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ABSTRACT

Personalized generation models for a single subject have demonstrated remark-
able effectiveness, highlighting their significant potential. However, when ex-
tended to multiple subjects, existing models often exhibit degraded performance,
particularly in maintaining subject consistency and adhering to textual prompt.
We attribute these limitations to the absence of high-quality multi-subject datasets
and the lack of refined post-training strategies. To address these challenges,
we construct a scalable multi-subject data generation pipeline, which leverages
strong single-subject models to synthesize multi-subject training data. Using this
dataset, we first enable single-subject personalization models to acquire knowl-
edge of multi-image and multi-subject scenarios. Furthermore, to enhance both
subject consistency and text controllability, we design a set of pairwise subject-
consistency rewards and general-purpose rewards, which are incorporated into a
refined reinforcement learning stage. To comprehensively evaluate multi-subject
personalization, we introduce a new benchmark that assesses model performance
using seven subsets across three dimensions. Extensive experiments demonstrate
the effectiveness of our approach in advancing multi-subject personalized image

generation.
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Figure 1: Quantitative analysis of existing methods on PSRBench.

1 INTRODUCTION

Personalized image generation aims to produce images that remain faithful to the given subjects
while following textual instructions, and has significant applications in film production, personal-
ized marketing, and beyond. Single-subject personalization models, such as Flux Kontext (Labs
et al., 2025), have already demonstrated impressive capabilities. Meanwhile, several recent efforts,
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including UNO (Wu et al., [2025b) and OmniGen (Xiao et al., [2025; Wu et al.| [2025a), have begun
to explore the domain of multi-subject generation, enabling models to accept multiple reference
images and roughly maintain the overall subject identity. However, these multi-subject personaliza-
tion approaches still suffer from several limitations: (1) Poor subject consistency — the subjects in
the generated images may not similar to the given reference subjects, or even omit certain subjects
entirely; (2) Limited adherence to text prompts — for example, given the prompt “the dog wears a
chef’s hat, and the cat wears a scarf”. Eisting models may fail to capture specific attributes, such as a
chef’s hat, or incorrectly assign them, For instance, the generated image may depict the dog wearing
a scarf and the cat wearing a chef’s hat, failing to follow the semantics specified in the prompt.
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Figure 2: The construction pipeline of our dataset

We attribute these shortcomings to two factors: the lack of high-quality multi-subject personaliza-
tion datasets and the absence of refined post-training strategies. For multi-subject driven datasets,
existing methods such as OmniGen (Xiao et al., [2025) introduce X2I-subject, where most of the
high-quality data focuses on human faces, while subject datasets for general scenarios are con-
structed from GRIT (Peng et al.l 2023) and exhibit relatively low consistency. UNO (Wu et al.}
2025b), on the other hand, generates subject pairs using a T2I model, which inherently introduces
discrepancies in consistency.

To address this, we leverage strong single-subject personalization models such as FLux Kontext to
introduce a scalable multi-subject data generation pipeline. Specifically, we generate images con-
taining multiple subjects with a T2I model, apply segmentation, and then perform subject-specific
personalization via image editing models. This pipeline yields a large-scale dataset of 350K multi-
subject images. Moreover, existing benchmarks for multi-subject personalized generation are nei-
ther fine-grained nor comprehensive. For instance, DreamBooth (Ruiz et al., [2023) simply relies
on DINO (Liu et al., 2024) similarity between the generated image and the reference subject at the
global level, while XVerseBench (Chen et al.| [2025) evaluates generated images via detection and
segmentation but does not segment the reference subject images, nor does it consider scenarios with
duplicated subjects. Therefore, to comprehensively evaluate multi-subject personalization, we pro-
pose PSRBench, a new benchmark comprising seven subsets, each assessing models from three per-
spectives: subject consistency, image aesthetics, and semantic alignment.With these data in place,
we first conduct supervised fine-tuning on a single-subject personalization model and introduce a
scalable frame-wised positional encoding that equips the model with multi-subject personalization
knowledge. This encoding scheme generalizes effectively to varying numbers of input reference
images. Moreover, existing methods are limited to the SFT stage, where the optimization objective
is defined at the global image level, making it difficult to ensure subject consistency. To address
this limitation, we propose the Pairwise Subject Consistency Reward (PSR), which is combined
with other semantic alignment rewards to perform reinforcement learning—based fine-tuning of the
model.
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Extensive experiments demonstrate that our method achieves state-of-the-art performance across
multiple subsets, with both quantitative and qualitative results validating its effectiveness as shown
in Figure [T and Figure 3]

Our contributions are summarized as follows:

* We propose a scalable multi-subject personalization data generation pipeline that leverages
existing single-subject models to synthesize data with arbitrary numbers of subjects. Using
this pipeline, together with predefined data-cleaning strategies, we construct approximately
350K high-quality samples for multi-subject personalized generation.

* We extend the scalable frame-wise positional encoding and introduce Pairwise Subject
Consistency Reward, which together, through a two-stage training paradigm, substantially
enhance the model’s ability to maintain subject consistency and to faithfully adhere to
textual instructions.

* We present PSRBench, a fine-grained and comprehensive benchmark with seven subsets,
evaluating multi-subject personalization across three dimensions: subject consistency, aes-
thetic preference, and semantic alignment.
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Figure 3: Left: Scalable frame-wise position index. Right: Our SFT strategy, which concatenates
tokens from different images along the token dimension.

2 RELATED WORKS

2.1 MULTI-SUBJECT DRIVEN GENERATION

Personalized generation refers to the task of synthesizing images of a target subject in novel scenes,
given reference images containing that subject. Existing approaches to this task can be broadly
categorized into two paradigms: test-time fine-tuning and zero-shot methods. Early approaches
such as DreamBooth (Ruiz et al.| |2023) and Textual Inversion (Gal et al., 2022) adapt a model
by fine-tuning selected parameters on 3-5 reference images of the subject, enabling the model to
capture the desired concept. However, this paradigm requires training a separate model for each
concept, incurring substantial computational and storage costs.

More recently, research has shifted toward zero-shot methods (Labs et al.,[2025} [Tan et al., 2024} |Tao
et al.| [2025), which aim to perform personalization for arbitrary subjects without the need for model
fine-tuning. While such single-subject personalization methods demonstrate promising results, their
performance remains limited when multiple subjects are involved. To address the challenges of
multi-subject personalization, UNO (Wu et al., 2025b)) leverages text-to-image models to construct
data and perform co-evolution, first training on single-subject data before extending to multiple
subjects. XVerse (Chen et al.}2025) achieves subject control by transforming reference images into
shifts for text-stream modulation. OmniGen2 (Wu et al.| 2025a) constructs high-quality identity-
preserving data from video sources. Despite these advances, existing approaches still struggle to
ensure consistency across multiple subjects and are difficult to scale effectively to larger sets of
reference images.



Under review as a conference paper at ICLR 2026

Policy

[ — Grounding Cos similarity Dino fea‘rur‘e} [ 6 }_ gp*_irn_iziﬁi:m
Ref Imgl . ¥ . 0
% 1Ny
By 6%
= =)
—> —,;—_‘;‘—_:*;. <

ir—" S

Output 5 5 -

= 7 vygﬁ |
2 rirl r3 r4

(1 Y ‘
Ref Img2 &ﬁ -' [ Group Computation ]

alala3,a4 -----------

1
1

1

1

1

1

1

1

1

1

1

Subject Semantic Aesthetic :
consistenc Allgnmem preferenc 1
1

1

1

1

1

1

1

1

1

1

PSR=(R1+R2)/2

Figure 4: Left: Pairwise subject rewards. Right: GRPO training pipeline combining PSR with
multiple rewards.

2.2 REINFORCEMENT LEARNING FOR GENERATION

Reinforcement learning (RL) (Guo et al.| |2025; |Schulman et al., [2017; |(Ouyang et al.| [2022)), as a
paradigm for alignment, has already demonstrated substantial potential in the field of visual gener-
ation (Liang et al.,2024; Jiang et al., [2025} |[Duan et al., 2025} Xue et al., [2025; [Liu et al., [2025)).

For autoregressive text-to-image models, T2I-R1 integrates semantic-level and token-level chain-of-
thought reasoning and employs diverse rewards to enhance text alignment during generation. In the
case of flow-matching—based models, approaches such as Flow-GRPO (Liu et al., [2025)) and Dance-
GRPO (Xue et al., 2025)) leverage different forms of reward to fine-tune text-to-image generation
models via RL, thereby significantly improving their capabilities in semantic fidelity, text rendering,
and human preference alignment.

However, applying reinforcement learning to multi-subject personalized generation remains an open
challenge.

3 DATASETS AND BENCHMARK

The core of our dataset construction pipeline lies in leveraging the powerful capabilities of large
language models, text-to-image models, and single-image personalization models in a synergistic
manner, enabling the creation of datasets that can scale to an arbitrary number of personalized sub-
jects. Specifically, as shown in Figure 2] our dataset construction pipeline consists of two stages:
paired image generation and paired instruction generation.

3.1 SCALABLE MULTI-SUBJECT DRIVEN DATASETS

multi-subject paired image generation Existing approaches for synthesizing personalized gener-
ation data often rely solely on text-to-image (T2I) models combined with strict subject-consistency
filtering strategies, such as UNO (Wu et al., 2025b) and Subject200K (Tan et al., [2024), where a
T2I model generates a diptych containing the same subject depicted across two different scenes.
However, due to the inherent instability of T2I models in producing such data, these methods often
yield datasets of limited consistency and quality.

In contrast, recent advances in single-subject personalization models have demonstrated strong ca-
pabilities: given a single subject, these models can reliably generate its appearance across novel
scenes while maintaining high consistency. Motivated by the capability of these models, we pro-
pose a highly scalable multi-subject paired image generation pipeline that harnesses the strengths
of these powerful models. Specifically, as shown in Figure 2] for constructing data with n sub-
jects, we first sample an n-element category set C = {cy, o, . .., ¢, } from the full category pool of
Object365 (Shao et al.| [2019). We then prompt a large language model (LLM) to generate a text-



Under review as a conference paper at ICLR 2026

to-image instruction 7%?%, where each category’s appearance is explicitly specified to increase data
diversity. In addition, we prompt the LLM to produce subject-driven instructions 7°*® for each cat-
egory, which will be used for generating single-subject images. Using a state-of-the-art T2 model,
we employ 7?! to synthesize multi-subject images I,,,; With the aid of a grounding-based object
detection model, we detect instances in [,,; by category using Grouding Dino (Liu et al.,|2024)), and
crop them via bounding boxes to obtain single-subject images I.,,,. Finally, given I.,,, and Tsub,
we generate new reference images I..s for each subject, which serve as the input references of our
dataset.

multi-subject paired instruction generation In Stage 1, to guide the T2I model toward producing
higher-quality and more distinctive images, the prompts include explicit descriptions of the subjects’
appearances. However, directly reusing these descriptions for multi-subject personalization may
cause the model to exploit textual leakage—focusing only on the appearance information revealed
in the text rather than attending to the reference images themselves. To address this issue, we
perform recaptioning of I,,,; for tasks such as background and positional relations. Moreover, to
support broader application scenarios, we design tasks involving personalized attribute binding and
employ editing models to modify I,,; accordingly to satisfy these task requirements.

The key idea of this stage is to leverage MLLMs to recaption generated images under different tasks,
and to employ advanced image editing models to further refine Iout Concretely, for tasks involving
multi-subject attribute binding, we first use an LLM to generate task-specific editing instructions.
These instructions, together with I,,, are then fed into an editing model to produce I},,. Next, we
apply an MLLM to recaption [,,;, explicitly using pronouns to specify individual subjects while

avoiding descriptions of their visual appearances.

This stage yields a large set of high-quality, diverse, and personalized instruction data, which sub-
stantially enriches the dataset and supports more effective downstream training.

3.2 PSRBENCH

Existing benchmarks for evaluating multi-subject personalization exhibit significant limitations in
both evaluation tasks and metrics. For example, DreamBench only includes combinations of two
subjects with overly simplistic scene descriptions. Moreover, current evaluation protocols are often
coarse-grained. UNO, for instance, computes the DINO score between each subject in a generated
two-subject image and its corresponding reference image, but such a method cannot provide a fine-
grained assessment of subject consistency. OmniContext leverages GPT-4.1 for evaluation, yet it
still fails to reliably measure consistency. XVerse proposes a segmentation-based approach, where
each subject in the generated image is segmented and then compared to the corresponding input
reference using DINO scores. However, this method assumes that reference images contain isolated
subjects on plain white backgrounds—an idealized setting that does not generalize well to real-
world scenarios, where reference images typically include subjects within simple or even complex
backgrounds.

To this end, we propose PSRBench, a comprehensive and multi-dimensional benchmark for multi-
subject personalization. Specifically, our benchmark consists of seven subsets, each representing a
distinct sub-task: attribute, background, action, positional relations, complex prompts, three-subject
generation, and four-subject generation. Each subset is evaluated along three complementary dimen-
sions: subject consistency, semantic alignment, and aesthetic preference. For subject consistency,
we adopt a grounding-based approach: both input and output images are first processed with an
object grounding model to detect and crop the subjects, after which DINO scores are computed
on corresponding subject pairs. This design enables precise and fine-grained evaluation of subject
consistency. For semantic alignment, we also adopt a grounding-based evaluation to assess posi-
tional consistency: the centers of the subjects are detected, and their relative positions are compared
against the prompt. For other sub-tasks of semantic alignment, we employ an MLLM (Bai et al.,
2025)) to evaluate image-text consistency with respect to the specific task requirements. For aesthetic
preference, we rely on hpsv3 (Ma et al., [2025) for evaluation.

5
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input

the microphone and the calculator on a
wooden desk under soft studio lighting,
surrounded by scattered papers and a cup
of coffee.

The book lies open on the soft,
patterned fabric of the sofa, its pages
slightly curled from use, while the sofa
sits cozily in a sunlit room with velvet
cushions and a wooden coffee table
nearby. Dust motes drift in the golden
afternoon light filtering through the
large window.

The shirt is on the left of the squirrel,
and both are hanging on a tree branch.

The dog runs through the grass, and
the horse gallops across the field,
under abright blue sky.

The dog is wearing a superhero cape
and the horse is wearing a crown. They
are standing in a meadow.

the penguin and the camel and the
cow are in a surreal desert oasis with
palm frees and a shimmering blue
lagoon in the distance.

The tea pot and the cow and the
parrot and the camera in a sunlit
meadow with wildflowers and a
clear blue sky.

Figure 5: Qualitative analysis results of PSR, where the figure illustrates the performance of different
methods on each subset of PSRBench. Our approach achieves the best performance in maintaining
subject consistency and semantic alignment.

4 METHODS

4.1 PRELIMINARY

Flow Matching Flow Matching model is trained by minimizing the objective:

1
min/ E [|(21 — 20) — o(z0,0)*] dt (0
0

v

During the sampling process, the model starts from random noise, and the ODE is solved using a
simple Euler solver:
zt,_, = 2z, +v(ze, 1) AL 2)

GRPO for flow matching Flow-GRPO 2025) transforms the ODE-based sampling
into an SDE form to incorporate the stochasticity required by GRPO. Through Euler-Maruyama
discretization, the resulting policy update is as follows:

2
Tipar =Ty + (vg (z4,1) + ‘;—; (2t 4 (1 —t)vg (xt,t))) At+ oV Ate, e~N(O,1I) (3)

Flow-GRPO (Liu et al.,|2025) set 0, = a, / ﬁ, a is a scalar hyper-parameter that controls the noise
level.
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Table 1: Quantitative results of subject consistency. Ours-SFT denotes the results obtained using
only the first-stage training.

Model attribute  background action position complex three four Overall
Kontext (Labs et al.|[2025) 0.54 0.57 0.60 0.59 0.58 048 044 0543
UNO (Wu et al.|[2025b) 0.59 0.60 0.63 0.64 0.60 052 043 0572
Omnigen2 (Wu et al.[|2025a) 0.65 0.63 0.70 0.70 0.67 0.60 0.54 0.642
XVerse (Chen et al.[[2025) 0.59 0.65 0.73 0.67 0.68 059 0.50 0.630
Ours-SFT 0.62 0.68 0.69 0.67 0.68 0.62 059 0.650
Ours 0.65 0.71 0.75 0.74 0.73 0.66 0.61 0.693

Table 2: Quantitative results of Aesthetic preference.

Model attribute  background action position complex three four Overall
Kontext (Labs et al.|[2025) 0.82 1.05 0.80 0.84 1.00 099 095 0921
UNO (Wu et al.|[2025b) 0.89 1.15 0.90 1.14 1.04 1.13  1.08 1.047
Omnigen2 (Wu et al.[|2025a) 0.85 1.10 0.89 1.14 1.03 1.08 1.09 1.026
XVerse (Chen et al.[[2025) 0.82 0.93 0.74 0.99 0.87 093 095 0.890
Ours-SFT 0.69 0.96 0.72 0.92 0.87 099 1.06 0.887
Ours 0.92 1.23 0.97 1.24 1.08 1.29 131 1149

4.2 SCALABLE FRAME-WISED POSITIONAL ENCODING

In the SFT stage, our goal is to endow a single-image personalization model with the knowledge
required to handle multi-image, multi-subject scenarios. To achieve this, we leverage an frame-wise
positional offset together with a multi-image joint training strategy.

Similar to prior work, we also employ a VAE to encode input images, and then concatenate the re-
sulting latents with the noise latent. In the case of multi-image inputs, this token-level concatenation
remains a natural choice; however, it requires a specific positional indexing scheme to distinguish
tokens from different input images. Some previous approaches introduced offsets along the h and
w dimensions—for example, UNO suggested that the spatial index of the ¢ — th image should start
from the terminal position of the (¢ — 1) — th image. While such indexing allows better utilization
of pretrained model capacity, it suffers from two key limitations:

By enforcing offsets along the h and w dimensions, the model implicitly inherits a strong prior—that
the second image is naturally positioned to the right or below the first image—which complicates
fine-grained control through textual prompts.

When scaling to more images, e.g., three or four inputs, such large spatial offsets in h and w hinder
the model’s generalization ability.

Therefore, as shown in Figure[3] we extend the positional encoding scheme proposed in Flux Kontext
by employing only a virtual temporal offset to indicate the index of each input image. Concretely,
for the latent tokens of the i-th input image, the positional offset is defined as

PO = (i, h, w), “4)
where h, w denote the latent’s spatial dimensions.

During training, we adopt a multi-image joint training strategy that incorporates datasets with vary-
ing numbers of input images. We argue that jointly training across different reference counts allows
the model to exploit their complementary benefits, leading to improved generalization and robust-
ness in multi-subject personalization.

4.3 PAIRWISE SUBJECT-CONSISTENCY REWARDS

In multi-subject personalization scenarios, the input reference images often contain background
elements, whereas our objective is to endow the model with end-to-end capability to handle such
realistic inputs.

To this end, we adopt an online reinforcement learning framework to post-train the model initialized
from the first-stage SFT. For multi-subject personalization, we introduce a novel Pairwise Subject-
Consistency Reward (PSR) as shown in Figure d The key idea behind PSR is subject decoupling:
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Table 3: Quantitative results of Semantic Alignment.

Model attribute  background action position complex three four Overall
Kontext (Labs et al.|[2025) 0.68 0.81 0.46 0.16 0.68 0.65 059 0576
UNO (Wu et al.||2025b) 0.70 0.91 0.62 0.48 0.73 0.81 0.69 0.706
Omnigen2 (Wu et al.[|2025a) 0.83 0.92 0.81 0.49 0.75 0.83 0.74  0.767
XVerse (Chen et al.|[2025) 0.80 0.89 0.60 0.53 0.77 0.82 0.71 0.731
Ours-SFT 0.84 0.92 0.66 0.51 0.69 0.85 0.84 0.759
Ours 0.85 0.93 0.63 0.54 0.69 0.89 087 0.771

we disentangle each subject from the global image, and then encourage pairwise similarity between
the disentangled subjects and their references to guide training.

Formally, let a pretrained model 6 take multiple input images , each containing multiple subjects,
and produce an output I,,,;. We apply subject decoupling on the output to obtain subject-specific
crops: I%,. = g(Iout,c;), where g denotes an open-vocabulary object detector and ¢; represents
the category of the ¢ — th subject. The decoupled image I’ contains only the subject-specific
region. Since input references in real-world scenarios also contain background, we perform the same
decoupling operation on input references: I;t =g(I’, Iz ¢i) We then define the subject consistency
reward as the average similarity between each pair of corresponding subject crops:

1 i i
PSR = Z F (Taee: Igt) )

where f measures visual similarity.

To further mitigate the risk of copy-paste artifacts and prevent reward hacking, we incorporate two
additional reward signals. The overall reward is defined as follows:

R=wl*x PSR+ w2x* Rs +w3x* R, (6)

where R is semantic reward computed by Qwen-2.5-vl (Bai et al., [2025)):
Ry = M LLM (instruction, Iy,.), @)
R, is aesthetic preference reward from a human preference scoring model HPSv3 (Ma et al., 2025)):
Ry, = HPS(instruction, Loyut), 8)

5 EXPERIMENTS
5.1 IMPLEMENTATION DETAILS

We build our multi-subject personalization model on top of Flux Kontext. In the first stage, we set
the learning rate to le-4. Our dataset provides 2—4 images as inputs, and during training we sample
them with probabilities of 0.9:0.05:0.05, enabling joint training across different reference counts.
In the second stage, we use a smaller learning rate of le-5. Specifically, we adopt a multi-reward
joint training strategy. The reward for subject consistency is provided by our proposed Pairwise
Subject-consistency Reward (PSR). For textual faithfulness, we leverage Qwen-2.5-vI-7B to evalu-
ate image-text alignment, while human preference is modeled using hpsv3. Since this stage requires
evaluating human preferences, sampling and training are both conducted over the original 28 diffu-
sion timesteps. All square images are resized to a resolution of 512x512, while non-square images
are resized to the nearest dimension around 512. Experiments are conducted on 8 NVIDIA A800
GPUs.

We compare our proposed PSR with state-of-the-art multi-subject personalization approaches, in-
cluding UNO (Wu et al., 2025b), OmniGen2 (Wu et al.,[2025a)), X Verse |Chen et al.[(2025), and Flux
Kontext [Labs et al.| (2025). Since Flux Kontext only supports single-image inputs, for fair evalua-
tion we concatenate multiple input images along the width dimension before feeding them into the
model.

5.2 QUALITATIVE RESULT

As shown in Figure [5] presents seven qualitative analyses on PSRBench. In comparison with other
baselines, our approach demonstrates superior performance in both subject preservation and text
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Table 4: Comparison of different offset strategies.

Method 2 subjects 3 subjects 4 subjects
w/ height-width 0.62 0.56 0.53
w/ width-offset 0.65 0.59 0.55
w/ height-offset 0.65 0.60 0.54
w/ frame-wise offset 0.68 0.62 0.59

adherence. In the case of two-image inputs, our method is able to faithfully retain the original
appearance of the subjects while simultaneously complying with semantic instructions, thereby val-
idating the effectiveness of both our data and methodology. For example, our approach successfully
preserves the distinctive visual characteristics of the “microphone” and “calculator,” while also ad-
hering to the textual description that specifies “scattered papers and a cup of coffee.” In contrast,
competing methods often fail to maintain high consistency across multiple subjects, with XVerse
even suffering from complete subject omission. Furthermore, our results show that the proposed
method exhibits strong text alignment capabilities: when the prompt contains positional, action, or
attribute-binding constraints, our model can still generate coherent images. It is worth noting that
although OmniGen?2 also achieves relatively strong performance in text adherence, it underperforms
in terms of subject consistency.

When scaling to scenarios involving a larger number of input images, existing methods degrade
substantially. As illustrated in Figure [5] with four-subject inputs, competing approaches consis-
tently exhibit subject omission, whereas our method continues to maintain subject consistency. This
highlights the strong scalability and robustness of our approach.

5.3 QUANTITATIVE RESULT

PSRBench employs three distinct metrics to evaluate subject consistency, semantic alignment, and
human preference. Table [T compares the subject consistency of existing methods. Benefiting from
high-quality paired data and reinforcement learning with PSR-based multi-reward optimization, our
approach achieves the highest subject consistency score of 0.69, and demonstrates significant supe-
riority over prior methods on both the three-subject and four-subject subsets.

Tables [2| and Tables |3| report the human preference scores and semantic alignment scores, respec-
tively. PSR also achieves the overall best performance on these two metrics, indicating that our
method not only preserves consistency in multi-subject scenarios but also exhibits strong text con-
trollability, enabling the generation of high-quality images.

5.4 ABLATION STUDY

We further conduct ablation studies on the scalable position index. Table [d] reports the results of
training with different positional encodings on subject consistency. The results demonstrate that
the scalable position index offers better scalability and performs more effectively in multi-subject
scenarios.

6 CONCLUSION

In this work, we addressed the challenges of multi-subject personalized image generation, where
existing models struggle to maintain subject consistency and adhere to textual instructions. To over-
come these limitations, we proposed a scalable multi-subject data generation pipeline and introduced
a Pairwise Subject-Consistency Reward within a reinforcement learning framework. Furthermore,
we designed PSRBench, a comprehensive benchmark that evaluates subject consistency, semantic
alignment, and human preference across diverse and challenging scenarios. Extensive experiments
demonstrate that our method not only achieves state-of-the-art performance in multi-subject con-
sistency but also exhibits strong scalability and text controllability, enabling the generation of high-
quality and semantically faithful images. We believe this work provides a solid foundation for future
research on controllable and scalable personalized generation.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

The paper only uses LLMs for language polishing and grammar checking.

PSRBench

subsets 176

AN

The kangaroo bounds effortlessly across the 170
The cat is stretching on a windowsill, and sunbaked Australian outback, its powerful legs
the swan glides across the pond nearby, propelling it over golden grasses, while the shoes 165
under a sunny sky. lie abandoned near a dry creek bed, dusty and 3

worn, as if left behind by a traveler in search of 160
adventure.

Wy

Attribute Background Action  Position Complex 3-subjects 4-subjects

The camel is wearing a scarf and the penguin is
wearing sunglasses. They are standing on a
snowy desert.

the calculator and the drum and the flower are on a Eval metrics
wooden table near a sunny window with soft sunlight
streaming into a cozy, plant-filled room.

the clock and the keyboard on a wooden

desk by a window, soft afternoon light, old .
books and coffee mug nearby.
H ’ the wallet and the calculator and the shoes and the W

rﬁ
&
basket in a cozy home office with sunlight streaming

through large windows and books lined on the shelves. Subjec‘r Semantic Aesthetics
Consistency  Alignment Preference

The cup is on the left of the guitar, and they
sit on a wooden table by a window.

Figure 6: PSRBench
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A.2 FLOW GRPO

GRPO, as a powerful reinforcement learning method, optimizes the policy function through group
advantages.
. , G
R (z§, ¢) — mean ({R (x%,c)} )
j=1

std ({R (whoc) }j_l)

x{y denotes the i — th sample, and G represents the number of groups. Flow-GRPO proposes us-
ing GRPO to optimize the sampling process by training the policy through the maximization of a
regularized objective.

Aj = )

jFlow—GRPO (0) = ]ECNC,{wz‘}filNﬂ—eO]d (.|c)f(rv A’ 07 €, 5) (10)
where,
R 1 &1 L , Ny
f(rA0.2.8) = = ; T2 (min (v}(6) A3, clip (1(6),1 — 2,1+ 2) A} ) = BDxr, (oI mer) )
(11)

Tz(o) _ Do (‘rt—l | xt,C)

= : , (12)
Py (l'%,l |£L’%7C)

A.3 PSRBENCH

The analysis of PSRBench is shown in the Figure [6] where a representative case is presented for
each subset. For every subset, we conduct evaluations from three complementary dimensions.
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