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ABSTRACT

Topological neural networks (TNNs) enable leveraging high-order structures on
graphs (e.g., cycles and cliques) to boost the expressive power of message-passing
neural networks. In turn, however, these structures are typically identified a priori
through an unsupervised graph lifting operation. Notwithstanding, this choice is
crucial and may have a drastic impact on a TNN’s performance on downstream
tasks. To circumvent this issue, we propose ∂lift (DiffLift), a general framework
for learning graph liftings to hypergraphs and cellular- and simplicial complexes in
an end-to-end fashion. In particular, our approach leverages learned vertex-level
latent representations to identify and parameterize distributions over candidate
higher-order cells for inclusion. This results in a scalable model which can be
readily integrated into any TNN. Our experiments show that ∂lift outperforms
existing lifting methods on multiple benchmarks for graph and node classification
across different TNN architectures. Notably, our approach leads to gains of up to
45% over static liftings, including both connectivity- and feature-based ones.

1 INTRODUCTION

Topological neural networks (TNNs) (Papillon et al., 2023b; Bodnar et al., 2021a; Verma et al., 2024)
have recently emerged as a prominent class of models for learning on topological domains, such as hy-
pergraphs and simplicial complexes, with many researchers arguing they represent the new frontier for
relational learning (Papamarkou et al., 2024). Akin to graph neural networks (GNNs) (Scarselli et al.,
2009; Gilmer et al., 2017), typical TNNs employ message-passing layers where each element of the
input (e.g., nodes or cells) updates its representation (features) based on those of its topological neigh-
bors. Thus, these models generalize convolution-like operations on graphs to higher-order relational
objects. Importantly, the primary application of TNNs has been to enhance the capabilities of graph-
based models, particularly in terms of expressivity (Bodnar et al., 2021a;b). In this context, the input
graphs must first be transformed to the domain on which a TNN operates — a process known as lifting.
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Figure 1: [Left] Lifting to different domains can lead to disparate
performances. Accuracies taken from the best TNNs in (Telyat-
nikov et al., 2024). [Right] Performances of liftings to the same
domain (hypergraph) vary greatly. Values taken from Table 4.

Lifting methods explore graph connec-
tivity and features to create higher-
order relational structures. For in-
stance, clique lifting (Bodnar et al.,
2021b) produces a simplicial complex
by leveraging cliques in the input graph
while cycle lifting (Hajij et al., 2022)
detects cycles to create a cell complex.
In general, there are many lifting pro-
cedures for each topological domain —
c.f. Tab. 3 in Telyatnikov et al. (2024).

Not surprisingly, the optimal choice of topological domain and lifting procedure for each task is non-
obvious, and its impact on performance is highly data-dependent. Figure 1 compares TNNs on differ-
ent domains, showing opposite behaviors depending on data, even within the same topological domain.

Strikingly, despite the high impact of the lifting operation on TNNs, most lifting methods are not
supervised and thus not informed by the task at hand (Hajij et al., 2022; Telyatnikov et al., 2024),
which may lead to suboptimal architectures. To date, differentiable lifting has only been explored
in the context of cell complexes (Battiloro et al., 2023).
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Figure 2: Overview of ∂lift. For a given input graph, we first compute node embeddings using GNNs.
Then, we use these embeddings to select cells/hyperedges. Cell-level embeddings run through MLPs
responsible for returning acceptance probabilities. For hierarchical domains (e.g., cell complexes),
cells are generated in increasing dimensionality. From the accepted cells, we form a relational object
that is sent to an off-the-shelf TNN for graph/node-level predictions. The model is trained end-to-end.

This work proposes ∂lift (DiffLift) – a general, differentiable lifting framework applicable to various
domains, including hypergraphs and simplicial/cell complexes. Our method uses a probabilistic
approach to sample candidate cells of adaptive sizes. Specifically, we parameterize distributions over
cells using node embeddings derived from arbitrary graph models (e.g., GNNs or Graph Transformers
(Rampášek et al., 2022)). For each candidate cell, we compute its embedding and use a multilayer
perceptron (MLP) to estimate the probability of accepting or rejecting the cell — that is, determining
whether it should be included in the output structure. Figure 2 provides a schematic overview of ∂lift.

To model the typical hierarchical structure of topological objects, we propose an iterative sampling
procedure, where cells are generated in increasing order of dimensionality: samples of dimension
i are used to inform the sampling of dimension (i + 1)-cells. Notably, our approach generalizes
across multiple topological domains and can be seamlessly integrated into standard TNN pipelines.

We evaluate ∂lift on 12 datasets spanning graph and node classification tasks using four different
TNN models. Our results show that ∂lift consistently outperforms unsupervised lifting methods in
nearly all graph-level classification benchmarks — achieving superior performance in 22 out of 24
experiments, often by a substantial margin. These gains are robust across all TNN architectures. For
example, when using CW Networks (Bodnar et al., 2021a), ∂lift yields performance gains of up to
45%. For node classification, ∂lift achieves competitive performance relative to static lifting methods
and outperforms DCM (Battiloro et al., 2023) (a differentiable lifting baseline) overall. Additionally,
we analyze the sensitivity of ∂lift to the choice of its GNN component, highlighting that while this
choice often impacts the overall performance, our design is robust and produces strong empirical
results even when adopting simple GNNs (e.g., graph isomorphism networks (Xu et al., 2019)).

2 BACKGROUND

This section overviews the main types of relational structures and respective neighborhood notions,
message-passing networks for relational data, and graph lifting methods. In the following, we assume
readers are familiar with basic notions in topology; see (Munkres, 2000) for reference.

Graphs and hypergraphs. We denote an undirected graph as a tuple G = (V,E) where V is a set
of vertices (or nodes) and E is a set of unordered vertex pairs, i.e., edges. The set of neighbors of
a node v in G is denoted by NG(v) = {u ∈ V : {v, u} ∈ E}. Hypergraphs generalize graphs by
allowing edges to connect multiple nodes. Formally, a hypergraph on a nonempty set V is a pair
(V,K), where K ⊆ 2V \ ∅ and its elements are called hyperedges.

Simplicial complexes are topological spaces comprised of simple mathematical objects called
simplices (points (0-simplices), line segments (1-simplices), triangles (2-simplices), and their
higher-dimensional analogues). In particular, an abstract simplicial complex (ASC) over a vertex
set V is a set K of subsets of V (the simplices) such that, for every σ ∈ K and every non-empty
τ ⊂ σ, we have that τ ∈ K. Thus, we can define ASCs as a family of subsets K ⊆ 2V of V that
is closed under taking subsets. The dimension of a simplex is equal to its cardinality minus 1, and
the dimension of an ASC is the maximal dimension of its simplices. We say τ is on the boundary
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Simplicial ComplexGraph Cell Complex Combinatorial ComplexHypergraph

Figure 3: Examples of topological domains.

of a simplex σ, denoted by τ ≺ σ, iff τ ⊂ σ and there is no δ such that τ ⊂ δ ⊂ σ, i.e., ≺ defines
the boundary relation of K. We note that undirected graphs correspond to 1-dimensional ASCs.

Cell complexes. A regular cell complex (Hansen and Ghrist, 2019) is a topological space X with a
partition {Xσ}σ∈PX

of subspaces Xσ of X called cells such that

1. For each x ∈ X , there is an open neighborhood of x that intersects finitely many cells;
2. For all σ, τ ∈ PX , Xτ ∩Xσ ̸= ∅ only if Xτ ⊆ Xσ, where Xσ denotes the closure of Xσ (the

intersection of all closed sets containing Xσ);
3. Every cell Xσ is homeomorphic to RDσ for some Dσ which we call Xσ’s dimension;
4. For all σ ∈ PX , there is a homeomorphism ϕ of a closed ball in RDσ to Xσ such that the

restriction of ϕ to the interior of the ball is a homeomorphism onto Xσ .

Importantly, the conditions (2) and (4) impose a poset structure τ ≤ σ ⇐⇒ Xτ ⊆ Xσ which fully
characterizes the topology of the underlying cell complex X . This topological information can be
described by the boundary relation ≺ between two cells: σ ≺ τ iff σ < τ and there is no cell δ such
that σ < δ < τ , where < denotes the strict version of the partial order ≤ above. We note that the
class of cell complexes subsumes simplicial complexes. For more details on cell complexes, we
refer to Hatcher (2002); Bodnar et al. (2021a).

Combinatorial complexes. A combinatorial complex (CC) (Hajij et al., 2022) is a tuple (V,K, rk)
where V is a finite set, K ⊆ 2V \∅ comprises a set of cells, and rk : K → Z≥0 is a ranking function s.t.

1. For all v ∈ V, {v} ∈ K;
2. For all σ, σ′ ∈ K,σ ⊆ σ′ =⇒ rk(σ) ≤ rk(σ′).

The idea of CCs is to generalize hierarchical structures (e.g., simplicial complexes) by imposing
mild relationships between cells via ranking functions — CCs only require the order-preserving
property in condition (2) — while being flexible to accommodate non-hierarchical structures such
as hypergraphs. Figure 3 depicts the most popular relational structures in topological deep learning.

Neighborhood structures. We can exploit boundary relations (or rank functions) to specify local
neighbors for each cell. In particular, Bodnar et al. (2021b) introduce four neighborhood structures:

• Boundary and co-boundary: NB(σ) = {τ : τ ≺ σ} and NC(σ) = {τ : σ ≺ τ}, respectively
• Upper/lower adjacency:N↑(σ)={τ : ∃δ st τ ≺ δ, σ ≺ δ} andN↓(σ)={τ : ∃δ st δ ≺ τ, δ ≺ σ}

Analogs of these neighborhoods can also be obtained via ranking functions (Hajij et al., 2022).

Features / signals. In this work, we consider relational structures equipped with features. Let K be
a set of cells or hyperedges of a relational domain. Its attributed counterpart is a tuple (K, x) where
x : K → Rd assigns a feature vector x(σ) to each cell σ. Hereafter, we denote the features of σ by xσ .

Topological neural networks (TNNs). Most TNNs use message-passing mechanisms to obtain cell-
level representations (Papillon et al., 2023b). In particular, letNi be a finite sequence of neighborhood
structures, NC(σ, τ) = NC(σ) ∩ NC(τ), and NB(σ, τ) = NB(σ) ∩ NB(τ). In its general form,
starting from h0

σ = xσ for all σ, a message-passing TNN (Bodnar et al., 2021a) recursively computes

mℓ
i,σ =


{{ϕℓ,i(h

ℓ
τ , h

ℓ
σ, h

ℓ
δ) : τ ∈ Ni(σ), δ ∈ NB(σ, τ)}}, if Ni = N↓

{{ϕℓ,i(h
ℓ
τ , h

ℓ
σ, h

ℓ
δ) : τ ∈ Ni(σ), δ ∈ NC(σ, τ)}}, if Ni = N↑

{{ϕℓ,i(h
ℓ
τ , h

ℓ
σ) : τ ∈ Ni(σ)}}, otherwise.

(1)

hℓ+1
σ = φ

(
hℓ
σ,
⊗
i

Aggℓ
(
mℓ

i,σ

))
(2)
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where hℓ
σ is the embedding of σ at layer ℓ,

⊗
and Aggℓ are inter- and intra-neighborhood aggregation

functions, respectively, and φ is an update function (e.g., MLP).

Graph lifting. A graph lifting is a map lift : G → T from the space of attributed graphs, G, to a
target domain, T, such that G ∼=G G′ =⇒ lift(G) ∼=T lift(G′), where ∼=T denotes the isomorphism
relation in domain T. One of the most widely used methods for lifting graphs to cell complexes is
cycle lifting (Bodnar et al., 2021a). This is a static (non-learnable) approach that constructs 2-cells
by identifying basic cycles (elements of a cycle basis) or chordless cycles (Bodnar et al., 2021a) in
input graphs. Specifically, the vertices involved in a basic cycle are grouped to form a 2-cell in the
resulting cell complex. A cycle basis of a graph G is a minimal set of cycles such that any other cycle
in G can be expressed as a modulo-2 sum of cycles from this set.

3 DIFFERENTIABLE LIFTING

In this section, we introduce ∂lift (read DiffLift), a general framework for learning graph lifting
functions. Section 3.1 provides an iterative description of our method, allowing for learning structures
of increasingly higher order — when the target domain is hierarchically structured. Section 3.2 and
Section 3.3 instantiate ∂lift for graph-to-hypergraph and graph-to-cell-complex liftings, respectively.
Moreover, we formulate our approach for simplicial- and combinatorial complexes in Appendix A.

3.1 GENERAL FORMULATION

Lifting consists of determining which higher-order cells should be added to an input graph G,
satisfying the constraints of the target domain. To do so, we propose the following recipe.

∂lift : general recipe for differentiable graph liftings

Input: Attributed graph G = (V,E, x), target domain T, and maximum dimension Dmax.

Step 1: Compute node embeddings. Use an arbitrary GNN to compute a vector representa-
tion (embedding) zv for each node v ∈ V . This GNN component can be either a pre-trained
model or learned end-to-end. Set the current domain dimension to D = 1.

Step 2: Elicit candidate cells. Given the node embeddings {zv}v∈V , define a set of
candidate cells C ⊆ 2V of dimension D. For each cell C ∈ C, compute an embedding
zC =

⊕
v∈C zv, where

⊕
is an arbitrary permutation-invariant aggregation function. Note

that the exact procedure for defining candidate cells depends on the target domain T, as
candidates must respect possible hierarchical constraints.

Step 3: Accept/reject candidate cells. Apply a neural network ϕ (e.g., an MLP) that defines
an acceptance probability ϕ(zC) for each candidate cell C. Finally, draw a sample yC from
a Bernoulli distribution with parameter ϕ(zC) indicating whether cell C is accepted or not.
The resulting domain is then given by V ∪ E ∪ {C ∈ C : yC = 1 with yC ∼ Ber(ϕ(zC))}.

Step 4: Termination check. If D = Dmax, halt; otherwise, D ← D + 1 and return to Step 2.

Importantly, ∂lift is learned in an end-to-end fashion, using the straight-through estimator (Bengio
et al., 2013) to propagate gradients through samples at Step 3. For hypergraphs, we assume
hyperedges have dimension one, causing ∂lift to stop once it reaches Step 4. We note that Steps
2 and 3 are the only domain-dependent ingredients of our algorithm. Next, we explain how these
steps can be adapted to specific domains.

3.2 GRAPH-TO-HYPERGRAPH LIFTING

⇒[Step 2] For notational convenience, suppose we wish to learn up to one hyperedge per node.
For each node v, we define a candidate hyperedge C(v) using the kv nearest neighbors of v in the
embedding space:

C(v) = {S ⊂ V : |S| = kv and w /∈ S =⇒ dist(zw, zv) ≥ max
u∈S

dist(zu, zv)}, (3)

4
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Figure 4: Two iterations of ∂lift for cell complexes. At the first iteration, we leverage each node u’s
GNN embedding zu to delineate candidate 1-dim cells. Specifically, we consider cell-equivalent of
edges linking u to each of its ku NNs in embedding space, where ku is a random variable parameter-
ized by zu. We use a set function over the embedding of nodes within each cell to compute their accep-
tance probabilities. At the second iteration onwards, we use cycle lifting in our augmented cell com-
plex to elicit candidate cells, whose acceptance probabilities are computed similarly to the first step.

where dist(·, ·) denotes a dissimilarity metric. Here, we consider the Euclidean distance.

To allow for adaptive hyperedge sizes, we sample kv according to a probability distribution param-
eterized by (a function of) v’s embedding zv. More specifically, we define the (kmax − kmin + 1)-
dimensional probability vector πv ∝ exp ◦MLP(zv) and draw kv ∼ Categorical(πv), where kmin
and kmax are lower- and upper-bounds on kv .

⇒[Step 3] We define the probability of acceptance (i.e., of bv = 1) for C(v) as a function of the
(multiset of embeddings of) nodes in C(v). More specifically, we define bv as

bv ∼ Ber(Ψ({{zu : u ∈ C(v)}})), (4)

where Ψ is learned and maps from multisets (i.e., Ψ is order-invariant) of elements in Rd to (0, 1).

Feature lifting. Each accepted hyperedge C(v) receives a feature vector xC(v) computed as a
multiset operation over {{xu : u ∈ C(v)}}. Specifically, we employ a scaled sum projection:

xC(v) =
1

kv

∑
u∈C(v)

xu, ∀v such that bv = 1. (5)

3.3 GRAPH-TO-CELL-COMPLEX LIFTING

For computational reasons, we split the lifting procedure for cell complexes into two cases. We
provide an overview of our proposed graph-to-cell-complex lifting in Figure 4.

Case D = 1: Learning edges

⇒[Step 2] Similarly to Step 2 of graph-to-hypergraph lifting, for each node v, we sample a
neighborhood size kv and define a set C(v) ⊆ V \ {v} containing the nodes associated with the kv
nearest neighbors of v in the embedding space, excluding v itself.

⇒[Step 3] Next, we construct candidate edges (1-cells) by considering each pair (v, v′) and
define their probability of acceptance (i.e., of bv,v′ = 1) as a function of the embeddings of v and v′.
Specifically, we set bv,v′ ∼ Ber (Ψ({{zv, zv′}})), where Ψ is an order-invariant function.

At end of this iteration, the obtained cell complex is given by:

K1 = V ∪ E ∪ {{v, v′} : v ∈ V, v′ ∈ C(v) with bv,v′ = 1}. (6)

Regarding feature lifting, we apply scaled sum projection, identically to the hypergraph case.

Case D ≥ 2: Learning D-cells

To select candidate cells of arbitrary dimension, we need the notion of n-cycles of a cell complex.
Let Cn(K) denote the n-chains of the cell complex K equipped with Z/2Z-vector space structure.
Also let ∂n : Cn(K)→ Cn−1(K) be the boundary linear map on K. Then, the n-cycles of K are
given by Zn(K) = ker(∂n). We provide further details in the supplementary material.
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⇒[Step 2] Let KD−1 be the cell complex at the end of iteration D − 1. We select a basis for
(D−1)-set of cycles ZD−1(K

D−1) in KD−1 to serve as candidate cells. Recall a basis for cycles is a
minimal collection of cycles such that any cycle can be written as a module-2 sum of cycles in the basis.
We note that we can also employ chordless cycles to define the 2-cells, as in (Bodnar et al., 2021a).

⇒[Step 3] Let C be the set of candidate (D− 1)-cycles from Step 2. We define the probability of
accepting C ∈ C (i.e., setting bC = 1) using a DeepSet model (Zaheer et al., 2017) over the multiset
of embeddings {{zv}}v∈C of all nodes v in C. The output complex at this iteration is then

KD = KD−1 ∪ {C ∈ C : bC = 1}. (7)

For simplicity, again, the features of D-cells are obtained via sum projection lifting.

Remark 1 Despite the generality of ∂lift, in the experiments we only consider 2-dimensional cell
complexes (Dmax = 2) and use the algorithm in (Paton, 1969) (available at the toolbox Net-
workX (Hagberg et al., 2008)) to identify basic 1-cycles in graphs. This is mainly due to the
fact that current implementations of TNNs for cell complexes only support 2-dimensional objects —
for instance, see TopoBenchmarkX (Telyatnikov et al., 2024).

Remark 2 We can obtain a deterministic version of ∂lift using a probability threshold, i.e., we
simply set bC = 1[Ψ(·) > γ] with, e.g., γ = 0.5, for all candidate cells C.

Experiments regarding the deterministic version can be found in the Appendix E.2.

4 RELATED WORKS

Topological deep learning. Traditional graph deep learning methods are limited to modeling only
pairwise interactions, making them unsuitable for capturing higher-order dependencies involving
multiple nodes (Hajij et al., 2022; Papillon et al., 2023a). To address this limitation, a variety of
deep topological learning methods have been developed for hypergraphs (Bai et al., 2021; Yadati
et al., 2019), simplicial complexes (Hajij et al., 2021; Goh et al., 2022; Maggs et al., 2023; Yang
et al., 2022), and cell complexes (Hajij et al., 2022; 2020), the works that are based on the topological
signal processing field (Barbarossa and Sardellitti, 2020; Schaub et al., 2021; Roddenberry et al.,
2022; Sardellitti et al., 2021). (Papillon et al., 2025) also use GNNs to enhance TDL, where the lifted
topological domain is transformed into augmented Hasse graphs. These methods have demonstrated
their effectiveness across several practical applications, including action recognition (Wang et al.,
2022; Hao et al., 2021), bioinformatics (Liu et al., 2022), and neuroscience (Wang et al., 2023).

Liftings to topological domains. Most relational datasets and benchmarks are defined on discrete
structures such as graphs. To apply topological deep learning methods to these datasets, a trans-
formation process known as lifting is required, which maps discrete data into topological domains
(Telyatnikov et al., 2024; Hajij et al., 2022; Bernárdez et al., 2024). This lifting process can be either
predefined – e.g., based on structural features like node proximity or the presence of cycles – or learned
directly from the data (Battiloro et al., 2023; Kazi et al., 2022). Graph structure learning methods
(Qian et al., 2024; Kazi et al., 2022; Franceschi et al., 2019; Topping et al., 2021; Sun et al., 2023; Chen
et al., 2020; Jin et al., 2020) are closely related to the graph lifting literature and can be interpreted as
instances of graph lifting to graph domain. Our approach represents the most general form of learnable
lifting proposed so far and empirically outperforms the aforementioned methods in many benchmarks.

Static liftings. To the best of our knowledge, Bodnar et al. (2021b;a) were the first to combine
static liftings and high-order message passing, focusing on simplicial- and cell complexes. These
static liftings embed a graph into a topological domain by, e.g., aggregating each node’s n-hop
neighborhood or by tracing its cycles. The repertoire of static liftings was later broadened by
the ICML TDL challenge (Bernárdez et al., 2024), which added methods based on kNN, Voronoi
decompositions, and random walks. Our work proposes a more flexible, data-driven approach to
defining liftings, which offers benefits across a range of tasks.
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5 EXPERIMENTS

In this section, we evaluate ∂lift on two complementary tasks: graph classification and node classifica-
tion. We compare it against broadly used lifting schemes for both hypergraphs and cell complexes. We
also report results across different TNNs within each of these domains. We run experiments using Py-
Torch (Paszke et al., 2017) and PyTorch Geometric (Fey and Lenssen, 2019); our code is anonymously
available at https://anonymous.4open.science/r/tdl_knn_lifting_gnn-AD22.

5.1 GRAPH CLASSIFICATION

Datasets. We evaluate model performance on six widely used graph-level benchmark datasets for
molecular property prediction: NCI1, NCI109, MUTAG, MOLHIV, PROTEINS, and ZINC (Kersting
et al., 2016; Dwivedi et al., 2023b; Hu et al., 2020). These datasets are standard benchmarks in the
literature for assessing the effectiveness of graph-based models (Dwivedi et al., 2023a; Telyatnikov
et al., 2024). All tasks are binary classification problems, with the exception of ZINC, which is a
regression task. We provide more details regarding datasets in the Appendix.

Baselines. We compare ∂lift with four existing graph lifting methods: cycle lifting, k-hop lifting,
k-nearest-neighbor (k-NN) lifting, and kernel lifting. Among these, cycle lifting is the most widely
adopted strategy for graph-to-cell-complex liftings and has become the de facto standard in most of
TNNs operating on cell complexes (Telyatnikov et al., 2024). Similarly, k-hop lifting is the predomi-
nant approach for constructing hypergraphs from graphs and is often the sole method considered in re-
cent benchmarks such as (Telyatnikov et al., 2024). We also consider k-NN lifting as it shares similar-
ities with our approach due to the use of k-NN. Finally, we consider kernel lifting, one of the most suc-
cessful approaches in the ICML TDL challenge (Bernárdez et al., 2024). Notably, our choice of base-
lines covers lifting methods based on connectivity (cycle and k-hop liftings), features (k-NN lifting),
and both connectivity and features (kernel lifting). We provide formulations for the baseline liftings
in Appendix B. We consider the following TNNs: CWN, CIN (Bodnar et al., 2021b) and CXN (Hajij
et al., 2020) for cell complexes, and UniGCNII and UniGIN (Huang and Yang, 2021) for hypergraphs.

Evaluation setup. For ZINC and MOLHIV, we use the publicly available train/val/test data splits; for
the remaining datasets, we use a random 80/10/10% split. We optimize the hyper-parameters of the
lifting methods and take the optimal hyperparameter values from (Telyatnikov et al., 2024) whenever
available; otherwise, we select optimal values based on the optimal results using cycle or k-hop lifting.
We provide further details on the choice of hyperparameters and model selection in the supplementary
material. We compute the mean and standard deviation of the performance metrics (MAE ↓ for ZINC,
AUC ↑ for MOLHIV, and accuracy ↑ for all other datasets) over three independent runs.

Table 1: Graph classification: ∂lift vs static liftings. We denote the best-performing model for each
dataset/TNN in bold. For any fixed TNN and dataset, ∂lift is better than static liftings in 90% of
cases, offering a performance improvement of up to 45%.

Domain TNN Lifting NCI1↑ NCI109 ↑ MOLHIV↑ MUTAG↑ Proteins↑ ZINC↓

Graph GCN - 74.45±1.05 76.46±1.03 74.99±1.09 64.91±4.96 70.18±1.35 0.64±0.04

GIN - 76.89±1.75 76.90±0.80 70.76±2.46 80.70±2.48 72.50±2.31 0.59±0.03

Cellular

CWN Cycle 76.93±1.18 76.71±1.34 70.15±3.98 66.67±12.41 69.05±2.95 0.46±0.01

∂lift 79.81±0.40 80.55±0.50 75.37±0.80 85.96±4.96 70.54±3.34 0.17±0.00

CXN Cycle 72.02±1.69 75.01±0.62 69.17±1.20 61.40±2.48 70.83±1.52 0.79±0.02

∂lift 82.08±1.50 82.57±0.40 74.83±1.96 84.21±4.30 69.94±2.10 0.17±0.01

CIN Cycle 75.91±1.11 76.11±1.09 68.46±2.16 66.96±1.46 67.86±0.89 0.42±0.01

∂lift 79.59±1.50 81.06±0.40 72.37±1.65 88.72±4.30 72.43±2.10 0.20±0.01

Hypergraph

UniGCN2

k-hop 72.70±0.52 72.01±1.55 50.72±1.06 61.40±2.48 72.92±1.11 0.66±0.02

k-NN 71.78±0.20 68.60±0.93 57.73±6.84 64.91±2.48 73.51±0.42 1.10±0.01

kernel 73.80±0.94 72.64±0.40 57.07±10.32 63.16±8.59 73.21±0.73 0.79±0.02

∂lift 77.45±1.88 75.30±1.10 69.32±1.62 89.47±4.30 73.51±0.84 0.56±0.03

UniGIN

k-hop 65.50±1.99 66.97±7.25 63.49±9.55 64.91±2.48 71.43±0.73 1.15±0.01

k-NN 72.83±1.09 70.14±1.48 52.34±3.21 59.65±4.96 72.62±1.52 1.10±0.02

kernel 60.50±1.26 66.59±1.49 49.60±0.07 57.89±4.30 66.67±1.83 1.45±0.02

∂lift 64.88±1.09 79.74±0.23 72.04±0.88 66.67±6.56 73.81±1.52 0.92±0.05
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Results. Table 1 shows that ∂lift is the best-performing lifting method in over 90% of the TNN/dataset
combinations, both for cell complexes and hypergraphs. Notably, ∂lift resulted in an improvement in
average accuracy of up to≈ 45% compared to static liftings using the same TNN. For CWN, CIN, and
UniGCNII, our method outperforms static liftings on all datasets. On NCI109 and ZINC, ∂lift is con-
sistently better than the static liftings across all TNN backbones. We also observe that TNNs perform
better than GNNs in this setup with ∂lift. Overall, these results validate the effectiveness ∂lift.

Impact of GNN choice on performance. We aim to assess how sensitive our approach is to the
choice of GNN. We report results using GIN (Xu et al., 2019) and GPS (Rampášek et al., 2022).

Table 2 indicates that choosing GNNs that are able to generate richer and more informative latent
node representations leads to better results in ∂lift. In particular, GPS performs better than GIN in
most datasets. A possible explanation for this observation is the greater expressivity of GPS, which
benefits from the incorporation of positional encodings. Notably, on cell complexes and ZINC dataset,
GPS allows reducing the MAE from 0.46 to 0.17.

Table 2: Effect of GNN backbone on the performance of ∂lift. The results suggest that the expressive
power of backbone GNNs have a direct impact in ∂lift’s performance. Except for MOLHIV and
NCI1, GPS leads to better performance than GIN overall.

TNN GNN NCI1↑ NCI109 ↑ MOLHIV ↑ MUTAG↑ Proteins↑ ZINC↓

CWN GPS 79.81±0.40 80.55±0.50 64.31±5.32 87.72±2.48 70.54±3.34 0.17±0.00

GIN 81.59±0.80 78.69±1.43 75.37±0.80 82.46±2.48 71.13±2.76 0.46±0.00

CXN GPS 79.97±0.61 82.57±0.40 65.58±4.42 84.21±4.30 69.94±2.10 0.17±0.01

GIN 81.35±2.29 79.98±1.01 72.25±3.23 77.19±2.48 67.86±2.19 0.43±0.01

UniGCN2 GPS 78.67±1.46 74.50±1.16 68.22±2.38 89.47±4.30 73.81±0.42 0.56±0.03

GIN 75.38±1.39 74.98±1.12 68.73±2.05 64.91±6.56 73.51±0.84 0.63±0.01

UniGIN GPS 66.42±1.79 79.74±0.23 68.32±3.12 66.67±6.56 72.32±0.73 1.01±0.05

GIN 64.40±0.41 78.53±0.69 68.86±3.05 70.18±6.56 72.02±3.74 1.12±0.26

5.2 NODE CLASSIFICATION

Datasets. For node classification, We evaluate ∂lift on four datasets: Cora , Citeseer Yang et al.
(2016), Texas, and Winsconsin Rozemberczki et al. (2020). Within these datasets, two are knowingly
homophilic (Cora and Citeseer) and two are heterophilic datasets (Texas and Wisconsin). Dataset
statistics can be found in Appendix D.

Baselines. We also compare our method (for cell domains) against the learnable approach in
(Battiloro et al., 2023), called Differentiable Cell Complex Module (DCM), which was originally
evaluated on node classification tasks. To do so, we consider ∂lift combined with CWN and
TopoTune (Papillon et al., 2025). We also include results of them with cycle lifting. We consider
the same hypergraph TNN baselines as in Section 5.1.

Evaluation setup. For all datasets, we use random train/val/test data split with 60/20/20% split.
Similarly to the experiments for graph classification, we optimize the hyper-parameters of the lifting
methods and take the optimal TNN hyperparameters from (Telyatnikov et al., 2024) when available.
Otherwise, we choose them to maximize the validation accuracy using k-hop lifting. For more
details, please refer to the supplementary material. We report the average accuracy and standard
deviation over three independent runs.

Results. Table 3 compares ∂lift against DCM and cycle lifting. Notably, ∂lift is the best-performing
method in all datasets except for Wisconsin, in which it achieves the second-best performance. It is
also worth mentioning that ∂lift (with either CWN or TopoTune) outperforms DCM for all datasets,
sometimes by a large margin — c.f., Texas and Cora.

Table 4 reports results of lifting methods for hypergraph neural networks. Compared to k-hop, our
approach is better on heterophilic datasets but worse on homophilic ones for UniGCN2. Additionally,
Table 4 shows that ∂lift leads to better average accuracy than other static liftings.
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Table 3: Comparison of DCM and ∂lift on node classification. ∂lift achieves the highest average
performance across all datasets (rhs) and significantly outperforms DCM on heterophilic datasets.

TNN Lifting Cora Citeseer Texas Wisconsin Avg
GCN - 85.64± 0.51 70.43± 0.71 58.91± 0.76 49.14± 0.66 66.03
GAT - 86.17± 0.33 73.82± 0.45 58.38± 1.05 49.41± 0.95 66.95
GIN - 85.50± 0.54 72.20± 0.60 59.10± 0.80 48.50± 0.70 66.33

DCM - 80.73± 0.33 77.90± 0.80 56.76± 6.62 73.86± 1.85 72.31
CWN Cycle 74.80± 0.08 75.83± 0.90 63.06± 7.75 80.39± 4.24 73.52
CWN ∂Lift 80.17± 1.59 72.83± 2.15 80.18± 3.37 77.78± 3.70 77.74
TopoTune Cycle 69.03± 0.88 72.90± 0.85 71.56± 1.27 70.16± 1.85 70.91
TopoTune ∂Lift 86.82± 0.75 78.23± 1.08 72.97± 0.00 65.36± 2.45 75.84

Table 4: Comparison of ∂lift and static lifting baselines for hypergraphs on node classification. Our
method outperforms all static liftings on average across the selected node classification datasets.

TNN Lifting Cora Citeseer Texas Wisconsin Avg

UniGCN2

k-hop 86.03± 0.63 78.40± 0.36 66.67± 6.74 69.28± 5.62 75.09
k-NN 74.00± 0.65 18.17± 0.05 70.27± 3.82 79.74± 2.45 60.54
kernel 29.93± 1.33 18.07± 0.21 57.66± 7.75 57.52± 10.42 40.79
∂Lift 81.93± 1.11 78.03± 0.91 69.37± 2.55 73.20± 5.62 75.63

UniGIN

k-hop 78.73± 0.66 74.47± 1.72 65.77± 9.19 58.82± 5.77 69.44
k-NN 62.00± 1.08 19.33± 0.48 65.77± 1.27 73.20± 4.03 55.07
kernel 40.93± 2.52 18.53± 0.61 58.56± 7.09 51.63± 4.03 42.41
∂Lift 84.23± 0.53 77.97± 0.45 63.96± 6.37 63.40± 4.03 72.39

6 CONCLUSION

Topological neural networks (TNNs) are receiving increasing attention in the graph machine learning
community. Yet, their effectiveness depends crucially on the choice of graph lifting procedure.
Despite its central role, lifting has remained largely unsupervised and task-agnostic, which can lead
to the construction of suboptimal topological representations for downstream learning.

To address this limitation, we introduced ∂lift, a general-purpose, differentiable lifting framework
that is compatible with multiple topological domains. Across a broad set of benchmarks and TNN
architectures, ∂lift consistently outperformed traditional unsupervised lifting methods, demonstrating
the benefit of making the lifting process learnable and task-informed.

Limitations. For hypergraph domains, ∂lift can create candidate hyper-edges and decide whether
to keep them in embarrassingly parallel fashion — rendering ∂lift especially compute-efficient for
this domain. However, for cell complexes, we need to compute a cycle basis to elicit candidate
cells, which may come at a cubic with respect to the number of nodes in the input graph. In this
case, we may reduce the number of candidate cells by, for instance, regularizing the kv variables or
shifting their distribution towards zero. Nonetheless, devising more efficient algorithms for candidate
identification in hierarchical domains is a clear direction of improvement for future works.

Future work. Our method can be extended to other topological domains, such as point clouds,
making it applicable to 3D mapping tasks. Additionally, future work could focus on addressing
the computational challenges of DiffLift and scaling it to handle larger graphs. Another promising
direction is to explore differentiable lifting in dynamic or temporal graphs, where topological
structures evolve over time. Moreover, integrating ∂lift with pretraining strategies could yield
generalizable topological priors across tasks.

We also believe that formally analyzing the impact of enriching topological structures with learnable
liftings on mitigating oversmoothing and oversquashing in TNNs is an interesting research direction.
For instance, in scenarios where long and narrow paths connect dense substructures, static liftings
are limited to adding cycles within each local region, leaving information between communities to
traverse the original bottleneck. In contrast, ∂lift can learn to introduce 2-cells that effectively create
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shortcuts across such bridges, reducing the effective distance between distant nodes and improving
information flow. While a full theoretical treatment is left for future work, this adaptive ability
provides a plausible mechanism for mitigating oversquashing.

Ethics Statement. We do not identify any immediate, direct societal harms from the technical
contributions presented in this work. Our method operates on standard, non-sensitive benchmarks
and does not require or expose personally identifiable information.

Reproducibility Statement.An anonymized repository containing the code is available at https:
//anonymous.4open.science/r/tdl_knn_lifting_gnn-AD22. We provide further
details on used datasets and implementation details (e.g., parameter selection) in Appendices D and C.
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Bei Wang, Yusu Wang, Guowei Wei, and Ghada Zamzmi. Position: Topological deep learning is the new
frontier for relational learning. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pages 39529–39555. PMLR,
21–27 Jul 2024.

Mathilde Papillon, Mustafa Hajij, Audun Myers, Helen Jenne, Johan Mathe, Theodore Papamarkou, Aldo
Guzmán-Sáenz, Neal Livesay, Tamal Dey, Abraham Rabinowitz, et al. Icml 2023 topological deep learning
challenge: Design and results. In Topological, Algebraic and Geometric Learning Workshops 2023, pages
3–8. PMLR, 2023a.

Mathilde Papillon, Sophia Sanborn, Mustafa Hajij, and Nina Miolane. Architectures of topological deep learning:
A survey on topological neural networks. ArXiv e-prints, 2023b.

Mathilde Papillon, Guillermo Bernárdez, Claudio Battiloro, and Nina Miolane. Topotune : A framework for
generalized combinatorial complex neural networks, 2025. URL https://arxiv.org/abs/2410.
06530.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer.
Automatic differentiation in pytorch. In Advances in Neural Information Processing Systems (NeurIPS -
Workshop), 2017.

11

http://graphkernels.cs.tu-dortmund.de
https://books.google.fi/books?id=XjoZAQAAIAAJ
https://arxiv.org/abs/2410.06530
https://arxiv.org/abs/2410.06530


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Keith Paton. An algorithm for finding a fundamental set of cycles of a graph. Commun. ACM, 12(9):514–518,
September 1969. ISSN 0001-0782. doi: 10.1145/363219.363232. URL https://doi.org/10.1145/
363219.363232.

Chendi Qian, Andrei Manolache, Christopher Morris, and Mathias Niepert. Probabilistic graph rewiring via
virtual nodes. arXiv preprint arXiv:2405.17311, 2024.

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe for a general, powerful, scalable graph transformer. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran
Associates Inc. ISBN 9781713871088.

T Mitchell Roddenberry, Michael T Schaub, and Mustafa Hajij. Signal processing on cell complexes. In ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
8852–8856. IEEE, 2022.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding, 2020. URL
https://openreview.net/forum?id=HJxiMAVtPH.

Stefania Sardellitti, Sergio Barbarossa, and Lucia Testa. Topological signal processing over cell complexes. In
2021 55th Asilomar Conference on Signals, Systems, and Computers, pages 1558–1562. IEEE, 2021.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

Michael T Schaub, Yu Zhu, Jean-Baptiste Seby, T Mitchell Roddenberry, and Santiago Segarra. Signal processing
on higher-order networks: Livin’on the edge... and beyond. Signal Processing, 187:108149, 2021.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective
classification in network data. AI Magazine, 29(3):93, Sep. 2008. doi: 10.1609/aimag.v29i3.2157. URL
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of graph
neural network evaluation. Relational Representation Learning Workshop, NeurIPS 2018, 2018.

Qingyun Sun, Jianxin Li, Beining Yang, Xingcheng Fu, Hao Peng, and Philip S Yu. Self-organization preserved
graph structure learning with principle of relevant information. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pages 4643–4651, 2023.

Lev Telyatnikov, Guillermo Bernardez, Marco Montagna, Pavlo Vasylenko, Ghada Zamzmi, Mustafa Hajij,
Michael T Schaub, Nina Miolane, Simone Scardapane, and Theodore Papamarkou. Topobenchmarkx: A
framework for benchmarking topological deep learning. arXiv preprint arXiv:2406.06642, 2024.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M Bronstein.
Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint arXiv:2111.14522,
2021.

Yogesh Verma, Amauri H Souza, and Vikas Garg. Topological neural networks go persistent, equivariant, and
continuous. In International Conference on Machine Learning (ICML), 2024.

Cheng Wang, Nan Ma, Zhixuan Wu, Jin Zhang, and Yongqiang Yao. Survey of hypergraph neural networks
and its application to action recognition. In CAAI International Conference on Artificial Intelligence, pages
387–398. Springer, 2022.

Junqi Wang, Hailong Li, Gang Qu, Kim M Cecil, Jonathan R Dillman, Nehal A Parikh, and Lili He. Dynamic
weighted hypergraph convolutional network for brain functional connectome analysis. Medical image analysis,
87:102828, 2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
In International Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=ryGs6iA5Km.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha Talukdar.
Hypergcn: A new method for training graph convolutional networks on hypergraphs. Advances in neural
information processing systems, 32, 2019.

Maosheng Yang, Elvin Isufi, and Geert Leus. Simplicial convolutional neural networks. In ICASSP 2022-2022
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8847–8851.
IEEE, 2022.

12

https://doi.org/10.1145/363219.363232
https://doi.org/10.1145/363219.363232
https://openreview.net/forum?id=HJxiMAVtPH
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages 40–48,
New York, New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/
v48/yanga16.html.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A. Smola. Deep sets. In Advances in
Neural Information Processing Systems (NeurIPS), 2017.

A ADDITIONAL BACKGROUND AND FORMULATIONS

A.1 CHAINS, BOUNDARY OPERATORS, AND CYCLES

Here, we introduce some basic notions in algebraic topology. For simplicity, our exposition considers
abstract simplicial complexes (ASCs) equipped with coefficients in the finite field Z/2Z = {0, 1}.
The space of n-chains is the vector space of all formal sums of n-dimensional simplices of an ASC
K. Formally, let n ≥ 0 and K(n) = {σ ∈ K : dim(σ) = n} be the n-skeleton of K. The n-chains
of K is the set Cn(K) whose elements take the form∑

σ∈K(n)

ϵσσ (8)

where for all σ ∈ K(n), ϵσ ∈ Z/2Z.

Let c =
∑

σ∈K(n)
ϵσσ and c′ =

∑
σ∈K(n)

ϵ′σσ be two n-chains. The sum of two chains (c+ c′) and
the product of a chain by a scalar (λc) are respectively defined by

c+ c′ =
∑
σ

(ϵσ + ϵ′σ)σ (9)

λc =
∑
σ

(λϵσ)σ (10)

where sums and products are module 2.

We define the boundary of a n-simplex σ, denoted by ∂nσ as the sum of its constituents (n − 1)-
simplices, i.e.,

∂nσ =
∑

τ⊂σ:|τ |=|σ|−1

τ (11)

This boundary extends linearly to chain spaces. In particular, the boundary operator ∂n is a linear
map ∂n : Cn(K)→ Cn−1(K) defined by

∂nc = ∂n
∑

σ∈K(n)

ϵσσ =
∑

σ∈K(n)

ϵσ∂nσ. (12)

Finally, we can define n-cycles. For n ≥ 0, the n-cycles of K is the set Zn(K) given by the kernel
of ∂n, that is

Zn(K) = {c ∈ Cn(K) : ∂nc = 0}. (13)

A.2 ∂lift FOR SIMPLICIAL COMPLEXES

Note that for when D = 1 — i.e., when we must decide which edges to add — Steps 2 and 3 of
∂lift for cell-complexes naturally result in a simplicial complex. To fully specify ∂lift for simplicial
complexes, we are left with defining these steps when D > 1.

Case D ≥ 2: Learning D-simplices

⇒[Step 2] When creating simplices of dimension D, we must ensure they respect the hierarchical
structure of simplicial complexes. Let Kℓ be the cell complex at the end of iteration ℓ ≤ D − 1. To
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identify a preliminary set of candidates C′, we run static D-clique lifting on K1. For D > 2, it is
possible that a lower-order clique within some C ∈ C′ does not belong to KD−1. Therefore, we must
filter out these elements, defining a refined set of candidates:

C =
{
C ∈ C′|S ∈ KD−1 for all S ⊂ C

}
(14)

⇒[Step 3] Similarly to this respective step for cell complexes, we define the probability of accept-
ing C ∈ C (i.e., setting bC = 1) applying a DeepSet over the embeddings {{zv}}v∈C , subsequently
sampling the Bernoulli variables {{bC}}C∈C . The output complex at this iteration is then

KD = KD−1 ∪ {C ∈ C : bC = 1}. (15)

We define the features for D-simplices using sum projection lifting.

A.3 ∂lift FOR COMBINATORIAL COMPLEXES

There are multiple ways to combine cell complexes with hypergraphs to obtain valid combinatorial
complexes (CC). Here, we would like to preserve the property that hyperedges exchange messages
with nodes via boundary (or lower incidences) neighborhoods. Thus, we propose first running ∂lift to
either cell or simplicial complexes — where ranking functions are given by cell/simplex dimensions.
Let K be the resulting complex. Then, we employ (in parallel) ∂lift to a hypergraph H , where
edges/hyperedges have rank 1. To ensure a valid combinatorial complex, we prune the sampled
hyperedges to include only those that are not supersets of any cell of rank greater than 1 in K.
Formallly, the resulting CC is given by {h ∈ H :̸ ∃σ ∈ K s.t. σ ⊆ h} ∪K.

B TOPOLOGICAL LIFTINGS

Clique lifting. The set of cliques in a graph G is given by Cl(G) = {c ⊆ V (G) : u ̸= v ∈ c =⇒
{u, v} ∈ E(G)}, i.e., each element of Cl(G) is a complete subgraph of G. The k-cliques of G are
the elements of Cl(G) of size k, for k > 1, and we denote them as Clk(G). Formally, the k-clique
lifting operation is given by

liftclique,k(G) = V (G) ∪ki=2 Cli(G). (16)

Note that the inclusion of all cliques of size smaller than k ensures the function returns a valid abstract
simplicial complex.

Cycle lifting. The idea of cycle lifting is to identify basic cycles in the input graph and use the tuple
of vertices in a cycle as a 2-rank cell of the output complex.

Let us consider modulo-2 sum operations for vertices and edges. Also, let ∂1 be the edge boundary
map for a graph G, i.e., ∂1({u, v}) = {u}+ {v} for any edge {u, v} ∈ E(G). The cycles of G are
L(G) = {l ⊆ E(G) :

∑
e∈l ∂1(e) = 0}.

A basis for cycles of G is a minimal collection of cycles such that any cycle in G can be written
as a sum of cycles in the basis — i.e., the smallest set B ⊆ L such that ∀l ∈ L, ∃B′ ⊆ B with
l =

∑
b∈B′ b. The cycle lifting map is

liftcycle(G) = V (G) ∪ E(G) ∪ {V (b) : b ∈ B(G)}, (17)

where V (b) denotes the set of vertices in the cycle b, and {V (b) : b ∈ B(G)} is the set of 2-dim cells.

DCM. Battiloro et al. (2023) proposed a novel layer composed of several modules, with the
Differentiable Cell Complex Module (DCM) being central to latent topology inference. The DCM
first samples the 1-skeleton of the latent cell complex using the α-Differentiable Graph Module
(α-DGM). It then selects polygons—representing higher-order interactions—formed by cycles in the
sampled graph using the Polygon Inference Module (PIM). For a detailed description of α-DGM and
PIM, we refer the reader to Section 3 of Battiloro et al. (2023).

14
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k-hop lifting. The k-hop neighborhood of a node v ∈ V (G) is defined as

Nk[v] = {u ∈ V (G) : dist(u, v) ≤ k}, (18)

where dist(u, v) is the shortest-path distance in the graph G, measured by the number of edges in
the path.

To construct the k-hop hypergraph H from G, a hyperedge is formed for each node v ∈ V (G) based
on its k-hop neighborhood:

liftk-hop(G) = {Nk[v] : v ∈ V (G)}.

One can note that when k = 1, k-hop is equal to neighborhood lifting. The parameter k controls the
extent of the neighborhoods included as hyperedges, with larger k values progressively incorporating
nodes farther away in terms of shortest-path distance.

k-NN lifting. k-NN lifting constructs hyperedges by identifying the k nearest neighbors based on
their node features (feature space). For every node, a separate hyperedge is formed that includes the
node itself and its k closest neighbors.

Kernel lifting. Kernel lifting is a procedure that constructs hyperedges based on similarity measures
derived from kernels over graph nodes. These kernels can be defined in three ways: (i) over the graph
structure itself, (ii) over the node features, or (iii) as a composition that jointly incorporates both graph
and feature information. For a given reference node v, the method computes similarities between
v and all other nodes v∗ using a kernel function. A hyperedge is then formed by selecting a fixed
fraction (typically 0.5) of the nodes that are most similar to v according to the chosen kernel. This
process is repeated for each node to construct a set of hyperedges. The kernels can be defined several
forms: over nodes Kg(v, v

∗), features Kx(x, x
∗), or over nodes and features C(K(x, x∗, v, v∗)),

where C is a valid composition function. Kernels over features are calculated as standard RBF or
exponential kernels Duvenaud (2014), whereas kernels over graphs can be calculated as heat or
Matérn kernels Schölkopf and Smola (2002); Borovitskiy et al. (2021); Nikitin et al. (2022).

C IMPLEMENTATION DETAILS

C.1 MODELS

Our implementation relies mainly on the Pytorch (Paszke et al., 2017) and Pytorch Geometric (Fey
and Lenssen, 2019) libraries. For TNN models and static lifting we used TopoX (Hajij et al., 2024)
and TopoBenchmarkX (Telyatnikov et al., 2024).

Regarding the base TNNs, we use the hyperparameters (including learning rate, optimizer, batch size,
width, depth, and so on) reported in TopoBenchmarkX for CWN, CXN, and UniGCNII on NCI1,
NCI109, MOLHIV, MUTAG, Proteins, ZINC, Cora and Citeseer (Telyatnikov et al., 2024). Since
TopoBenchmarkX does not report optimal hyperparameters for UniGIN, we use the same used for
UniGCNII. While for CIN, we used part of the hyperparameters reported in (Bodnar et al., 2021b)
and for the TopoTune, since they do not report the hyperparameters, we used a grid search similar to
the availabe in their repo.

We note that MOLHIV, Texas and Wisconsin datasets were not present in TopoBenchmarkX. We use
two TNN layers for MOLHIV and one for Texas and Wisconsin with respective learning rates 10−2,
5× 10−3 and 5× 10−3. For these datasets, we fix the embedding size in 64 for all layers. And for
Texas and Wisconsin we used weight decay 5× 10−6.

We are left with the task of optimizing the hyperparameters for the lifting operations (∂lift, k-NN,
kernel). For ∂lift, we consider using both GPS and GIN as backbone GNNs, with embedding
dimensions in {32, 64, 128}, network depth in {2, 3}, and kmax = {3, 5, 7, 9, 11}. For k-NN lifting
we choose k in {3, 5, 7, 9}. For kernel lifting, we consider equally-spaced temperature values within
0.1 and 9.6, with 0.5 increments.

All models were trained for 200 epochs and with early stopping after 50 epochs without improvement
on validation accuracy. We run three independent trials for computing mean and standard deviation
of the performance metrics. We select the optimal hyperparameters based on validation accuracy.
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C.2 HARDWARE

For all experiments, we use a cluster with Nvidia V100 GPUs — details regarding the compute
infrastructure are omitted for anonymity.

D DATASETS

Graph-level tasks. The datasets NCI1, NCI109, PROTEINS, and MUTAG are part of the
TUDatasets (Kersting et al., 2016) — a dataset collection broadly used for benchmarking GNNs.
We also use ZINC-12K and MOLHIV (Hu et al., 2020), popular benchmarks for molecular property
prediction. Statistics for each dataset are given in Table 5.

Table 5: Statistics of datasets for graph-level tasks.

Dataset #graphs #classes Avg #nodes Avg #edges Train% Val% Test%
NCI1 4110 2 29.87 32.30 80 10 10

NCI109 4127 2 29.68 32.13 80 10 10
MUTAG 188 2 17.93 19.79 80 10 10

PROTEINS 1113 2 39.06 72.82 80 10 10
MOLHIV 41127 2 25.5 27.5 Public Split

ZINC 12000 - 23.16 49.83 Public Split

Node-level tasks. For node classification, we use six popular benchmarks: Cora, Citeseer (Sen et al.,
2008; Shchur et al., 2018), Texas, and Wisconsin (Rozemberczki et al., 2020). Cora and Citeseer
are citation networks where nodes represent papers and edges denote citation between them. Node
features are given by bag-of-word vectors and node labels comprise the academic topics of the
underlying articles. Texas and Wisconsin are datasets of webpages from university departments.
Nodes represent webpages and edges are hyperlinks between them.

For citation networks, we use the same data split as in (Chen et al., 2018), and for the remaining ones
we use the split in (Pei et al., 2020). These are the standard and most used splits. Table 6 provides
more details about the datasets.

Table 6: Statistics of datasets for node classification.

Dataset #Nodes #Edges #Features #Classes #Train #Val #Test
Cora 2708 5429 1, 433 7 1, 208 500 1, 000

Citeseer 3327 4732 3, 703 6 1, 827 500 1, 000
Texas 183 309 1703 5 87 59 37

Wisconsin 251 499 1703 5 120 80 51

E ADDITIONAL RESULTS

E.1 RUNTIME AND COMPLEXITY COST

Wall-clock time. Table 7 reports per-epoch training and test times (seconds) for the different lifting
methods and target neural networks (TNNs) used in our experiments. Overall, ∂lift incurs only a
modest runtime overhead compared to static liftings while offering the flexibility of task-adaptive
topology.

Memory usage. Table 8 reports GPU and RAM consumption (GB) for the different architectures
and lifting schemes. Reported values are mean ± standard deviation over runs. Overall, ∂lift
demonstrates moderate memory requirements across both cellular and hypergraph domains, with
GPU usage scaling proportionally to the complexity of the lifted topology.

Complexity analysis. Hypergraph ∂lift runs inO(N2D+N2 log kmax+NkmaxD), where the N2D
term comes from computing all pairwise node distances in a D-dimensional embedding space, the
N2 log kmax term for selecting each node’s top-k neighbors, and the NkmaxD term for aggregating
across the sampled hyperedges. By contrast, a static kernel-based lifting requires O(N2D +N3)
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Table 7: Per-epoch training and test times (seconds) for the different lifting methods. Reported values
are mean ± standard deviation over runs.

Dataset/Phase CWN Cycle CWN ∂lift CXN Cycle CXN ∂lift

Cellular Domain

NCI1 Train 47.41± 2.59 97.37± 5.02 37.71± 2.31 66.77± 3.00
NCI1 Test 1.42± 0.05 4.33± 0.62 1.05± 0.03 2.67± 0.06
NCI109 Train 52.11± 2.58 97.05± 3.80 45.76± 0.97 53.50± 2.50
NCI109 Test 1.67± 0.02 5.19± 0.41 1.56± 0.02 2.15± 0.08
MUTAG Train 2.55± 0.12 4.96± 3.29 1.57± 0.12 3.60± 2.83
MUTAG Test 0.09± 0.00 0.23± 0.02 0.05± 0.00 0.12± 0.00
Proteins Train 18.07± 1.75 20.12± 2.10 13.63± 2.22 15.18± 1.50
Proteins Test 0.65± 0.00 0.82± 0.10 0.46± 0.00 0.72± 0.05
ZINC Train 58.24± 3.10 118.45± 6.20 46.18± 2.40 82.30± 4.50
ZINC Test 2.15± 0.08 5.92± 0.35 1.68± 0.06 3.84± 0.18

Dataset/Phase UniGCNII k-hop UniGCNII ∂lift UniGIN k-hop UniGIN ∂lift

Hypergraph Domain

NCI1 Train 42.26± 0.46 69.34± 2.55 37.46± 0.31 61.32± 2.83
NCI1 Test 1.23± 0.01 1.94± 0.07 0.91± 0.01 2.03± 0.06
NCI109 Train 31.66± 2.26 88.22± 3.28 28.62± 2.35 69.61± 3.70
NCI109 Test 0.89± 0.05 2.72± 0.03 0.63± 0.02 2.30± 0.05
MUTAG Train 1.94± 0.14 5.12± 3.41 2.04± 1.57 3.06± 0.13
MUTAG Test 0.06± 0.00 0.14± 0.00 0.05± 0.00 0.09± 0.00
Proteins Train 11.93± 0.89 12.45± 1.00 10.12± 2.33 11.50± 1.20
Proteins Test 0.36± 0.00 0.60± 0.05 0.24± 0.00 0.50± 0.03
ZINC Train 51.80± 1.50 76.70± 3.80 45.30± 1.20 66.40± 3.50
ZINC Test 1.58± 0.04 2.68± 0.12 1.28± 0.03 2.85± 0.11

Table 8: Memory usage (GB) for the different lifting methods and architectures. Reported values are
mean ± standard deviation over runs.

Memory Type TNN MUTAG NCI1 NCI109 PROTEINS ZINC

GPU Memory (GB)

UniGCNII k-hop 0.02±0.00 0.02±0.00 0.02±0.00 0.03±0.00 0.02±0.00

UniGCNII ∂lift 0.02±0.00 0.02±0.00 0.02±0.00 0.05±0.01 0.02±0.00

UniGIN k-hop 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00

UniGIN ∂lift 0.02±0.00 0.02±0.00 0.02±0.00 0.04±0.00 0.02±0.00

CWN Cycle 0.02±0.00 0.02±0.00 0.02±0.00 0.03±0.00 0.02±0.00

CWN ∂lift 0.02±0.00 0.02±0.00 0.02±0.00 0.07±0.02 0.02±0.00

CXN Cycle 0.02±0.00 0.02±0.00 0.02±0.00 0.03±0.00 0.02±0.00

CXN ∂lift 0.02±0.00 0.02±0.00 0.02±0.00 0.04±0.00 0.02±0.00

RAM (GB)

UniGCNII k-hop 1.22±0.02 1.31±0.01 1.31±0.02 1.24±0.01 1.34±0.00

UniGCNII ∂lift 1.45±0.02 1.46±0.01 1.45±0.00 1.46±0.01 1.47±0.01

UniGIN k-hop 1.21±0.01 1.31±0.01 1.31±0.01 1.24±0.01 1.34±0.01

UniGIN ∂lift 1.42±0.01 1.45±0.01 1.45±0.02 1.42±0.00 1.47±0.01

CWN Cycle 1.20±0.01 1.46±0.02 1.45±0.00 1.35±0.01 1.71±0.01

CWN ∂lift 1.38±0.01 1.42±0.01 1.43±0.01 1.39±0.01 1.42±0.01

CXN Cycle 1.21±0.00 1.47±0.01 1.46±0.01 1.37±0.02 1.70±0.00

CXN ∂lift 1.40±0.01 1.43±0.00 1.44±0.00 1.43±0.01 1.45±0.02
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time, while a k-hop static lifting scales as O(Nkmaxd̄) with d̄ the average node degree. Cellular
∂lift runs in O(N2D+ (E +Nkmax)

2 +CℓD), where (E +Nkmax)
2 captures pairwise adjacency

among lifted edges or candidate cells and CℓD covers the embedding aggregation over C candidate
cells of average size ℓ. A static cycle-basis lifting costs O(N(N + E) + Cℓ), whose dominant
component is the cycle-basis computation. In both variants, the modest additional runtime is justified
by consistent accuracy gains of approximately 5–10 percentage points compared to static liftings.

Choice of Hyperparameters. Although ∂lift includes additional learnable components — such
as the GNN used for neighborhood scoring, the networks computing acceptance probabilities
and adaptive neighborhood sizes, and the maximum neighbor budget kmax — the resulting
hyperparameter overhead remains modest. Our search space comprised fewer than 30 configurations
overall (Appendix C), and we found that tuning was somewhat stable across datasets. Crucially,
the adaptivity introduced by these components leads to consistent performance gains while adding
only minor computational and memory costs, as reflected in Tables 7 and 8.

E.2 DETERMINISTIC VERSION

As we mentioned in the main text, we can derive a deterministic version of ∂lift by threshold-
ing probabilities. Table 9 shows compares the ∂lift with its deterministic variant trained using
threshold = 0.5. Note that (random) ∂lift outperforms its deterministic counterpart in most
cases. Nonetheless, while we fixed the threshold at 0.5 here, we leave open the possibility that tuning
it as a hyper-parameter could yield performance improvements.

Table 9: Comparison between ∂lift (random) and its deterministic variant (thresholding at 0.5).

Domain TNN ∂lift NCI1 NCI109 ZINC (MAE) PROTEINS MUTAG

Cellular CWN deterministic 80.62± 0.75 77.64± 0.30 1.33± 5.33 70.54± 0.00 82.46± 2.48
Cellular CWN random 79.81± 0.40 80.55± 0.50 0.17± 0.00 70.54± 3.34 85.96± 4.96
Hypergraph UniGCNII deterministic 71.53± 1.92 69.76± 6.03 0.70± 0.01 72.62± 0.42 75.44± 2.48
Hypergraph UniGCNII random 77.45± 1.88 75.30± 1.10 0.56± 0.03 73.51± 0.84 89.47± 4.30

E.3 FURTHER COMPARISON AGAINST DCM

DCM versus ∂lift. DCM (Battiloro et al., 2023) introduces a learnable lifting approach specifically
for cell complexes through a two-step procedure: first, the α-Differentiable Graph Module (α-DGM)
learns the 1-skeleton (edges) using α-entmax sampling to generate sparse, non-regular graphs; then,
the Polygon Inference Module (PIM) samples polygons from induced cycles of the learned graph.
DCM uses α-entmax for both edge and polygon sampling, and trains end-to-end using auxiliary
reward-based losses (Eqs. 11 and 13 in their paper) that encourage edges/polygons involved in
correct predictions. The method is evaluated exclusively on node classification tasks (homophilic and
heterophilic datasets) and is limited to 2-dimensional cell complexes.

Some key differences between DCM and ∂Lift include:

1. Domain generality: our framework applies to hypergraphs, simplicial complexes, and combina-
torial complexes, not just cell complexes. Extending DCM to hypergraphs is non-trivial because
it relies on cycle-based candidate generation, which is inherently tied to the graph structure and
does not naturally translate to hyperedge formation;

2. Sampling mechanism and training: we use Bernoulli sampling with straight-through estimators
rather than α-entmax, and critically, we do not require auxiliary reward-based losses — our
framework is trained purely with the task loss, making it simpler and better suited for end-to-
end learning. Additionally, our hypergraph variant is embarrassingly parallel whereas DCM’s
two-step procedure is sequential;

3. Adaptive cell sizes: we learn distributions over kv (neighborhood sizes) allowing adaptive
hyperedge/cell cardinalities, while DCM’s polygon sizes are constrained by the induced cycles
in the learned graph;

4. Evaluation scope: we assess both node and graph classification across 12 datasets with multiple
TNN architectures, demonstrating broader applicability.
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Experiments on point clouds. We compared ∂lift against DCM on point-cloud node classification
(graphs with no edges) to provide a direct comparison. Table 10 shows results across four datasets.
∂lift combined with different TNNs achieves competitive or superior performance: UniGCNII+∂lift
achieves 84.97% on Wisconsin (vs. 71.24% for DCM), and UniGIN+∂lift achieves 83.78% on
Texas (vs. 62.16% for DCM), demonstrating substantial gains on heterophilic datasets. On the
homophilic dataset Cora, DCM achieves 73.07% compared to 71.47% for the best ∂lift variant,
showing comparable performance. As expected, the performance in heterophilic datasets are higher
in this setting compared to homophilic when referring Table 3 and Table 4. These results demonstrate
that ∂lift’s framework provides competitive performance while offering greater flexibility across
topological domains and TNN architectures.

Table 10: Point cloud performance comparison of ∂lift across TNNs versus DCM.

TNN + ∂lift Citeseer Texas Wisconsin Cora
UniGCNII 74.73±0.12 81.98±1.27 84.97±2.45 70.83±0.37

CWN 51.80±1.67 71.17±1.27 75.82±0.92 55.90±2.45

CXN 62.03±1.59 81.08±0.00 78.43±0.00 57.43±1.19

UniGIN 72.73±0.61 83.78±2.21 83.66±0.92 71.47±1.77

DCM 74.40±0.45 62.16±5.84 71.24±3.33 73.07±0.92

E.4 COMPARISON AGAINST PROBABILISTIC REWIRING

IPR-MPNN versus ∂lift. IPR-MPNN (Qian et al., 2024) introduces probabilistic graph rewiring
by connecting original graph nodes to a small set of virtual nodes in an end-to-end differentiable
manner. The method uses an upstream MPNN to compute priors θ for assigning each original node
to k virtual nodes (from m total virtual nodes, where m ≪ n), sampling assignment matrices via
differentiable k-subset sampling. A downstream MPNN then operates on the augmented graph with
message passing among: (1) original nodes to virtual nodes, (2) among virtual nodes (forming a
complete subgraph), and (3) among original nodes.

There are relevant distinctions between ∂lift and IPR-MPNN: (i) Explicit vs. implicit structure:
IPR-MPNN implicitly routes long-range information through virtual nodes, while ∂lift explicitly
constructs higher-order cells (hyperedges, simplices, polygons) that directly encode multi-way
interactions; (ii) Domain flexibility: IPR-MPNN operates within the graph domain augmented with
virtual nodes, whereas ∂lift learns liftings to diverse topological domains (hypergraphs, simplicial
complexes, cell complexes, combinatorial complexes); (iii) Sampling strategy: both use differentiable
k-subset sampling, but IPR-MPNN samples node-to-virtual-node assignments while ∂lift samples
which higher-order cells to include in the lifted structure; (iv) Computational approach: IPR-MPNN
requires managing virtual node features and specialized message-passing between hierarchies, while
∂lift integrates directly with standard TNN architectures designed for each topological domain.

Results on graph classification. Table 11 compares IPR-MPNN to ∂lift combined with various
TNNs on five molecular datasets. To ensure a fair comparison, we evaluated IPR-MPNN using our
experimental setup, with the data splits described in Appendix D and a hyperparameter grid similar
to the one in Appendix C, with embedding dimensions in {32, 64, 128} and network depths in {2, 3}.
All other hyperparameters remained fixed, taken from the configurations in the official IPR-MPNN
repository. For instance, on ZINC we do not use edge features.

∂lift achieves substantial improvements on multiple benchmarks: CXN+∂lift reaches 82.08% on
NCI1 and 82.57% on NCI109 compared to IPR-MPNN’s 77.44% and 77.08%. On ZINC, both
CWN+∂lift and CXN+∂lift achieve 0.17 MAE versus IPR-MPNN’s 0.39, representing a 56% error
reduction. UniGCNII+∂lift obtains the highest MUTAG accuracy at 89.47%. While IPR-MPNN
demonstrates the advantages of learnable graph augmentation through virtual nodes, our results show
that explicitly learning higher-order topological structures through ∂lift can provide complementary
benefits, particularly when combined with TNNs designed to exploit these structures.
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Table 11: Graph classification performance comparison between IPR-MPNN and ∂lift combined
with various TNNs

Method MUTAG↑ NCI1↑ NCI109↑ PROTEINS↑ ZINC↓
IPR-MPNN 70.18±2.48 77.44±1.13 77.08±0.30 73.73±1.93 0.39±0.05

CWN + Cycle 66.67±12.41 76.93±1.18 76.71±1.34 69.05±2.95 0.46±0.01

CWN + ∂lift 85.96±4.96 79.81±0.40 80.55±0.50 70.54±3.34 0.17±0.00

CXN + Cycle 61.40±2.48 72.02±1.69 75.01±0.62 70.83±1.52 0.79±0.02

CXN + ∂lift 84.21±4.30 82.08±1.50 82.57±0.40 69.94±2.10 0.17±0.01

UniGCNII + k-hop 61.40±2.48 72.70±0.52 72.01±1.55 72.92±1.11 0.66±0.02

UniGCNII + ∂lift 89.47±4.30 77.45±1.88 75.30±1.10 73.51±0.84 0.56±0.03

UniGIN + k-hop 64.91±2.48 65.50±1.99 66.97±7.25 71.43±0.73 1.15±0.01

UniGIN + ∂lift 66.67±6.56 64.88±1.09 79.74±0.23 73.81±1.52 0.92±0.05
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