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Abstract

Intermittent control problems are common in real world. The interactions between
the decision maker and the executor can be discontinuous (intermittent) due to
various types of interruptions, e.g. unstable communication channel. Due to inter-
mittent interaction, agents are unable to acquire the state sent by the executor and
cannot transmit actions to the executor within a period of time step, i.e. bidirec-
tional blockage, which may lead to inefficiencies of reinforcement learning policies
and prevent the executors from completing the task. Such problem is not well
studied in the RL community. In this paper, we model Intermittent Control Problem
as an Intermittent Control Markov Decision Process, i.e., agents are expected to
generate action sequences corresponding to the unavailable states and transmit
them before disabling interactions to ensure the smooth and effective motion of
executors. However, directly generating multiple future actions in the original
action space has unnatural motion issue and exploration difficulty. We propose
Multi-step Action RepreSentation (MARS), which encodes a sequence of actions
from the original action space to a compact and decodable latent space. Then based
on the latent action sequence representation, the mainstream RL methods can be
easily optimized to learn a smooth and efficient motion policy. Extensive experi-
ments on simulation tasks and real-world robotic grasping tasks show that MARS
significantly improves the learning efficiency and final performances compared
with existing baselines.

1 Introduction

In recent years, the field of deep reinforcement learning (DRL) has witnessed striking empirical
achievements in a variety of Markov Decision Process (MDP) problems [Mnih et al., 2013, Kaufmann
et al., 2023] and has been successfully applied to many real-time control tasks [Mahmood et al., 2018,
Lee et al., 2020]. In real-time control, “interaction" plays a crucial role. At each time step, the decision
maker obtains observations from the environment and feeds actions back to the action executor through
real-time interactions. Thus, in an ideal MDP setting, the interaction should be continuous. However,
in many scenarios, interactions become intermittent due to limitations of realistic conditions [Jiang
et al., 2021] or communication interruption (e.g., unstable network) [Dong et al., 2009]. Due to
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bidirectional communication blockage caused by intermittent interaction, agents (decision makers)
are unable to acquire the state sent by the executor and cannot transmit actions to the executor
within a period of time step (as shown in Figure 1 (top). The sparse observations resulting from this
phenomenon can make normal step-by-step decisions unstable. Thus, directly deploying existing DRL
algorithms could make the action executor abruptly stop (can not make decision when the current state
is unavailable) or move abnormally when the environment suddenly changes [Sutton and Barto, 2018].

Figure 1: Detail of Intermitted Control (top part). Two
types of intermittent interactions (bottom part). For both
cases, we can generate a sequence of actions in advance
for the next c states based on the current state st to make
the control more smooth and robust.

Typically, there are two types of intermittent
interactions. Illustrations are shown in Fig-
ure 1(bottom). ❶ Fixed interaction interval:
in numerous real-world robot scenarios, in-
teracting with the environment is often time-
consuming and costly [Liu et al., 2020]. For ex-
ample, before the robotic arm performs its next
actions, it has to first halt its current operations,
move to a designated position to capture an
image, and then use a specific technique to ex-
tract features and provide them to the decision
maker. To ensure reliable operation and stable
movement, we usually set a fixed interaction
interval for the robot arm [Jiang et al., 2021,
Bonarini, 2020]. ❷ Random interaction in-
terval: unexpected interaction intervals may
occur due to unstable communication channels
and loss of wireless signals [Li et al., 2016].
For example, in real-time strategy games, the
decision end remotely controls the terminal non-player characters (NPC) [Zheng et al., 2019], the
interaction interval between the decision end and NPC terminals may become random [Wong et al.,
2021] due to above reasons, which may cause the NPC to be stuck and disconnected from the changed
environment, reducing the player’s experience.

The essence of addressing the two aforementioned intermittent control tasks is identical, that is,
to achieve intensive control under sparse interaction (or observation) to ensure the effective and
smooth movement of the executor, ultimately leading to efficient task completion. To this end, we
introduce Intermittent-MDP (refer to Sec.3 for further elaboration) to model the above two settings
in a unified manner, that is, the agent is expected to decide on a sequence of actions based on the
current state, covering a suitable number of time steps, to maintain smooth and efficient motion of
the executor between the two interactions. The most direct approach would be to employ model-
based reinforcement learning (MBRL) methods with multi-step decision-making capabilities, such as
Dreamer [Hafner et al., 2023] and TD-MPC [Hansen et al., 2022]. Regrettably, the form of multi-step
decision makes the error of the dynamic model accumulate and then make the policies suboptimal. In
addition, the high demand for high-quality data and the complexity of constructing dynamic models
makes MBRL deployment costly in real-world scenarios [Janner et al., 2019] (detailed experimental
analysis in Appendix C.1). Instead, we sought to unlock the multi-step decision-making ability of the
model-free DRL approach, e.g. TD3 [Fujimoto et al., 2018] and PPO [Schulman et al., 2017].

The most simple method for model-free DRL to alleviate the intermittent interaction issue is using
frameskip (also commonly known as ‘action-repeat’) [Kalyanakrishnan et al., 2021], where the same
action (usually the last action) is repeated during a fixed interval which is often used in Atari [Braylan
et al., 2015]. However, longer frameskip will lead to mechanized motion, making it impossible for
the agent to change actions at key states and thus resulting in suboptimal policies. Another way is to
let the RL algorithms make up-front decisions (advance decisions) for future steps according to the
current state or the received delayed state. Only actions for the correct time steps will be executed.
Compared to frameskip, these methods can improve action diversity. However, directly increasing the
horizon of decision making will lead to action space explosion and increase the difficulty of policy
optimization [Chen et al., 2021].

In this paper, we propose Multi-step Action RepreSentation (MARS), which is the first plugin
method for DRL algorithms to solve intermittent control tasks, significantly reducing the difficulty
of multi-step policy training while ensuring the flexibility and diversity. The high level idea is
shown in Figure 2. MARS constructs a compact and decodable low dimensional latent action
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space for the original multi-step actions, the latent action dimension does not explode as the steps
number increases. Based on this latent action space agent can learn a stable latent policy. The
latent action selected by the policy can be reconstructed into original multi-step actions by the
decoder. Specifically, MARS relies on a conditional Variational Auto-encoder (c-VAE) [Sohn et al.,
2015] to construct the latent representation space for the associated multi-step actions. Intuitively,
an efficient latent action space should have two characteristics: ❶ Decision space simplification:
the combination number of long-sequence actions is huge, especially in the continuous action
space, which can complicate the decision space and potentially result in suboptimal policies. We
restrict the decision space to a relatively small subspace by introducing the concept of action
transfer scale υ and taking it as the condition term of our VAE, i.e. using υ to implicit segment
the latent space [Sohn et al., 2015]. ❷ Dynamic semantic smoothness, a characteristic of the
original action space, which means latent actions that have similar impacts on the environment
should be close together in latent spaces. Dynamic semantic smooth action space can retain the
utility of adding Gaussian noise perturbations to the policy during training: While ensuring that
the impacts of initial latent action chosen by the policy and latent action after disturbance on the
environment is similar in high probability, some uncertainty is also retained that the disturbed action
may explore rare actions that have unknown impacts on the environment, which helps maintain a
balance between exploration and exploitation [Schwarzer et al., 2020]. We utilize unsupervised
environmental dynamics to learn a predictive representation of dynamics for improving semantic
smoothness. In practice, we adding an additional dynamic residual prediction module for VAE.

Latent 
Space

Select Latent Action

Decision maker
Decode

Original  multi-step
Action

Action trajectory

State

Interspaced interaction

Environment

Reward

Intermittent interaction

Figure 2: Conceptual overview of MARS.

Our contributions are summarized as fol-
lows:  We propose the first plugin method
and DRL framework for solving intermittent
control tasks via multi-step action represen-
tation learning.  We provide two modules
to improve the effectiveness and smoothness
of the learned multi-step latent space.  Our
method outperforms baselines on both real-
world fixed interaction interval robotic con-
trol tasks and random interaction interval
simulation control tasks.

2 Background

Markov Decision Process (MDP). A MDP can be represented as a tuple: (S,A,P,R, γ, T ), where
S denotes the state set, A denotes an action set, P is the transition function: S ×A×S → [0, 1] and
R is the reward function: S ×A → R. γ ∈ [0, 1) is a discount factor and T is the decision horizon.
The goal is to optimize the agent’s policy to maximize the expected discounted cumulative reward.

Variational Auto-Encoder. The variational auto-encoder (VAE) is a directed graphical model with
certain types of latent variables, such as Gaussian latent variables. A generative process of the VAE
is as follows: a set of latent variable z is generated from the prior distribution pθ(z) and the data x
is generated by the generative distribution pθ(x|z) conditioned on z : z ∼ pθ(z), x ∼ pθ(x|z). In
general, parameter estimation of directed graphical models is often challenging due to intractable
posterior inference. However, the parameters of the VAE can be estimated efficiently using the
stochastic gradient variational Bayes (SGVB) framework, where the variational lower bound of the
log-likelihood is used as a surrogate objective function. In this framework, a proposal distribution
qθ(x|z), is introduced to approximate the true posterior pθ(x|z). MLPs are used to model the
recognition and the generation models. Based on the Gaussian latent assumption, the first term of
Eq.1 can be marginalized. The second term can be approximated by drawing samples z(l)(l = 1, ..., L)
by the proposal distribution qθ(x|z). The empirical objective of the VAE is written as:

LV AE(ϕ, ψ) =
1

L

∑
θ

(x|z(l))−KL
(
qϕ(z|x)||N(0, I)

)
(1)
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3 Intermittent Control Markov Decision Process (Intermittent-MDP)

In this section, we introduce the Intermittent Control Markov Decision Process (Intermittent-MDP)
to model both fixed and random interaction interval control problems. The objective of Intermittent-
MDP is to train the policy to decide on an effective action sequence u based on the current state s,
which should be longer than or equal to the maximum interaction interval c, thus ensuring smooth
and efficient motion of executor between the two interactions.

Definition of Intermittent-MDP. Intermittent-MDP (M) can be represented as a tuple:
M ≜ ⟨S,U ,R,K, µ0⟩. S ∈ Rn is the state space, U is the set of action sequence u that the
policy can select. and µ0 denotes the initial state distribution. The reward is defined as R, K is
the multi-step transition function.

Different from normal MDP in which the agent makes a decision at according to the current state st,
intermittent-MDP requires the agent to generate an action sequence ut = {at, ..., at+c} according to
the received state st(at is the single step action at timestep t). The cumulative rewards of executed
actions can be received in the next interaction. Policy π takes current state to select action sequence
ut = {at, ..., at+c}. When the interaction interval is present for j timesteps, the executor uses j
single-step actions in the action sequence u to maintain the motion (j ∈ {0, 1, ..., c}). When the
interaction is continuous, the executor uses the first single-step action in u each time (degenerated to
the transition function P in normal MDP). Thus, the environment transition function K is defined as:

K(st+j |st, ut) = Πt+j−1
i=t P(si+1|si, ai)π(ut|st) j ∈ {0, 1, ..., c}, ai ∈ ut. (2)

If the interval is random and we only know the maximum number of interval step c, Intermittent-MDP
is represented as random Intermittent-MDP. When the interval time is fixed, Intermittent-MDP
represents a fixed interaction interval problem, i.e., fixed Intermittent-MDP.

4 Multi-step Action Representation

In this section, we introduce Multi-step Action Representation (MARS), a novel framework that
can map long action sequences into an efficient latent space. We hypothesize that multi-step actions
reside on a homogeneous manifold. To learn the multi-step action representation, we employ VAE to
constructing a compact and decodable latent representation space to approximate such a manifold.

To align our latent action space with the two characteristics mentioned in Sec.1, i.e. ① Decision
space simplification ② Dynamic semantic smoothness. In Sec.4.1, we introduce the concept of action
transition scale and encode this as a conditional aid in VAE training to simplify the decision space of
the policy. In Sec.4.2, we demonstrate how state residual prediction can be leveraged to smooth the
semantics of dynamic transitions in latent action spaces, and in Sec.4.3, we illustrate the combination
of MARS with DRL, as well as the extension of our approach to random intermittent-MDP.

4.1 Scale-Conditioned Multi-step Action Encoding and Decoding

Although VAE has been proven to be able to construct a compact and effective latent action space for
normal MDP with state s as the prior condition [Li et al., 2021], due to the complex combinatorial
nature of multi-step actions in Intermittent-MDP, the policy still struggles to explore the optimal
actions in the vast action space. Therefore, to address this challenge, we introduce the concept of
action transition scale υ as a conditional term in VAE, to constructs the multi-step latent action
space Z . υ stands for a description of the motion style, it represents the accumulation of action
change scales within each action sequence u. By determining υ, we can constrain the latent action
z ∈ Z chosen by the policy within a related subspace [Sohn et al., 2015] in which all candidate action
sequences have the same motion style in terms of υ, thus reducing the difficulty of exploration. We
choose υ as a conditional term due to its task-specific nature. For instance, in robot scenarios, to
ensure the balance of the robot and prevent joint damage, the scale of action changes is typically
small. In some obstacle avoidance tasks, however, the magnitude of action changes can be significant
when the agent encounters suddenly approaching obstacles. Once the policy roughly determines the
appropriate action transfer scale for the current state, it can make more suitable decisions, making the
policy more efficient and controllable in the complex action space. Notably υ does not need to be
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set manually but is selected adaptively by the policy through training, which is described in detail in
Sec.4.3. We formulate υ as follows:

υut =

∑c−1
i=t ||ai+1 − ai||
(c− 1)×B

. (3)

c is the maximum interval and B denotes the upper limit of action change. The numerator part
represents the total absolute difference between consecutive actions, used to assess the transition
magnitude of ut. Eq.3 normalizes υut to [0, 1].

Given an action sequence ut and the corresponding states st:t+c, our encoder qϕ(zut |ut, st:t+c, υut)
parameterized by ϕ takes st:t+c and the action transition scale υut as conditions to build a multi-
step latent action space, and maps the action sequence ut into the latent variable zut ∈ Rd1 (d1
denotes the dimension of zut ). The decoder pψ(ût|zut , st, υut) parameterized by ψ then reconstructs
the multi-step actions ut from zut . We employ a Gaussian latent distribution N(µz, σz) to model
qϕ(zut |ut, st:t+c, υut) where µz and σz are the mean and standard deviation outputted by the encoder.
The decoder decodes zut ∼ N(µzut , σzut ) as following: ût = gψ1 ◦ pψ0(zut , st, υut), gψ1 is a
fully-connected layer for reconstruction. ◦ denotes cascade, i.e. the output of pψ0 acts as the input of
gψ1 . We utilize cascaded heads because traditional parallel heads, employed for both reconstruction
and state residual prediction, can interfere with optimizing individual objectives and impede the
learning of the shared representation [Azabou et al., 2021]. pψ0

denotes the shared layers of the
decoder. ψi∈{1,2} denote the parameters of the prediction networks. The loss function of our VAE is:

LV AE(ϕ, ψ) = Es,u∼D,z∼qψ
[
∥ût − ut∥22 +DKL

(
qϕ(·|ut, st:t+c, υut)∥N(0, I)

)]
, (4)

where D is the buffer. The first term is the reconstruction loss (using MSE) of the action sequence,
the last term is the Kullback Leibler divergence DKL between the variational posterior of latent
representation z and the standard Gaussian prior. By using the reparameterization trick [Kingma and
Welling, 2013], ût is differentiable with respect to ψ and ϕ. For any latent variables zut , it can be
decoded into multi-step actions ût conveniently by the VAE decoder. That is,

Encoder :zut ∼ qϕ(·|ut, st:t+c, υut) ∀ st:t+c, ut, υut
Decoder :ût = gψ1 ◦ pψ0(zut , st, υut) ∀ s, zut , υut

(5)

𝒛𝒖𝒕 						

RL policy
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Figure 3: Architecture of MARS. ‘t’ denotes different steps at
different stage. Both zut and zt refer to variables in Z, but they are
used in different stages (the same goes for υut and υt).

4.2 Dynamic-Aware
Multi-step Action Representation

In section 4.1, we introduce how to
build a decodable representation space
for multi-step actions. However, it
is still inefficient to learn the policy
and value functions in the latent ac-
tion space learned by the above VAE.
In comparison to the real-world ac-
tion space, the current construction
of our action space lacks a crucial
attribute: dynamic semantic smooth-
ness. This refers to the manifestation
of differences in environmental im-
pact through the Euclidean distance
between points in the latent space,
where closer points correspond to
more similar impacts. To address this issue, we further apply an unsupervised learning loss based on
environmental dynamics prediction to refine the multi-step action representation. Relevant proof can
be found in [Whitney et al., 2019]. MARS captures the environmental dynamics by predicting the
state transition residual. We use the state transition as a measure of environmental dynamic becuase:
❶ State transition does not require a per-step reward, it can be used in reward-agnostic pretraining.
❷ Building value equivalent models is more difficult since Q-values in the early stage of training
are inaccurate [Wang et al., 2016]. In contrast, state transition is more reliable and accessible. ❸
The same reward or Q-value may correspond to different environmental dynamics, but the same
environmental dynamics have the same reward or Q-value.
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Specifically, MARS predicts the residual difference between the state st+c after the execution of ut
and the current statest. As shown in the left of Figure 3, hψ2 is a subnetwork of the decoder. For
any transition sample (st, ut, st+c), we denote the state residual as δst,st+1 = st+c − st and denote
pstate = hψ2 ◦ pψ . The residual δ̂st,st+c is predicted as:

δ̂st,st+c = pstate(zut , st, υut) ∀ st, zut , υut . (6)

The environmental transition prediction loss is defined as:

Ldy(ϕ, ψ) = Est,ut,st+c
[
∥δ̂st,st+c − δst,st+c∥]. (7)

Above all, the ultimate training loss for the multi-step action representation is:

LMARS(ϕ, ψ) = LV AE(ϕ, ψ) + βLdy(ϕ, ψ), (8)

where β is a hyper-parameter that controls the relative importance of the Ldy and LV AE . LMARS

only depends on the environmental dynamic data which is reward-agnostic [Erraqabi et al., 2021,
Yarats et al., 2021]. During training, transitions stored in the buffer or offline dataset are utilized.
Additionally, we observe that MARS exhibits insensitivity to data quality. Notably, data collected
through random policies suffice for effective training the multi-step action representation.

4.3 DRL with Multi-step Action Representation

Algorithm 1 MARS-TD3

Initialize actor πω and critic networks Qθ1 , Qθ2
Initialize conditional VAE qϕ, pψ , buffer D.

Stage 1: Build latent action space
while not reaching warmup training times do

Fill D with data generated by random pol-
icy or offline datasets

Update qϕ, pψ using samples in D. ▷ Eq.8
end while

Stage 2: Train the RL policy
while t < policy training time do

zt, υt = πω (with Gaussian noise)
ut = gψ1

◦ pψ0
(zt, s, υt)

Execute ut, observe r and new state s′
Fill D with (s, ut, zt, υt, r, s

′)
update Qθ1 , Qθ2 , πω ▷ Eq.9, Eq.10

end while

As a plug-in method, MARS can be applied
to any RL algorithm. It contains two types
of actions: ❶ the encoded multi-step action
z and ❷ the action transition scale υ. RL al-
gorithms maximize the expected cumulative
reward by selecting the optimal zt and υt at
st. In this section, we apply MARS to a typ-
ical model-free RL method TD3 [Fujimoto
et al., 2018] as an example. TD3 is a deter-
ministic Actor-Critic algorithm. As illustrated
in the right part of Figure 3, with the learned
transition-aware multi-step action representa-
tion, the actor network learns a latent policy
πω that outputs the latent actions according to
current state s, i.e., [zt, υt] = πω(s). zt and
υt respectively represent the action selected at
time t from Z and υ constructed in the section
4.1. Then we obtain the corresponding multi-
step actions ut by decoding the latent action
zt and υt: ut = gψ1

◦ pψ0
(s, zt, υt).

Two critic networks Qθ1 , Qθ2 are utilized
which take the latent actions zt and υt as inputs to approximate the value function Qπω more
accurately. We train the critic network using the transition data (s, υt, zt, r, s

′) sampled from the
experience replay. To simplify notations, in this subsection, s is the current state. s′ is the state
perceived at the next interaction interval. The critic loss function is:

LQ(θi) = Es,zt,υt,s′
[
(y −Qθi(s, zt, υt))

2
]

for ∀i ∈ {1, 2}. (9)

Where y = r+γ min
j=1,2

Qθ̄j (s
′, πω̄(s

′)), ω̄ denotes the target network parameters. The actor is updated

according to the Deterministic Policy Gradient [Silver et al., 2014]:

∇ωJ(ω) = Es
[
∇πω(s)Qθ1(s, πω(s))∇ωπω(s)

]
. (10)

The overall algorithm MARS-TD3 is summarized in Algorithm 1, which contains two major stages:
① the warmup stage and ② the policy learning stage. In stage 1, MARS is trained using a prepared
replay buffer D. The SC-VAE is updated by minimizing the VAE and the environmental dynamic
prediction loss. Note that the proposed algorithm has no requirement on how the buffer D is prepared
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Figure 4: Comparisons of methods in simulated remote NPC control tasks with random interaction interval. The
x- and y-axis denote the environment steps and average episode reward. Curves and shades denote the mean and
the standard deviation over 8 runs.

and here we simply use a random policy to gather the data. In stage 2, given an environment state, the
latent policy outputs the latent action zt and the action transition scale υt perturbed by the Gaussian
exploration noise. Then, the latent action is decoded into the original multi-step actions by the
decoder so as to interact with the environment. The newly collected transition sample is stored in the
replay buffer D. After that, the latent policy is updated using the data sampled from D. The action
representation model is also updated periodically in the second stage to make continual adjustments
to the change of data distribution. The detailed network architectures are presented in appendix B.1.

As for random interaction interval tasks, the interaction interval cannot be predicted, so we let
the agent output an action sequence with the maximum length. To improve the training stability,
we precisely record the absolute time step and the execution flag of each action, which makes the
actions be executed in strict accordance with the time step order. When a new action sequence arrives
at the action executor, the previous action sequence will be replaced, and the execution flag of the
unexecuted actions will be set to False. The subsequent rewards will be attributed to the actions
executed in the new action sequence. Thus, the actual reward stored in the experience replay D for
each latent action is the sum of the executed action reward in the corresponding sequence.

5 Experiment

We empirically evaluate MARS to answer the following research questions. RQ1: Performance in
random interaction interval tasks. Can MARS significantly improve the performance in random
Intermittent-MDP tasks, such as simulated remote NPC control tasks? RQ2: Performance in fixed
interaction interval tasks. Can MARS significantly improve the performance in fixed Intermittent-
MDP problems, such as real-world robot arm grasping tasks? RQ3: Generalization. Can MARS be
seamlessly integrated into existing RL algorithms and improve their performance? RQ4: Ablation
study. Do both the action transition scale and the state dynamic prediction contribute to optimizing
the multi-step latent action space? How is the robustness of MARS?

5.1 Random Intermittent-MDP Tasks (RQ1)

5.1.1 Experimental Setups

Benchmarks. We select two types of control tasks to simulate the remote NPC control problem
with random interaction intervals: (1) robot control and (2) navigation tasks. For robot control
tasks, we select four typical openai Mujoco tasks with random interaction delays,i.e., Hopper, Ant,
Walker, HalfCheetah. Mujoco is a well-known testbed and is widely used in reinforcement learning
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research [Brockman et al., 2016]. For navigation tasks, we used the medium and difficult maps of
2dmaze in D4RL [Fu et al., 2020], where the agent’s goal is to walk to the end of the maze under
unstable interactions. Both types of tasks are modified to incorporate random interaction intervals,
mimicking the real-world remote control scenarios [Chen and Wu, 2015]. In RTS games [Andersen
et al., 2018], the maximum interaction interval usually spans 0.5s to 0.7s, with the action execution
time typically between 0.1s and 0.25s. Accordingly, we set the maximum interval to 10 time steps,
requiring the policy to generate an effective action sequence at:t+9 based on the received state st.

Baselines. To our knowledge, no specific solution exists for the Intermittent-MDP problem. Thus, we
compare with three baseline methods. (1) Perfect-TD3: We train TD3 in the perfect environments
with continuous interaction without interaction interval, i.e., normal MDP. It is the highest standard
for evaluating MARS. (2) Frameskip-TD3: We combine the frameskip technique with TD3 (a
common trick for multi-step decision) and apply it to the intermittent-MDP tasks. (3) Multistep-TD3:
We modify TD3 to directly make decisions for the c future steps by outputting a concatenated action
vector of c times of dimensionality.

5.1.2 Performance of remote NPC control tasks

To mitigate implementation bias and ensure a comprehensive comparison, we implement all methods
using the same architecture based on TD3 [Fujimoto et al., 2018]. For all tasks, we set the dimension
of zt to 8 and the scaling parameter β to 5. We set the warm-up (stage 1) step to 400000 and 100000
for the Mujoco tasks and the navigation task respectively. Detailed parameter setting can be found in
appendix B.2. The results in Figure 4 show that MARS-TD3 outperforms the other methods in all
tasks, especially in the high-dimensional action control tasks (i.e., Mujoco). Compared with vanilla
multstep-TD3, our method can significantly improve the performance of the RL algorithm in random
Intermittent-MDP control problems by learning a more compact multistep action representation while
avoiding the convergence difficulties caused by dimensional explosion. Note that MARS-TD3 can
also achieve comparable performance with perfect-TD3 in most tasks.

5.2 Fixed Intermittent-MDP Tasks (RQ2)

5.2.1 Experimental Setups
camera

Gripper

Partial Observation

Grasping

Recycle into 
the box

Step 1:Initializes the manipulator to the specified position Step 2: moves to the side for observation

Step 3: Select actions based on observation Step 4: Move the object to the box

Step 2: Move to the designated location for observation

Figure 5: A complete grasp process in each interaction interval.

Task description.The experiment in-
volves a 6-DoF robot arm performing
grasping tasks within a 30×30×30cm3

tabletop workspace. 15 rounds of exper-
iments are conducted using our method
and baselines. In each round, 6 objects
are randomly selected and placed on the
table. The robot observes the workspace
with a single-depth image from a fixed
side view. The viewpoint of the virtual
camera points toward the workspace’s
origin at a radial distance r = 2l and
an angle θ = π/3, l is the workspace’s
length. We follow the setting of traditional grasp tasks [Jiang et al., 2021] and set the total number of
interactions to 6, meaning that the policy is expected to complete the grasp of all six targets in six
intervals. Thus, the robot arm is allotted a single observation of the environment per object. As shown
in Figure 5, at each interaction interval, there are 4 steps to grasp an object. The robotic arm has to first
acquire observations at the beginning of each grasping. Upon perceiving the observation, an action
sequence at:t+15 is executed to grasp the target object and then place the object in the target box. The
time limit for grasping one object is set to 30s. The robot need to move to a predefined location for
capturing image (images are transformed into a 512-dim vector). Action space is 3-dim2, the reward
function encourages policies to maximize the grasping success rate and motion smoothness.

Baselines. Online RL demands extensive exploration, resulting in low sample efficiency. Besides,
Online RL accidental random exploration may lead to robot arm damage. Thus, we opt for offline

2The action denotes the coordinates expected to be reached by the hand, the defualt underlying planning
algorithm generates the motion trajectory via the expected coordinates).
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RL commonly utilized in robot scenarios, i.e. TD3+Behavior Cloning (TD3-BC) [Fujimoto and Gu,
2021], to serve as the backbone. Methods: (1) Vanilla TD3-BC. (2) Multistep TD3-BC, same as
Multistep-TD3 used in the section 5.1 (3) Dense observation + TD3-BC. An extra camera provides
dense observation every 3 seconds, and the robot arm still has to move to the observing position at
the start of each episode to eliminate differences caused by the observing motion.

Evaluation metrics. (1) Grasp success rate (GSR), the ratio of successfully grasping the objects.
(2) Declutter rate (DR), the average ratio of objects removed after successful grasping. (3) Motion
smooth ratio (MSR): grasp time

total time , evaluating whether the motion is smooth and natural (pauses and
shaking can result in lower scores). All results are averaged over 15 simulation rounds.

5.2.2 Performance of real-world Robot Arm Grasping

Method MSR(%) GSR(%) DR(%)

MARS + TD3-BC 70.8 74.2 82.9
Multistep + TD3-BC 70.5 61.5 69.4
Dense obs + TD3-BC 65.3 59.1 70.7

Vanilla TD3-BC 22.5 34.1 27.3

Table 1: Performance of the robot arm grasping task.

The overall comparison is presented in Table 1.
The results show that due to the sparse interac-
tion, the vanilla TD3-BC fails to complete the
task and frequently pauses or takes unnatural
motions during the execution. While the per-
formance of TD3-BC is significantly improved
with additional dense observations, it remains
unsatisfactory due to the lack of real-time feedback. Moreover, the use of extra cameras results in
higher costs of the experiment. Although Multistep + TD3-BC helps smoothen the motion, it fails to
effectively mitigate the instability caused by Intermittent-MDP. MARS addresses the limitation of the
vanilla Multistep + TD3-BC, which makes TD3-BC complete the task with high quality. We provide
the corresponding motion pattern for each method. To further verify the effectiveness of MARS
combined with online RL on fixed interaction interval control task. The results in the Appendix C.2
show that our method outperforms the baselines on all four tasks.

5.3 Generalization of MARS (RQ3)

We further test MARS with popular RL algorithms on three random interaction interval tasks: Hopper,
Walker, and Maze hard. We maintain consistent parameters for each method and implement them
based on the publicly available codebase. We train each RL algorithm with dense interactions as
baselines and compare them with MARS-enhanced methods under the random interaction interval
setting. Results in Appendix C.3 shows that all methods can learn effective policies with the help of
MARS and the converged performance is comparable to the perfect interaction settings.

5.4 Ablation Study and Visual Analysis (RQ4)

（a)  Constant Hopper （b) 2D t-SNE visualizations

MARS_action_transition_scale

Vanilla_VAE 
MARS_state_dynamic_prediction
MARS_with_all_module

(a) Random Intermittent-MDP Hopper            (b) 2D t-SNE visualizations

Figure 6: Ablation study, the curve and shade denote the
mean and a standard deviation of the returns over 5 runs.

We conducted evaluations on the key compo-
nents of MARS, i.e. action transition scale and
state dynamic prediction. Figure 6 (a) shows
that both components optimize the latent space
and improve the learning efficiency of DRL poli-
cies. MARS performs best when both modules
are integrated. A comprehensive analysis is
shown in Appendix C.4. Figure 6 (b) uses t-
SNE [van der Maaten and Hinton, 2008] to vi-
sualize the latent action representations. We color each action based on its impact on the environment.
Results show that actions with a similar impact, i.e., δst,st+c , on the environment are clustered
closely, which indicats that the learned action representation is dynamic smooth. Besides, results
in Appendix C.5 improve the robustness of MARS to different interaction interval settings. Results
in Appendix C.6 show the influence of latent space dimensions on MARS. Lastly, an analysis of
self-supervised training steps can be found in Appendix C.7.

6 Conclusion and Limitation

In this paper, we observe that previous DRL methods fail to learn effective policies in intermittent
control scenarios because of the discontinue interaction. To improve the performance of DRL on
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such tasks, we propose Multi-step action representation (MARS) to construct a reliable multi-step
latent action space. Based on this latent action space, DRL methods can make effective advance
decisions to ensure the smoothness and efficiency of the agent’s motion when it cannot interact
with the environment. MARS outperforms baselines in a variety of fixed and random interaction
intervals control tasks. Additionally, MARS has potential for improvement in represent extremely
long action sequences, which we will address by identifying more powerful representation models,
e.g. transformer based VAE, in the future.
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A Preliminaries

Markov Decision Process (MDP). A standard MDP can be represented as a tuple: (S,A,P,R, γ, T ),
where S denotes the state set, A denotes an action set, P is the transition function: S×A×S → [0, 1]
and R is the reward function: S × A → R. γ ∈ [0, 1) is a discount factor and T is the decision
horizon. The target of the agent is to optimize its policy to maximize the expected discounted
cumulative reward.

Frameskip. Frame-skipping may be viewed as an instance of (partial) open-loop control, under which
a predetermined sequence of (possibly different) actions is executed without heed to intermediate
states. Aiming to minimize sensing, Kalyanakrishnan et al. [2021] proposes a framework for
incorporating variable-length open-loop action sequences in regular (closed-loop) control. The
primary challenge in general open-loop control is that the number of action sequences of some
given length d is exponential in d. Consequently, the main focus in the area is on policies to prune
corresponding data structures [Braylan et al., 2015]. Since action repetition restricts itself to a
set of actions with size linear in d, it allows for d itself to be set much higher in practice. With
frame-skipping, the agent is only allowed to sense every d state: that is, if the agent has sensed a state
st at time step t >= 0, it is oblivious to statesst+1, st+2, ..., st+d−1, and next only observes st+d.

Variational Auto-encoder. The variational auto-encoder (VAE) is a directed graphical model with
certain types of latent variables, such as Gaussian latent variables. A generative process of the
VAE is as follows: a set of latent variable z is generated from the prior distribution pθ(z) and
the data x is generated by the generative distribution pθ(x|z) conditioned on z : z ∼ pθ(z), x ∼
pθ(x|z). In general, parameter estimation of directed graphical models is often challenging due to
intractable posterior inference. However, the parameters of the VAE can be estimated efficiently in
the stochastic gradient variational Bayes (SGVB) framework, where the variational lower bound of
the log-likelihood is used as a surrogate objective function. In this framework, a proposal distribution
qθ(x|z), which is also known as a “recognition” model, is introduced to approximate the true posterior
pθ(x|z). The multilayer perceptrons (MLPs) are used to model the recognition and the generation
models. Assuming Gaussian latent variables, the first term of Equation A can be marginalized,
while the second term is not. Instead, the second term can be approximated by drawing samples
z(l)(l = 1, ..., L) by the recognition distribution qθ(x|z), and the empirical objective of the VAE with
Gaussian latent variables is written as follows:

LV AE(ϕ, ψ) =
1

L

∑
θ

(x|z(l))−KL
(
qϕ(z|x)||N(0, I)

)
(11)

B Experimental Details

B.1 NETWORK STRUCTURE

Layer Actor Network Critic Network

Fully Connected (state dim, 256) (statedim + υ dim + latent space dim, 128)
Activation ReLU ReLU

Fully Connected (256, 128) (256, 128)
Activation ReLU ReLU

Fully Connected (128,latent space dim) and υ dim (128, 1)
Activation Tanh None

Table 2: Network Structures for DRL Methods

Our codes are implemented with Python 3.7.9 and Torch 1.7.1. All experiments were run on a
single NVIDIA GeForce GTX 3090 GPU. Each single training trial ranges from 4 hours to 17 hours,
depending on the algorithms and environments. We will open source code in the near future.

Our TD3 is implemented with reference to github.com/sfujim/TD3 (TD3 source-code).
DDPG and PPO are implemented with reference to https://github.com/sweetice/
Deep-reinforcement-learning-with-pytorch. For a fair comparison, all the baseline meth-
ods have the same network structure (except for the specific components of each algorithm) as our
MARS-TD3 implementation. As shown in Tab.2, we use a two-layer feed-forward neural network of
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Model Component layer dimension

Conditional Encoder Network

Fully Connected (encoding) (Rx, 256)
Fully Connected (condition) (stae dim + υ dim, 256)

Element-wise Product ReLU (encoding), ReLU(condition)
Fully Connected (256, 256)

Activation ReLU
Fully Connected (mean) (256, latent space dim)

Activation None
Fully Connected (log std) (256, latent space dim)

Activation None

Conditional Decoder, Prediction Network

Fully Connected (latent) (latent space dim, 256)
Fully Connected (condition) (stae dim +υ dim, 256)

Element-wise Product ReLU (encoding), ReLU(condition)
Fully Connected (256, 256)

Activation ReLU
Fully Connected (υ) (256, action dynamic transition)

Activation None
Fully Connected (reconstruction) (256, multi-step action dim)

Activation None
Fully Connected (256, 256)

Activation ReLU
Fully Connected (prediction) (256, state dim)

Activation None
Table 3: Network structures for the Multi-step action representation (MARS).

256 and 256 hidden units with ReLU activation (except for the output layer) for the actor network
for all algorithms. For DDPG the critic denotes the Q-network. For PPO, the critic denotes the
V-network. All algorithms (TD3, DDPG, PPO) output two heads at the last layer of the actor network,
one for latent action and another for dynamic transition potential.

The structure of MARS is shown in Tab.3. We use element-wise product operation [Mahmood et al.,
2018] and cascaded head structure [Fuchs et al., 2021] to our model[Ma et al., 2024, 2022].

B.2 Hyperparameter

For all experiments, we use the raw state and reward from the environment, and no normalization or
scaling is used. No regularization is used for the actor and the critic in all algorithms. An exploration
noise sampled from N(0, 0.1) [Dong et al., 2009] is added to all baseline methods when selecting an
action. The discounted factor is 0.99 and we use Adam Optimizer [Li et al., 2016] for all algorithms.
Tab.4 shows the common hyperparameters of algorithms used in all our experiments.

Hyperparameter Frameskip-TD3 Multistep-TD3 MARS-PPO MARS-TD3 MARS-DDPG

Actor Learning Rate 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4

Critic Learning Rate 1e−3 1e−3 1e−3 3e−4 3e−4 1e−3

Representation Model Learning Rate None None None 1e−4 5e−3 5e−3

Discount Factor 0.99 0.99 0.99 0.99 0.99 0.99
Batch Size 128 128 128 128 128 128
Buffer Size 1e5 1e5 1e5 1e5 1e5 1e5

Table 4: A comparison of common hyperparameter choices of algorithms. We use ‘None’ to denote the ‘not
applicable’ situation.

B.3 Additional Implementation Details

For PPO, the actor network and the critic network are updated every 2 and 10 episode respectively
for all environments. The clip range of the PPO algorithm is set to 0.2 and we use GAE [Sutton
and Barto, 2018] for a stable policy gradient. For DDPG, the actor network and the critic network is
updated at every 1 environment step. For TD3, the critic network is updated every 1 environment
step and the actor network is updated every 2 environment steps.

The default latent action dim is 8, we set the KL weight in representation loss LMARS as 0.5.
Environment dynamic prediction loss weight β is 5 (default).
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C Additional experiment

C.1 Performance of model-based reinforcement learning algorithms on Intermittent-MDP
tasks.

Methods Ant (fixed-Intermittent) Hopper (fixed-Intermittent) Ant (random-Intermittent) Hopper (random-Intermittent)

TD-MPC 1795.4± 375.6 1795.4± 214.8 1447.2± 694.8 1073.6± 157.1
Dreamer-v2 1648.2± 417.5 788.1± 116.4 1064.7± 694.8 974.7± 201.8

TD3-multistep 2673.6± 316.8 1359.7± 258.3 2795.4± 264.1 1211.6± 169.5
MARS-TD3 2572.9± 248.1 3762.7± 371.4 3105.7± 412.6 2647.9± 204.8

Table 5: Comparison between MBRL and MFRL in intermittent control tasks, average of 3 runs.

The results in Table 5 show that the model-based reinforcement learning approach is significantly
lower than our approach in all four scenarios, and even slightly worse than using TD3 for direct
multi-step decision making. We analyze that this is because the errors caused by the mismatch
(sub-optimal) of the dynamic model will accumulate due to multi-step decision-making, resulting in
sub-optimal policy. Unfortunately, the training of dynamic models is data hungry (high cost), that
is, a large amount of high-quality expert data is required to ensure the accuracy of the model shop,
which is difficult to obtain, especially in real-world scenarios.

C.2 Validation of the combination of MARS and online methods

Figure 7: The performance of the methods on four simulated tasks. The curve and shade denote the mean and a
standard deviation over 5 runs.

We use the mainstream online reinforcement learning algorithm TD3 in combination with MARS and
compare it with the baseline mentioned in Sec.5.1 in four tasks. We set the interval to 10 time steps,
requiring the policy to generate an effective action sequence at:t+9 based on the received state st.

For all tasks, we set the dimension of zt to 12 and the scaling parameter β to 4. We set the warm-up
(stage 1) step to 300000 and 100000 for the Mujoco tasks and the navigation task respectively. The
results in Figure 7 show that MARS-TD3 outperforms the other baselines in all fixed Intermittent-
MDP tasks and achieve comparable performance with perfect-TD3 in most tasks. This further
proves that MARS can effectively improve the effectiveness of Online DRL on fixed Intermi
tasks.

C.3 Generalization of MARS

We test MARS with popular RL methods on three tasks: Hopper, Walker, and hardMaze. To make
the experiment fair, we used the same parameters for all methods and implemented them based on
public code. We use each RL algorithm to train on three tasks under the ideal setting and compare
them with their corresponding improvement methods. To show the optimal score after the algorithm
convergence, we train all the algorithm’s 2000000 time steps. The results in Tab.6 show that all
methods can learn effective policies with the help of MARS and perform similarly to their ideal
settings. The differences in scores are mainly due to the variation in performance of the RL algorithms.
In summary, MARS can be combined with different methods to provide a reliable action space for
solving Intermittent-MDP as normal MDP with RL.

C.4 Details of Ablation study
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Benchmarks MARS-PPO MARS-DDPG MARS-TD3

Maze hard 256 | 0.7 ↑ 243 | 2.5 ↑ 311 | 16.3 ↑
Hopper 2851.4 | 13.5 ↓ 1815.6 | 184.3 ↑ 3384 | 53.1 ↑
Walker 3831.2 | 285.1 ↓ 1032.7 | 201.9 ↓ 4821.6 | 427.6 ↑

Table 6: The parameters of all methods are optimized by grid search. The results of applying MARS to popular
RL algorithms on three random interaction interval tasks. The maximum interaction interval is set to 8. Each
data in the table is in the following format: MARS-RL score | the score difference compared to the perfect dense
interaction baseline. ↓ denotes the score of MARS lower than the dense interaction baseline. ↑ denotes the score
of MARS is higher. All scores are averaged over 5 runs.

Interaction interval : 4 time step Interaction interval : 10 time step

Interaction interval :  16 time step Interaction interval :  22 time step

MARS-TD3

MARS-TD3 MARS-TD3

MARS-TD3

(a) Fixed Intermittent-MDP scenarios

Interaction interval : 4 time step Interaction interval : 10 time step

Interaction interval :  16 time step Interaction interval :  22 time step

MARS-TD3

MARS-TD3 MARS-TD3

MARS-TD3

(b) Random Intermittent-MDP scenarios

Figure 9: The curve and shade denote the mean and a standard deviation over 5 runs.
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Figure 8: Details of ablation study. The curve and shade denote the mean and
a standard deviation over 5 runs.

We conducted two exper-
iments to show how well
the two mechanisms of
MARS work together. Al-
though the results of ran-
domized Intermittent-MDP
and fixed Intermittent-MDP
are slightly different, the
same conclusion can be de-
rived: The green curves in
Figure 8 demonstrate that
the representation model
with increased action transition scale is much better than the original VAE. This means that dy-
namic transition potential can create an latent action space by explicitly modeling the dependence
between multi-step actions. The blue curves also show that VAE with state dynamic prediction is
better than the original VAE because it can represent action sequences that have similar environmental
effects at close locations. Finally, the red curves show that the two mechanisms work well together in
MARS, and combining them improves representation ability.

C.5 Validity verification of multi-style interaction intervals

To further demonstrate the effectiveness of MARS in diverse intermittent control scenarios. For
fixed interaction control tasks, we uniformly set the forbidden interaction duration and conducted
four experiments on Hopper. The results in Figure 9(a) show that MARS can solve most tasks
effectively and still guarantee good scores at long intervals, but the effectiveness of MARS decreases
significantly when the interval is too long (which is not common in real-world scenarios). We believe
that this is because VAE is unable to effectively characterize excessively long sequences, leading to
the failure of multi-step action space modeling.
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Figure 10: The curve and shade denote the mean and a standard deviation over 5 runs.

In addition, to observe the sensitivity of MARS to interaction intervals on random Intermittent-MDP
tasks, we uniformly set the forbidden interaction duration and conducted four experiments on Hopper.
The results in Figure 9(b) show that in random Intermittent-MDP scenarios, MARS performs well
in both short and medium-interval scenarios. However, convergence changes slowly in the very
long interval scenario, and the score is only half that of the medium interval task. Because MARS’s
representational capabilities are not perfect for modeling long action sequences for extremely long-
spaced tasks (even if this setting rarely occurs in real-world scenarios). Therefore, in the future, we
hope to find more suitable representation models to overcome this problem.

C.6 The influence of Latent action space dimension on algorithm effect

The representation space dimension of VAE is an important hyperparameter. If the latent space
dimension is too low, a large amount of original data information will be lost, resulting in invalid
representation space. On the contrary, when the latent space dimension is too large, the calculation
amount of the model will be increased. To verify the sensitivity of MARS to latent space dimensions,
we test it on two tasks with different original action dimensions. We set up four sets of latent
space dimensions for fixed Intermittent-MDP Hopper (interaction interval time step: 8, original
action dimension: 3, so the action sequence dimension to be modeled is 24). The learning curve in
Figure 10(a) shows that for raw data of such high dimensions, when the latent space dimension is set
too low, the latent space information will be lost, resulting in the convergence failure of reinforcement
learning policies. On the contrary, too high a latent space dimension increases the complexity of
reinforcement learning policy exploration.

In addition, we set up four comparison experiments on the 2dmaze task with a lower dimension of the
original action sequence (interaction interval time step: 4, original action dimension: 2, so the action
sequence dimension to be modeled is 8). The experimental results in Figure 10(b) show that the
suboptimal policy can be learned when the latent space dimension is low, because the original data
dimension is low. So the low-dimensional latent space loses less information. The score increases as
the latent space dimension increases. However, when the latent space dimension is too high, the score
will drop significantly, which is because of the exploration difficulties brought by high-dimensional
latent space.

C.7 The influence of environment steps of warmup stage

In this section, we conduct some additional experimental results for a further study of MARS from
different perspectives: We provide the exact number of samples used in the warm-up stage (i.e.,
stage 1 in Algorithm 1 in each environment in Tab.7. The number of warm-up environment steps
is about 5% ∼ 10% of the total environment steps in our original experiments. Moreover, we also
conducted some experiments to further reduce the number of samples used in the warm-up stage (at
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most 80% off). See the colored results in Tab.7. MARS can achieve comparable performance with
< 3% samples of the total environment steps.

Conclusion: The number of warm-up environment steps is about 5% ∼ 10% of the total environment
steps in our original experiments. The number of warmup environment steps can be further reduced
by at most 80% off (thus leading to < 3% of the total environment steps) while the comparable
performance of our algorithm remains.

Environment Warm-up steps (original) Warm-up steps (new) Total Env. Steps

Hopper 400000(0.08|3219.1) 100000(0.02|3086.4) 5000000
Ant 400000(0.08|4305.7) 100000(0.02|4025.6) 5000000

Walker 400000(0.08|4961.3) 100000(0.02|4792.6) 5000000
HalfCheetah 400000(0.08|6593.2) 100000(0.02|6071.2) 5000000

2dmaze-medium 100000(0.083|127.8) 30000(0.025|118.5) 1200000
2dmaze-hard 100000(0.083|327.6) 35000(0.0292|296.1) 1200000

Table 7: The exact number of samples used in warm-up stage training in different environments. The
column of ‘original’ denotes what is done in our experiments; the column of ‘new’ denotes additional
experiments we conduct with fewer warm-up samples (and proportionally fewer warm-up training). For
each entry x(y|z), x is the number of samples (environment steps), y denotes the percentage number of

warm−up environment steps
number of total environment steps during the training process

, and z denotes the corresponding performance of
MARS-TD3.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations can be seen in Sec.6 of main paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Please refer to Sec.3 of the main paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code link can be found in abstrct, and the hyperparameter setting can be
found in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: The code link can be found in abstrct, and the hyperparameter setting can be
found in Appendix B.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental detail can be found in Sec. 5.1 of the main paper and
Appendix B.1. The hyperparameter setting can be found in Appendix B.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are accompanied by error bars, confidence intervals. We detail the
calculation of error bars, running steps and the number of seeds in the text description of
each figure.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The Experiments Compute Resources can be found in Appendix B.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We make sure to preserve anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is only about promoting technological innovation and does not have
social impact

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Ours paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package, and state which
version of the asset is used (include a URL).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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