0.409 0.354 0.451 0.440 0.524 0.311 0.424

Average 0.384 0.404 0.292 0.355 0.330 0.367 0.351 0.389 0.448 0.446 0.376 0.386

4 Conclusion143

We present TimeSqueeze, the first forecasting architecture with dynamic, content-aware patching144

that combines the temporal fidelity of point embedding models with the computational efficiency145

of patch-based approaches. TimeSqueeze employs a lightweight Mamba encoder for full-resolution146

feature extraction, followed by adaptive patching that assigns variable patch sizes based on temporal147

information density. Our mean deviation-based boundary detection enables data-driven compres-148

sion decisions, producing variable-resolution representations that optimally allocate computational149

resources to where they provide the most significant forecasting benefit.150

Our work opens several promising research directions. On the pretraining front, TimeSqueeze could151

benefit from scaling the number of parameters in the backbone and the amount of training data, similar152

to Time-MoE [3]. Further, the boundary detection mechanism could be enhanced through end-to-end153

learning in embedding spaces [8] or auxiliary model guidance [7]. TimeSqueeze’s modular design154

enables integration with any transformer backbone, and combining it with advances in lightweight155

forecasting models [15] could yield greater computational savings.156

4

References157

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,158

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information159

processing systems, 30, 2017.160

[2] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai161

Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In162

Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 11106–11115,163

2021.164

[3] Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin.165

Time-moe: Billion-scale time series foundation models with mixture of experts. arXiv preprint166

arXiv:2409.16040, 2024.167

[4] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is168

worth 64 words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730,169

2022.170

[5] Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.171

Unified training of universal time series forecasting transformers. 2024.172

[6] Kevin Slagle. Spacebyte: Towards deleting tokenization from large language modeling. Ad-173

vances in Neural Information Processing Systems, 37:124925–124950, 2024.174

[7] Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret175

Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, et al. Byte latent transformer:176

Patches scale better than tokens. arXiv preprint arXiv:2412.09871, 2024.177

[8] Sukjun Hwang, Brandon Wang, and Albert Gu. Dynamic chunking for end-to-end hierarchical178

sequence modeling. arXiv preprint arXiv:2507.07955, 2025.179

[9] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for180

biomedical image segmentation. In International Conference on Medical image computing and181

computer-assisted intervention, pages 234–241. Springer, 2015.182

[10] Yuqi Nie, Yaxuan Kong, Xiaowen Dong, John M Mulvey, H Vincent Poor, Qingsong Wen,183

and Stefan Zohren. A survey of large language models for financial applications: Progress,184

prospects and challenges. arXiv preprint arXiv:2406.11903, 2024.185

[11] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.186

arXiv preprint arXiv:2312.00752, 2023.187

[12] Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model188

for time-series forecasting. In Forty-first International Conference on Machine Learning, 2024.189

[13] Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin190

Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham191

Kapoor, et al. Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815,192

2024.193

[14] Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.194

Moment: A family of open time-series foundation models. arXiv preprint arXiv:2402.03885,195

2024.196

[15] Yihang Wang, Yuying Qiu, Peng Chen, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, and197

Chenjuan Guo. Lightgts: A lightweight general time series forecasting model. arXiv preprint198

arXiv:2506.06005, 2025.199

[16] Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics:200

Methodology and distribution, pages 492–518. Springer, 1992.201

[17] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion202

parameter models with simple and efficient sparsity. Journal of Machine Learning Research,203

23(120):1–39, 2022.204

5

A Ablation Studies205

We conduct systematic ablation studies to quantify the contributions of key components in206

TimeSqueeze. All experiments use an input context length of 2048, forecasting horizon of 96,207

and target average patch size of 4, evaluated on representative datasets from our benchmark. Ade-208

tailed comparsion for ablations across all datasets is listed in Table 2.209

Performance without extending context length. A key advantage of our compression approach210

is achieving comparable or superior performance to point embedding models while using identical211

context lengths but substantially reduced computational cost. By dynamically compressing redundant212

temporal regions, TimeSqueeze utilizes the available computational budget more efficiently, demon-213

strating that intelligent resource allocation can yield better performance even without leveraging214

longer contexts.215

Dynamic vs. Fixed Patching. We compare our adaptive mean deviation-based patching against fixed216

uniform patching with equivalent average patch sizes. Dynamic patching consistently outperforms217

fixed patching by effectively allocating computational resources to information-rich segments while218

applying aggressive compression to redundant regions. This demonstrates that temporal heterogeneity219

in time series data necessitates adaptive compression strategies rather than uniform approaches.220

Mamba vs. Linear Encoder. We evaluate the contribution of the Mamba architecture by replacing221

our Mamba encoder-decoder with linear embedding layers, similar to approaches in MOIRAI [5]222

and TimesFM [12]. The Mamba-based design shows substantial performance gains, validating223

its effectiveness for processing fine-grained temporal features and its inductive bias for sequential224

compression tasks.225

Importance of Fine-Grained Features. To assess the value of preserving detailed temporal infor-226

mation, we remove the residual connection in Figure 1 and rely solely on compressed features for227

forecasting. This ablation results in significant performance degradation, confirming that fine-grained228

temporal details are crucial for accurate long-horizon forecasting and cannot be fully captured through229

compression alone.230

Positional Encoding Analysis. We examine the impact of positional information by comparing231

absolute position IDs of boundary elements against relative positional encoding of compressed232

embeddings. Using only relative positions leads to substantial performance drops, highlighting that233

absolute temporal positioning is essential for maintaining temporal coherence in the reconstructed234

sequences.235

The results consistently demonstrate that each component contributes meaningfully to TimeSqueeze’s236

overall performance, with dynamic patching and fine-grained feature preservation showing the most237

significant individual impacts.238

Table 2: Ablation study on zero-shot forecasting performance.

Model / Variation ETTh1 ETTh2 ETTm1 ETTm2 Weather Global Temp Average

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Ours 0.352 0.385 0.303 0.349 0.310 0.353 0.219 0.311 0.172 0.220 0.198 0.331 0.259 0.324
TimeMoE-base (w/ ctx 512) 0.373 0.398 0.434 0.438 0.393 0.409 0.413 0.439 0.175 0.233 0.213 0.343 0.333 (+28.6%) 0.377 (+16.4%)

Ours (w/ fixed patching) 0.369 0.395 0.334 0.371 0.304 0.349 0.206 0.298 0.168 0.220 0.204 0.336 0.264 (+1.9%) 0.328 (+1.2%)
Ours (w/ context 512) 0.376 0.399 0.350 0.389 0.410 0.418 0.250 0.335 0.170 0.223 0.218 0.348 0.295 (+13.9%) 0.355 (+9.6%)
Linear Patching 0.354 0.386 0.355 0.385 0.310 0.350 0.266 0.344 0.158 0.210 0.204 0.336 0.275 (+6.2%) 0.335 (+3.4%)
Ours w/o Residual 0.361 0.390 0.356 0.383 0.353 0.377 0.262 0.340 0.175 0.228 0.201 0.335 0.284 (+9.7%) 0.342 (+5.6%)
Ours w/o Abs. Pos. IDs 0.343 0.386 0.386 0.406 0.560 0.456 0.243 0.332 0.179 0.232 0.220 0.351 0.321 (+23.9%) 0.360 (+11.1%)

B Appendix239

B.1 Patching and Unpatching240

Patching. We partition the encoder’s output embeddings into non-overlapping patches using a mean241

deviation criterion applied to the input time series. Since the Mamba encoder processes inputs242

causally, we assume a direct correspondence between salient anchor points in the input signal and243

their corresponding embedding vectors.244

6

Our adaptive patching mechanism identifies boundaries by monitoring when new samples deviate245

significantly from the samples in current patch. We maintain a running mean µcurrent for each patch246

and establish boundaries when the absolute deviation exceeds a relative threshold:247

bi =

{
1 if |xi − µcurrent| > min(τ · |µcurrent|, δ)
0 otherwise

(1)

where bi is the boundary indicator, xi is the input sample at timestep i, and τ is the deviation threshold248

parameter and impose a minimum deviation δ to ensure stability in regions with µ = 0 . Specifically,249

we set τ = 0.3 and δ = 0.05 to achieve our target average patch size of ∼ 4.250

Once boundaries are computed, we compress the embeddings in each patch by retaining only the251

boundary elements and discarding intermediate embeddings (Figure 1). While alternative pooling252

strategies (min/max/mean pooling) exist, boundary-element retention proves most effective and253

ensures causality for the subsequent unpatching process(Figure 1).254

Unpatching. The unpatching module restores the compressed sequence to its original resolution255

while preserving causal consistency. Following backbone processing of the patch representatives,256

each updated embedding is broadcasted across all timesteps within its corresponding patch span.257

Since boundary elements serve as patch representatives and originate from the beginning of the patch,258

the reconstructed output at any timestep t depends only on information from inputs up to time t,259

preventing future information leakage while restoring full sequence length.260

B.2 Model Training261

Training. The training of a robust foundation model necessitates a large and diverse dataset. For this262

purpose, we employ the Time-300B dataset, a high-quality, open-access dataset composed of time263

series from numerous public sources across sectors like weather, transportation, and finance, and is264

further expanded with synthetic data. It consists of a broad range of frequencies ranging from seconds265

to yearly and a massive scale of over 300 billion time points make it well-suited for pre-training266

large-scale models.267

TimeSqueeze uses TimeMoE-50M as the transformer backbone, replacing the SwiGLU point embed-268

ding layer with our Mamba encoder and adding patching, unpatching, and decoder modules. Training269

follows the same constrained methodology (25% data) as TimeMoE-base for fair comparison. Our270

training objective is a composite loss function that combines a primary forecasting loss with an271

auxiliary term for load balancing, following the exact methodology from [3].272

The primary auto-regressive loss, Lar, is the Huber Loss [16], chosen for its robustness against273

outliers:274

Lar(xt, x̂t) =

{
1
2 (xt − x̂t)

2, if |xt − x̂t| ≤ δ,

δ
(
|xt − x̂t| − 1

2δ
)
, otherwise,

(2)

where δ is a hyperparameter that balances the quadratic (L2) and linear (L1) penalties.275

To ensure balanced expert utilization and prevent routing collapse, we incorporate an auxiliary loss,276

Laux, as proposed in [17]:277

Laux = N

N∑
i=1

firi, (3)

where fi is the fraction of tokens dispatched to expert i, and ri is the average router probability278

assigned to it.279

The final training loss, L, averages the auto-regressive loss across P multi-resolution projections and280

combines it with the weighted auxiliary loss:281

L =
1

P

P∑
j=1

Lar

(
Xt+1:t+pj

, X̂t+1:t+pj

)
+ αLaux, (4)

where pj is the forecast horizon for the j-th projection and α is a scaling coefficient.282

B.3 Visualization of patching283

B.4 Visualization of forecasts284

7

Figure 2: Patching on ETTm1 dataset using mean deviation metric. On the right, in regions of slow variation,
we allocate a large patch size. But on the left, in regions of rapid variation, we choose a smaller patch size,
preserving critical tempotal variations.

Figure 3: Patching on Weather dataset using mean deviation metric. Due to the inherently smooth temporal
dynamics in weather data, the adaptive patching mechanism consistently produces patches approaching the
maximum allowed size (8), demonstrating that low-frequency signals can be compressed aggressively without
loosing performance.

8

Figure 4: Forecasting on ETTh1 dataset using input context length of 2048 with average patch size 4 and a
forecasting horizon of 96.

9

Figure 5: Forecasting on Weather dataset using input context length of 2048 with average patch size 4 and a
forecasting horizon of 96.

10

	Introduction
	Methodology
	Architectural Overview

	Experimental Results
	Conclusion
	Ablation Studies
	Appendix
	Patching and Unpatching
	Model Training
	Visualization of patching
	Visualization of forecasts

