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ABSTRACT

Large Language Models (LLMs) have led to significant improvements in many
tasks across various domains, such as code interpretation, response generation,
and ambiguity handling. These LLMs, however, when upgrading, primarily prior-
itize enhancing user experience while neglecting security, privacy, and safety im-
plications. Consequently, unintended vulnerabilities or biases can be introduced.
Previous studies have predominantly focused on specific versions of the models
and disregard the potential emergence of new attack vectors targeting the updated
versions. Through the lens of adversarial examples within the in-context learning
framework, this longitudinal study addresses this gap by conducting a comprehen-
sive assessment of the robustness of successive versions of LLMs, i.e., GPT-3.5
and LLaMA. We conduct extensive experiments to analyze and understand the
impact of the robustness in two distinct learning categories: zero-shot learning
and few-shot learning. Our findings indicate that, compared to earlier versions
of LLMs, the updated versions do not exhibit the anticipated level of robustness
against adversarial attacks. We hope that our study can lead to a more refined as-
sessment of the robustness of LLMs over time and provide valuable insights into
these models for both developers and users.

1 INTRODUCTION

Large Language Models (LLMs), such as OpenAI ChatGPT (?), Meta LLaMA (Touvron et al.,
2023b), have demonstrated remarkable capabilities in many Natural Language Processing (NLP)
tasks, including language translation (Jiao et al., 2023), text classification (Sun et al., 2023), and
creative writing (He et al., 2023; Ji et al., 2023). Despite their impressive performance, these models
also present certain risks. For instance, these LLMs are trained on vast amounts of internet data,
which may contain biases, misinformation, and offensive content (Turpin et al., 2023; Bian et al.,
2023; Ouyang et al., 2022). Consequently, the outputs generated by these models can perpetuate
harmful stereotypes (Liang et al., 2022; Abid et al., 2021), disseminate false information (Azaria
& Mitchell, 2023; Manakul et al., 2023; Pan et al., 2023; Hanley & Durumeric, 2023), or produce
inappropriate and offensive content (Kang et al., 2023). Furthermore, previous studies have shown
that LLMs are sensitive to changes in input queries, including both unintentional errors by legitimate
users and intentional modifications by potential attackers (Min et al., 2022; Zhu et al., 2023b).

In response, frequent updates have been made to improve LLMs by incorporating feedback and
insights from users and developers (i.e., AI-human alignment). Although such updates partially
mitigate known attacks or failures observed in earlier versions of GPT-3.5 (Borji, 2023; Kang et al.,
2023), unintended consequences and even new vulnerabilities or biases can still be introduced. How-
ever, current research on the robustness evaluation of LLMs has focused on a single version of the
LLM but leaves the impact of model updates unexplored.

To fill this gap, in this paper, we undertake the first comprehensive robustness evaluation of longitu-
dinally updated LLMs. Our study is to identify and elucidate potential issues resulting from model
updates. The benefits are two-fold. From the perspective of users, understanding the limitations and
risks associated with model updates enables them to make informed decisions about their usage of
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LLMs. From the perspective of model owners, continuous evaluation and testing facilitate iterative
improvement, addressing emerging challenges and refining model behavior over time.
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Figure 1: Overview of our evaluation framework on adversarial robustness of
LLMs over time using adversarial examples generated from various surrogate
models.

Methodology. Our
primary objective is to
understand the robustness
of different versions of
LLMs using adversarial
examples within the frame-
work of in-context learning
(ICL) (Brown et al., 2020).
ICL is a training-free
learning framework. It
involves feeding the LLM
with different components:
a task description, a ques-
tion, and possibly some
demonstrations consisting
of task-related examples.
The LLM then learns the
pattern hidden from these
three elements to accom-
plish the task. Our goal is
to evaluate if an LLM is robust when these elements are replaced by their adversarial versions.
Figure 1 illustrates the workflow of our study. In essence, we first transfer adversarial examples
generated from a surrogate language model and apply them to different versions of the target LLM.
We then compare the model behaviors in the presence of adversarial examples.

To ensure a comprehensive evaluation, we adopt six different surrogate models and consider ten
different settings of adversarial queries, which correspond to various combinations of adversarial or
benign description, demonstration, and question (see Section 3.2 for more details). Our preliminary
investigations predominantly center on different versions of GPT and LLaMA models.

In summary, we make the following key findings:

• We demonstrate that GPT-3.5 and LLaMA are both vulnerable to adversarial queries, which
is persistent across different versions. For instance, on the SST2 dataset, the average result
of Robust Test Scores (see Section 4.3) of zero-shot learning for both versions of GPT-3.5
dropped from 85.093% and 87.390% to 37.210% and 20.652%, respectively (see Figure 3).

• We simultaneously demonstrate the performance divergence among different versions of
GPT-3.5 and LLaMA against benign queries. We find that the performances of the LLMs
do not steadily improve with the version updating. Specifically, GPT-3.5 v0613 exhibits a
discernible decline in performance in certain tasks. For instance, on the MNLI dataset, the
Clean Test Scores (see Section 4.3) within zero-shot learning for GPT-3.5 v0613 are worse
than those for GPT-3.5 v0301. Our findings highlight the complex relation between model
evolution over time and task-specific robustness. This also challenges the common notion
that updated models simply lead to enhancements.

Impact. We hope that our study can offer valuable insights for future studies on the robustness of
LLMs. It is critical that developers prioritize the consideration of model robustness during the up-
date. Proactively incorporating robustness-enhancing techniques and conducting rigorous evaluation
will bolster the resilience of an LLM to both known and unknown challenges.

2 PRELIMINARY

2.1 IN-CONTEXT LEARNING

Overview. The core idea of In-context Learning (ICL) is to learn from analogies implied in con-
textual information. ICL requires a few examples to form a demonstration context and feed them
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into LLM. It does not modify the parameters of an LLM and relies on the model to learn the pattern
hidden in the demonstration (and accordingly generate the right output). As such, ICL dramatically
reduces the computation costs for adapting LLMs to new tasks, as fine-tuning is not required. In
general, there are two categories of in-context learning, namely zero-shot learning and few-shot
learning. We outline their details as follows, and their examples can be found in Figure 2.

Assessment: Unacceptable
The revised sentence would be: "Odysseus attempted himself to hear the 
sirens."

Assess the grammatical structure of the given sentence and classify it as 
'Acceptable' or 'Unacceptable':

Sentence: Odysseus attempted Odysseus to hear the sirens.

Description

Question

(a) Qzero

Answer: Unacceptable.
This sentence is grammatically incorrect. It suffers from a redundant use 
of the subject "Odysseus."

Assess the grammatical structure of the given sentence and classify it as 
'Acceptable' or 'Unacceptable':

Sentence: Odysseus attempted Odysseus to hear the sirens.

Description

Question

Here are three examples.
Sentence: Our friends won't buy this analysis, let alone the next one we 
propose. Answer: acceptable.
Sentence: One more pseudo generalization and I'm giving up. Answer: 
acceptable.
Sentence: They drank the pub. Answer: unacceptable. Demonstration

(b) Qfew

Figure 2: Examples of (a) zero-shot learning and (b)
few-shot learning on GPT-3.5. For zero-shot learning,
the query includes only the description and the question
but without any demonstrations, while few-shot learn-
ing means that the query also includes a few demonstra-
tions.

Zero-shot Learning. Zero-shot learning (Xian
et al., 2019) is a capability enabled by LLMs,
allowing them to generalize to tasks or domains
they have never been explicitly trained on. As
a special case of ICL, the query of zero-shot
learning to an LLM (termed Qzero in this pa-
per) only contains two elements: description
and question (see Figure 2a), which can be for-
mulated as follows.

Qzero = Description + Question. (1)

Here Description serves as an instructional
guide for LLMs, which could provide neces-
sary information such as task characterization
and the format of the response. Question is
an inquiry for a specific task. Zero-shot learn-
ing relies on an LLM’s capability to infer both
the input distribution and the desired output
from a query without any demonstrations (Wei
et al., 2022). Because of the simple structure
of Qzero, zero-shot learning offers great con-
venience and becomes the most common ap-
proach to querying LLMs in real-world scenar-
ios. The LLM may not have necessarily been
trained on some task, but it is able to do so
because it has been trained to understand the
structure of that task.

Few-shot Learning. Few-shot learning (Brown et al., 2020) includes a few examples to form a
demonstration context to support better the instruction/task outlined in Description. The examples
enable LLMs to better condition the demonstration examples. Compared to zero-shot learning, few-
shot learning enables LLMs to quickly adapt to new tasks by learning from an extra element, i.e.,
Demonstration. Thus, the query can be formulated as:

Qfew = Description + Demonstration + Question. (2)

Demonstration typically consists of a handful of user-generated question-answer pairs. We show an
example of Qfew in Figure 2b. In general, few-shot learning can better guide the LLMs to learn
a more accurate mapping between questions and desired answers. In this paper, we specifically
consider 3-shot learning (i.e., three question-answer pairs in Demonstration).

2.2 ADVERSARIAL EXAMPLES

Previous studies have proposed many effective methods to generate adversarial examples against
language models. However, different work considers different attacking goals of the query, i.e., de-
scription or question. For instance, Zhu et al. (2023b) proposed PromptBench to illuminate a note-
worthy facet pertaining to the vulnerability of the descriptions to adversarial attacks when applied to
LLMs. The notable vulnerability of descriptions to adversarial attacks, as detailed in their research,
arises primarily due to their critical role in serving as a guiding framework that shapes the responses
of LLMs and steers their cognitive orientation. Meanwhile, Wang et al. (2021) proposed AdvGLUE,
a meticulously curated dataset comprising adversarial questions. However, to fully evaluate the ro-
bustness of the updating LLMs, we consider different types of adversarial queries, i.e., each element
of a query can be clean or adversarial. The clean (adversarial) examples of each element are shown
in Table 3 of Appendix.
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3 ROBUSTNESS OVER TIME

3.1 OVERVIEW

Adversarial attacks remain a major threat to LLMs. They generate adversarial examples from clean
seed queries based on a variety of adversarial attack algorithms and manipulate an LLM’s behavior
to elicit misleading or undesirable responses (Zhu et al., 2023b; Wang et al., 2023a;b). Moreover,
recent studies have demonstrated that these adversarial examples exhibit a significant degree of
transferability across different LLMs (Zhu et al., 2023b). However, mainstream LLMs are contin-
ually updated. As a result, the question of whether the successive iterations of these LLMs remain
susceptible to previously identified adversarial strategies has not been adequately addressed, which
prompts us to systematically evaluate the robustness of the latest iterations of LLMs.

In this paper, “over time” pertains to the target LLMs that undergo continuous updates under the
direction of their developers. We undertake a comprehensive assessment of the robustness, focusing
on GPT-3.5 and LLaMA as they are the most prominent LLMs that are subject to ongoing up-
dates. Concretely, our analysis centers on GPT-3.5, for which two distinct versions are available:
gpt-3.5-turbo-0301 (GPT-3.5 v0301) and gpt-3.5-turbo-0613 (GPT-3.5 v0613). For
the LLaMA model, we focus on three different versions: LLaMA, LLaMA2, and LLaMA2-chat.
Meanwhile, we consider different scales of LLaMA models. For instance, for the primary version
LLaMA, we consider LLaMA-7B/13B/65B. The scales of LLaMA2 and LLaMA2-chat we dis-
cuss in this paper are 7B, 13B, and 70B. In accordance with the inherent structure of Qzero and
Qfew (see Section 2.1), we feed different type of adversarial examples into longitudinal versions of
different LLMs to measure the robustness.

3.2 METHODOLOGY

Outline. As we can see in Equation 1 and Equation 2, Qzero and Qfew respectively have two and
three elements. Here, we classify such an LLM input as an adversarial query if any one of these
constituent elements is generated by an adversarial attack algorithm.

Zero-shot Learning. We first outline the procedure for generating an adversarial query in the zero-
shot learning, i.e., Qadv

zero. Recall that zero-shot learning does not have any demonstration; thus,
Qzero encompasses two elements: the description and the question. To simplify our description, we
can replace description or question with adversarial (A) examples or clean (C) examples. For in-
stance, QAC

zero consists of an adversarial description and a clean question. In turn, we could generate
the adversarial queries Qadv

zero under zero-shot learning as follows:

Qadv
zero := {QAC

zero, Q
CA
zero, Q

AA
zero}.

Few-shot Learning. Similarly to the procedure employed for generating Qadv
zero, we extend our

approach to encompass the creation of adversarial queries in few-shot learning, i.e., Qadv
few. For

instance, QAAC
few consists of an adversarial description, an adversarial demonstration, and a clean

question. Given Qfew that encompasses three distinct elements, we could generate the adversarial
queries as follows:

Qadv
few := {QACC

few, Q
CAC
few, Q

CCA
few, Q

AAC
few, Q

ACA
few, Q

CAA
few , Q

AAA
few}.

4 EXPERIMENTAL SETTINGS

4.1 DATASETS

Description Datasets. For the description dataset, we select PromptBench (Zhu et al., 2023b). In
this dataset, as listed in Table 3, there are ten unique seed descriptions corresponding to each clean
question dataset. Ten adversarial descriptions are generated from each seed description under differ-
ent levels of adversarial attacks. In this work, we choose the most prominent adversarial description
for each adversarial attack algorithm according to the attack capability of the surrogate model. Con-
sequently, in the clean description dataset, the descriptions are meticulously chosen based on the
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accuracy results derived from the surrogate models. In alignment with this selection, the corre-
sponding adversarial descriptions constitute the ensemble of the adversarial description dataset. For
more generating details, please see Section A.1.

Question Datasets. We select six widely used benchmark question datasets, of which five are the
clean question dataset while the other one is the adversarial question dataset.

• GLUE (Wang et al., 2019) is a collection of resources for training, evaluating, and ana-
lyzing natural language understanding systems. To align with the adversarial dataset, we
choose five datasets: SST-2 (Socher et al., 2013) (sentiment analysis), QQP (Wang et al.,
2017) (duplicate sentence detection), MNLI (Williams et al., 2018) (natural language in-
ference), QNLI (Wang et al., 2019) (natural language inference), RTE (Wang et al., 2019)
(natural language inference).

• AdvGLUE (Wang et al., 2021) involves a meticulous process aimed at crafting challeng-
ing and deceptive examples to evaluate the robustness of language models. It covers 5
natural language understanding tasks from the GLUE tasks, namely AdvSST-2, AdvQQP,
AdvMNLI, AdvQNLI, and AdvRTE. They are the adversarial version of the GLUE bench-
mark dataset. It considers textual adversarial attacks from different perspectives and hier-
archies on 3 different levels. For more generating details, please see Section A.1.

4.2 MODELS

Surrogate Models. In our experimental setup, we select six different surrogate language models in
total. Specifically, T5 (Raffel et al., 2020), UL2 (Tay et al., 2023), and Vicuna (Vic) are used for
generating Adversarial Description, while BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019),
and RoBERTa ensemble (Liu et al., 2019) are for Adversarial Question.

Target Models. Meanwhile, we select GPT-3.5 and LLaMA as our target model for the robustness
evaluation. Specifically, we employ two versions of GPT-3.5, i.e., gpt-3.5-turbo-0301 and
gpt-3.5-turbo-0613. In addition, we choose ten different versions of LLaMA models, i.e.,
LLaMA-7B, LLaMA-13B, LLaMA-65B, LLaMA-2-7B, LLaMA-2-7B-Chat, LLaMA-2-13B,
LLaMA-2-13B-Chat, LLaMA-2-70B, and LLaMA-2-70B-Chat. The selection of these ver-
sions allows us to observe the impact of updates and improvements in the model over time.

4.3 EVALUATION METRICS

In this paper, we consider three evaluation metrics (CTS, RTS, and PDR) for measuring the perfor-
mance:

• Clean Test Score (CTS) represents the classification accuracy when testing with clean
queries (i.e., QCC

zero or QCCC
few) of the target model. It is used to evaluate the utility of the

model.
• Robust Test Score (RTS) measures the classification accuracy score when the target model is

subjected to adversarial attacks, The RTS serves as a standard to assess whether the model
can successfully overcome adversarial attacks.

• Performance Drop Rate (PDR), which was introduced by Zhu et al. (2023b), aims to quan-
tify the extent of performance decline caused by adversarial attacks. In general, larger PDR
means higher attack effectiveness. PDR can be formulated as:

PDR = 1− RTS

CTS
.

5 EVALUATION

In this section, we present the robustness evaluation on longitudinal GPT-3.5. We first evaluate the
zero-shot learning results (see Section 5.1) and then the few-shot learning (see Section 5.2). For
each setting, we analyze the results from two different angles: model effectiveness (using CTS and
RTS) and attack effectiveness (using PDR), aiming to show a more comprehensive evaluation of the
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Figure 3: CTS and RTS on GPT-3.5 under zero-shot learning.
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Figure 4: CTS and RTS on LLaMA-7B family under zero-shot learning.

longitudinal versions. Concretely, we aim to answer the following key research question: How does
the robustness of the LLMs change over time?

Note. Our initial expectation was that the perturbations crafted to fool one model would not be
consistently effective in deceiving an updated model (Zhao et al., 2022; Xie et al., 2019; Dong et al.,
2018; Carlini & Wagner, 2017; Papernot et al., 2017). We assume the developer should have consid-
ered the adversarial examples when training or fine-tuning the model with new data. In addition, the
assessment of improved robustness in an LLM necessitates a comprehensive evaluation that encom-
passes the aforementioned three key metrics. A conclusive determination of superiority can only be
made for an updated model when it demonstrates higher CTS and RTS simultaneously, while lower
PDR. This holistic perspective ensures a thorough examination of the model’s performance across
various dimensions, thereby substantiating its enhanced robustness in relation to its predecessors.

5.1 ZERO-SHOT LEARNING

GPT-3.5. We first analyze the performance of GPT-3.5 against benign queries and adversarial
queries. As Figure 3 shows, the updated version of GPT-3.5 (v0613) exhibits limited advancements
in terms of its overall effectiveness as compared to its earlier version (v0301). For example, in the
MNLI dataset, all the CTS and RTS results from the updated version are obviously smaller than the
previous version. Therefore, we could conclude that GPT-3.5 v0613 represents a retrogression of
CTS and RTS than GPT-3.5 v0301.

Meanwhile, the first three rows of Table 1 show the PDR results of Qadv
zero. Adversarial query refers

to the query that contains the adversarial content in any of its two components (description and
demonstrations), as defined in Equation 1. For example, the adversarial query AC means a zero-shot
learning-based query that consists of an adversarial description and a clean question. Compared
with GPT-3.5 v0301, besides the QQP dataset, the average values of PDR of GPT-3.5 v0613 model
are larger than that of GPT-3.5 v0301. Upon a comparative analysis, the updated v0613 version
falls short of showcasing substantial improvements in terms of effectiveness and robustness when
contrasted with the v0301 iteration.

LLaMA. LLaMA v1 and v2 models are generative models without any instruction-tuning or RL-
tuning. Thus, for these models, we choose to enlarge the logit bias for the labeled words. Figure 4
shows the CTS and RTS results of the LLaMA-7B family. The results of the LLaMA-13B and
LLaMA-70B family are listed in Appendix A (see Figure 7 and Figure 8). Updated versions of the
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Table 1: PDR on GPT-3.5. We highlight the larger PDR results. Adversarial query refers to the query that
contains the adversarial content in any of its three components (description, question, and demonstrations), as
defined in Equation 1 and Equation 2.

ICL Adversarial Query
SST-2 MNLI QQP RTE QNLI

v0301 v0613 v0301 v0613 v0301 v0613 v0301 v0613 v0301 v0613

Zero-shot
AC 0.324 0.341 0.036 0.031 0.188 0.097 0.064 0.091 0.141 0.148

CA 0.361 0.383 -0.084 0.015 0.034 0.023 0.031 0.115 0.147 0.159

AA 0.563 0.684 -0.037 0.084 0.217 0.174 0.140 0.222 0.232 0.247

Few-shot

ACC 0.013 0.010 0.040 0.043 -0.002 0.014 -0.012 -0.008 0.024 0.035

CAC -0.003 -0.003 0.005 0.017 0.010 0.006 0.234 0.220 0.002 0.034

CCA 0.325 0.363 -0.006 -0.097 0.001 -0.023 -0.038 0.040 0.186 0.078

AAC 0.054 0.037 0.048 0.080 0.008 0.037 0.233 0.221 0.020 0.038

ACA 0.358 0.391 0.020 -0.076 -0.000 0.011 -0.045 0.031 0.215 0.130

CAA 0.309 0.296 0.017 -0.111 0.020 0.048 -0.020 0.066 0.206 0.092

AAA 0.360 0.354 0.089 -0.007 0.021 0.057 -0.014 0.085 0.204 0.141
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Figure 5: CTS and RTS on GPT-3.5 under few-shot learning.

LLaMA models exhibit improvements across several datasets, such as SST-2 and QQP. However,
it is noteworthy that the v2-Chat models do not perform well as we expected. We conducted a
comprehensive analysis of the results, specifically scrutinizing the output produced by these mod-
els. This examination revealed that, in numerous instances, v2-Chat models indeed encapsulate the
intended meaning of the labels, albeit not in an exact match to the labels we had originally tar-
geted. For example “not entailment” in the Promptbench dataset is the label for the WNLI dataset,
but for the tokenizer of the LLM, it will be split into five different tokens. This nuanced disparity
between the model outputs and the desired labels introduces an elevated level of complexity into
our evaluation process. In addition, the LLaMA models exhibit certain constraints pertaining to the
generated length. These models do not possess the capability to generate the outputs according to
the user-specified length requirements. Instead, they adhere to a predetermined length criterion and
provide the length based on the user’s need, which sometimes results in the truncation of sentences,
potentially causing the omission of critically labeled words from the generated text.

For the PDR results, as demonstrated in the first three rows of Table 2, Table 4, and Table 5, the
results from the updated models are consistently larger on average compared to the first version. As
we analyzed before, we believe that the PDR results of v2-Chat models underscore the intricate and
context-dependent nature of model behavior and robustness. The effectiveness is contingent upon
diverse factors, such as generated length and label words, yielding varying results across different
datasets and scenarios.
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Table 2: PDR on LLaMA 7B family. Adversarial query refers to the query that contains the adversarial
content in any of its three components (description, question, and demonstrations), as defined in Equation 1
and Equation 2.

ICL Adversarial Query
SST-2 MNLI QQP RTE QNLI

v1 v2 v2-Chat v1 v2 v2-Chat v1 v2 v2-Chat v1 v2 v2-Chat v1 v2 v2-Chat

Zero-shot
AC 0.004 0.068 0.163 -0.046 -0.051 0.196 -0.278 -0.042 0.043 0.000 0.000 0.091 0.016 0.011 0.213

CA 0.085 0.324 0.377 -0.078 -0.138 0.167 -0.099 0.032 0.130 0.197 0.197 0.198 0.057 0.058 0.034

AA 0.107 0.327 0.472 -0.149 -0.203 0.293 -0.130 0.083 0.086 0.197 0.197 0.270 0.060 0.068 0.261

Few-shot

ACC 0.004 -0.008 0.142 0.002 0.012 0.304 -0.017 -0.113 -0.104 0.000 0.000 0.002 0.000 0.000 -0.085

CAC 0.000 0.000 0.033 0.000 0.000 -0.145 0.001 0.000 0.026 0.000 0.000 -0.126 0.000 0.000 -0.252

CCA 0.386 0.279 0.086 -0.060 -0.066 -0.069 0.164 -0.097 0.027 0.197 0.197 0.154 0.058 0.058 -0.036

AAC 0.004 -0.008 0.198 0.002 0.011 0.167 -0.018 -0.113 -0.019 0.000 0.000 0.001 0.000 0.000 -0.274

ACA 0.426 0.297 0.237 -0.053 -0.042 0.283 0.122 -0.118 -0.076 0.197 0.197 0.166 0.058 0.058 -0.170

CAA 0.437 0.373 0.099 0.016 -0.405 -0.145 0.113 0.086 0.066 0.197 0.197 0.084 0.058 0.058 -0.198
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Figure 6: CTS and RTS on LLaMA 7B family under few-shot learning.

5.2 FEW-SHOT LEARNING

GPT-3.5. Figure 5 illustrates the CTS and RTS results of different categories of queries. Compared
with zero-shot learning, the RTS results underscore the context-dependent nature of model behavior
and the robustness. Upon a comparative analysis, the updated v0613 version falls short of show-
casing substantial improvements in terms of model effectiveness when contrasted with the v0301
iteration. For instance, on the MNLI dataset, both the CTS and RTS results under each scenario for
the v0613 model are discernibly lower than those of the preceding version.

As demonstrated in Table 1, the PDR results fluctuate from different adversarial queries. As previ-
ously indicated, we maintain the stance that these lower results alone are inadequate for rendering
a conclusive judgment on the superiority of the updated version. The rationale for this perspective
is discernible. Although some of the PDR results in the updated version are lower than before, the
decreased CTS and RTS values, such as the MNLI dataset, reinforce the notion that the updated
version has not markedly improved. This consistent observation underscores that specific scenarios
maintain a significant degree of attack effectiveness, even in the updated version.

LLaMA. For the few-shot learning, Figure 6 shows the results of CTS and RTS of the LLaMA-
7B family. The results of the LLaMA-13B and LLaMA-70B family are listed in Appendix A (see
Figure 9 and Figure 10). Firstly, when comparing with zero-shot learning, it is evident that the
inclusion of demonstrations leads to notable enhancements in numerous outcomes. Moreover, it
becomes apparent that the augmentation of a model’s weight count correlates positively with an
increase in its overall robustness. Nevertheless, the v2-Chat variant consistently underperforms in
comparison to the standard version. Similar to our observations in zero-shot learning, it is our
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contention that the LLaMA models exhibit a degree of sensitivity to the labels despite the presence
of demonstration. Additionally, the fixed length for generated output is a key factor contributing to
diminished performance.

For the PDR results, the updated version of LLaMA can be resistant to adversarial attacks compared
with the v1 versions. However, it is noteworthy that the PDR metric is a quotient derived from the
division of CTS and RTS. Considering the aforementioned analysis, it becomes apparent that the
smaller PDR values can be attributed to potential reductions in both CTS and RTS, especially for the
v2-Chat versions.

5.3 TAKEAWAYS

In summation, the updated version of both GPT-3.5 and LLaMA fails to deliver substantial en-
hancements in terms of model effectiveness, as evidenced by the observed results where the results
do not align with our earlier assertions. In addition, our findings further underscore the necessity
of a comprehensive evaluation framework that encompasses multiple variables when comparing the
longitudinal versions of LLMs.

6 RELATED WORK

6.1 ADVERSARIAL ATTACKS

We focus on adversarial attacks that manipulate legitimate inputs to mislead a trained model to pro-
duce incorrect outputs in the NLP domain (Zhang et al., 2020). These attacks commonly manipulate
the input text at character-, word-, and sentence-level to attain the attack goals (i.e., targeted or un-
targeted attacks). Similar to adversarial attacks in computer vision domain, they can be categorized
into black-box attacks (paraphrase (Iyyer et al., 2018; Ribeiro et al., 2018; Alzantot et al., 2018), text
manipulation (Belinkov & Bisk, 2018; Li et al., 2019; Minervini & Riedel, 2018), etc.) and white-
box attacks (FGSM (Liang et al., 2018; Samanta & Mehta, 2018), JSMA (Papernot et al., 2016),
HotFlip (Ebrahimi et al., 2018), etc.). In the NLP domain, those attacks have been successfully ap-
plied to attack various applications, such as optical character recognition (Shazeer & Stern, 2018),
image caption (Chen et al., 2018), visual question answering (Xu et al., 2018), etc. Our objective
here is not to devise novel adversarial attacks against LLMs. Rather, we use existing methods to
understand if LLMs can be challenged by carefully crafted textual adversarial examples and if/how
these adversarial examples can be transferred in different versions of an LLM.

6.2 LLMS

Large language models (LLMs) have become a prominent area of research and application in the
NLP domain, driven primarily by the transformer architecture (Vaswani et al., 2017). These mod-
els are trained on massive text data and boast a substantial number of parameters, often exceeding
hundreds of billions (?). Notable LLMs include GPT-4 (gpt), PaLM (Chowdhery et al., 2022),
LLaMA (Touvron et al., 2023a), and Alpaca (sta). As LLMs grow in size, they demonstrate emer-
gent abilities such as enhanced language understanding (Zhu et al., 2023a), coherent text genera-
tion (Chung et al., 2023), and contextual comprehension (Zhou et al., 2023b), which are not present
in smaller models. Moreover, fine-tuning techniques, such as LoRA (Hu et al., 2022), are invented
to adapt the pre-trained LLMs to specific downstream tasks, allowing them to exhibit specialized
behavior and produce task-specific outputs.

7 CONCLUSION

We conduct a comprehensive assessment of the robustness of the longitudinal versions of LLMs with
a focus on GPT-3.5 and LLaMA. Our empirical results consistently demonstrate that, for both GPT-
3.5 and LLaMA, the updated model does not exhibit heightened robustness against the proposed
adversarial queries compared to its predecessor. Subsequent analysis reveals a prevalent trend of de-
creased adversarial robustness in the updated version. Our findings reinforce the importance of un-
derstanding and assessing the robustness aspect when updating LLMs, calling for enhanced focus on
comprehensive evaluation and reinforcement strategies to counter evolving adversarial challenges.
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A ADDITIONAL EXPERIMENTAL RESULTS

A.1 ADVERSARIAL QUERY

Adversarial Description. We adopt the PromptBench dataset Zhu et al. (2023b). The approach
encompasses the generation of Adversarial Descriptions through the employment of seven distinct
adversarial attack algorithms strategically deployed at the character, word, sentence, and semantic
levels:

• Character-level adversarial examples are constructed through various operations such
as character addition, deletion, repetition, replacement, and permutation within words of
the source text. For this purpose, two prominent adversarial attack methods are utilized,
namely TextBugger Li et al. (2019) and DeepWordBug Gao et al. (2018).

• Word-level adversarial examples are designed to deceive LLMs by replacing words with
synonyms or contextually similar alternatives. To achieve this, two prominent adversarial
attack methods are employed, i.e., TextFooler Jin et al. (2020) and BertAttack Li et al.
(2020).

• Sentence-level adversarial examples are the irrelevant or extraneous sentences used for
attacking the LLMs Two approaches are incorporated, namely StressTest Naik et al. (2018)
and CheckList Ribeiro et al. (2020).

• Semantic-level adversarial examples are used to simulate the linguistic behavior of in-
dividuals from diverse countries, focusing on six commonly spoken languages: Chinese,
French, Arabic, Spanish, Japanese, and Korean. These prompts are subsequently translated
into English, introducing linguistic nuances and variations inherent to each language.

Adversarial Question. In our study, we delve into the AdvGLUE Wang et al. (2021), a meticulously
curated dataset. AdvGLUE undertakes a holistic approach to assessment, strategically leveraging
a compendium of 14 distinct textual adversarial attack methodologies. These methods, spanning
word-level, sentence-level, and meticulously handcrafted examples, are systematically employed to
challenge and interrogate the resilience and adaptability of language models across various original
tasks.

• Word-level adversarial examples are generated from TextBugger Li et al. (2019),
TextFooler Jin et al. (2020), BertAttack Li et al. (2020), Sememe-PSO Wang et al. (2020),
and CompAttack Wang et al. (2021).

• Sentence-level adversarial examples are generated from T3 Wang et al. (2020), Ad-
vFever Thorne & Vlachos (2019), SCPN Iyyer et al. (2018), StressTest Naik et al. (2018),
and CheckList Ribeiro et al. (2020).

• Human-crafted Examples are sampling from several adversarial dataset and attacks such
as ANLI Nie et al. (2020), CheckList Ribeiro et al. (2020), and Adv SQuAD Jia & Liang
(2017).
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Table 3: Instances of Adversarial Description and Adversarial Question on SST-2 task.

Element Type Instances

Description
Seed Evaluate the sentiment of the given text and classify it as ’positive’ or

’negative’:

Adversarial Evaluate the sentiment of the given text and classify it as ’positive’ or
’negative’ 5yWbBXztUY:

Question
Seed Some actors have so much charisma that you ’d be happy to listen to

them reading the phone book.

Adversarial Some actors have so much charisma that you ’d be jovial to listen to
them reading the phone book.
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Figure 7: CTS and RTS on LLaMA 13B family under zero-shot learning.
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Figure 8: CTS and RTS on LLaMA 13B family under zero-shot learning.

B DISCUSSION

In this study, we do not generate adversarial examples on the Adversarial Description dataset and
Adversarial Question dataset. The primary reason behind our decision lies in the considerable finan-
cial cost of generating such adversarial examples, as it requires us to query GPT-3.5 for an extensive
duration, spanning several weeks. Furthermore, it is worth noting that no universally applicable stan-
dard template for the ICL exists. Certain queries may prove effective only when applied to specific
datasets, and even minor modifications in the queries or choice of words can yield vastly different
classification results, which increases the difficulty of the queries. Despite these limitations, our
investigation reveals that the adversarial examples derived from a traditional model continue to ex-
ert a significant impact on Language Model Models (LLMs), which are in line with other previous
works (Zhu et al., 2023b; Zou et al., 2023). Given that organizations such as OpenAI and Meta have
not open-sourced the training datasets for their models, there exists a potential risk of inadvertently
evaluating models on their training sets. While our analysis suggests a markedly low probability
of our evaluation test set intersecting with the training set, accurately assessing this risk for future
model iterations remains challenging. It is a generally very trending topic to construct or select
non-overlap datasets for LLM evaluation nowadays Zhou et al. (2023a). In the future, we could also
choose other (existing) datasets that do not overlap with the training data, e.g., the dataset with a CC
BY-SA 4.0 license or constructed by ourselves. In general, we believe it is important for the model
provider to use enhancing adversarial robustness methods in model upgrades. In the future, we will
continue to measure the new features of LLMs after the model updates, such as browsing with Bing
in GPT models.
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Figure 9: CTS and RTS on LLaMA 13B family under few-shot learning.
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Figure 10: CTS and RTS on LLaMA 65B and 70B family under few-shot learning.

Table 4: PDR on LLaMA 13B family. Adversarial query refers to the query that contains the adversarial
content in any of its three components (description, question, and demonstrations), as defined in Equation 1
and Equation 2.

ICL Query
SST-2 MNLI QQP RTE QNLI

v1 v2 v2-Chat v1 v2 v2-Chat v1 v2 v2-Chat v1 v2 v2-Chat v1 v2 v2-Chat

Zero-shot

AC 0.075 0.110 0.226 -0.032 -0.048 0.249 -0.253 -0.350 0.093 0.000 0.000 0.104 0.000 0.002 0.130

CA 0.218 0.231 0.409 -0.232 -0.204 0.087 -0.159 -0.065 0.024 0.197 0.197 0.188 0.058 0.056 0.091

AA 0.268 0.348 0.546 -0.218 -0.256 0.308 -0.080 -0.194 0.134 0.197 0.197 0.273 0.058 0.057 0.149

Few-shot

ACC -0.037 0.031 0.304 -0.005 0.023 0.204 0.002 0.068 -0.063 0.000 0.000 -0.052 0.000 0.000 -0.197

CAC 0.000 -0.000 0.130 -0.000 0.000 -0.150 0.000 -0.000 0.229 0.000 0.000 -0.117 0.000 0.000 0.071

CCA 0.298 0.338 0.363 -0.018 -0.110 -0.282 0.032 -0.074 0.175 0.197 0.197 0.188 0.058 0.058 -0.006

AAC -0.036 0.030 0.335 -0.004 0.024 0.292 0.001 0.069 0.127 0.000 0.000 -0.038 0.000 0.000 -0.206

ACA 0.292 0.347 0.416 -0.047 -0.071 0.038 0.080 -0.071 0.131 0.197 0.197 0.118 0.058 0.058 -0.171

CAA 0.287 0.292 0.455 -0.107 0.017 -0.432 0.082 -0.076 0.370 0.197 0.197 0.131 0.058 0.058 0.088

AAA 0.288 0.318 0.406 -0.062 -0.034 0.265 0.086 -0.054 0.262 0.197 0.197 0.120 0.058 0.058 -0.140
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Table 5: PDR on LLaMA-65B (denoted as v1), LLaMA2-70B (denoted as v2), and LLaMA2-70B-Chat (de-
noted as v2-Chat). Adversarial query refers to the query that contains the adversarial content in any of its three
components (description, question, and demonstrations), as defined in Equation 1 and Equation 2.

ICL Query
SST-2 MNLI QQP RTE QNLI

v1 v2 v2-Chat v1 v2 v2-Chat v1 v2 v2-Chat v1 v2 v2-Chat v1 v2 v2-Chat

Zero-shot
AC -0.004 0.149 0.140 -0.121 -0.077 0.249 -0.038 -0.002 0.111 0.000 0.024 0.079 0.012 0.012 0.139

CA 0.178 0.181 0.317 -0.076 -0.302 0.103 -0.078 -0.049 0.046 0.197 0.197 0.197 0.043 -0.009 0.204

AA 0.151 0.259 0.429 -0.324 -0.349 0.346 0.019 0.030 0.167 0.197 0.216 0.249 0.047 0.010 0.267

Few-shot

ACC 0.002 -0.006 0.131 0.026 0.068 0.368 0.051 0.015 -0.066 0.000 0.000 0.023 0.000 0.000 0.085

CAC 0.035 -0.033 -0.067 0.169 -0.065 -0.166 -0.047 0.020 -0.295 0.000 0.000 0.033 0.000 0.000 -0.069

CCA 0.235 0.334 0.279 0.005 -0.008 0.132 0.085 0.123 0.093 0.197 0.197 0.243 0.058 0.058 0.166

AAC 0.036 -0.052 0.054 0.078 0.015 0.351 0.004 0.050 -0.394 0.000 0.000 0.109 0.000 0.000 0.092

ACA 0.256 0.309 0.399 0.029 0.005 0.483 0.147 0.135 0.017 0.197 0.197 0.242 0.058 0.058 0.173

CAA 0.316 0.297 0.264 0.103 -0.186 0.068 -0.008 -0.045 -0.190 0.197 0.197 0.237 0.058 0.058 0.149

AAA 0.282 0.271 0.357 -0.008 -0.105 0.487 0.085 0.023 -0.265 0.197 0.197 0.287 0.058 0.058 0.225
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