TimeSqueeze: Dynamic Patching for Efficient Time
Series Forecasting

Sravan Kumar Ankireddy' * Nikita Seleznev> Nam H. Nguyen? Yulun Wu?
Senthil Kumar? Furong Huang® C. Bayan Bruss?

1University of Texas at Austin ~ 2Capital One 3University of Maryland, College Park

Abstract

Recent progress in time series forecasting has produced large foundation models
with strong generalization across domains. However, many of these models rely
on transformer backbones, making their effectiveness constrained by the cost of
processing the input context. The quadratic computational complexity with respect
to sequence length imposes a fundamental trade-off on existing designs: they must
either preserve high-frequency information using point-wise embeddings, which is
computationally expensive for long sequences, or employ patch-based embeddings
to reduce sequence length at the risk of discarding critical temporal details. To over-
come this limitation, we present TimeSqueeze, a hybrid forecasting architecture
that combines the strengths of both point and patch embeddings through dynamic
time series compression. TimeSqueeze introduces a novel two-stage hybrid repre-
sentation: (1) a lightweight state-space encoder processes the full-resolution time
series with point-wise embeddings to extract fine-grained temporal features, and
(2) an adaptive patching module intelligently prunes these features using variable-
sized patches, assigning smaller patches to information-rich regions and larger
patches to redundant segments. This hybrid approach yields a variable-resolution
representation that preserves critical temporal details while reducing computational
overhead. By retaining the fidelity of point embeddings and the efficiency of patch
embeddings, the resulting compressed sequence enables the Transformer backbone
to substantially reduce the input length without sacrificing forecasting accuracy.
Extensive experiments demonstrate that TimeSqueeze achieves state-of-the-art
forecasting performance while delivering substantial computational advantages,
including up to 8x improvement in pretraining data efficiency and up to 20X
reduction in pretraining time compared to equivalent point-embedding models.

1 Introduction

Accurate time-series forecasting is crucial across numerous domains, including energy, finance,
climate, and healthcare. Historically, forecasting has relied on narrow, task-specific statistical models;
however, recent advances in deep learning have enabled the development of versatile, generalist
models capable of cross-domain transfer. In particular, time-series foundation models trained on
heterogeneous datasets offer flexible zero-shot and few-shot generalization across a wide range of
forecasting tasks.

Effective pretraining of these foundation models necessitates modeling long historical contexts, often
extending to thousands of timesteps, which creates formidable computational and memory constraints.

*Correspondence to: sravan.ankireddy @utexas.edu. Work done in part during internship at Capital One.

NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models (BERT?S).

Recent studies demonstrate that increasing context length during pretraining yields substantial
improvements in downstream inference performance [} 2]. Therefore, designing architectures that
remain scalable and computationally efficient under long-context regimes is imperative for realizing
the full potential of time series foundation models.

Central to addressing these scalability challenges is the design of an efficient tokenizer that effectively
represents input signals in an embedding space while managing computational complexity. Current
approaches predominantly adopt one of two strategies. The first approach involves independently
encoding each time point [3, 4} 5, |6, [7]], which preserves fine-grained temporal variations and
accommodates data of arbitrary frequency and seasonality. However, this point-wise encoding strategy
suffers from limited scalability as sequence length increases, which is precisely the bottleneck that
impedes long-context pretraining. The second approach, pioneered by [8] and subsequently adopted
by numerous transformer-based forecasting models [9} (10} 11} 2l], employs fixed-size patching to
compress multiple consecutive time points into a single embedding. While this patching strategy
significantly enhances computational scalability, it introduces some limitations that compromise
its effectiveness. First, determining the optimal patch size is non-trivial and heavily dependent on
dataset-specific characteristics such as sampling frequency and seasonal patterns, typically requiring
empirical evaluation across different patch sizes for each dataset. Second, and perhaps more critically,
many time series exhibit heterogeneous information density across different temporal regions, with
some segments displaying rapid variations while others remaining relatively stable. This temporal
heterogeneity renders uniform patching suboptimal, as it fails to adapt the representational granularity
to the local complexity of the signal.

old

Motivated by these requirements, we propose TimeSqueeze, a hybrid time-series foundation model
that combines the expressive power of point-embeddings with the computational efficiency of patch-
embeddings. First, a lightweight state-space encoder extracts local fine-grained features at full
resolution. Then, a dynamic patching module groups these embeddings into patches of varying sizes,
allocating smaller patches to information-rich regions and larger patches to redundant ones, yielding
a variable-resolution representation. This compressed sequence is processed by a Transformer
backbone, which operates on significantly fewer tokens while preserving salient temporal dynamics,
thereby overcoming fixed patch size limitations and enabling scalable, high-fidelity modeling.

Our contributions are as follows:

* We propose TimeSqueeze, the first hybrid forecasting architecture to incorporate dynamic,
content-aware patching for adaptive compression in time series.

* We demonstrate that TimeSqueeze integrates seamlessly with existing Transformer back-
bones (e.g., Time-MoE), enabling pretraining of large-scale time series foundation models
with substantially reduced training budgets.

* We validate TimeSqueeze across diverse zero-shot forecasting benchmarks, achieving
performance on par with state-of-the-art point embedding models while delivering up to
20x faster training and 10X faster inference.

2 Related Works.

Long-sequence architectures. While Transformer architectures [[12] have shown strong time series
forecasting performance due to their expressivity and flexibility, their quadratic computational and
memory complexity with respect to sequence length limits their scalability to long historical contexts.
Innovations such as [[13 4} 3] have adapted Transformers for long-term forecasting, but pretraining
on extremely long contexts remains challenging. Recently, time-series foundation models have
demonstrated scalability to long contexts supporting arbitrary forecasting horizons, while Time-
MoE [7]] leveraged Mixture-of-Experts routing to enable the first billion-parameter model with
tractable inference. Despite these advances, the cost of long-context pretraining remains high due to
the underlying Transformer backbone. Although state space model (SSM) architectures [[14]] handle
long contexts more efficiently, they remain underexplored for time series forecasting, highlighting
the need for scalable methods for efficient long-context processing.

Patch-based compression. Introduced in PatchTST [8]], patch-based compression has emerged as a
fundamental technique for scaling time series foundation models. By embedding contiguous sub-

sequences (patches) rather than individual time points, this approach reduces the effective sequence
length while preserving essential local temporal patterns. Subsequent foundation models, including
TimesFM [10], Moment [9], Moirai [11], and Timer-XL [2]], have adopted this paradigm, collectively
demonstrating that patching enables more efficient training and inference. However, these approaches
utilize a fixed patch size for a given sequence, limiting their application to real-world data with high
temporal variance, underscoring the need for dynamic, data-driven compression strategies that can
adjust patching to varying temporal structures within a series.

Insights from language modeling. Similar challenges arise in large language models (LLMs),
where the choice of input representation has a direct impact on scalability and fidelity. Conventional
tokenization introduces systematic biases and brittle dependencies, motivating tokenizer-free models
that operate at the byte level. Yet, naive byte-level processing leads to prohibitively long input
sequences [15], straining attention-based architectures. To overcome this, adaptive compression
techniques have been proposed. The Byte Latent Transformer (BLT) dynamically merges predictable
byte spans into compact latent tokens using entropy-guided segmentation [16], while H-Net [17],
inspired by U-Net [18] and its broad adaptation in vision [19} 20} [21]], compresses and reconstructs
sequences in various resolutions, and uses a state-space model for more efficient byte-level processing.
These approaches highlight a key principle: efficiency and accuracy can be jointly achieved by
allocating higher granularity to information-dense regions and applying more aggressive compression
where redundancy dominates.

3 Methodology

Problem Statement. The fundamental objective in time-series forecasting is to predict future
values based on historical observations. Given a sequence of 7" historical data points, X1.p =
(21, 2,...,27) € RT, the goal is to estimate the next H values of the series. This is formalized via
amodel fy that maps the historical context to future predictions, i.e., XTH;TJF o= fo(XyT) € RH,
Adopting the channel independence principle of (author?) [8], the model can flexibly process
multivariate time series by decomposing inputs into collections of univariate series. This general
formulation enables time-series foundation models to address forecasting tasks with arbitrary input
dimensionality, thereby supporting broad applicability across diverse, real-world domains.

3.1 Architectural Overview

To combine the expressivity of point-embeddings with the computational efficiency of patch em-
beddings, TimeSqueeze employs a hybrid multi-resolution architecture with four key components:
(1) a lightweight encoder-decoder pair operating at full input resolution to capture fine-grained
local features, (2) adaptive patching modules that dynamically select salient features for efficient
downsampling and upsampling, (3) a decoder-only MoE Transformer backbone for modeling causal
dependencies at scale, and (4) a multi-horizon forecasting head that jointly optimizes predictions
across multiple time horizons to support both short- and long-term forecasting, as shown in Figure|T]

Formally, the end-to-end model can be described as
Hl:T = S(XlzT)v Zl:P = M(P(HLT)), YI:T = D(Hl:Tvu(ZLP)) 5 (1)

where £ is the encoder, P is the patching module, M is the MoE Transformer backbone, U is the
unpatching module, and D is the decoder. Here, X;.7 € R” denotes the original input sequence,
Hi.r € RT*P denotes the D-dimensional encoder embeddings, Z;.p € R”*P denotes the patch-
level latent representation after P and M, and Y7.p € RT*D denotes the decoder embeddings that
serve as the final representation for downstream forecasting.

3.1.1 State-Space Encoder and Decoder

The encoder and decoder modules operate directly on input time series at native resolution to preserve
fine-grained temporal details essential for accurate forecasting, particularly in high-frequency data.
To handle long, uncompressed sequences efficiently while generating representations suitable for
subsequent patching, both modules are constructed using Mamba layers [14].

Mamba offers nearly linear computational scaling with respect to sequence length, enabling extraction
of intricate local patterns from extended contexts by the encoder, without the quadratic complexity of

multi-!lorizon [—-mmmmmmmmmmmmeeeeee —+—

heads

-> [SSM Decoder
1 1 0 0 O
|||

“upsampled |
features |
]

'
' unpatching i

residual
connection

MoE Transformer «---

! pooled

: positions
';*““9 1T = o
. D oo D 000 00 "t o
W T T L
-- SSM Encoder

$084665555848886655888

N

Figure 1: Architectural overview of TimeSqueeze. An SSM encoder first processes the raw series at full
resolution to extract fine-grained features. Dynamic patching then adaptively compresses the sequence, selecting
the salient subset of embeddings. A Transformer backbone performs contextual modeling on the downsampled
features, and an unpatching module upsamples the signal to the original resolution while preserving causality.
Finally, an SSM decoder combines the compressed and fine-grained features, passing the hybrid features to
multi-horizon heads, thereby improving efficiency without sacrificing temporal fidelity.

traditional Transformer architectures. Further, the decoder uses the same architecture to efficiently
combines outputs from the Transformer backbone with residual embeddings from the encoder to
produce final representations for forecasting, creating a rich multi-scale feature space that captures
both local fine-grained patterns and global contextual dependencies.

3.1.2 Dynamic Patching and Unpatching

After the encoder produces fine-grained representations, the patching module compresses the sequence
of embeddings before passing them to the Transformer backbone. The objective is to allocate
computational resources efficiently by employing a dynamic patching strategy that adapts to the
local complexity of the input signal. This strategy forms larger patches to compress regions of low
information density while using smaller patches to preserve detail in regions of high information
content. A visualization of the patch boundaries for different datasets is provided in Appendix [H]

Patching. Unlike language models that operate on discrete token sequences, time series data exist
in continuous space and exhibit rich statistical properties. This continuous nature makes time
series particularly amenable to characterization via statistical measures such as local variance or
power, without relying on external metrics for guidance [16]. We leverage this by tracking the
absolute difference between consecutive samples, comparing it to the average signal power within a
predetermined lookback window, and then computing the patch boundaries in the original signal space
rather than the embedding space. Formally, we maintain a sliding window W; = {x;_r,...,z;—1}
of length L to compute the local average power as

z’LZI

j=i—L

Our adaptive patching mechanism declares a patch boundary at timestep ¢ if the absolute difference
between consecutive samples exceeds a threshold scaled by the local power, which we refer to as
relative deviation-based patching:

b-—{l if |z, — @ 1|>T\F

0 otherwise

Here, 7 > 0 is a tunable threshold parameter controlling patch sensitivity and the average compression
ratio. Using v/P; normalizes the threshold with respect to signal amplitude, allowing the method
to adapt dynamically across varying signal magnitudes and variances. Once patch boundaries are
determined, the embeddings within each patch are compressed by retaining only the boundary
embeddings and discarding intermediate ones (Figure [T). Note that retaining only the boundary
embeddings helps preserve causality for the subsequent unpatching step.

Unpatching. The unpatching module restores the compressed embeddings to the original sequence
length while maintaining causal consistency. After backbone processing of boundary embeddings,
each updated embedding is repeated across all timesteps within its corresponding patch. Since
boundary embeddings represent the start of each patch, the reconstructed output at timestep ¢ depends
only on inputs from times < ¢, preventing leakage of future information.

Positional Information. Unlike language models, which predict the next discrete token, time series
forecasting models demands more nuanced objective during pretraining. Forecasting must occur
at a specified frequency within the original continuous signal space, not within the compressed
embedding space. Prior works on tokenizer-free language modeling, such as BLT [[16] and Dynamic
Chunking [17], do not retain the original positional indices and restrict the attention mechanism to
relative positional information post-downsampling. In contrast, TimeSqueeze explicitly preserves the
position IDs of embeddings before downsampling and utilizes these absolute positions to compute
attention after compression.

3.1.3 Mixture-of-Experts Transformer Backbone

Due to its modular design, our hybrid feature extraction framework is compatible with any existing
time-series forecasting backbone. In this work, we adopt the Time-MoE backbone [7], a scalable
decoder-only Transformer augmented with a sparse MoE routing mechanism. Time-MoE incorporates
several enhancements to improve training stability and forecast accuracy: it employs RMSNorm for
layer normalization and replaces absolute positional encodings with Rotary Positional Embeddings
(RoPE), facilitating better handling of variable sequence lengths and improved extrapolation. Follow-
ing established design patterns, the standard feed-forward network (FFN) is replaced by an MoE layer
containing a pool of N non-shared experts alongside one shared expert that consolidates common
knowledge. For each input token, a routing mechanism selects the top K non-shared experts to
process the signal, enabling efficient scaling to billions of parameters while maintaining manageable
inference costs.

3.1.4 Multi-horizon forecasting

To enhance forecasting flexibility and robustness, we employ a multi-horizon forecasting head as
introduced in [7]. This approach enables simultaneous prediction across multiple future horizons
rather than restricting the model to a single forecast length. Specifically, it consists of multiple
single-layer FFNs, each dedicated to a distinct forecasting horizon. The model is trained using a
composite loss aggregating errors from all horizons, which improves generalization. During inference,
a simple scheduling strategy selects the appropriate horizon-specific output, enabling the model to
produce forecasts of arbitrary length flexibly.

3.2 Model Training

Pretraining Dataset. Efficient pretraining of a foundation model necessitates a large and diverse
dataset. For this purpose, we employ the Time-300B dataset [[7], a high-quality, open-access dataset
composed of time series from numerous public sources across various sectors, including weather,
transportation, and finance, which is further expanded with synthetic data. It consists of a broad range
of frequencies, ranging from seconds to yearly, and a massive scale of over 300 billion time points,
making it well-suited for pretraining large-scale models.

Loss Formulation. Following [7]], our training objective is a composite loss function that combines a
primary forecasting loss with an auxiliary term for load balancing, which enables a fair comparison
against the point-embedding baseline Time-MoE. The primary auto-regressive loss, L,;, is the Huber
Loss [22], chosen for its robustness against outliers:

l((l’t*jﬁt)Q, lf‘xt*‘id S(S,

Ear(xtafi't) = {2

§ (lze — &¢) — 30), otherwise,

@)

where § is a hyperparameter that balances the quadratic (L2) and linear (L) penalties.

To ensure balanced expert utilization and prevent routing collapse, we incorporate an auxiliary loss,
Laux, as proposed in [23]):

N
Lan=NY_ firi 3)
=1

where f; is the fraction of tokens dispatched to expert 4, and r; is the average router probability
assigned to the expert. The final training loss, £, averages the auto-regressive loss across K multi-
resolution projections and combines it with the weighted auxiliary loss:

K
1 .
L= e E 1 Lo (Xf,-‘rl:f,-‘rpj 5 Xt—‘rl:t—‘rpg) + aLlaux, 4)
j:

where p; is the forecast horizon for the j-th projection and « is a scaling coefficient.

Model Configuration. We consider two model sizes in this work, demonstrating the scalability
of our approach. TimeSqueeze p,s has a total of 117M parameters with 54M active parameters,
while TimeSqueeze 1,5 contains 469M total parameters with 216M active parameters. Both models
are trained for 100,000 steps with a batch size of 256 and a maximum context length of 2048,
corresponding to 500K time points per iteration and a total of S0B time steps during pretraining.
Finally, for the patching and unpatching modules, we target an average compression rate of 4 in
TimeSqueeze by setting the threshold factor 7 = 0.3, and limiting the maximum patch size to 8§,
balancing computational savings and information preservation. Further configuration details are
provided in Appendix [A]

4 Experimental Results

Baselines. Our primary objective is to demonstrate the efficiency and performance improvements
of TimeSqueeze over point embedding models through dynamic context compression. We use
TimeMOoE as our baseline, and pretrain TimeSqueeze following the training scheme of [7], but using
8x lesser data and ~ 20x less train time, as shown in Figure @ We forecast on four prediction
horizons {96, 192, 336, 720} but use the same context length of 512 in all cases. While, we study the
point-forecasting performance of TimeSqueeze, but it can easily be extended to provide probabilistic
forecasts by substituting the model’s linear projection head with a probabilistic head. We assess
model performance using the mean squared error (MSE) and mean absolute error (MAE), computed
between the predicted values and the ground truth. For completeness, we also compare against
Moirai-large [[11l], TimesFM [10]], Moment [6], and Chronos [9], with results taken from [[7].

4.1 Zero-shot forecasting

We first compare the zero-shot performance of TimeSqueeze pase and TimeSqueeze 1uee against
Time-MoEp,se and e on the well-studied long-term forecasting benchmarks [3] and the Weather
data [4]. These datasets were not included in the Time-300B dataset and not used for training the
TimeSqueeze. Detailed zero-shot forecasting results are presented in Table [T} demonstrating that
TimeSqueeze performs remarkably well, achieving a performance similar to that of Time-MoE.
Further results for higher compression rates are provided in Appendix D]

Additional comparisons for TimeSqueeze against Time-MoE are presented in Section[E] We note
that the performance of TimeSqueeze g 18 slightly worse than TimeSqueeze 5. in Some scenarios,
likely due to the limited training budget.

4.2 In-distribution forecasting

We now measure the full-shot performance by finetuning TimeSqueeze on the train split of the same
benchmarks. For finetuning, we choose a learning rate of 1e-4 and fine-tune the pretrained model
for just one epoch. We compare the full-shot performance against [24} 25, 26, 8, [27]], in addition to
the finetuned version of Time-MoEy,.. As seen from Table@ TimeSqueeze still performs close to
Time-MoE, and outperforms all other baselines considered.

Table 1: Performance comparison of zero-shot forecasting. Bold for best and underscore for 2nd best.

Models Metrics‘T. Sq base TimeSq large Time-MoEp,s. Time-MoEjyrge Moiraipase TimesFM Moment Chronosiarge
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 0.359 0.385 0.360 0.379 0.357 0.381 0.350 0.382 0.376 0.392 0.414 0.404 0.688 0.557 0.441 0.390

192 0.400 0410 0.402 0.407 0388 0.412 0.384 0.404 0.417 0.413 0.465 0.434 0.688 0.560 0.502 0.424
ETThl 336 0420 0.423 0.423 0412 0411 0.430 0.411 0.434 0.433 0428 0.503 0.456 0.675 0.563 0.576 0.467
720 0428 0446 0.441 0.448 0.427 0.455 0.449 0.477 0.447 0.444 0.511 0.481 0.683 0.585 0.835 0.583
Avg. 0402 0.416 0.407 0414 0394 0.419 0400 0.420 0.417 0.419 0.473 0.443 0.683 0.566 0.588 0.466

96 0.282 0.346 0290 0.355 0.305 0.359 0.302 0.354 0.294 0.330 0.315 0.349 0.342 0.396 0.320 0.345
192 0349 0.394 0.368 0.413 0.351 0.386 0.364 0.385 0.365 0.375 0.388 0.395 0.354 0.402 0.406 0.399
ETTh2 336 0.379 0.422 0.405 0.447 0.391 0.418 0.417 0.425 0376 0.390 0.422 0.427 0.356 0.407 0.492 0.453
720 0.444 0.471 0.445 0.441 0.419 0.454 0.537 0.496 0.416 0.433 0.443 0.454 0.395 0.434 0.603 0.511
Avg. 0.363 0.408 0.377 0.414 0.366 0.404 0.405 0.415 0362 0.382 0.392 0.406 0.361 0.409 0.455 0.427

96 0.312 0.344 0304 0334 0.338 0.368 0.309 0.357 0.363 0.356 0.361 0.370 0.654 0.527 0.457 0.403
192 0.372 0.385 0.358 0.367 0353 0.388 0.346 0.381 0.388 0.375 0.414 0.405 0.662 0.532 0.530 0.450
ETTml 336 0.435 0.425 0403 0396 0381 0.413 0.373 0.408 0.416 0.392 0.445 0.429 0.672 0.537 0.577 0.481
720 0.547 0.494 0486 0444 0.504 0.493 0475 0.477 0.460 0.418 0.512 0.471 0.692 0.551 0.660 0.526
Avg. 0.417 0.412 0388 0385 0.394 0.415 0.376 0.406 0.406 0.385 0.433 0.418 0.670 0.536 0.555 0.465

96 0.181 0.275 0179 0.272 0.201 0.291 0.197 0.286 0.205 0.273 0.202 0.270 0.260 0.335 0.197 0.271
192 0.248 0.323 0.251 0.325 0.258 0.334 0.250 0.322 0.275 0.316 0.289 0.321 0.289 0.350 0.254 0.314
ETTm2 336 0310 0.363 0319 0.368 0.324 0.373 0.337 0.375 0.329 0.350 0.360 0.366 0.324 0.369 0.313 0.353
720 0.431 0.437 0.425 0.428 0.488 0.464 0.480 0.461 0.437 0.411 0.462 0.430 0.394 0.409 0.416 0.415
Avg. 0292 0.349 0294 0348 0.317 0.365 0.316 0.361 0.311 0.337 0.328 0.346 0.316 0.365 0.295 0.338

96 0.1671 0.2172 0.170 0.221 0.160 0.214 0.159 0213 0.220 0.217 - - 0.243 0.255 0.194 0.235
192 0.2188 0.2690 0.224 0.275 0.210 0260 0215 0.266 0.271 0.259 - - 0.278 0.329 0.249 0.285
Weather 336 0.278 0.315 0.292 0.326 0.274 0.309 0.291 0.322 0.286 0.297 - - 0.306 0.346 0.302 0.327
720 0364 0.372 0.409 0.396 0.418 0.405 0.419 0.400 0.373 0.354 - - 0.350 0.374 0.372 0.378
Avg. 0.257 0.293 0.274 0.305 0.265 0.297 0.271 0.300 0.287 0.281 = - 0.294 0.326 0.279 0.306
Average 0346 0.376 0348 0.373 0.347 0.380 0.352 0.380 0.357 0.361 0.407 0.403 0.465 0.440 0.434 0.400

4.3 Efficiency Comparison

We now compare the training and inference efficiency of TimeSqueeze pase With the point-embedding
baseline Time-MoEy,, model in terms of GPU hours and memory utilization. All experiments were

conducted on 2x NVIDIA A100 80GB GPUs.

.8
400 A
2001 l
L e ..

0 100 200 300 400 500 600 700 800 96 192 336 720
Training GPU Hours Prediction Horizon Length

TimeMoE
(1024, 4096)
[]

N
w
|

N
o
|

600 §

TimeSqueeze
o (1024, 4096)

g
o
L

TimeSqueeze
(256, 2048) Format: (batch size, pretraining context)

GPU Memory (GB/sample)
<] =) !
w w

Throughput (Samples/sec)

(a) (b)

Figure 2: Computational efficiency comparison between TimeSqueeze pase and Time-MoE: (a) Training memory
and time requirements across different batch sizes and context lengths. TimeSqueeze achieves comparable
performance while reducing memory usage by 3.4x and training time by ~ 20x. (b) Inference throughput
across prediction horizons. TimeSqueeze delivers up to 10.5x higher throughput for longer prediction horizons.

In Figure [2a] we plot the pretraining time and memory required for different (batch size, con-
text length) for Time-MoE and TimeSqueeze, when trained for 100, 000 iterations. When using
(1024, 4096), we see that TimeSqueeze uses 2.6 x less memory and 2.4 x less compute compared to
Time-MoE. Furthermore, when running on a smaller budget, TimeSqueeze is trained with (256, 2048),
which uses 3.4 less memory and 19.25x less training time while still achieving performance com-
parable to Time-MoE, as shown in Table m

In Figure[2b] we plot the inference throughput for different forecasting horizons. We use a context
length of 512 for TimeSqueeze and the original context lengths from [[7]] for Time-MoE. We see
that TimeSqueeze scales more gracefully with respect to context length, showing up to 10.5 x faster
inference for longer prediction horizons, making TimeSqueeze more suitable for on-device inference.

Table 2: Performance comparison of full-shot forecasting. Bold for best and underscore for 2nd best.

Models Metrics‘TlmeSqueeze base Time-MoOEp,, iTransformer TimeMixer TimesNet PatchTST DLinear
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 0.354 0384 0345 0.375 0.386 0.405 0.375 0.400 0.384 0.402 0.414 0.419 0.423 0.448

192 0.397 0412 0372 0396 0.441 0.436 0.436 0.429 0.421 0.429 0.460 0.445 0.471 0.474
ETThl 336 0418 0427 0389 0.412 0.487 0.458 0.484 0.458 0.491 0.469 0.501 0.466 0.570 0.546
720 0423 0454 0410 0.443 0.503 0.491 0.498 0.482 0.521 0.500 0.500 0.488 0.653 0.621
Avg. 0.398 0.419 0.379 0.406 0.454 0.447 0.448 0.442 0.454 0.450 0.468 0.454 0.529 0.522

96 0274 0336 0.276 0.340 0.297 0.349 0.289 0.341 0.340 0.374 0.302 0.348 0.745 0.584
192 0337 0379 0331 0.371 0.380 0.400 0.372 0.392 0.402 0.414 0.388 0.400 0.877 0.656
ETTh2 336 0.373 0408 0.373 0.402 0.428 0.432 0.386 0.414 0.452 0.541 0.426 0.433 1.043 0.731
720 0.417 0.449 0.404 0.431 0.427 0.445 0412 0434 0.462 0.657 0.431 0.446 1.104 0.763
Avg. 0.350 0.393 0.346 0.386 0.383 0.406 0.364 0.395 0.414 0.496 0.386 0.406 0.942 0.683

96 0.289 0332 0.286 0.334 0.334 0.368 0.320 0.357 0.338 0.375 0.329 0.367 0.404 0.426
192 0.344 0366 0307 0.358 0.377 0.391 0.360 0.381 0.374 0.387 0.367 0.385 0.450 0.451
ETTml 336 0.398 0396 0.354 0.390 0.426 0.420 0.390 0.404 0.410 0.411 0.399 0.410 0.532 0.515
720 0.502 0.451 0.433 0.445 0.491 0.459 0.454 0441 0.478 0.450 0.454 0.439 0.666 0.589
Avg. 0.383 0.386 0.345 0.381 0.407 0.409 0.381 0.395 0.400 0.405 0.387 0.400 0.513 0.495

96 0.168 0.256 0.172 0.265 0.180 0.264 0.175 0.258 0.187 0.267 0.175 0.259 0.287 0.366
192 0.225 0.298 0.228 0.306 0.250 0.309 0.237 0.299 0.249 0.309 0.241 0.302 0.414 0.392
ETTm2 336 0278 0.335 0.281 0.345 0.311 0.348 0.298 0.340 0.321 0.351 0.305 0.343 0.597 0.542
720 0.366 0.395 0.403 0.424 0.412 0.407 0.391 0.396 0.408 0.403 0.402 0.400 1.730 1.042
Avg. 0.259 0.321 0.271 0.335 0.288 0.332 0.275 0.323 0.291 0.332 0.280 0.326 0.757 0.610

96 0.152 0.199 0.151 0.203 0.154 0.208 0.163 0.209 0.172 0.220 0.177 0.218 0.158 0.230
192 0.201 0.249 0.195 0.246 0.202 0.251 0.208 0.250 0.219 0.261 0.225 0.259 0.206 0.277
Weather 336 0.259 0.297 0.247 0.288 0.252 0.287 0.251 0.287 0.280 0.306 0.278 0.297 0.272 0.335
720 0.360 0.372 0.352 0.366 0.302 0.376 0.339 0.341 0.365 0.359 0.354 0.348 0.308 0.418
Avg. 0.243 0.279 0.236 0.275 0.250 0.280 0.240 0.271 0.259 0.286 0.258 0.280 0.258 0.315

Average 0.327 0360 0.315 0.357 0.356 0.375 0.342 0.365 0.364 0.394 0.356 0.373 0.600 0.525

4.4 Ablation Studies

We conduct systematic ablation studies to quantify the contributions of key components in
TimeSqueeze. We use TimeSqueeze p,s. for all ablation studies, which were trained using the
same approach as described in Section[3.2] During inference, we use a context length of 512 for
TimeSqueeze and the original context lengths used in [7]] for Time-MoE.

4.4.1 Model Components

Dynamic vs. Fixed Patching. We compare our proposed relative deviation-based dynamic patching
approach with fixed patching. For the fixed patching baseline with patch size 4, embeddings are
uniformly downsampled by retaining every 4th element. Results show that dynamic patching consis-
tently outperforms fixed patching by effectively focusing computational resources on information-rich
segments rather than optimizing only for a compression rate at the risk of discarding critical inter-
mediate samples. This underscores the importance of dynamic compression strategies for handling
temporal heterogeneity in time-series data.

Mamba vs. Linear Encoder. To assess the importance of our SSM encoder-decoder, we replace it
with simple linear embedding layers akin to the architectures used in Moirai [[11]] and TimesFM [10].
The SSM-based encoder achieves substantial gains over linear projections, confirming its suitability
for capturing fine-grained temporal features and its inductive bias, which is beneficial for sequential
compression.

Importance of Fine-Grained Features. We evaluate the contribution of preserving detailed temporal
information by ablating the residual connection illustrated in Figure [I] relying solely on compressed
features for forecasting. This modification results in noticeable performance degradation.

Positional Encoding Analysis. We investigate the role of preserving positional information by
comparing absolute position embeddings of boundary elements with relative positional encodings
applied to compressed embeddings. Removing absolute positional cues results in notable performance
drops, highlighting the necessity of absolute temporal positioning to maintain temporal coherence in
the reconstructed sequences.

Observation. Figure 32 shows the summary of these ablations, by plotting the average MSE across
the five benchmarking datasets for a prediction horizon of 96. The results clearly indicate that the
inductive bias of SSM, combined with the dynamic context-aware pruning of SSM embeddings,
is crucial to achieving optimal performance, while the residual connection and the use of absolute
position IDs play a minor role. The full results are included in Appendix [F] Table[6]

4.4.2 Long-Context Pretraining

Recent studies show that pretraining with longer context lengths can improve inference performance
even when using shorter contexts during deployment [2]. We investigate this by training TimeSqueeze
with different maximum pretraining context lengths under a fixed token budget of approximately S0B
tokens. All models are trained for 100,000 steps, with batch sizes adjusted to account for context
length differences, while maintaining an inference context length of 512 tokens.

Figure [3b|demonstrates that longer pretraining contexts consistently improve inference performance
even when using a shorter inference context pf 512 always. This indicates that exposure to extended
sequences during pretraining enables TimeSqueeze to develop more robust temporal representations
that effectively transfer to shorter inference contexts. Notably, unlike Time-MoE, TimeSqueeze
achieves strong inference performance with short contexts, despite being pretrained on longer
sequences, significantly reducing computational overhead during deployment.

TimeSqueezepase 0.259 0.4
Time-MoEpsse 0.272 ﬁ 0.8
=03 . 0.260
w/ fixed patching 0.340 Q
(=)}
o2
w/ linear patching (no SSM) 0.353)
>
<
w/o fine-grained features 0.268 0.1
w/ original pos. IDs 0.274
0.0 T T
026 028 030 032 034 036 038 608 .. 1024 2048
Average MSE Pretraining Context Length

(a) (b)

Figure 3: Model analysis: (a) Average MSE across five benchmark datasets for prediction horizon 96 with
different model components. (b) Effect of Pretraining Context Length on Forecasting Performance. Longer
pretraining context translates to improved performance, even when the inference context remains fixed at 512.

5 Conclusion

We present TimeSqueeze, the first forecasting architecture with dynamic, content-aware patching
that combines the temporal fidelity of point embedding models with the computational efficiency
of patch-based approaches. TimeSqueeze employs a lightweight Mamba encoder for full-resolution
feature extraction, followed by adaptive patching that assigns variable patch sizes based on temporal
information density. Our mean deviation-based boundary detection enables data-driven compres-
sion decisions, producing variable-resolution representations that optimally allocate computational
resources to where they provide the most significant forecasting benefit.

Our work opens several promising research directions. On the pretraining front, TimeSqueeze could
benefit from scaling the number of parameters in the backbone and the amount of training data,
similar to Time-MOoE [7]]. Further, the boundary detection mechanism could be enhanced through
end-to-end learning in embedding spaces [1/] or auxiliary model guidance [[L6]. TimeSqueeze’s
modular design enables integration with any transformer backbone, and combining it with advances
in lightweight forecasting models [28]] could yield greater computational savings.

References

[1] Tianyu Gao, Alexander Wettig, Howard Yen, and Danqgi Chen. How to train long-context
language models (effectively). arXiv preprint arXiv:2410.02660, 2024.

[2] Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Timer-xI: Long-
context transformers for unified time series forecasting. arXiv preprint arXiv:2410.04803,
2024.

[3] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 11106-11115,
2021.

[4] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419-22430, 2021.

[5] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer:
Frequency enhanced decomposed transformer for long-term series forecasting. In International
conference on machine learning, pages 27268-27286. PMLR, 2022.

[6] Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin
Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham
Kapoor, et al. Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815,
2024.

[7] Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqgi Li, Zhou Ye, Qingsong Wen, and Ming Jin.
Time-moe: Billion-scale time series foundation models with mixture of experts. arXiv preprint
arXiv:2409.16040, 2024.

[8] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is
worth 64 words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730,
2022.

[9] Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
Moment: A family of open time-series foundation models. arXiv preprint arXiv:2402.03885,
2024.

[10] Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model
for time-series forecasting. In Forty-first International Conference on Machine Learning, 2024.

[11] Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers. 2024.

[12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[13] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019.

[14] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[15] Kevin Slagle. Spacebyte: Towards deleting tokenization from large language modeling. Ad-
vances in Neural Information Processing Systems, 37:124925-124950, 2024.

[16] Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret
Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, et al. Byte latent transformer:
Patches scale better than tokens. arXiv preprint arXiv:2412.09871, 2024.

[17] Sukjun Hwang, Brandon Wang, and Albert Gu. Dynamic chunking for end-to-end hierarchical
sequence modeling. arXiv preprint arXiv:2507.07955, 2025.

[18] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234-241. Springer, 2015.

10

[19] Rewon Child. Very deep vaes generalize autoregressive models and can outperform them on
images. In International Conference on Learning Representations, 2021.

[20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840-6851, 2020.

[21] Yulun Wu, Louis McConnell, and Claudia Iriondo. Counterfactual generative modeling with
variational causal inference. In The Thirteenth International Conference on Learning Represen-
tations, 2025.

[22] Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics:
Methodology and distribution, pages 492-518. Springer, 1992.

[23] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23(120):1-39, 2022.

[24] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

[25] Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. arXiv
preprint arXiv:2405.14616, 2024.

[26] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Times-
net: Temporal 2d-variation modeling for general time series analysis. arXiv preprint
arXiv:2210.02186, 2022.

[27] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages
11121-11128, 2023.

[28] Yihang Wang, Yuying Qiu, Peng Chen, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, and
Chenjuan Guo. Lightgts: A lightweight general time series forecasting model. arXiv preprint
arXiv:2506.06005, 2025.

[29] Stephan Rasp, Peter D Dueben, Sebastian Scher, Jonathan A Weyn, Soukayna Mouatadid, and
Nils Thuerey. Weatherbench: a benchmark data set for data-driven weather forecasting. Journal
of Advances in Modeling Earth Systems, 12(11):e2020MS002203, 2020.

[30] Song Chen. Beijing multi-site air-quality data. UCI Machine Learning Repository, 10:C5RK5G,
2019.

[31] Yu Zheng, Xiuwen Yi, Ming Li, Ruiyuan Li, Zhangqing Shan, Eric Chang, and Tianrui Li.
Forecasting fine-grained air quality based on big data. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pages 2267-2276, 2015.

[32] Tung Nguyen, Jason Jewik, Hritik Bansal, Prakhar Sharma, and Aditya Grover. Climatelearn:
Benchmarking machine learning for weather and climate modeling. Advances in Neural
Information Processing Systems, 36:75009-75025, 2023.

[33] Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I Webb, Rob J Hyndman, and Pablo
Montero-Manso. Monash time series forecasting archive. arXiv preprint arXiv:2105.06643,
2021.

[34] Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Miruna Oprescu, Judah Cohen,
Franklyn Wang, Sean Knight, Maria Geogdzhayeva, Sam Levang, Ernest Fraenkel, et al.
Subseasonalclimateusa: A dataset for subseasonal forecasting and benchmarking. Advances in
Neural Information Processing Systems, 36:7960-7992, 2023.

11

A Pretraining Configuration

The training configuration follows the same as Time-MoE: forecasting horizons are set to
{1, 8, 32,64} in the output projection, and the auxiliary loss weighting factor « is 0.02. We optimize

with AdamW using initial learning rate 1 x 1072, weight decay 0.1, 31 = 0.9, and By =

0.95.

The learning rate scheduler employs a linear warmup for the first 10,000 steps, followed by cosine
annealing to a minimum learning rate of 5 x 1075, Training is performed on 2 NVIDIA A100 80GB
GPUs using BF16 precision, and the configurations for each model are described in detail in Table

Table 3: Model configurations.

Enc. Layers Dec. Layers dimodel dgtate deony expand Params
TimeSqueeze pase 2 2 384 128 4 4 4M
TimeSqueeze jarge 2 2 768 128 4 4 16M

(a) Mamba encoder—decoder.

Model Layers Heads Experts K dinodel dgt dexpert Activated Params Total Params
TimeSqueeze pase 12 12 8 2 384 1536 192 50M 113M
TimeSqueeze jarge 12 12 8 2 768 3072 384 200M 453M

(b) Transformer backbone.

B Downsampling of Pretraining dataset

The original Time-300B dataset is heavily skewed by the Nature domain, which contributed to more

than 90% of the dataset, as shown in Table [4]

Table 4: Key statistics of the pre-training dataset Time-300B from various domains.

Energy Finance Healthcare Nature Sales Synthetic ~ Transport Web Other Total
Seqs. 2,875,335 1,715 1,752 31,621,183 110,210 11,968,625 622,414 972,158 40,265 48,220,929
Obs. 15981 B 413.696 K 471.040 K 279.724B 26382 M 9.222B 2.130B 1.804B 2032M 309.09 B
Percent % 5.17% 0.0001% 0.0001% 90.50% 0.008% 2.98% 0.69% 0.58% 0.006% 100%

And within the Nature domain, the 3 largest domains datasets contribute the most, as seen in Table E}

Table 5: Key properties of Nature dataset from Time-300B..

Dataset Domain | Freq. | # Time Series # Obs. | Source
Weatherbench (Hourly) Nature H 3,984,029 74,630,250,518 | [29]
Weatherbench (Daily) Nature D 301,229 3,223,513,345 | [29]
Weatherbench (Weekly) Nature w 226,533 462,956,049 | [29]
Beijing Air Quality Nature H 4,262 2,932,657 | [30]
China Air Quality Nature H 17,686 4,217,605 | [31]
CMIP6 Nature 6H 14,327,808 | 104,592,998,400 | [32]
ERAS Nature H 11,940,789 93,768,721,472 | [32]
Oikolab Weather Nature H 309 615,574 | [33]
Saugeen Nature D 38 17,311 | [33]
Subseasonal Nature D 17,604 51,968,498 | [34]
Subseasonal Precipitation Nature D 13,467 4,830,284 | [34]
Sunspot Nature D 19 45,312 | [33]
Temperature Rain Nature D 13,226 3,368,098 | [33l
Weather Nature D 9,525 26,036,234 | [6]

In order to reduce the bias from these 3 datasets, we downsample the top 3 datasets by 30% at random
during pretraining, bringing down the total number of samples in the pretraining dataset from 309B

to ~120B.

12

C Training Tokens vs Performance

Figure [] demonstrates that TimeSqueeze exhibits favorable scaling behavior, with performance
consistently improving as the training budget increases from 10B to 50B tokens. This scaling trend
aligns with observations in [7], indicating that TimeSqueeze can effectively leverage larger datasets
and computational resources. The consistent performance gains across different training scales
suggest that TimeSqueeze exhibits similar scaling behavior to Time-MoE but with significantly

improved data and compute efficiency, positioning it as a promising candidate for even larger-scale
pretraining regimes.

0.300

0.281 0.280

0.269 0.264 0.261
0.250 1
1 0.200 1
=
3 0.150 1
o
]
Z 0.100-
0.050 1
0.000
108 208 308 408 508

Training Time Points

Figure 4: Performance scaling with training data size: Average MSE for 96-horizon forecasting across five
benchmarks shows consistent improvement with increased training tokens.

D Compression Rate vs Performance

For the main results, we choose a moderate compression rate of 4 x. We now compare the performance
against two more variants of TimeSqueeze pyse trained with a target compression rate of 6x and 8,
by adjusting the threshold factor to 0.4 and 0.45 respectively. And we plot the average MSE across
the five datasets for prediction horizon 96. As expected, while the computational efficiency increases

with higher compression, the performance also drops noticeably. techniques such as heirarchical
compression

0.313
031 0.297
w 0.261
wn
=
o 0.2
=)}
©
| .
S
< 0.1
0.0-

a4x 6% 8x
Compression Rate

Figure 5: Performance scaling with training data size: Average MSE for 96-horizon forecasting across five
benchmarks shows consistent improvement with increased training tokens.

13

E Performance for a Fixed Context Length

TimeSqueeze offers two key advantages over Time-MoE: First is the reduced token count to the
Transformer backbone through dynamic compression. Further, TimeSqueeze also improves forecast-
ing capability over longer horizons using shorter historical contexts, compared to point embedding
models.

Our analysis demonstrates that for a fixed context length, TimeSqueeze significantly outperforms the
point embedding baseline Time-MoE when predicting long-horizon forecasts. Figure[6]shows that
for a given context length of 512, TimeSqueeze achieves a superior forecasting accuracy for the a
horizon of 336. This improvement stems from our adaptive patching mechanism, which enables the
model to extract more informative temporal patterns from limited historical data.

. TimeMoEpase (512)
EEl TimeMoEp,s (2048)
B TimeSqueezepase (512)

MSE

ETTm1 Weather
Dataset

Figure 6: Performance comparison between TimeSqueeze and Time-MoE for a given context length for prediction
horizon 336. TimeSqueeze noticeably outperforms the point-embedding baseline when the available context is
limited.

F Additional Ablation Results

Table [6] contains the full et of results for the ablation studies presented in Section 4]

Table 6: Ablation study on zero-shot forecasting performance for prediction horizon 96.

Model / Variation ETThl ETTh2 ETTml ETTm2 Weather Average

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE ‘ MSE MAE
TimeSqueeze pyge 0.357 0.384 0.281 0.336 0.311 0.343 0.181 0.270 0.166 0.216 0.259 0.310
Time-MoEp,ge 0.357 0.381 0.305 0.359 0.338 0.368 0.201 0.291 0.160 0.214 | 0.272(+5.0%) 0.323 (+4.2%)
TimeSqueeze w/ fixed patching 0.373 0.396 0.455 0.448 0.359 0.382 0.335 0.380 0.178 0.232 0.340 (+31.3%) 0.368 (+18.7%)

TimeSqueeze w/ linear patching (no SSM) 0.379 0.401 0.481 0.463 0.370 0.375 0.375 0.402 0.158 0.174 | 0.353 (+36.3%) 0.363 (+17.1%)
TimeSqueeze w/o fine-grained features 0.366 0.388 0.277 0.342 0.339 0.362 0.187 0.283 0.169 0.218 | 0268 (+3.5%) 0.319 (+2.9%)
TimeSqueeze w/o original pos. IDs 0.375 0.393 0.291 0.358 0.346 0.363 0.191 0.293 0.169 0.219 | 0.274 (+5.8%) 0.325 (+4.8%)

F.1 Inference Context Length vs Performance

While longer context lengths generally provide more historical information for forecasting, the
relationship between context length and performance is not monotonic. We investigate the effect of
varying inference context lengths on forecasting accuracy by evaluating TimeSqueeze with context
lengths ranging from 96 to 1536 tokens while keeping all other hyperparameters fixed.

Figure 7| reveals that performance initially improves as context length increases from 96 to 1536,
reaching optimal performance around 512. However, further increasing the context length beyond
this range leads to marginal performance degradation. This suggests that while additional historical

14

context can be beneficial up to a certain point, excessively long contexts may introduce noise or make

it harder for the model to focus on the most relevant patterns.

400 600 800 1000 1200 1400 1600

200

0.36

0.34

0.32

IS

0.30 4

0.28 1

0.26

Context Length

Figure 7: Forecasting performance improves with context length up to 512-800 tokens, then plateaus or slightly

degrades.

Visualization of patching

G

We provide the visualization of dynamic patches computed for an example segment of 128 samples

from each of the evaluation datasets in Figures[8] [0} and[I0] As we can see, weather dataset has

slower variation in data resulting in larger patch sizes, whereas ETTm data has several regions with

rapidly varying signal, resulting in much smaller patch sizes.

Time Step

anyep reubis

(a) ETTh1

anyep reubig

Time Step

(b) ETTh2

Figure 8: Example dynamic patch boundaries for ETTh1 and ETTh2 datasets.

15

Time Step

(b) ETTm2

Figure 9: Example dynamic patch boundaries for ETTm1 and ETTm?2 datasets.

120

eI ST B S
S o o o o
| | | | [

anyep reubisg

Time Step

(a) Weather

Figure 10: Example dynamic patch boundaries for Weather dataset.

We provide the visualization of patch size distributions for each of the eval datasets in Figures[TT] As
we can see, weather dataset has slower variation in data resulting in larger avg patch size, whereas

ETTm?2 data has several regions with rapidly varying signal, resulting in much smaller patch sizes.

H Patch distribution

f forecasts

ion o

lizat

isua

I

the Weather dataset exhibits

relatively smooth and slowly varying dynamics, making forecasts easier to capture, whereas the
ETTm datasets contain regions with rapid fluctuations

We provide the visualization of forecasting results for an example segment of 128 samples from
prediction.

each of the evaluation datasets in Figures[I2] [T3] and[T4] As observed

, which pose greater challenges for accurate

16

£ Avg: 473

Percentage
S

?UWU?W

ETTh2 ETTml
1 Avg: 4.07 301 = Avg:5.08)
40
04

o 30 o
& &
5 5
220 2
& &:’ 204

10 10 4

° o e —

3 4 5 6 7 3

2 8 2 8 2 4 5 6 7 8
Patch Size Patch Size Patch Size
ETTm2 Weather
50 -
- [Avg: 3.76 l I [Avg: 4.08
40 1 40
830 &0
< e
8 3
E 204 :E_ 20
i H H) ’_‘
ol - m m ’—.‘ mm B ol - m m 0 ==
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Patch Size Patch Size
Figure 11: Distribution of patch sizes across eval datasets.

—— Ground Truth
—— Prediction

100

—— Ground Truth
—— Prediction

300 500 600

Time Step

200 400

(a) ETTh1

0 100

300 500 600

Time Step

200 400

(b) ETTh2

Figure 12: Forecasting results on ETTh1 and ETTh2 datasets.

17

—— Ground Truth
—— Prediction

0 100 200 300 400 500 600
Time Step
(a) ETTml
—— Prediction :
0.5/ |
!“‘
g 00- ; |
S } ‘]
—0.51 N
~1.01 '
-15 , — .
0 100 200 300 400 500 600
Time Step
(b) ETTm2

Figure 13: Forecasting results on ETTm1 and ETTm?2 datasets.

0.5 1|— Ground Truth
—— Prediction
0.0 A
E —0.5 1
S
—1.0 A
—1.5
0 100 200 300 400 500 600
Time Step
(a) Weather

Figure 14: Forecasting results on the Weather dataset.

18

	Introduction
	Related Works.
	Methodology
	Architectural Overview
	State-Space Encoder and Decoder
	Dynamic Patching and Unpatching
	Mixture-of-Experts Transformer Backbone
	Multi-horizon forecasting

	Model Training

	Experimental Results
	Zero-shot forecasting
	In-distribution forecasting
	Efficiency Comparison
	Ablation Studies
	Model Components
	Long-Context Pretraining

	Conclusion
	Pretraining Configuration
	Downsampling of Pretraining dataset
	Training Tokens vs Performance
	Compression Rate vs Performance
	Performance for a Fixed Context Length
	Additional Ablation Results
	Inference Context Length vs Performance

	Visualization of patching
	Patch distribution
	Visualization of forecasts

