An Empirical Investigation of Initialization Strategies
for Kolmogorov—Arnold Networks

Spyros Rigas! Dhruv Verma? Georgios Alexandridis' Yixuan Wang >

Abstract

Kolmogorov—Arnold Networks (KANs) are a recently introduced neural architecture that use trainable activation
functions instead of fixed ones, offering greater flexibility and interpretability. Although KANs have shown
promising results across various tasks, little attention has been given to how they should be initialized. In this
work, we explore alternative initialization strategies, including two variance-preserving methods based on classical
ideas and an empirical power-law approach with tunable exponents. Using function fitting as a small-scale testbed,
we run a large grid search over architectures and initialization settings. We find that power-law configurations
consistently outperform the standard baseline initialization across all architectures. The variance-preserving
methods tend to underperform on smaller models but outperform the baseline as networks grow deeper and
wider, though they still do not match the performance of power-law initialization. Overall, our results highlight
initialization as an important yet underexplored aspect of KANs and point to several directions for future work.

1. Introduction

Kolmogorov—Arnold Networks (KANs) (Liu et al., 2025) have recently emerged as an alternative backbone architecture to
Multilayer Perceptrons (MLPs), drawing inspiration from the Kolmogorov—Arnold representation theorem (Kolmogorov,
1957) in a manner analogous to how the learning of MLPs relies on universal approximation theorems. Unlike MLPs, which
use fixed nonlinear activation functions and trainable linear layers, KANs comprise grid-dependent trainable activation
functions. This provides them with flexibility in modeling complex nonlinear relationships, while requiring fewer and
smaller layers. Since their introduction, KANs have found numerous applications, often surpassing the performance of
their MLP-based counterparts (Yu et al., 2024; Poeta et al., 2024). There have been many notable results in scientific
problem-solving domains, including function fitting and symbolic regression (Liu et al., 2024; Shukla et al., 2024), partial
differential equations (PDEs) (Shukla et al., 2024; Rigas et al., 2024; Wang et al., 2025b) and operator learning (Abueidda
et al., 2025; Shukla et al., 2024), among other applications (Howard et al., 2024; Kundu et al., 2024; Kashefi, 2025).

Beyond these benchmarks, there has also been significant progress in the theoretical understanding of KANs (Zhang &
Zhou, 2025; Alter et al., 2025; Wang et al., 2025a). However, one important theoretical and practical aspect that remains
understudied pertains to their initialization strategies. Current literature mainly relies on the standard initialization method
proposed in the introductory KAN paper (Liu et al., 2025), highlighting a clear gap and motivating an investigation into
potentially more effective initialization approaches. Effective initialization is crucial, as a good “initial guess” for the
network weights can significantly accelerate training (Mishkin & Matas, 2016; Skorski et al., 2021) and prevent early
saturation of hidden layers (Glorot & Bengio, 2010). However, despite extensive research into initialization methods
for MLP-based architectures, these results cannot be directly applied to KANs. Furthermore, even within MLP-based
architectures, initialization methods often require separate consideration depending on the specific architecture design
(Huang et al., 2020), activation function (He et al., 2015), or even on a complete case-by-case basis (Skorski et al., 2021).

This preliminary work explores initialization strategies for KANs. We focus on function fitting tasks, which are well-suited
for small-scale experiments that can be run efficiently on limited computational resources, while noting that our broader aim

"Department of Digital Industry Technologies, School of Science, National and Kapodistrian University of Athens (NKUA), 344 00
Psachna, Greece >Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 91125, United States of
America. Correspondence to: Spyros Rigas <spyrigas@uoa.gr>, Yixuan Wang <roywang@caltech.edu>.

Accepted at Methods and Opportunities at Small Scale (MOSS), ICML 2025, Vancouver, Canada.

1

An Empirical Investigation of KAN Initialization Strategies

also includes extending this study to forward PDE problems. We draw conceptual parallels between initialization methods
in MLPs and KANS, investigating variance-preserving schemes inspired by LeCun initialization (LeCun et al., 1998) and
batch normalization (Ioffe & Szegedy, 2015). Moreover, recognizing that theoretical frameworks may not always align with
empirical performance (Mishkin & Matas, 2016), we further propose an empirical power-law-based initialization approach.
This work aspires to establish foundational insights for further research into initialization strategies for KANs.

2. Background
2.1. Kolmogorov-Arnold Networks

Within the standard formalism, the output, y € R™, of a KAN layer is related to its input, x € R™", via:

Nin G+k
yi= <’“ﬁ “R () + ¢ji D bjim - Bm (wz-)) s =1 o, 1)
i=1 m=1

where 7j;, ¢;; and bj;, are the layer’s trainable parameters, R(x) corresponds to a residual function, typically chosen as the
SiLU, ie., R(z) =z (1 + e_r)_l, and B,, (x) denotes a univariate spline basis function of order %, defined on a grid with
G intervals. For each of the layer’s trainable parameters, the original KAN formulation initializes the scaling weights as
c¢ji = 1, the residual weights r;; using Glorot initialization (Glorot & Bengio, 2010), and the basis weights b;;,, from a
normal distribution with zero mean and small standard deviation, typically set to o = 0.1.

2.2. Related Work

In the existing KAN literature, initialization strategies have only been explored in certain KAN variants (Guilhoto &
Perdikaris, 2025), while the standard KAN architecture has not yet received dedicated attention in this regard. A natural
starting point for studying initialization is to follow the corresponding historical developments in MLP-based architectures,
beginning with the scheme proposed by LeCun (LeCun et al., 1998), which ensures that the variance of activations remains
stable across layers, preventing progressive vanishing or explosion. Alternatively, methods such as batch normalization
(Ioffe & Szegedy, 2015) modify the architecture itself to maintain stable activation distributions throughout the network,
reducing the dependence on careful initialization. Of course, it remains unclear whether such strategies directly transfer to
KAN:s, given their architectural differences, thus motivating the investigation presented in this work.

3. Methodology

3.1. Proposed Initializations

Since the three different weight types in a KAN layer are independent, we may initialize the scaling weights c;; to 1 and
focus exclusively on the initialization of the residual weights r;; and the basis weights b;;,,,. We assume that these weights
are drawn from zero-mean distributions with standard deviations o, and oy, respectively. To determine suitable values for o,
and oy, we follow the principle of variance preservation proposed by LeCun (LeCun et al., 1998), which stipulates that the
variance of layer outputs should match that of the inputs, thereby avoiding signal amplification or attenuation across layers.
Assuming statistical independence among terms and an equal contribution to the variance from each of the (G + k + 1)
terms inside the first summand of Eq. (1), we derive the following expressions for the standard deviations':

o Var (z;) or Var (x;) @)
r nin (G + k + 1) E[R? (2;)] T\ i (G k+ 1) E[B2, (z:)]

If we further assume that each component of x is drawn from a uniform distribution ¢/ (—1, 1), as is often the case in
tasks like function fitting or PDE solving, then all statistical quantities in Eq. (2) can be evaluated directly, except for the
expectation of the squared spline basis functions applied to the inputs. Due to the dependence of these basis functions on the
underlying grid, no general analytic expression exists for o3,. This leads to two practical alternatives: one may either estimate

!'See Appendix A for detailed derivations.

An Empirical Investigation of KAN Initialization Strategies

E [Bfn (xl)] numerically by sampling a large number of input points from ¢/ (—1, 1) at initialization, or set the expectation
value to unity by modifying the architecture of the KAN layer to use batch-normalized spline basis functions, defined as

- N B,, (3?1) —E [Bm (xl)}
B (@i) = VE[BZ, (z;)] —E2 [By, (2;)] v

where the expectation values are computed over the current batch during each forward pass. We will refer to the former
alternative as “LeCun—numerical” initialization, while the latter is referred to as “LeCun—normalized” initialization.

In addition to these two theory-driven initialization strategies, we also investigate an empirical approach based on a power-
law scaling of the KAN layer’s architectural parameters. Specifically, we initialize the weights such that their standard
deviations follow the form

B 1 o B 1 ? A
Ur(nin(G+k+1)) ’ Ub(nin(G+k+1)> ’ “)

where « and (3 are tunable exponents selected from the set {0.25,0.5,...,1.75,2.0}. The motivation behind this empirical
scheme is to perform a grid search over («, 3) configurations in order to identify trends or specific exponent pairs that
consistently improve training speed and convergence, potentially revealing an effective heuristic for initializing KANs.

3.2. Experimental Setup

We evaluate our initialization strategies on function fitting tasks, using five distinct two-dimensional functions the formulas
and implementation details of which are provided in Appendix B. KANs are trained for 2000 iterations, and performance
is evaluated using both the final training loss and the relative L? error between the model and reference solutions. As a
grid-search process, each setting is tested across architectures with 1-4 hidden layers and widths ranging from 2 to 64, and
across grid sizes G € {5,10,20,40}. All experiments are repeated under five random seeds, except those involving the
empirical power-law initialization, which are run under three seeds to reduce computational cost. We report the median
result in terms of final training loss across runs. All training is performed in JAX (Bradbury et al., 2018) using the jaxKAN
framework (Rigas & Papachristou, 2025), on a single NVIDIA GeForce RTX 4090 GPU.

4. Experimental Results

The grid search over («, 8) configurations and the architectural variations described in Section 3 results in the training of
123840 KAN model instances. After aggregating the five (or three) repeated runs per setting by their median outcome, this
total reduces to 40320 representative results. From these, we retain only the best-performing (v, 3) configuration per setting,
yielding 1920 final results. Table 1 reports, for each target function and initialization scheme, the percentage of runs that
outperform the baseline initialization described in Section 2.1. Comparisons are made with respect to both the final training
loss and the relative L? error to the reference solution. We also report the percentage of runs for which both metrics improve
simultaneously over the baseline.

Table 1. Percentage of runs, grouped by target function and initialization scheme, that outperform the baseline initialization in terms of
final training loss, relative L? error, and both metrics simultaneously. The best performance for each case is shown in bold font.

LECUN-NUMERICAL LECUN-NORMALIZED POWER-LAW
FUNCTION | LoOSS L? BOTH Loss L? BOTH LosSS L? BOTH

fi(z,y) 18.75% 6.25% 1.04% | 19.79% 11.46% 2.08% | 100.00% 100.00% 100.00%

f2 (z,y) 14.58% 4.17% 0.00% | 28.13% 9.38% 5.21% | 100.00% 100.00% 100.00%
fa(z,y) 12.50% 521% 0.00% | 19.79% 11.46% 5.21% | 100.00% 100.00% 100.00%
fa(z,y) 25.00% 14.58% 8.33% | 41.67% 26.04% 16.67% | 100.00% 94.79% 94.79%
f5(z,y) 26.04% 2.08% 0.00% | 31.25% 6.25% 1.04% 98.96 % 96.88% 95.83%

Table 1 presents the final aggregated results, demonstrating that for nearly all cases, there exists a power-law initialization
that outperforms the baseline. In contrast, this is not consistently true for the LeCun-based initialization strategies. However,

3

An Empirical Investigation of KAN Initialization Strategies

the table masks several important qualitative trends. Notably, while the baseline initialization performs better for smaller
architectures, the LeCun-based strategies - especially the normalized variant - tend to surpass the baseline as the network
depth, width, and grid size, G, increase. In several cases, these improvements exceed two orders of magnitude. Another
notable observation is that the network tends to achieve significantly lower final losses for («, §) configurations where «
is relatively small (e.g., near 0.25) and § is on the higher end of the studied spectrum (i.e., > 1.5). For a more detailed
breakdown of these trends and the full grid search results, we refer the reader to Appendix C.

To gain a better understanding of these trends, we compare all four initialization strategies on two representative settings:
a “small” architecture (G = 5, two hidden layers with 8 neurons each) and a “large” architecture (G = 20, three hidden
layers with 32 neurons each). To ensure consistency across benchmarks, we fix the power-law parameters to a = 0.25 and
B = 1.75. Training follows the setup from Section 3.2, with each experiment repeated five times. The resulting training loss
curves, averaged across runs, are shown in Figure 1 along with the corresponding standard error. For the small architecture,
the power-law initialization yields the lowest losses, while the baseline outperforms both LeCun-based methods. In contrast,
for the larger architecture, the power-law still performs best (by a wider margin) while the LeCun—normalized variant
consistently surpasses the baseline. The oscillatory patterns observed are due to the fixed learning rate, but crucially, the
fluctuations occur around equilibrium points significantly lower than the convergence levels of the competing schemes.

fi(x,y) . f(x,y) f3(x, y) fa(x,y) fs(x, y)
10 10°
107% . (\?
10 o
-2 -
w 10 107t 3
3 10*2 1’?'
10*3 =
2 [
£ 104 1072 N
g 1073 g
10- 3
=
-3 I
10-¢ 10-4 10 o
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
10° 10! 0
. 100) 10 ®
10™ 0 =
10 101 10 10-1 S
1072 -1 -2 -
P 10 10-2 10 10-2 %
o 1073 -2 — el
3 10 10-3 1073 103 =
2 10 s _ - I
£ 10 107* 107 w
‘® 10°° 1074 =
£ 1074 1075 10-5 £
0-s £
10-¢ s 6 1
10 10 e 5
1077 -7 1 107 I
106 10 w
10*7 N
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Training lteration Training lteration Training Iteration Training lteration Training Iteration
Baseline ~ —— LeCun-Numerical ~—— LeCun-Normalized —— Power-Law

Figure 1. Training loss curves (with shaded standard error) for small and large architectures across all four initialization strategies. For the
small architecture, the power-law initialization performs best, with the baseline outperforming both LeCun-based schemes. In the large
architecture setting, the power-law remains dominant, while the LeCun—normalized strategy consistently surpasses the baseline.

5. Conclusion

We investigated initialization strategies for KANs, focusing on variance-preserving and empirical power-law schemes.
Through experiments on function fitting tasks, we showed that suitable initialization choices can lead to substantial
performance improvements over the baseline, especially for deeper or wider architectures. Our findings suggest that even
small-scale experimentation can reveal important insight in the dynamics of KAN training.

5.1. Limitations and Future Work

Of course, this study focuses solely on function fitting tasks; evaluating initialization strategies on more complex and
resource-intensive problems, such as PDEs or image-based benchmarks, remains an open direction. Additionally, we
restricted our analysis to KANs with spline basis functions, though alternative basis representations are also unexplored.
Finally, our variance-based initializations do not account for gradient propagation; future work could investigate Glorot-like

4

An Empirical Investigation of KAN Initialization Strategies

schemes that explicitly consider both forward and backward signal flow. Addressing these limitations is essential for building
a more complete understanding of initialization in KANs, and we intend to explore these directions in follow-up studies.

Data Availability

The data corresponding to the full grid-search experiments described in Section 3 as well as the code to reproduce the
experimental results of Section 4 can be found as Supplementary Material in the GitHub repository for MOSS, ICML 2025,
under submissions/submission-8.

References

Abueidda, D. W., Pantidis, P., and Mobasher, M. E. DeepOKAN: Deep operator network based on Kolmogorov
Arnold networks for mechanics problems. Comput. Methods Appl. Mech. Eng., 436:117699, 2025. doi: https:
//doi.org/10.1016/j.cma.2024.117699. URL https://www.sciencedirect.com/science/article/pii/
50045782524009538.

Alter, T., Lapid, R., and Sipper, M. On the robustness of Kolmogorov—Arnold networks: An adversarial perspective. Trans-
actions on Machine Learning Research, 2025. URL https://openreview.net/forum?id=uafxghImPM.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of
the Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9, pp. 249-256, 2010. URL
https://proceedings.mlr.press/v9/glorotlOa.html.

Guilhoto, L. F. and Perdikaris, P. Deep learning alternatives of the Kolmogorov superposition theorem. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=
SyVPiehSbg.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification. In 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026-1034, 2015. doi: 10.1109/
ICCV.2015.123.

Howard, A. A., Jacob, B., Murphy, S. H., Heinlein, A., and Stinis, P. Finite basis Kolmogorov—Arnold networks: domain
decomposition for data-driven and physics-informed problems, 2024. URL https://arxiv.org/abs/2406.
19662.

Huang, X. S., Perez, F., Ba, J., and Volkovs, M. Improving transformer optimization through better initialization. In
Proceedings of the 37th International Conference on Machine Learning, volume 119, pp. 4475-4483, 2020. URL
https://proceedings.mlr.press/v119/huang20f.html.

Ioffe, S. and Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In
Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, pp.
448-456, 2015.

Kashefi, A. Kolmogorov—Arnold PointNet: Deep learning for prediction of fluid fields on irregular geometries. Comput.
Methods Appl. Mech. Eng., 439:117888, 2025. doi: https://doi.org/10.1016/j.cma.2025.117888. URL https://www.
sciencedirect.com/science/article/pii1/S0045782525001604.

Kolmogorov, A. K. On the representation of continuous functions of several variables by superposition of continuous
functions of one variable and addition. Doklady Akademii Nauk SSSR, 114:369-373, 1957.

Kundu, A., Sarkar, A., and Sadhu, A. KANQAS: Kolmogorov—Arnold network for quantum architecture search. EPJ
Quantum Technol., 11:76, 2024. doi: https://doi.org/10.1140/epjqt/s40507-024-00289-z.

LeCun, Y., Bottou, L., Orr, G. B., and Miiller, K.-R. Efficient backprop. In Orr, G. B. and Miiller, K.-R. (eds.), Neural
Networks: Tricks of the Trade, pp. 9-50. Springer, 1998. ISBN 978-3-540-49430-0. doi: 10.1007/3-540-49430-8 2.

5

https://github.com/abhishekpanigrahi1996/MOSS
https://www.sciencedirect.com/science/article/pii/S0045782524009538
https://www.sciencedirect.com/science/article/pii/S0045782524009538
https://openreview.net/forum?id=uafxqhImPM
http://github.com/jax-ml/jax
https://proceedings.mlr.press/v9/glorot10a.html
https://openreview.net/forum?id=SyVPiehSbg
https://openreview.net/forum?id=SyVPiehSbg
https://arxiv.org/abs/2406.19662
https://arxiv.org/abs/2406.19662
https://proceedings.mlr.press/v119/huang20f.html
https://www.sciencedirect.com/science/article/pii/S0045782525001604
https://www.sciencedirect.com/science/article/pii/S0045782525001604

An Empirical Investigation of KAN Initialization Strategies

Liu, Z., Ma, P., Wang, Y., Matusik, W., and Tegmark, M. Kan 2.0: Kolmogorov—Arnold networks meet science, 2024. URL
https://arxiv.org/abs/2408.10205.

Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljacic, M., Hou, T. Y., and Tegmark, M. KAN: Kol-
mogorov—Arnold networks. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=0z07gqJ5vZi.

Mishkin, D. and Matas, J. All you need is a good init. In 4th International Conference on Learning Representations, ICLR
2016, 2016. URL https://arxiv.org/abs/1511.06422.

Poeta, E., Giobergia, F., Pastor, E., Cerquitelli, T., and Baralis, E. A benchmarking study of Kolmogorov—Arnold networks on
tabular data. In 2024 IEEE 18th International Conference on Application of Information and Communication Technologies
(AICT), pp. 1-6, 2024. doi: 10.1109/AICT61888.2024.10740444.

Rigas, S. and Papachristou, M. jaxKAN: A unified JAX framework for Kolmogorov—Arnold networks. Journal of Open
Source Software, 10(108):7830, 2025. doi: 10.21105/joss.07830. URL https://doi.org/10.21105/joss.
07830.

Rigas, S., Papachristou, M., Papadopoulos, T., Anagnostopoulos, F., and Alexandridis, G. Adaptive training of grid-
dependent physics-informed Kolmogorov—Arnold networks. IEEE Access, 12:176982—-176998, 2024. doi: 10.1109/
ACCESS.2024.3504962.

Shukla, K., Toscano, J. D., Wang, Z., Zou, Z., and Karniadakis, G. E. A comprehensive and FAIR comparison between
MLP and KAN representations for differential equations and operator networks. Comput. Methods Appl. Mech. Eng.,
431:117290, 2024. doi: https://doi.org/10.1016/j.cma.2024.117290. URL https://www.sciencedirect.com/
science/article/pii/S0045782524005462.

Skorski, M., Temperoni, A., and Theobald, M. Revisiting weight initialization of deep neural networks. In Proceedings of
The 13th Asian Conference on Machine Learning, volume 157, pp. 1192-1207, 2021. URL https://proceedings.
mlr.press/v157/skorski2la.html.

Wang, Y., Siegel, J. W., Liu, Z., and Hou, T. Y. On the expressiveness and spectral bias of KANs. In The Thirteenth
International Conference on Learning Representations, 2025a. URL https://openreview.net/forum?id=
yd1DRUUGmMI.

Wang, Y., Sun, J., Bai, J., Anitescu, C., Eshaghi, M. S., Zhuang, X., Rabczuk, T., and Liu, Y. Kolmogorov—Arnold-
informed neural network: A physics-informed deep learning framework for solving forward and inverse problems
based on Kolmogorov—Arnold networks. Comput. Methods Appl. Mech. Eng., 433:117518, 2025b. doi: https:/
doi.org/10.1016/j.cma.2024.117518. URL https://www.sciencedirect.com/science/article/pii/
S0045782524007722.

Yu, R., Yu, W., and Wang, X. KAN or MLP: A fairer comparison, 2024. URL https://arxiv.org/abs/2407.
16674.

Zhang, X. and Zhou, H. Generalization bounds and model complexity for Kolmogorov—Arnold networks. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=
g5zMyAUhGx.

https://arxiv.org/abs/2408.10205
https://openreview.net/forum?id=Ozo7qJ5vZi
https://arxiv.org/abs/1511.06422
https://doi.org/10.21105/joss.07830
https://doi.org/10.21105/joss.07830
https://www.sciencedirect.com/science/article/pii/S0045782524005462
https://www.sciencedirect.com/science/article/pii/S0045782524005462
https://proceedings.mlr.press/v157/skorski21a.html
https://proceedings.mlr.press/v157/skorski21a.html
https://openreview.net/forum?id=ydlDRUuGm9
https://openreview.net/forum?id=ydlDRUuGm9
https://www.sciencedirect.com/science/article/pii/S0045782524007722
https://www.sciencedirect.com/science/article/pii/S0045782524007722
https://arxiv.org/abs/2407.16674
https://arxiv.org/abs/2407.16674
https://openreview.net/forum?id=q5zMyAUhGx
https://openreview.net/forum?id=q5zMyAUhGx

An Empirical Investigation of KAN Initialization Strategies

A. Variance-Preserving Initialization

In this appendix, we provide a derivation of Egs. (2) from the main text and obtain more explicit expressions under the
assumption that network inputs are independently sampled from a uniform distribution & (—1,1). Assuming statistical
independence between each term in the outer sum of Eq. (1) and requiring the output variance to match the input variance,
one finds

G+k
Var (l‘l) = ny, Var 75 R (Jﬁz) + ¢j; Z bjim - B, (]}l) R 5)

m=1

where the right-hand side contains the variance of a sum of G + k + 1 terms: one residual term and G + k spline basis terms.
Since these terms are not mutually uncorrelated, we adopt a simplifying assumption that the total variance is approximately
equipartitioned across all components,” allowing us to bypass pairwise covariance terms. This leads to the following
expressions for the residual and spline basis terms, respectively:

Var (z;)
G+k+1

Var (z;)

= ninVar [rﬂ . R ((EZ)] 5 m

= anar [bjim . Bm (mz)] . (6)

Since the trainable weights 7;; are independent of the residual function R (x;), the variance of their product becomes

Var [rj; - R (z;)] = E? (rji) Var [R (z;)] + E2 [R (x;)] Var (r;;) + Var (r;;) Var [R (z;)]
=0

= Var (’I“ji) {Var [R (l‘z)] + E? [R (mz)]} = 0’3 E [R2 (l‘l)] 7)

and, in a completely analogous manner, we find

Var [bjim, - By (z:)] = ‘71% E |:B’r2n (3%)] . (®)

Substitution of the expressions of Egs. (7), (8) into Egs. (6) yields Eq. (2) from Section 3.1. If we further assume that
x; ~U(—1,1), so that Var (z;) = 1/3, and that the residual function is the SiLU, we can explicitly compute the expected
squared residual function as:

1t x?
E [R? (z; :f/ —— dx
[()] 2 1 (1+€_I)2
x-e”

er +1

_ {(m + 1) Lip (—€®) — Lig (—e®) + %x {(x +2)In(1+e) — } }1_1 ~945-1072, (9)

where

ok
z

Lis () = —. 10
) =5 (10)

k=1

This suggests initializing 7;; from a distribution with zero mean and standard deviation

1.878

o R (11

Vi (G+k+1)

2This assumption does not necessarily hold in general. For example, one could consider a 50%—50% split between the residual and
basis function terms. We experimented with this alternative and found that it yielded poorer results compared to the variance partitioning
that leads to Egs. (2).

An Empirical Investigation of KAN Initialization Strategies

An equivalent closed-form expression for oy, is not available, as the B,,, spline basis functions are inherently grid-dependent.
This motivates the two “LeCun-like” initializations presented in Section 3: the LeCun—numerical strategy computes
E [Bfn (mz)] numerically for a given grid, while the LeCun—-normalized one uses the normalized basis functions of Eq. (3),

for which E [BZ, (x;)] = 1, yielding o), = [3nin (G + k + 1)]_1/2.

B. Implementation Details

For the purposes of this work, we study five two-dimensional functions ranging from simple expressions to more complex,
nonlinear, or piecewise-defined forms. Specifically, we consider the following functions in the [—1, 1] x [—1, 1] domain:

s filz,y) =ay
e fa(z,y) =exp (sin(mz:) + y2)
o f3(z,y) = I () + exp [exp (—|y|) Iy (y)] + sin (2y)

Ffiley) = S{ﬁ’ (x,y) +erf ™! (y)} x C[fa (z,y) +erf ! (y):|
o f5(z,y) =y -sgn(0.5 — x) + erf(z) - min (xy, ;v_1y>

where I; () is the modified Bessel function of first order, sgn () is the sign function, erf (x) is the error function and S (z),
C () are the Fresnel integral functions defined as

T 2 T 2
S(x) = / sin (i) dt, C(x) = / cos <i> dt. (12)
0 2 0 2

The reference surfaces for these functions are shown in Figure 2.

filx,y) f2(x,y) f3(x,y)
10 7= 4 10 Y y
2.5
0.5 0.5 2.0
1.5
> 0.0 0.0
1.0
-0.5 -0.5 0.5
0.0
-1.0 — -1.0
-1.0 -05 0.0 0.5 1.0 X
X X X
1.0
0.4
0.5 1
0.3
> 0.0 0
0.2
—05 0.1 -1
-1.0 0.0
-1.0
X X

Figure 2. Reference surfaces for the five two-dimensional target functions f; through f5 used in the function fitting experiments.

The KAN models used to fit these functions utilize spline basis functions of order £ = 3, defined over an augmented,
uniform grid within the [—1, 1] domain (Liu et al., 2025). Training is performed using the Adam optimizer with a fixed

8

An Empirical Investigation of KAN Initialization Strategies

learning rate of 10~3, with the objective of minimizing the mean squared error between the predicted and reference function
values. For each target function f; (z,y), withi = 1,..., 5, we generate 4000 random input samples uniformly distributed
over the domain [—1, 1] x [—1, 1], and evaluate the corresponding outputs to serve as ground truth during training.

C. Supplementary Experimental Results

This appendix contains additional experimental results that expand on the findings summarized in Section 4 of the main text.
Figures 3 — 6 present the full set of experimental results summarized in Table 1 of the main text. These heatmaps show, for
each combination of function and architecture, the performance of the four initialization strategies. Each figure corresponds
to a different value of G (G = 5, 10, 20, and 40 respectively), with columns representing initialization strategies and rows
representing target functions. For the power-law scheme, only the («, 3) configuration that achieves the lowest training loss
for each architecture is shown.

To provide a finer-grained view into the performance landscape of the power-law initialization, Figures 7 — 10 present a
detailed grid search over («, 3) configurations for the function f3(x,y) across the same four grid sizes. In these heatmaps,
the horizontal axis corresponds to « and the vertical axis to /3, while rows and columns represent different architectural
widths and depths, respectively. These results help justify the selection of & = 0.25 and § = 1.75 in the case study
comparison shown in Figure 1 of the main text.

An Empirical Investigation of KAN Initialization Strategies

Baseline

64606 | 4.6e-06 5.0e-06 6.1e-06

6 4.40-06

Depth

1.9¢-05

Depth

5 52006 8,

Depth

4105 1305 6

25004 15¢-04 8.6e05 6.0e05 6.8e-05

Depth

6 6.4e-06

x10-% LeCun-Normalized
-1.0
0.8
0.6
04 . 2 19005 14e0s
0.2
x1072

11e02 9.0e-04

12004 3

12004 5.1e:05

39603 6705 2705

21608

1.0e:04 7

x1073

05 1405 16e05

18003 3.4e04 19605

19004 1204 11e04 2

60004 4.7e:04 50604

11e-04

Depth

59003 1903 95¢.04 4.5

Width

Figure 3. Training loss heatmaps for all four initialization strategies (Baseline, LeCun—Normalized, LeCun—Numerical, and Power-Law)

51604 7

3.9¢04 16603 | 5.6e04 2.1e04

3 12004 23005 17605

35003 1.9e03 4.06-04 9.8e-05

2302 | 8.0e03

Width

x1072

x1071

-1.0

0.8

0.6

0.4

0.2

x1072

-1.0

0.8

0.6

0.4

0.2

x1071
-175

1.50

LeCun-Numerical

6.7e-04

4.0e-04

3 4.6e04

1.4e-03

3.4e:03

63003

4.9e-04

6.80:04

Lae-04

6.06-04 2,06

7.76:03 4.0

1.0e-04

6.06-07

9.0e-05

43004

13003

Power Law

47607

19e.05

3.4e-05

Lae-04

1.8¢-06

1.6e-04

5.06-04

14607 | 8.0e:08

4.4e-06

L1e-05

16604 14e-04

4.8e:05

Lae-04

%1025
-3.5

(A=Y

A%y

on each of the five target functions, with grid size G = 5. Each row corresponds to a different function, and each column to an initialization

method. Within each heatmap, the horizontal axis represents the hidden layer width, the vertical axis represents the number of hidden
layers and the color indicates the final training loss.

10

An Empirical Investigation of KAN Initialization Strategies

Baseline

Depth

10605 8. 2,005

21005 11e05

26004 18604 | 8

Depth

15603

13e:04

Depth

12004 3.8¢05

Depth

20004 14e-08

9.4605

Depth

10603 3.0e-04 | 1.4e-04 1.0e-04

3 17e03 | 11e03 67e04

Width

x1074

x1073

LeCun-Numerical

63602 10002 22e.04 | 12e04 42e05

67602 1.40.02

11e-04 45e02 | 11e02 5.1

160400 L) NN 3| 53 9e- -1.4
12
24601 | 1.0e:03 6 1.86:06 106400| 20001 62604 | 2.2¢:04 2.7e:0 1.0
0.8
21001 0 34e Lieo1 | 10e01 42 82007 0.6
0.4
67002 0.2
x1071
-1.50
13008 5
1.25
17e06 1.00
0.75
58602 Lses] 74002 | 26002 15003 | 66006
0.50
4.1e04 13e-04 5.5e05 5 - 3 8.2e 0.25
x1072 x1072
-1.75 -1.75
1.50 1.50
1.25 1.25
41003 e
1.00 1.00
0.75 1.1e-02 4.0e-03 075
0.50 0.50
63e04 | 20608 5 0.25 48003 | 26003 9de0d 3600 025
x1071 x1071
3.0 3.0
25 2.5
43002 10008 50 20
15 15
16000 10005
1.0 1.0
0.5 40002 | 2.00.02 2.66-03 0.5

Width

Power Law

6 | 1.4e-06

49205 12605

7| 16e-07

6 | 1806 10e-06

6| 21606 13e-06

2,008

10604 2.0605

Width

(A)Yy

x1073

(A x)Y

9.1e-08

(Ax)8y

(A*x)%)

11e-06

(Ax)%

Figure 4. Training loss heatmaps for all four initialization strategies (Baseline, LeCun—Normalized, LeCun—Numerical, and Power-Law)
on each of the five target functions, with grid size G = 10. Each row corresponds to a different function, and each column to an
initialization method. Within each heatmap, the horizontal axis represents the hidden layer width, the vertical axis represents the number
of hidden layers and the color indicates the final training loss.

11

An Empirical Investigation of KAN Initialization Strategies

Depth

Depth

Depth

Baseline x10-3
-4

1.0e-04

6.1e:02

EERISNIY 116400 8.60.02 1.9e-04

9.36:03 16601 26004

EERANIY 136400 1.9¢01

10602 1.4e03

30604 6106 6

11e02 | 81e03

4.70.03

65004 12003 4103 | 15005

LeCun-Normalized

x1071

- 1.8e+00

LeCun-Numerical

1.0e4+00

13001

11e01

16002 66

17602

x1071
-1.0

0.8
0.6
0.4
0.2

-175

1.50
125
1.00
0.75
0.50
0.25

Power Law

17607

5.0e-07

24008

4.0e:08

x1074

(Ax)Yy

Ay

(Ax)Yy

20007
< N
=1 =
¢ %
o =

15e:04 | 9.1e 5 | 2006
47004 22008 49003

16004 51005 11006
< ah
= P
a X
a =

23001 3

6904 4.1e04 2

Width Width

1e-02

6.50-04

2.40-04

Width

Figure 5. Training loss heatmaps for all four initialization strategies (Baseline, LeCun—Normalized, LeCun—Numerical, and Power-Law)
on each of the five target functions, with grid size G = 20. Each row corresponds to a different function, and each column to an

initialization method. Within each heatmap, the horizontal axis represents the hidden layer width, the vertical axis represents the number
of hidden layers and the color indicates the final training loss.

12

An Empirical Investigation of KAN Initialization Strategies

Baseline

2702

43605

Depth

1.7e-04

40001 3

3 1403 12003

Depth

14002 1.6e-04

4,003

Depth

3.9e:04

x1072

80004 4.66.05

6303 4504

Depth

49003

32003 11e03 67e04

x1071
-1.75

1.50

21604 8.8e:05

Depth

11e04

1.0e-04

Width

- Lle01

- 2.0e+00

LeCun-Normalized

7.3e:02

- 2.0e+00

- 17e+00

- 21e01

- 22002

- 43001

21001

1.0e-01

22002

13602

43e.01

1.2e+00

4.5e.02

2.00+00 206400 2.0e+00

6301

2101

23002

43e01 43e01

17601 | 2.

2.40-01

1.3e01

Width

2101

23002

2101

5 | 6.9e02

23002

43001

1le01 1le0l 11e0l 11e01 1le01

206400 1.8e+00

21001

81602

5.1e-06

24002

43001

Lae01

1.8e-05

x1071
4

LeCun-Numerical x10-1 Power Law

- 11e01 11e01 lle0l

41602 6.1e04

47002

~2.0e+00 2.0e+00 2.0e400 2.0e+00 1.9e+00 [EXIS

6606 12006 9.8e-07

7.1e-01 7.9¢:04 | 1904 | 1.4e.04

7.06-06

1.3e+00

-21e01 21e01 21e01 21e01 21e01 20e01

- 24002 23e02 23e02 9e.06 1.80-07

93603 4.0e-04

9503

43e01 43e01

64006 8607 3

15001

37008 2

25001

L4e-01

Width

x1074

(A=Y

(Ax)Y

(A'X)Y

(A'x)%

(Ax)%y

Figure 6. Training loss heatmaps for all four initialization strategies (Baseline, LeCun—Normalized, LeCun—Numerical, and Power-Law)
on each of the five target functions, with grid size G = 40. Each row corresponds to a different function, and each column to an

initialization method. Within each heatmap, the horizontal axis represents the hidden layer width, the vertical axis represents the number
of hidden layers and the color indicates the final training loss.

13

An Empirical Investigation of KAN Initialization Strategies

Depth =1 Depth = 2 Depth = 3 Depth = 4
=101
1072
=
o
=
=2
1
-3
10 N
1 1074
o F
~N i
" 1072
-
=
o
-3
« g 10 E3
1
N
n —4
s 10
o
S 1 10-5
S} 1
~N [
1072
n
-
=
3 =
o 0 g
@ =
I
107 o
n
s
10°°
o
2 J
o 107t
N 3
in 1072
-
=
1073 o
« S ﬁ'
1074 [
" o
s
1075
o
2 J
o 3
o E
1072
n
-
=
1073 g
« g ﬁ'
-4
10 w
in N
° 10-5
o
S} 1 10-6
o f
N [
1072
n
-
10-3 =
=
o >
«©
— 104]
(=2
- >
S 10-5
o
2 J
15 20

0.0 0.5 1.0
a

we - [
ofo 05 10 15 20
a

Figure 7. Grid search for the power-law initialization applied to function f5 (z,y) for G = 5. Each heatmap corresponds to an architecture,
with the horizontal and vertical axis representing « and /3, respectively, and color denoting final training loss.

14

An Empirical Investigation of KAN Initialization Strategies

Depth = 2 Depth = 3 Depth = 4
,10—]
1072
=
Q.
1073 E
Il
N
1074
] 1075
-107
1072
=
1073 =
>
Il
1074 IS
1075
10’1
1072
=
Q.
=
>
Il
o]
1
o —10*1
N
1072
n
-
1073 =
o
@3 107 H
—
n 10-5 o
o
106
o
S
1071 =107
1072 10-3
107 =
E
1074 =
Il
w
10- N
1076
107t
1072
1073 =
o
1074 =
I
[e2]
107 -

Figure 8. Grid search for the power-law initialization applied to function f3 (z,y) for G = 10. Each heatmap corresponds to an
architecture, with the horizontal and vertical axis representing « and 3, respectively, and color denoting final training loss.

15

An Empirical Investigation of KAN Initialization Strategies

Depth =1 Depth = 2 Depth = 3 Depth = 4
L10-1 £107!
1072
1072 =
=
1073 =5
1
103 N
1074
1074 - 107
10-1
1072
=
103 o
5
I
-4
10 IS
1075
1 106
10‘1
1072
"]
10 g
=y
1074 1
[oe]
10°°
HENNEENE.
=
o
<
>
1
-
o
1077
1101
107t
=
102 é
10— 3 =y
I
1074 w
1073
1076
1077
| -10°
107t
1072
=
-3
10 %
1074 I
(=2
10°% »
1076
1077

00 05 10 15 20
a

Figure 9. Grid search for the power-law initialization applied to function f3 (z,y) for G = 20. Each heatmap corresponds to an
architecture, with the horizontal and vertical axis representing « and 3, respectively, and color denoting final training loss.

16

An Empirical Investigation of KAN Initialization Strategies

Depth =1 Depth = 2 Depth = 3 Depth = 4
£107!
1072
]
o
10-3 E
Il
N
1074
10-%
107!
1072
=
1073 =
=
=y
107* Il
ESY
10-%
1 106
L107
1072
1073 =
o
=
1074 =
Il
[oe]
10-%
e o)
£107?
102
1073 =
S
107% >
Il
-5 =
10 o
10°°
10
’ =7 - AN [
' ' 1077 '
10!
10°
1071
10 g
1073 >
Il
1074 w
1075 ~
10°°
1077
10?
10°
]
1072 3
=y
Il
- [e2]
1074 2

Figure 10. Grid search for the power-law initialization applied to function f3 (z,y) for G = 40. Each heatmap corresponds to an
architecture, with the horizontal and vertical axis representing « and 3, respectively, and color denoting final training loss.

17

