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ABSTRACT

Large language model (LLM) applications such as agents and domain-specific
reasoning increasingly rely on context adaptation, modifying model inputs with
instructions, strategies, or evidence, rather than weight updates. While prior meth-
ods improve usability, they often suffer from a brevity bias, discarding domain-
specific insights in favor of short summaries, and from context collapse, where it-
erative rewriting erodes details over time. Building on the adaptive memory intro-
duced by Dynamic Cheatsheet, we present ACE (Agentic Context Engineering), a
framework that treats contexts as evolving playbooks that accumulate, refine, and
organize strategies through a modular process of generation, reflection, and cura-
tion. ACE prevents collapse by applying structured, incremental updates that pre-
serve detailed knowledge and scale with long-context models. Across agentic and
domain-specific benchmarks, ACE consistently outperforms strong baselines, im-
proving application performance by 9.0% while reducing adaptation latency and
rollout cost. Notably, ACE could adapt effectively without labeled supervision,
instead leveraging natural execution feedback, and on the AppWorld leaderboard
it matches the top-1-ranked production-level agent while using a smaller open-
source model. These results demonstrate that comprehensive, evolving contexts
enable scalable, efficient, and self-improving LLM systems.

1 INTRODUCTION
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Figure 1: Overall Performance Results. Our proposed framework, ACE, consistently outperforms
strong baselines across agent and domain-specific tasks.

Modern AI applications based on large language models (LLMs), such as LLM agents (Yao et al.,
2023; Yang et al., 2024) and compound AI systems (Zaharia et al., 2024), increasingly depend on
context adaptation. Instead of modifying model weights, context adaptation improves performance
after model training by incorporating clarified instructions, structured reasoning steps, or domain-
specific input formats directly into the model’s inputs. Contexts underpin many AI system compo-
nents, including system prompts that guide downstream tasks (Opsahl-Ong et al., 2024; Agrawal
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et al., 2025), memory that carries past facts and experiences (Suzgun et al., 2025b; Xu et al., 2025),
and factual evidence that reduces hallucination and supplements knowledge (Asai et al., 2024).

Adapting through contexts rather than weights offers several key advantages. Contexts are inter-
pretable and explainable for users and developers (Wei et al., 2022; Wang et al., 2022), allow rapid
integration of new knowledge at runtime (Lewis et al., 2020; Borgeaud et al., 2022), and can be
shared across models or modules in a compound system (Khot et al., 2022). Meanwhile, advances in
long-context LLMs (Peng et al., 2023) and context-efficient inference such as KV cache reuse (Gim
et al., 2024; Yao et al., 2025) are making context-based approaches increasingly practical for de-
ployment. As a result, context adaptation is emerging as a central paradigm for building capable,
scalable, and self-improving AI systems.

Despite this progress, existing approaches to context adaptation face two key limitations. First, a
brevity bias: many prompt optimizers prioritize concise, broadly applicable instructions over com-
prehensive accumulation. For example, GEPA (Agrawal et al., 2025) highlights brevity as a strength,
but such abstraction can omit domain-specific heuristics, tool-use guidelines, or common failure
modes that matter in practice (Gao et al., 2025). This objective aligns with validation metrics in
some settings, but often fails to capture the detailed strategies required by agents and knowledge-
intensive applications. Second, context collapse: methods that rely on monolithic rewriting by an
LLM often degrade into shorter, less informative summaries over time, causing sharp performance
declines (Figure 2). In domains such as interactive agents (Trivedi et al., 2024; Patil et al., 2024;
Zhang et al., 2024), domain-specific programming (Ye et al., 2023; Zhang et al., 2025a), and finan-
cial or legal analysis (Loukas et al., 2022; Guha et al., 2023; Wang et al., 2025), strong performance
depends on retaining detailed, task-specific knowledge rather than compressing it away.

As applications such as agents and knowledge-intensive reasoning demand greater reliability, recent
work has shifted toward saturating contexts with abundant, potentially useful information (Jiang
et al., 2025; Chung et al., 2025; Chen et al., 2025), enabled by advances in long-context LLMs (Peng
et al., 2023; Mao et al., 2024). We argue that contexts should function not as concise summaries,
but as comprehensive, structured playbooks—detailed, inclusive, and rich with domain in-
sights. Unlike humans, who often benefit from concise generalization, LLMs are more effective
when provided with long, detailed contexts and can distill relevance autonomously (Jiang et al.,
2025; Liu et al., 2025; Suzgun et al., 2025b). Thus, instead of compressing away domain-specific
heuristics and tactics, contexts should preserve them, allowing the model to decide what matters at
inference time.

To address these limitations, we introduce ACE (Agentic Context Engineering), a framework for
comprehensive context adaptation in both offline settings (e.g., system prompt optimization) and
online settings (e.g., test-time memory adaptation). Rather than compressing contexts into distilled
summaries, ACE treats them as evolving playbooks that accumulate and organize strategies over
time. Building on the agentic architecture of Dynamic Cheatsheet (Suzgun et al., 2025b), ACE
incorporates a modular workflow of generation, reflection, and curation, while adding structured,
incremental updates guided by a grow-and-refine principle. This design preserves detailed, domain-
specific knowledge, prevents context collapse, and yields contexts that remain comprehensive and
scalable throughout adaptation.

We evaluate ACE on two categories of LLM applications that most benefit from comprehensive,
evolving contexts: (1) agents (Trivedi et al., 2024), which require multi-turn reasoning, tool use,
and environment interaction, where accumulated strategies can be reused across episodes; and (2)
domain-specific benchmarks, which demand specialized tactics and knowledge, where we focus on
financial analysis (Loukas et al., 2022; Wang et al., 2025). Our key findings are:

• ACE consistently outperforms strong baselines, yielding average gains of 10.6% on agents and
8.6% on domain-specific benchmarks, across both offline and online adaptation settings.

• ACE is able to construct effective contexts without labeled supervision, instead leveraging execu-
tion feedback and environment signals—key ingredients for self-improving LLMs and agents.

• On the AppWorld benchmark leaderboard (AppWorld, 2025), ACE surpasses the top-1-ranked
production-level agent IBM-CUGA (Marreed et al., 2025) (powered by GPT-4.1) while using a
much smaller open-source model (DeepSeek-V3.1).
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• ACE requires significantly fewer rollouts and achieves lower adaptation latency than existing
adaptive methods, demonstrating that scalable self-improvement can be achieved with both higher
accuracy and lower cost.

2 BACKGROUND AND MOTIVATION

2.1 CONTEXT ADAPTATION

Context adaptation (or context engineering) refers to methods that improve model behavior by con-
structing or modifying inputs to an LLM, rather than altering its weights. The current state of the art
leverages natural language feedback (Shinn et al., 2023; Yuksekgonul et al., 2024; Agrawal et al.,
2025). In this paradigm, a language model inspects the current context along with signals such as
execution traces, reasoning steps, or validation results, and generates natural language feedback on
how the context should be revised. This feedback is then incorporated into the context, enabling it-
erative adaptation. Representative methods include Reflexion (Shinn et al., 2023), which reflects on
failures to improve agent planning; TextGrad (Yuksekgonul et al., 2024), which optimizes prompts
via gradient-like textual feedback; GEPA (Agrawal et al., 2025), which refines prompts iteratively
based on execution traces and achieves strong performance, even surpassing reinforcement learning
approaches in some settings; and Dynamic Cheatsheet (Krause et al., 2019), which constructs an
external memory that accumulates strategies and lessons from past successes and failures during
inference. These natural language feedback methods represent a major advance, offering flexible
and interpretable signals for improving LLM systems beyond weight updates.

2.2 LIMITATIONS OF EXISTING CONTEXT ADAPTATION METHODS

The Brevity Bias. A recurring limitation of context adaptation methods is brevity bias: the ten-
dency of optimization to collapse toward short, generic prompts. Gao et al. (Gao et al., 2025) docu-
ment this effect in prompt optimization for test generation, where iterative methods repeatedly pro-
duced near-identical instructions (e.g.,, “Create unit tests to ensure methods behave as expected”),
sacrificing diversity and omitting domain-specific detail. This convergence not only narrows the
search space but also propagates recurring errors across iterations, since optimized prompts often
inherit the same faults as their seeds. More broadly, such bias undermines performance in do-
mains that demand detailed, context-rich guidance—such as multi-step agents, program synthesis,
or knowledge-intensive reasoning—where success hinges on accumulating rather than compressing
task-specific insights.

# Tokens: 18,282
Accuracy: 66.7 

# Tokens: 122
Accuracy: 57.1 Accuracy w/o context: 63.7

Figure 2: Context Collapse. Monolithic rewriting of context by an LLM can collapse it into shorter,
less informative summaries, leading to sharp performance drops.

Context Collapse. In a case study on the AppWorld benchmark (Trivedi et al., 2024), we observe
a phenomenon we call context collapse, which arises when an LLM is tasked with fully rewriting
the accumulated context at each adaptation step. As the context grows large, the model tends to
compress it into much shorter, less informative summaries, causing a dramatic loss of information.
For instance, at step 60 the context contained 18,282 tokens and achieved an accuracy of 66.7, but
at the very next step it collapsed to just 122 tokens, with accuracy dropping to 57.1—worse than
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the baseline accuracy of 63.7 without adaptation. While we highlight this through Dynamic Cheat-
sheet (Suzgun et al., 2025b), the issue is not specific to that method; rather, it reflects a fundamental
risk of end-to-end context rewriting with LLMs, where accumulated knowledge can be abruptly
erased instead of preserved.

Figure 3: Example ACE-Generated Context on the AppWorld Benchmark (partially shown).
ACE-generated contexts contain detailed, domain-specific insights along with tools and code that
are readily usable, serving as a comprehensive playbook for LLM applications.

3 AGENTIC CONTEXT ENGINEERING (ACE)

We present ACE (Agentic Context Engineering), a framework for scalable and efficient context
adaptation in both offline (e.g., system prompt optimization) and online (e.g., test-time memory
adaptation) scenarios. Instead of condensing knowledge into terse summaries or static instructions,
ACE treats contexts as evolving playbooks that continuously accumulate, refine, and organize strate-
gies over time. Building on the agentic design of Dynamic Cheatsheet (Suzgun et al., 2025b), ACE
introduces a structured division of labor across three roles (Figure 4): the Generator, which pro-
duces reasoning trajectories; the Reflector, which distills concrete insights from successes and er-
rors; and the Curator, which integrates these insights into structured context updates. This mirrors
how humans learn—experimenting, reflecting, and consolidating—while avoiding the bottleneck of
overloading a single model with all responsibilities.

To address the limitations of prior methods discussed in §2.2—notably brevity bias and context
collapse—ACE introduces three key innovations: (1) a dedicated Reflector that separates evaluation
and insight extraction from curation, improving context quality and downstream performance (§4.5);
(2) incremental delta updates (§3.1) that replace costly monolithic rewrites with localized edits,
reducing both latency and compute cost (§4.6); and (3) a grow-and-refine mechanism (§3.2) that
balances steady context expansion with redundancy control.

As shown in Figure 4, the workflow begins with the Generator producing reasoning trajectories for
new queries, which surface both effective strategies and recurring pitfalls. The Reflector critiques
these traces to extract lessons, optionally refining them across multiple iterations. The Curator
then synthesizes these lessons into compact delta entries, which are merged deterministically into
the existing context by lightweight, non-LLM logic. Because updates are itemized and localized,
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Generator

Context 
Playbook

Query

Trajectory Insights

Delta Context Items

Iterative Refinement

Update

Reflector Curator

Figure 4: The ACE Framework. Inspired by Dynamic Cheatsheet, ACE adopts an agentic archi-
tecture with three specialized components: a Generator, a Reflector, and a Curator.

multiple deltas can be merged in parallel, enabling batched adaptation at scale. ACE further supports
multi-epoch adaptation, where the same queries are revisited to progressively strengthen the context.

3.1 INCREMENTAL DELTA UPDATES

A core design principle of ACE is to represent context as a collection of structured, itemized bul-
lets, rather than a single monolithic prompt. The concept of a bullet is similar to the concept of a
memory entry in LLM memory frameworks like Dynamic Cheatsheet (Suzgun et al., 2025b) and
A-MEM (Xu et al., 2025), but builds on top of that and consists of (1) metadata, including a unique
identifier and counters tracking how often it was marked helpful or harmful; and (2) content, cap-
turing a small unit such as a reusable strategy, domain concept, or common failure mode. When
solving new problems, the Generator highlights which bullets were useful or misleading, providing
feedback that guides the Reflector in proposing corrective updates.

This itemized design enables three key properties: (1) localization, so only the relevant bullets are
updated; (2) fine-grained retrieval, so the Generator can focus on the most pertinent knowledge;
and (3) incremental adaptation, allowing efficient merging, pruning, and de-duplication during in-
ference.

Rather than regenerating contexts in full, ACE incrementally produces compact delta contexts: small
sets of candidate bullets distilled by the Reflector and integrated by the Curator. This avoids the
computational cost and latency of full rewrites, while ensuring that past knowledge is preserved and
new insights are steadily appended. As contexts grow, this approach provides the scalability needed
for long-horizon or domain-intensive applications.

3.2 GROW-AND-REFINE

Beyond incremental growth, ACE ensures that contexts remain compact and relevant through peri-
odic or lazy refinement. In grow-and-refine, bullets with new identifiers are appended, while existing
bullets are updated in place (e.g., incrementing counters). A de-duplication step then prunes redun-
dancy by comparing bullets via semantic embeddings. This refinement can be performed proactively
(after each delta) or lazily (only when the context window is exceeded), depending on application
requirements for latency and accuracy.

Together, incremental updates and grow-and-refine maintain contexts that expand adaptively, remain
interpretable, and avoid the potential variance introduced by monolithic context rewriting.

4 RESULTS

4.1 TASKS AND DATASETS

We evaluate ACE on two categories of LLM applications that benefit most from a comprehensive
and evolving context: (1) agent benchmarks, which require multi-turn reasoning, tool use, and en-
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vironment interaction, where agents can accumulate and reuse strategies across episodes and envi-
ronments; and (2) domain-specific benchmarks, which demand mastery of specialized concepts and
tactics, where we focus on financial analysis as a case study.

• LLM Agent: AppWorld (Trivedi et al., 2024) is a suite of autonomous agent tasks involving
API understanding, code generation, and environment interaction. It provides a realistic execu-
tion environment with common applications and APIs (e.g., email, file system) and tasks of two
difficulty levels (normal and challenge). A public leaderboard (AppWorld, 2025) tracks perfor-
mance, where, at the time of submission, the best system achieved only 60.3% average accuracy,
highlighting the benchmark’s difficulty and realism.

• Financial Analysis: FiNER (Loukas et al., 2022) and Formula (Wang et al., 2025) test LLMs
on financial reasoning tasks that rely on the eXtensible Business Reporting Language (XBRL).
FiNER requires labeling tokens in XBRL financial documents with one of 139 fine-grained entity
types, a key step for financial information extraction in regulated domains. Formula focuses on
extracting values from structured XBRL filings and performing computations to answer financial
queries, i.e., numerical reasoning.

Evaluation Metrics. For AppWorld, we follow the official benchmark protocol and report Task
Goal Completion (TGC) and Scenario Goal Completion (SGC) on both the test-normal and test-
challenge splits. For FiNER and Formula, we follow the original setup and report accuracy, mea-
sured as the proportion of predicted answers that exactly match the ground truth.

All datasets follow the original train/validation/test splits. For offline context adaptation, methods
are optimized on the training split and evaluated on the test split with pass@1 accuracy. For online
context adaptation, methods are evaluated sequentially on the test split: for each sample, the model
first predicts with the current context, then updates its context based on that sample. The same
shuffled test split is used across all methods.

4.2 BASELINES AND METHODS

Base LLM. The base model is evaluated directly on each benchmark without any context en-
gineering, using the default prompts provided by dataset authors. For AppWorld, we follow the
official ReAct (Yao et al., 2023) implementation released by the benchmark authors, and build all
other baselines and methods on top of this framework.

In-Context Learning (ICL) (Agarwal et al., 2024). ICL provides the model with task demon-
strations in the input prompt (few-shot or many-shot). This allows the model to infer the task format
and desired output without weight updates. We supply all training samples when they fit within the
model’s context window; otherwise, we fill the window with as many demonstrations as possible.

MIPROv2 (Opsahl-Ong et al., 2024). MIPROv2 is a popular prompt optimizer for LLM ap-
plications that works by jointly optimizing system instructions and in-context demonstrations
via bayesian optimization. We use the official DSPy implementation (DSPy, 2025b), setting
auto="heavy" to maximize optimization performance.

GEPA (Agrawal et al., 2025). GEPA (Genetic-Pareto) is a sample-efficient prompt optimizer
based on reflective prompt evolution. It collects execution traces (reasoning, tool calls, intermedi-
ate outputs) and applies natural-language reflection to diagnose errors, assign credit, and propose
prompt updates. A genetic Pareto search maintains a frontier of high-performing prompts, mitigat-
ing local optima. Empirically, GEPA outperforms reinforcement learning methods such as GRPO
and prompt optimizers like MIPROv2, achieving up to 10–20% higher accuracy with as much as 35×
fewer rollouts. We use the official DSPy implementation (DSPy, 2025a), setting auto="heavy"
to maximize optimization performance.

Dynamic Cheatsheet (DC) (Suzgun et al., 2025b). DC is a test-time learning approach that in-
troduces an adaptive external memory of reusable strategies and code snippets. By continuously up-
dating this memory with newly encountered inputs and outputs, DC enables models to accumulate
knowledge and reuse it across tasks, often leading to substantial improvements over static prompting
methods. A key advantage of DC is that it does not require ground-truth labels: the model can curate
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Method GT Labels Test-Normal Test-Challenge Average
TGC↑ SGC↑ TGC↑ SGC↑

DeepSeek-V3.1 as Base LLM
ReAct 63.7 42.9 41.5 21.6 42.4

Offline Adaptation
ReAct + ICL ✓ 64.3+0.6 46.4+3.5 46.0+4.5 27.3+5.7 46.0+3.6

ReAct + GEPA ✓ 64.9+1.2 44.6+1.7 46.0+4.5 30.2+8.6 46.4+4.0

ReAct + ACE ✓ 76.2+12.5 64.3+21.4 57.3+15.8 39.6+18.0 59.4+17.0

ReAct + ACE ✗ 75.0+11.3 64.3+21.4 54.4+12.9 35.2+13.6 57.2+14.8

Online Adaptation
ReAct + DC (CU) ✗ 65.5+1.8 58.9+16.0 52.3+10.8 30.8+9.2 51.9+9.5

ReAct + ACE ✗ 69.6+5.9 53.6+10.7 66.0+24.5 27.3+5.7 59.5+17.1

Table 1: Results on the AppWorld Agent Benchmark. “GT labels” indicates whether ground-truth
labels are available to the Reflector during adaptation. We evaluate the ACE framework against
multiple baselines on top of the official ReAct implementation, both for offline and online con-
text adaptation. ReAct + ACE outperforms selected baselines by an average of 10.6%, and could
achieve good performance even without access to GT labels.

its own memory from its generations, making the method highly flexible and broadly applicable. We
use the official implementation released by the authors (Suzgun et al., 2025a) and set it to use the
cumulative mode (DC-CU).

ACE (ours). ACE optimizes LLM contexts for both offline and online adaptation through an agen-
tic context engineering framework. To ensure fairness, we use the same LLM for the Generator,
Reflector, and Curator (non-thinking mode of DeepSeek-V3.1 (DeepSeek-AI, 2024)), preventing
knowledge transfer from a stronger Reflector or Curator to a weaker Generator. This isolates the
benefit of context construction itself. We adopt a batch size of 1 (constructing a delta context from
each sample). We set the maximum number of Reflector refinement rounds and the maximum num-
ber of epoch in offline adaptation to 5.

4.3 RESULTS ON AGENT BENCHMARK

Analysis. As shown in Table 1, ACE consistently improves over strong baselines on the AppWorld
benchmark. In the offline setting, ReAct + ACE outperforms both ReAct + ICL and ReAct
+ GEPA by significant margins (12.3% and 11.9%, respectively), demonstrating that structured,
evolving, and detailed contexts enable more effective agent learning than fixed demonstrations or
single optimized instruction prompts. These gains extend to the online setting, where ACE continues
to outperform prior adaptive methods such as Dynamic Cheatsheet by an average of 7.6%.

In the agent use case, ACE remains effective even without access to ground-truth labels during
adaptation: ReAct + ACE achieves an average improvement of 14.8% over the ReAct baseline
in this setting. This robustness arises because ACE leverages signals naturally available during
execution (e.g., code execution success or failure) to guide the Reflector and Curator in forming
structured lessons of successes and failures. Together, these results establish ACE as a strong and
versatile framework for building self-improving agents that adapt reliably both with and without
labeled supervision.

Notably, on the latest AppWorld leaderboard, ReAct + ACE (59.4% average) matches the top-1-
ranked IBM CUGA (60.3%), a production-level GPT-4.1–based agent (Marreed et al., 2025), despite
using the much smaller open-source model DeepSeek-V3.1. With online adaptation, ReAct + ACE
even surpasses IBM CUGA by 8.4% in TGC and 0.7% in SGC on test-challenge, underscoring the
effectiveness of ACE in building comprehensive and self-evolving contexts for agents.
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Method GT Labels FINER (Acc↑) Formula (Acc↑) Average

DeepSeek-V3.1 as Base LLM
Base LLM 70.7 67.5 69.1

Offline Adaptation
ICL ✓ 72.3+1.6 67.0−0.5 69.6+0.5

MIPROv2 ✓ 72.4+1.7 69.5+2.0 70.9+1.8

GEPA ✓ 73.5+2.8 71.5+4.0 72.5+3.4

ACE ✓ 78.3+7.6 85.5+18.0 81.9+12.8

ACE ✗ 71.1+0.4 83.0+15.5 77.1+8.0

Online Adaptation
DC (CU) ✓ 74.2+3.5 69.5+2.0 71.8+2.7

DC (CU) ✗ 68.3−2.4 62.5−5.0 65.4−3.7

ACE ✓ 76.7+6.0 76.5+9.0 76.6+7.5

ACE ✗ 67.3−3.4 78.5+11.0 72.9+3.8

Table 2: Results on Financial Analysis Benchmark. “GT labels” indicates whether ground-truth
labels are available to the Reflector during adaptation. With GT labels, ACE achieves consistent im-
provements in both offline and online settings, highlighting the advantage of structured and evolving
contexts for domain-specific reasoning and code generation. However, we also observe that in the
absence of reliable feedback signals (e.g., ground-truth labels or execution outcomes), both ACE and
other adaptive methods such as Dynamic Cheatsheet may degrade, suggesting that context adapta-
tion depends critically on feedback quality.

4.4 RESULTS ON DOMAIN-SPECIFIC BENCHMARK

Analysis. As shown in Table 2, ACE delivers strong improvements on financial analysis bench-
marks. In the offline setting, when provided with ground-truth answers from the training split, ACE
surpasses ICL, MIPROv2, and GEPA by clear margins (an average of 10.9%), showing that struc-
tured and evolving contexts are particularly effective when tasks require precise domain knowledge
(e.g., financial concepts, XBRL rules) that goes beyond fixed demonstrations or monolithic opti-
mized prompts. In the online setting, ACE continues to exceed prior adaptive methods such as DC
by an average of 6.2%, further confirming the benefit of agentic context engineering for accumulat-
ing reusable insights across specialized domains.

Moreover, we also observe that when ground-truth supervision or reliable execution signals are
absent, both ACE and DC may degrade in performance. In such cases, the constructed context can
be polluted by spurious or misleading signals, highlighting a potential limitation of inference-time
adaptation without reliable feedback. This suggests that while ACE is robust under rich feedback
(e.g., code execution results or formula correctness in agent tasks), its effectiveness depends on the
availability of signals that allow the Reflector and Curator to make sound judgments. We return to
this limitation in §5.

4.5 ABLATION STUDY

Table 3 reports ablation studies on the AppWorld benchmark, analyzing how individual design
choices of ACE contribute to effective context adaptation. We examine three factors: (1) the Reflec-
tor with iterative refinement, our addition to the agentic framework beyond Dynamic Cheatsheet, (2)
multi-epoch adaptation, which refines contexts over training samples multiple times, and (3) offline
warmup, which initializes the context through offline adaptation before online adaptation begins.

4.6 COST AND SPEED ANALYSIS

Due to its support for incremental, “delta” context updates and non-LLM-based context merging and
de-duplication, ACE demonstrates particular advantages in reducing the cost (in terms of the number
of rollouts or the amount of dollar cost for token ingestion/generation) and latency of adaptation.
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Method GT Labels Test-Normal Test-Challenge Average
TGC↑ SGC↑ TGC↑ SGC↑

DeepSeek-V3.1 as Base LLM
ReAct 63.7 42.9 41.5 21.6 42.4

Offline Adaptation
ReAct + ACE w/o Reflector or multi-epoch ✓ 70.8+7.1 55.4+12.5 55.9+14.4 38.1+17.5 55.1+12.7

ReAct + ACE w/o multi-epoch ✓ 72.0+8.3 60.7+17.8 54.9+13.4 39.6+18.0 56.8+14.4

ReAct + ACE ✓ 76.2+12.5 64.3+21.4 57.3+15.8 39.6+18.0 59.4+17.0

Online Adaptation
ReAct + ACE ✗ 67.9+4.2 51.8+8.9 61.4+19.9 43.2+21.6 56.1+13.7

ReAct + ACE + offline warmup ✗ 69.6+5.9 53.6+10.7 66.0+24.5 48.9+27.3 59.5+17.1

Table 3: Ablation Studies on AppWorld. We study how particular design choices of ACE (iterative
refinement, multi-epoch adaptation, and offline warmup) could help high-quality context adaptation.

Method Latency (s)↓ # Rollouts↓
ReAct + GEPA 53898 1434
ReAct + ACE 9517−82.3% 357−75.1%

(a) Offline (AppWorld).

Method Latency (s)↓ Token Cost ($)↓
DC (CU) 65104 17.7
ACE 5503−91.5% 2.9−83.6%

(b) Online (FiNER).

Figure 5: Cost and Speed Analysis. We measure the context adaptation latency, number of rollouts
and dollar costs of ACE against GEPA (offline) and DC (online).

As examples, on the offline adaptation of AppWorld, ACE achieves 82.3% reduction in adaptation
latency and 75.1% reduction in the number of rollouts as compared to GEPA (Figure 5a). On
the online adaptation of FiNER, ACE achieves 91.5% reduction in adaptation latency and 83.6%
reduction in token dollar cost for token ingestion/generation as compared to DC (Figure 5b).

5 DISCUSSION

Longer Context ̸= Higher Serving Cost. Although ACE produces longer contexts than meth-
ods such as GEPA, this does not translate to linearly higher inference cost or GPU memory usage.
Modern serving infrastructures are increasingly optimized for long-context workloads through tech-
niques such as the reuse (Gim et al., 2024; Yao et al., 2025), compression (Liu et al., 2024b;a), and
offload (Lee et al., 2024) of KV cache. These mechanisms allow frequently reused context segments
to be cached locally or remotely, avoiding repetitive and expensive prefill operations. Ongoing ad-
vances in ML systems suggest that the amortized cost of handling long contexts will continue to
decrease, making context-rich approaches like ACE increasingly practical in deployment.

Limitations and Challenges. A limitation of ACE is its reliance on a reasonably strong Reflec-
tor: if the Reflector fails to extract meaningful insights from generated traces or outcomes, the
constructed context may become noisy or even harmful. In domain-specific tasks where no model
can extract useful insights, the resulting context will naturally lack them. This dependency is similar
to Dynamic Cheatsheet (Suzgun et al., 2025b), where the quality of adaptation hinges on the under-
lying model’s ability to curate memory. We also note that not all applications require rich or detailed
contexts. Tasks like HotPotQA (Yang et al., 2018) often benefit more from concise, high-level in-
structions (e.g., how to retrieve and synthesize evidence) than from long contexts. Similarly, games
with fixed strategies such as Game of 24 (Suzgun et al., 2025b) may only need a single reusable rule,
rendering additional context redundant. Overall, ACE is most beneficial in settings that demand de-
tailed domain knowledge, complex tool use, or environment-specific strategies that go beyond what
is already embedded in model weights or simple system instructions.
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and system frameworks for effective context adaptation in large language models (LLMs). All
experiments are conducted on publicly available benchmarks with open-source models, without
involving human subjects, sensitive data, or privacy-related information. No potential conflicts of
interest are present.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our experimental setup, including datasets, benchmarks, evalu-
ation metrics, baselines, and hyperparameter choices. Additional details, such as prompts for large
language models and extended experimental settings, are included in the appendix. With this infor-
mation, readers with reasonable computational resources should be able to reproduce our results.

REFERENCES

Rishabh Agarwal, Avi Singh, Lei Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang,
Ankesh Anand, Zaheer Abbas, Azade Nova, et al. Many-shot in-context learning. Advances in
Neural Information Processing Systems, 37:76930–76966, 2024.

Lakshya A Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong,
Arnav Singhvi, Herumb Shandilya, Michael J Ryan, Meng Jiang, et al. Gepa: Reflective prompt
evolution can outperform reinforcement learning. arXiv preprint arXiv:2507.19457, 2025.

AppWorld. Leaderboard. https://appworld.dev/leaderboard, 2025. Accessed: 2025-
09-24.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. 2024.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Tianxiang Chen, Zhentao Tan, Xiaofan Bo, Yue Wu, Tao Gong, Qi Chu, Jieping Ye, and Neng-
hai Yu. Flora: Effortless context construction to arbitrary length and scale. arXiv preprint
arXiv:2507.19786, 2025.

Yeounoh Chung, Gaurav T Kakkar, Yu Gan, Brenton Milne, and Fatma Ozcan. Is long context all
you need? leveraging llm’s extended context for nl2sql. arXiv preprint arXiv:2501.12372, 2025.

DeepSeek-AI. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.
19437.

DSPy. dspy.gepa: Reflective prompt optimizer. https://dspy.ai/api/optimizers/
GEPA/overview/, 2025a. Accessed: 2025-09-24.

DSPy. dspy.miprov2. https://dspy.ai/api/optimizers/MIPROv2/, 2025b. Accessed:
2025-09-24.

Shuzheng Gao, Chaozheng Wang, Cuiyun Gao, Xiaoqian Jiao, Chun Yong Chong, Shan Gao, and
Michael Lyu. The prompt alchemist: Automated llm-tailored prompt optimization for test case
generation. arXiv preprint arXiv:2501.01329, 2025.

In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin Zhong. Prompt
cache: Modular attention reuse for low-latency inference. Proceedings of Machine Learning and
Systems, 6:325–338, 2024.

10

https://appworld.dev/leaderboard
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://dspy.ai/api/optimizers/GEPA/overview/
https://dspy.ai/api/optimizers/GEPA/overview/
https://dspy.ai/api/optimizers/MIPROv2/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Neel Guha, Julian Nyarko, Daniel Ho, Christopher Ré, Adam Chilton, Alex Chohlas-Wood, Austin
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A RELATED WORK

A.1 AGENT MEMORY

A growing body of work explores how agents can accumulate experience from past trajectories and
leverage external (often non-parametric) memory to guide future actions. AgentFly (Zhou et al.,
2025) presents an extensible framework where memory evolves continuously as agents solve tasks,
enabling scalable reinforcement learning and long-horizon reasoning across diverse environments.
AWM (Agent Workflow Memory) (Wang et al., 2024) induces reusable workflows—structured rou-
tines distilled from past trajectories—and selectively injects them into memory to improve efficiency
and generalization in web navigation benchmarks. A-MEM (Xu et al., 2025) introduces a dynam-
ically organized memory system inspired by the Zettelkasten method: each stored memory is an-
notated with structured attributes (e.g., tags, keywords, contextual descriptions) and automatically
linked to relevant past entries, while existing entries are updated to integrate new knowledge, yield-
ing adaptive and context-aware retrieval. Agentic Plan Caching (Zhang et al., 2025b) instead focuses
on cost efficiency by extracting reusable plan templates from agent trajectories and caching them for
fast execution at test time.

Together, these works demonstrate the value of external memory for improving adaptability, effi-
ciency, and generalization in LLM agents. Our work differs by tackling the broader challenge of
context adaptation, which spans not only agent memory but also system prompts, factual evidence,
and other inputs underpinning AI systems. We further highlight two fundamental limitations of
existing adaptation methods—brevity bias and context collapse—and show that addressing them is
essential for robustness, reliability, and scalability beyond raw task performance. Accordingly, our
evaluation considers not only accuracy but also cost, latency, and scalability.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

This work focuses on developing algorithms and system frameworks for effective context adaptation
in large language models (LLMs). Accordingly, our experiments employ LLMs for the empirical
evaluation of the proposed methods. For paper preparation, we used LLMs only to polish writing
(e.g., correcting grammatical errors), and not to generate new text from scratch.
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C PROMPTS

I	am	your	supervisor	and	you	are	a	super	intelligent	AI	Assistant	whose	job	is	to	achieve	my	day-to-day	tasks	completely	autonomously.

To	do	this,	you	will	need	to	interact	with	app/s	(e.g.,	spotify,	venmo	etc)	using	their	associated	APIs	on	my	behalf.	For	this	you	will
undertake	a	multi-step	conversation	using	a	python	REPL	environment.	That	is,	you	will	write	the	python	code	and	the	environment	will
execute	it	and	show	you	the	result,	based	on	which,	you	will	write	python	code	for	the	next	step	and	so	on,	until	you’ve	achieved	the	goal.
This	environment	will	let	you	interact	with	app/s	using	their	associated	APIs	on	my	behalf.

Here	are	three	key	APIs	that	you	need	to	know	to	get	more	information

Each	code	execution	will	produce	an	output	that	you	can	use	in	subsequent	calls.	Using	these	APIs,	you	can	now	generate	code,	that	I	will
execute,	to	solve	the	task.

Let’s	start	with	the	task

[3	shot	example]

Key	instructions:

1.	 Make	sure	to	end	code	blocks	with	```	followed	by	a	newline().

2.	 Remember	you	can	use	the	variables	in	your	code	in	subsequent	code	blocks.

3.	 Remember	that	the	email	addresses,	access	tokens	and	variables	(e.g.	spotify_password)	in	the	example	above	are	not	valid
anymore.

4.	 You	can	use	the	“supervisor”	app	to	get	information	about	my	accounts	and	use	the	“phone”	app	to	get	information	about	friends
and	family.

5.	 Always	look	at	API	specifications	(using	apis.api_docs.show_api_doc)	before	calling	an	API.

6.	 Write	small	chunks	of	code	and	only	one	chunk	of	code	in	every	step.	Make	sure	everything	is	working	correctly	before	making	any
irreversible	change.

7.	 Many	APIs	return	items	in	“pages”.	Make	sure	to	run	through	all	the	pages	by	looping	over	page_index.

8.	 Once	you	have	completed	the	task,	make	sure	to	call	apis.supervisor.complete_task().	If	the	task	asked	for	some	information,
return	it	as	the	answer	argument,	i.e.	call	apis.supervisor.complete_task(answer=<answer>).	Many	tasks	do	not	require	an
answer,	so	in	those	cases,	just	call	apis.supervisor.complete_task()	i.e.	do	not	pass	any	argument.

Using	these	APIs,	generate	code	to	solve	the	actual	task:

My	name	is:	{{	main_user.first_name	}}	{{	main_user.last_name	}}.	My	personal	email	is	{{	main_user.email	}}	and	phone	number	is	{{
main_user.phone_number	}}.

Task:	{{	input_str	}}

#	To	get	a	list	of	apps	that	are	available	to	you.
print(apis.api_docs.show_app_descriptions())

#	To	get	the	list	of	apis	under	any	app	listed	above,	e.g.	spotify
print(apis.api_docs.show_api_descriptions(app_name='spotify'))

#	To	get	the	specification	of	a	particular	api,	e.g.	spotify	app's	login	api
print(apis.api_docs.show_api_doc(app_name='spotify',	api_name='login'))

Figure 6: ICL-baseline Generator prompt on AppWorld
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I	am	your	supervisor	and	you	are	a	super	intelligent	AI	Assistant	whose	job	is	to	achieve	my	day-to-day	tasks	completely	autonomously.
You	will	be	given	a	cheatsheet	containing	relevant	strategies,	patterns,	and	examples	from	similar	problems	to	apply	and	solve	the
current	task.

To	do	this,	you	will	need	to	interact	with	app/s	(e.g.,	spotify,	venmo	etc)	using	their	associated	APIs	on	my	behalf.	For	this	you	will
undertake	a	multi-step	conversation	using	a	python	REPL	environment.	That	is,	you	will	write	the	python	code	and	the	environment	will
execute	it	and	show	you	the	result,	based	on	which,	you	will	write	python	code	for	the	next	step	and	so	on,	until	you’ve	achieved	the	goal.
This	environment	will	let	you	interact	with	app/s	using	their	associated	APIs	on	my	behalf.

Here	are	three	key	APIs	that	you	need	to	know	to	get	more	information

Each	code	execution	will	produce	an	output	that	you	can	use	in	subsequent	calls.	Using	these	APIs,	you	can	now	generate	code,	that	I	will
execute,	to	solve	the	task.

CHEATSHEET:	’’’	{{	cheat_sheet	}}	’’’

1.	ANALYSIS	&	STRATEGY

Carefully	analyze	both	the	question	and	cheatsheet	before	starting
Search	for	and	identify	any	applicable	patterns,	strategies,	or	examples	within	the	cheatsheet
Create	a	structured	approach	to	solving	the	problem	at	hand
Review	and	document	any	limitations	in	the	provided	reference	materials

2.	SOLUTION	DEVELOPMENT

Present	your	solution	using	clear,	logical	steps	that	others	can	follow	and	review
Explain	your	reasoning	and	methodology	before	presenting	final	conclusions
Provide	detailed	explanations	for	each	step	of	the	process
Check	and	verify	all	assumptions	and	intermediate	calculations

3.	PROGRAMMING	TASKS

When	coding	is	required:	-	Write	clean,	efficient	Python	code	-	Follow	the	strict	code	formatting	and	execution	protocol	(always	use	the
Python	code	formatting	block;	furthermore,	after	the	code	block,	always	explicitly	request	execution	by	appending:	“EXECUTE	CODE!”):	
python			#	Your	code	here	EXECUTE	CODE!

All	required	imports	and	dependencies	should	be	clearly	declared	at	the	top	of	your	code
Include	clear	inline	comments	to	explain	any	complex	programming	logic
Perform	result	validation	after	executing	your	code
Apply	optimization	techniques	from	the	cheatsheet	when	applicable
The	code	should	be	completely	self-contained	without	external	file	dependencies–it	should	be	ready	to	be	executed	right	away
Do	not	include	any	placeholders,	system-specific	paths,	or	hard-coded	local	paths
Feel	free	to	use	standard	and	widely-used	pip	packages
Opt	for	alternative	methods	if	errors	persist	during	execution
Exclude	local	paths	and	engine-specific	settings	(e.g.,	avoid	configurations	like
chess.engine.SimpleEngine.popen_uci(“/usr/bin/stockfish”))

Let’s	start	with	the	task

[3	shot	example]

Key	instructions:	(1)	Make	sure	to	end	code	blocks	with	```	followed	by	a	newline().

2.	 Remember	you	can	use	the	variables	in	your	code	in	subsequent	code	blocks.

3.	 Remember	that	the	email	addresses,	access	tokens	and	variables	(e.g.	spotify_password)	in	the	example	above	are	not	valid
anymore.

4.	 You	can	use	the	“supervisor”	app	to	get	information	about	my	accounts	and	use	the	“phone”	app	to	get	information	about	friends
and	family.

5.	 Always	look	at	API	specifications	(using	apis.api_docs.show_api_doc)	before	calling	an	API.

6.	 Write	small	chunks	of	code	and	only	one	chunk	of	code	in	every	step.	Make	sure	everything	is	working	correctly	before	making
any	irreversible	change.

7.	 Many	APIs	return	items	in	“pages”.	Make	sure	to	run	through	all	the	pages	by	looping	over	page_index.

8.	 Once	you	have	completed	the	task,	make	sure	to	call	apis.supervisor.complete_task().	If	the	task	asked	for	some	information,
return	it	as	the	answer	argument,	i.e.	call	apis.supervisor.complete_task(answer=<answer>).	Many	tasks	do	not	require	an
answer,	so	in	those	cases,	just	call	apis.supervisor.complete_task()	i.e.	do	not	pass	any	argument.

Using	these	APIs,	generate	code	to	solve	the	actual	task:

My	name	is:	{{	main_user.first_name	}}	{{	main_user.last_name	}}.	My	personal	email	is	{{	main_user.email	}}	and	phone	number	is	{{
main_user.phone_number	}}.	Task:	{{	input_str	}}

#	To	get	a	list	of	apps	that	are	available	to	you.
print(apis.api_docs.show_app_descriptions())

#	To	get	the	list	of	apis	under	any	app	listed	above,	e.g.	spotify
print(apis.api_docs.show_api_descriptions(app_name='spotify'))

#	To	get	the	specification	of	a	particular	api,	e.g.	spotify	app's	login	api
print(apis.api_docs.show_api_doc(app_name='spotify',	api_name='login'))

Figure 7: Dynamic Cheatsheet Generator prompt on AppWorld
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Under review as a conference paper at ICLR 2026

I	am	your	supervisor	and	you	are	a	super	intelligent	AI	Assistant	whose	job	is	to	achieve	my	day-to-day	tasks	completely	autonomously.

To	do	this,	you	will	need	to	interact	with	app/s	(e.g.,	spotify,	venmo	etc)	using	their	associated	APIs	on	my	behalf.	For	this	you	will
undertake	a	multi-step	conversation	using	a	python	REPL	environment.	That	is,	you	will	write	the	python	code	and	the	environment	will
execute	it	and	show	you	the	result,	based	on	which,	you	will	write	python	code	for	the	next	step	and	so	on,	until	you’ve	achieved	the	goal.
This	environment	will	let	you	interact	with	app/s	using	their	associated	APIs	on	my	behalf.

Here	are	three	key	APIs	that	you	need	to	know	to	get	more	information:

Each	code	execution	will	produce	an	output	that	you	can	use	in	subsequent	calls.	Using	these	APIs,	you	can	now	generate	code,	that	I	will
execute,	to	solve	the	task.

Key	Instructions:

1.	 Always	end	code	blocks	with	```	followed	by	a	newline().

2.	 Remember	you	can	use	variables	in	your	code	in	subsequent	code	blocks.

3.	 Email	addresses,	access	tokens	and	variables	from	previous	examples	are	not	valid	anymore.

4.	 Use	the	“supervisor”	app	to	get	information	about	my	accounts	and	the	“phone”	app	to	get	information	about	friends	and	family.

5.	 Always	look	at	API	specifications	(using	apis.api_docs.show_api_doc)	before	calling	an	API.

6.	 Write	small	chunks	of	code	and	only	one	chunk	of	code	in	every	step.	Make	sure	everything	is	working	correctly	before	making
any	irreversible	changes.

7.	 Many	APIs	return	items	in	“pages”.	Make	sure	to	run	through	all	the	pages	by	looping	over	page_index.

8.	 Once	you	have	completed	the	task,	call	apis.supervisor.complete_task().	If	the	task	asked	for	information,	return	it	as	the
answer	argument:	apis.supervisor.complete_task(answer=<answer>).	For	tasks	without	required	answers,	just	call	
apis.supervisor.complete_task()	without	arguments.

Domain-Specific	Strategy	for	Bill	Splitting	Tasks:	When	splitting	bills	among	roommates,	remember	to:	-	First	identify	roommates
using	phone	app’s	search_contacts	with	“roommate”	relationship	query	-	Access	bill	receipts	in	file	system	under
“/home/[username]/bills/”	directory	structure	-	Calculate	equal	shares	by	dividing	total	amount	by	(number	of	roommates	+	1)	including
yourself	-	Use	Venmo’s	create_payment_request	API	with	roommates’	email	addresses	-	Ensure	payment	requests	are	only	sent	to	actual
roommates	(not	coworkers	or	other	contacts)	-	Verify	that	all	roommates	have	the	same	home	address	in	their	contact	information	-	Use
the	description	“I	paid	for	cable	bill.”	for	payment	requests

Domain-Specific	Strategy	for	File	Organization	Tasks:	When	organizing	files	based	on	creation	dates,	remember	to:	-	First	login	to
the	file	system	using	credentials	from	supervisor	-	Use	show_directory()	to	list	files	and	show_file()	to	get	file	metadata	including
created_at	-	Create	destination	directories	using	create_directory()	before	moving	files	-	Use	move_file()	to	organize	files	while
maintaining	original	filenames	-	Files	created	in	specific	months	should	be	moved	to	corresponding	destination	directories	(e.g.,	March	→
Rome,	April	→	Santorini,	others	→	Berlin)

Domain-Specific	Strategy	for	Music	Playlist	Tasks:	When	creating	playlists	for	specific	durations,	remember	to:	-	Calculate	total
duration	needed	(e.g.,	90	minutes	=	5400	seconds)	-	Search	for	appropriate	songs	across	different	genres	(workout,	energetic,	rock,	pop,
dance)	-	Use	show_song()	to	get	individual	song	durations	-	Add	songs	to	playlist	until	total	duration	requirement	is	met	-	Use
play_music()	with	playlist_id	to	start	playback

Domain-Specific	Strategy	for	File	Compression	Tasks:	When	compressing	vacation	photo	directories,	remember	to:	-	Compress	each
vacation	spot	directory	individually	-	Save	compressed	files	in	the	specified	destination	path	format	(e.g.,	“~/photographs/vacations/.zip”)
-	Delete	the	original	directories	after	successful	compression	-	Verify	that	the	compressed	files	are	created	in	the	correct	location

Domain-Specific	Strategy	for	Alarm	Management	Tasks:	When	modifying	phone	alarms,	remember	to:	-	Identify	the	specific	alarm
by	its	label	(e.g.,	“Wake	Up”)	-	Calculate	new	times	accurately	(convert	HH:MM	to	minutes	for	arithmetic	operations)	-	Disable	all	other
enabled	alarms	except	the	one	being	modified	-	Preserve	all	other	alarm	settings	while	making	changes

Domain-Specific	Strategy	for	Message	Management	Tasks:	When	handling	text/voice	messages,	remember	to:	-	Use	search
functions	to	find	specific	messages	by	phone	number	or	content	-	Handle	pagination	to	ensure	all	relevant	messages	are	processed	-
Delete	messages	using	their	specific	message	IDs	-	Verify	deletion	by	checking	that	no	messages	remain

Let’s	start	with	the	task:

#	To	get	a	list	of	apps	that	are	available	to	you.
print(apis.api_docs.show_app_descriptions())

#	To	get	the	list	of	apis	under	any	app	listed	above,	e.g.	spotify
print(apis.api_docs.show_api_descriptions(app_name='spotify'))

#	To	get	the	specification	of	a	particular	api,	e.g.	spotify	app's	login	api
print(apis.api_docs.show_api_doc(app_name='spotify',	api_name='login'))

Figure 8: GEPA prompt on AppWorld
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Under review as a conference paper at ICLR 2026

I	am	your	supervisor	and	you	are	a	super	intelligent	AI	Assistant	whose	job	is	to	achieve	my	day-to-day	tasks	completely	autonomously.

To	do	this,	you	will	need	to	interact	with	app/s	(e.g.,	spotify,	venmo	etc)	using	their	associated	APIs	on	my	behalf.	For	this	you	will
undertake	a	multi-step	conversation	using	a	python	REPL	environment.	That	is,	you	will	write	the	python	code	and	the	environment	will
execute	it	and	show	you	the	result,	based	on	which,	you	will	write	python	code	for	the	next	step	and	so	on,	until	you’ve	achieved	the	goal.
This	environment	will	let	you	interact	with	app/s	using	their	associated	APIs	on	my	behalf.

Here	are	three	key	APIs	that	you	need	to	know	to	get	more	information

Each	code	execution	will	produce	an	output	that	you	can	use	in	subsequent	calls.	Using	these	APIs,	you	can	now	generate	code,	that	I	will
execute,	to	solve	the	task.

You	are	also	provided	with	a	curated	cheatsheet	of	strategies,	API-specific	information,	common	mistakes,	and	proven	solutions	to	help
you	solve	the	task	effectively.

ACE	Playbook:	-	Read	the	Playbook	first,	then	execute	the	task	by	explicitly	leveraging	each	relevant	section:

PLAYBOOK_BEGIN

{{	playbook	}}

PLAYBOOK_END

Let’s	start	with	the	task

[3	shot	example]

Key	instructions:

1.	 Make	sure	to	end	code	blocks	with	```	followed	by	a	newline().

2.	 Remember	you	can	use	the	variables	in	your	code	in	subsequent	code	blocks.

3.	 Remember	that	the	email	addresses,	access	tokens	and	variables	(e.g.	spotify_password)	in	the	example	above	are	not	valid
anymore.

4.	 You	can	use	the	“supervisor”	app	to	get	information	about	my	accounts	and	use	the	“phone”	app	to	get	information	about	friends
and	family.

5.	 Always	look	at	API	specifications	(using	apis.api_docs.show_api_doc)	before	calling	an	API.

6.	 Write	small	chunks	of	code	and	only	one	chunk	of	code	in	every	step.	Make	sure	everything	is	working	correctly	before	making
any	irreversible	change.

7.	 Many	APIs	return	items	in	“pages”.	Make	sure	to	run	through	all	the	pages	by	looping	over	page_index.

8.	 Once	you	have	completed	the	task,	make	sure	to	call	apis.supervisor.complete_task().	If	the	task	asked	for	some	information,
return	it	as	the	answer	argument,	i.e.	call	apis.supervisor.complete_task(answer=<answer>).	Many	tasks	do	not	require	an
answer,	so	in	those	cases,	just	call	apis.supervisor.complete_task()	i.e.	do	not	pass	any	argument.

9.	 Treat	the	cheatsheet	as	a	tool.	Use	only	the	parts	that	are	relevant	and	applicable	to	your	specific	situation	and	task	context,
otherwise	use	your	own	judgement.

Using	these	APIs	and	cheatsheet,	generate	code	to	solve	the	actual	task:

My	name	is:	{{	main_user.first_name	}}	{{	main_user.last_name	}}.	My	personal	email	is	{{	main_user.email	}}	and	phone	number	is	{{
main_user.phone_number	}}.	Task:	{{	input_str	}}

#	To	get	a	list	of	apps	that	are	available	to	you.
print(apis.api_docs.show_app_descriptions())

#	To	get	the	list	of	apis	under	any	app	listed	above,	e.g.	spotify
print(apis.api_docs.show_api_descriptions(app_name='spotify'))

#	To	get	the	specification	of	a	particular	api,	e.g.	spotify	app's	login	api
print(apis.api_docs.show_api_doc(app_name='spotify',	api_name='login'))

Figure 9: ACE Generator prompt on AppWorld
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Under review as a conference paper at ICLR 2026

You	are	an	expert	AppWorld	coding	agent	and	educator.	Your	job	is	to	diagnose	the	current	trajectory:	identify	what	went	wrong	(or	could	be	better),	grounded	in	execution

feedback,	API	usage,	unit	test	report,	and	ground	truth	when	applicable.

Instructions:	-	Carefully	analyze	the	model’s	reasoning	trace	to	identify	where	it	went	wrong	-	Take	the	environment	feedback	into	account,	comparing	the	predicted

answer	with	the	ground	truth	to	understand	the	gap	-	Identify	specific	conceptual	errors,	calculation	mistakes,	or	misapplied	strategies	-	Provide	actionable	insights	that

could	help	the	model	avoid	this	mistake	in	the	future	-	Identify	root	causes:	wrong	source	of	truth,	bad	filters	(timeframe/direction/identity),	formatting	issues,	or	missing

authentication	and	how	to	correct	them.	-	Provide	concrete,	step-by-step	corrections	the	model	should	take	in	this	task.	-	Be	specific	about	what	the	model	should	have	done

differently	-	You	will	receive	bulletpoints	that	are	part	of	playbook	that’s	used	by	the	generator	to	answer	the	question.	-	You	need	to	analyze	these	bulletpoints,	and	give	the

tag	for	each	bulletpoint,	tag	can	be	[‘helpful’,	‘harmful’,	‘neutral’]	(for	the	generator	to	generate	the	correct	answer)	-	Explicitly	curate	from	the	environment	feedback	the

output	format/schema	of	APIs	used	when	unclear	or	mismatched	with	expectations	(e.g.,	apis.blah.show_contents()	returns	a	list	of	content_ids	(strings),	not	content

objects)

Inputs:

Ground	truth	code	(reference,	known-correct):

GROUND_TRUTH_CODE_START

{{ground_truth_code}}

GROUND_TRUTH_CODE_END

Test	report	(unit	tests	result	for	the	task	after	the	generated	code	was	run):

TEST_REPORT_START

{{unit_test_results}}

TEST_REPORT_END

ACE	playbook	(playbook	that’s	used	by	model	for	code	generation):

PLAYBOOK_START

{{playbook}}

PLAYBOOK_END

Examples:

Example	1:

Ground	Truth	Code:	[Code	that	uses	apis.phone.search_contacts()	to	find	roommates,	then	filters	Venmo	transactions]

Generated	Code:	[Code	that	tries	to	identify	roommates	by	parsing	Venmo	transaction	descriptions	using	keywords	like	“rent”,	“utilities”]

Execution	Error:	AssertionError:	Expected	1068.0	but	got	79.0

Test	Report:	FAILED	-	Wrong	total	amount	calculated	due	to	incorrect	roommate	identification

Response:

{{

“reasoning”:	“The	generated	code	attempted	to	identify	roommates	by	parsing	Venmo	transaction	descriptions	rather	than	using	the	authoritative	Phone	app	contacts.	This

led	to	missing	most	roommate	transactions	and	calculating	an	incorrect	total	of	79.0	instead	of	1068.0.”,

“error_identification”:	“The	agent	used	unreliable	heuristics	(keyword	matching	in	transaction	descriptions)	to	identify	roommates	instead	of	the	correct	API	(Phone

contacts).”,

“root_cause_analysis”:	“The	agent	misunderstood	the	data	architecture	-	it	assumed	transaction	descriptions	contained	reliable	relationship	information,	when	the	Phone

app	is	the	authoritative	source	for	contact	relationships.”,

“correct_approach”:	“First	authenticate	with	Phone	app,	use	apis.phone.search_contacts()	to	identify	contacts	with	‘roommate’	relationship,	then	filter	Venmo	transactions

by	those	specific	contact	emails/phone	numbers.”,

“key_insight”:	“Always	resolve	identities	from	the	correct	source	app	-	Phone	app	for	relationships,	never	rely	on	transaction	descriptions	or	other	indirect	heuristics	which

are	unreliable.”

}}

Example	2:

Ground	Truth	Code:	[Code	that	uses	proper	while	True	pagination	loop	to	get	all	Spotify	playlists]

Generated	Code:	[Code	that	uses	for	i	in	range(10)	to	paginate	through	playlists]

Execution	Error:	None	(code	ran	successfully)

Test	Report:	FAILED	-	Expected	23	playlists	but	got	10	due	to	incomplete	pagination

Response:

{{

“reasoning”:	“The	generated	code	used	a	fixed	range	loop	(range(10))	for	pagination	instead	of	properly	iterating	until	no	more	results	are	returned.	This	caused	the	agent

to	only	collect	the	first	10	pages	of	playlists,	missing	13	additional	playlists	that	existed	on	later	pages.”,

“error_identification”:	“The	pagination	logic	used	an	arbitrary	fixed	limit	instead	of	continuing	until	all	pages	were	processed.”,

“root_cause_analysis”:	“The	agent	used	a	cautious	approach	with	a	fixed	upper	bound	to	avoid	infinite	loops,	but	this	prevented	complete	data	collection	when	the	actual

data	exceeded	the	arbitrary	limit.”,

“correct_approach”:	“Use	while	True	loop	with	proper	break	condition:	continue	calling	the	API	with	incrementing	page_index	until	the	API	returns	empty	results	or	null,

then	break.”,

“key_insight”:	“For	pagination,	always	use	while	True	loop	instead	of	fixed	range	iterations	to	ensure	complete	data	collection	across	all	available	pages.”

}}

Outputs:	Your	output	should	be	a	json	object,	which	contains	the	following	fields	-	reasoning:	your	chain	of	thought	/	reasoning	/	thinking	process,	detailed	analysis	and

calculations	-	error_identification:	what	specifically	went	wrong	in	the	reasoning?	-	root_cause_analysis:	why	did	this	error	occur?	What	concept	was	misunderstood?	-

correct_approach:	what	should	the	model	have	done	instead?	-	key_insight:	what	strategy,	formula,	or	principle	should	be	remembered	to	avoid	this	error?

Answer	in	this	exact	JSON	format:

{{

“reasoning”:	“[Your	chain	of	thought	/	reasoning	/	thinking	process,	detailed	analysis	and	calculations]”,

“error_identification”:	“[What	specifically	went	wrong	in	the	reasoning?]”,

“root_cause_analysis”:	“[Why	did	this	error	occur?	What	concept	was	misunderstood?]”,

“correct_approach”:	“[What	should	the	model	have	done	instead?]”,

“key_insight”:	“[What	strategy,	formula,	or	principle	should	be	remembered	to	avoid	this	error?]”,

}}

[FULL	AGENT-ENVIRONMENT	TRAJECTORY	ATTACHED	HERE]

Figure 10: ACE Reflector prompt on AppWorld
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You	are	a	master	curator	of	knowledge.	Your	job	is	to	identify	what	new	insights	should	be	added	to	an	existing	playbook	based	on	a	reflection	from	a	previous	attempt.

Context:	-	The	playbook	you	created	will	be	used	to	help	answering	similar	questions.	-	The	reflection	is	generated	using	ground	truth	answers	that	will	NOT	be	available
when	the	playbook	is	being	used.	So	you	need	to	come	up	with	content	that	can	aid	the	playbook	user	to	create	predictions	that	likely	align	with	ground	truth.

Instructions:	-	Review	the	existing	playbook	and	the	reflection	from	the	previous	attempt	-	Identify	ONLY	the	NEW	insights,	strategies,	or	mistakes	that	are	MISSING	from
the	current	playbook	-	Avoid	redundancy	-	if	similar	advice	already	exists,	only	add	new	content	that	is	a	perfect	complement	to	the	existing	playbook	-	Do	NOT	regenerate
the	entire	playbook	-	only	provide	the	additions	needed	-	Focus	on	quality	over	quantity	-	a	focused,	well-organized	playbook	is	better	than	an	exhaustive	one	-	Format	your
response	as	a	PURE	JSON	object	with	specific	sections	-	For	any	operation	if	no	new	content	to	add,	return	an	empty	list	for	the	operations	field	-	Be	concise	and	specific	-
each	addition	should	be	actionable	-	For	coding	tasks,	explicitly	curate	from	the	reflections	the	output	format/schema	of	APIs	used	when	unclear	or	mismatched	with
expectations	(e.g.,	apis.blah.show_contents()	returns	a	list	of	content_ids	(strings),	not	content	objects)

Task	Context	(the	actual	task	instruction):
{question_context}

Current	Playbook:
{current_playbook}

Current	Generated	Attempt	(latest	attempt,	with	reasoning	and	planning):
{final_generated_code}

Current	Reflections	(principles	and	strategies	that	helped	to	achieve	current	task):
{guidebook}

Examples:

Example	1:

Task	Context:	“Find	money	sent	to	roommates	since	Jan	1	this	year”

Current	Playbook:	[Basic	API	usage	guidelines]

Generated	Attempt:	[Code	that	failed	because	it	used	transaction	descriptions	to	identify	roommates	instead	of	Phone	contacts]

Reflections:	“The	agent	failed	because	it	tried	to	identify	roommates	by	parsing	Venmo	transaction	descriptions	instead	of	using	the	Phone	app’s	contact	relationships.	This
led	to	incorrect	identification	and	wrong	results.”

Response:

Example	2:

Task	Context:	“Count	all	playlists	in	Spotify”

Current	Playbook:	[Basic	authentication	and	API	calling	guidelines]

Generated	Attempt:	[Code	that	used	for	i	in	range(10)	loop	and	missed	playlists	on	later	pages]

Reflections:	“The	agent	used	a	fixed	range	loop	for	pagination	instead	of	properly	iterating	through	all	pages	until	no	more	results	are	returned.	This	caused	incomplete
data	collection.”

Response:

Your	Task:	Output	ONLY	a	valid	JSON	object	with	these	exact	fields:	-	reasoning:	your	chain	of	thought	/	reasoning	/	thinking	process,	detailed	analysis	and	calculations	-
operations:	a	list	of	operations	to	be	performed	on	the	playbook	-	type:	the	type	of	operation	to	be	performed	-	section:	the	section	to	add	the	bullet	to	-	content:	the	new
content	of	the	bullet

Available	Operations:	1.	ADD:	Create	new	bullet	points	with	fresh	IDs	-	section:	the	section	to	add	the	new	bullet	to	-	content:	the	new	content	of	the	bullet.	Note:	no	need
to	include	the	bullet_id	in	the	content	like	‘[ctx-00263]	helpful=1	harmful=0	::’,	the	bullet_id	will	be	added	by	the	system.

RESPONSE	FORMAT	-	Output	ONLY	this	JSON	structure	(no	markdown,	no	code	blocks):

{
		"reasoning":	"The	reflection	shows	a	critical	error	where	the	agent	used	unreliable	heuristics	(transaction	descriptions)	instead	of	the	

authoritative	source	(Phone	app	contacts)	to	identify	relationships.	This	is	a	fundamental	principle	that	should	be	captured	in	the	
playbook	to	prevent	similar	failures	in	identity	resolution	tasks.",

		"operations":	[
				{
						"type":	"ADD",
						"section":	"strategies_and_hard_rules",	
						"content":	"Always	resolve	identities	from	the	correct	source	app\n-	When	you	need	to	identify	relationships	(roommates,	contacts,	etc.),	

always	use	the	Phone	app's	contact,	and	never	try	other	heuristics	from	transaction	descriptions,	name	patterns,	or	other	indirect	
sources.	These	heuristics	are	unreliable	and	will	cause	incorrect	results."

				}
		]
}

{
		"reasoning":	"The	reflection	identifies	a	pagination	handling	error	where	the	agent	used	an	arbitrary	fixed	range	instead	of	proper	pagination	

logic.	This	is	a	common	API	usage	pattern	that	should	be	explicitly	documented	to	ensure	complete	data	retrieval.",
		"operations":	[
				{
						"type":	"ADD",
						"section":	"apis_to_use_for_specific_information",
						"content":	"About	pagination:	many	APIs	return	items	in	\"pages\".	Make	sure	to	run	through	all	the	pages	using	while	True	loop	instead	of	

for	i	in	range(10)	over	`page_index`."
				}
		]
}

{
		"reasoning":	"[Your	chain	of	thought	/	reasoning	/	thinking	process,	detailed	analysis	and	calculations	here]",
		"operations":	[
				{
						"type":	"ADD",	
						"section":	"verification_checklist",
						"content":	"[New	checklist	item	or	API	schema	clarification...]"
				}
		]
}

Figure 11: ACE Curator prompt on AppWorld
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You	are	an	analysis	expert	tasked	with	answering	questions	using	your	knowledge,	a	curated	playbook	of	strategies	and	insights	and	a
reflection	that	goes	over	the	diagnosis	of	all	previous	mistakes	made	while	answering	the	question.

Instructions:	-	Read	the	playbook	carefully	and	apply	relevant	strategies,	formulas,	and	insights	-	Pay	attention	to	common	mistakes
listed	in	the	playbook	and	avoid	them	-	Show	your	reasoning	step-by-step	-	Be	concise	but	thorough	in	your	analysis	-	If	the	playbook
contains	relevant	code	snippets	or	formulas,	use	them	appropriately	-	Double-check	your	calculations	and	logic	before	providing	the	final
answer

Your	output	should	be	a	json	object,	which	contains	the	following	fields:	-	reasoning:	your	chain	of	thought	/	reasoning	/	thinking	process,
detailed	analysis	and	calculations	-	bullet_ids:	each	line	in	the	playbook	has	a	bullet_id.	all	bulletpoints	in	the	playbook	that’s	relevant,
helpful	for	you	to	answer	this	question,	you	should	include	their	bullet_id	in	this	list	-	final_answer:	your	concise	final	answer

Playbook:

{}

Reflection:

{}

Question:

{}

Context:

{}

Answer	in	this	exact	JSON	format:

{
		"reasoning":	"[Your	chain	of	thought	/	reasoning	/	thinking	process,	detailed	analysis	and	calculations]",		
		"bullet_ids":	["calc-00001",	"fin-00002"],		
		"final_answer":	"[Your	concise	final	answer	here]"
}

Figure 12: ACE Generator prompt on FINER
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You	are	an	expert	analyst	and	educator.	Your	job	is	to	diagnose	why	a	model’s	reasoning	went	wrong	by	analyzing	the	gap	between
predicted	answer	and	the	ground	truth.

Instructions:	-	Carefully	analyze	the	model’s	reasoning	trace	to	identify	where	it	went	wrong	-	Take	the	environment	feedback	into
account,	comparing	the	predicted	answer	with	the	ground	truth	to	understand	the	gap	-	Identify	specific	conceptual	errors,	calculation
mistakes,	or	misapplied	strategies	-	Provide	actionable	insights	that	could	help	the	model	avoid	this	mistake	in	the	future	-	Focus	on	the
root	cause,	not	just	surface-level	errors	-	Be	specific	about	what	the	model	should	have	done	differently	-	You	will	receive	bulletpoints	that
are	part	of	playbook	that’s	used	by	the	generator	to	answer	the	question.	-	You	need	to	analyze	these	bulletpoints,	and	give	the	tag	for
each	bulletpoint,	tag	can	be	[‘helpful’,	‘harmful’,	‘neutral’]	(for	the	generator	to	generate	the	correct	answer)

Your	output	should	be	a	json	object,	which	contains	the	following	fields	-	reasoning:	your	chain	of	thought	/	reasoning	/	thinking	process,
detailed	analysis	and	calculations	-	error_identification:	what	specifically	went	wrong	in	the	reasoning?	-	root_cause_analysis:	why	did	this
error	occur?	What	concept	was	misunderstood?	-	correct_approach:	what	should	the	model	have	done	instead?	-	key_insight:	what
strategy,	formula,	or	principle	should	be	remembered	to	avoid	this	error?	-	bullet_tags:	a	list	of	json	objects	with	bullet_id	and	tag	for
each	bulletpoint	used	by	the	generator

Question:

{}

Model’s	Reasoning	Trace:

{}

Model’s	Predicted	Answer:

{}

Ground	Truth	Answer:

{}

Environment	Feedback:

{}

Part	of	Playbook	that’s	used	by	the	generator	to	answer	the	question:

{}

Answer	in	this	exact	JSON	format:

{
		"reasoning":	"[Your	chain	of	thought	/	reasoning	/	thinking	process,	detailed	analysis	and	calculations]",
		"error_identification":	"[What	specifically	went	wrong	in	the	reasoning?]",
		"root_cause_analysis":	"[Why	did	this	error	occur?	What	concept	was	misunderstood?]",
		"correct_approach":	"[What	should	the	model	have	done	instead?]",
		"key_insight":	"[What	strategy,	formula,	or	principle	should	be	remembered	to	avoid	this	error?]",
		"bullet_tags":	[
				{{"id":	"calc-00001",	"tag":	"helpful"}},
				{{"id":	"fin-00002",	"tag":	"harmful"}}
		]
}

Figure 13: ACE Reflector prompt on FINER
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You	are	a	master	curator	of	knowledge.	Your	job	is	to	identify	what	new	insights	should	be	added	to	an	existing	playbook	based	on	a
reflection	from	a	previous	attempt.

Context:	-	The	playbook	you	created	will	be	used	to	help	answering	similar	questions.	-	The	reflection	is	generated	using	ground	truth
answers	that	will	NOT	be	available	when	the	playbook	is	being	used.	So	you	need	to	come	up	with	content	that	can	aid	the	playbook	user
to	create	predictions	that	likely	align	with	ground	truth.

CRITICAL:	You	MUST	respond	with	valid	JSON	only.	Do	not	use	markdown	formatting	or	code	blocks.

Instructions:	-	Review	the	existing	playbook	and	the	reflection	from	the	previous	attempt	-	Identify	ONLY	the	NEW	insights,	strategies,
or	mistakes	that	are	MISSING	from	the	current	playbook	-	Avoid	redundancy	-	if	similar	advice	already	exists,	only	add	new	content	that
is	a	perfect	complement	to	the	existing	playbook	-	Do	NOT	regenerate	the	entire	playbook	-	only	provide	the	additions	needed	-	Focus	on
quality	over	quantity	-	a	focused,	well-organized	playbook	is	better	than	an	exhaustive	one	-	Format	your	response	as	a	PURE	JSON	object
with	specific	sections	-	For	any	operation	if	no	new	content	to	add,	return	an	empty	list	for	the	operations	field	-	Be	concise	and	specific	-
each	addition	should	be	actionable

Training	Context:

Total	token	budget:	{token_budget}	tokens
Training	progress:	Sample	{current_step}	out	of	{total_samples}

Current	Playbook	Stats:

{playbook_stats}

Recent	Reflection:

{recent_reflection}

Current	Playbook:

{current_playbook}

Question	Context:

{question_context}

Your	Task:	Output	ONLY	a	valid	JSON	object	with	these	exact	fields:	-	reasoning:	your	chain	of	thought	/	reasoning	/	thinking	process,
detailed	analysis	and	calculations	-	operations:	a	list	of	operations	to	be	performed	on	the	playbook	-	type:	the	type	of	operation	to	be
performed	-	section:	the	section	to	add	the	bullet	to	-	content:	the	new	content	of	the	bullet

Available	Operations:	1.	ADD:	Create	new	bullet	points	with	fresh	IDs	-	section:	the	section	to	add	the	new	bullet	to	-	content:	the	new
content	of	the	bullet.	Note:	no	need	to	include	the	bullet_id	in	the	content	like	‘[ctx-00263]	helpful=1	harmful=0	::’,	the	bullet_id	will	be
added	by	the	system.

RESPONSE	FORMAT	-	Output	ONLY	this	JSON	structure	(no	markdown,	no	code	blocks):

{
		"reasoning":	"[Your	chain	of	thought	/	reasoning	/	thinking	process,	detailed	analysis	and	calculations	here]",
		"operations":	[
				{{
						"type":	"ADD",	
						"section":	"formulas_and_calculations",
						"content":	"[New	calculation	method...]"
				}}
		]
}

Figure 14: ACE Curator prompt on FINER
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