GoT: Unleashing Reasoning Capability of MLLM for Visual Generation and Editing

Rongyao Fang 1* Chengqi Duan 3* Kun Wang 4 Linjiang Huang 1 Hao Li 1,5 Hao Tian 4 Shilin Yan Weihao Yu 1 Xingyu Zeng 4,6 Jifeng Dai 5 Xihui Liu 3† Hongsheng Li 1,2†

¹CUHK MMLab ²CPII under InnoHK ³HKU ⁴SenseTime ⁵Shanghai AI Lab ⁶SUAT

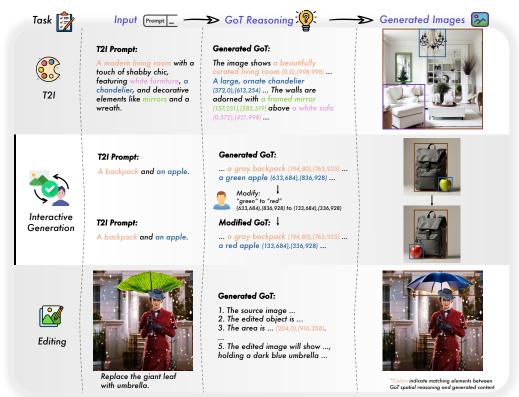


Figure 1: **Generation Chain-of-Thought (GoT) with Semantic-Spatial Reasoning.** Our approach transforms input prompts into explicit reasoning chains with coordinates (middle), which guides vivid image generation and precise editing (right). This reasoning-based generation paradigm unifies spatial understanding across visual tasks: semantically-grounded visual generation (top), controllable interactive generation (middle), and localized image editing (bottom).

Abstract

Current image generation and editing methods primarily process textual prompts as direct inputs without explicit reasoning about visual composition or operational steps. We present Generation Chain-of-Thought (GoT), a novel paradigm that empowers a Multimodal Large Language Model (MLLM) to first generate an explicit, structured reasoning chain in natural language—detailing semantic relationships,

^{*}Equal Contribution

[†]Corresponding Authors

object attributes, and, crucially, precise spatial coordinates—before any image synthesis occurs. This intermediate reasoning output directly guides the subsequent visual generation or editing process. This approach transforms conventional textto-image generation and editing into a reasoning-guided framework that analyzes semantic relationships and spatial arrangements. We define the formulation of GoT and construct large-scale GoT datasets containing over 9M samples with detailed reasoning chains capturing semantic-spatial relationships. To leverage the advantages of GoT, we implement a unified framework that integrates Qwen2.5-VL for reasoning chain generation with an end-to-end diffusion model enhanced by our novel Semantic-Spatial Guidance Module. Experiments show our GoT framework achieves excellent performance on both generation and editing tasks, with significant improvements over baselines. Additionally, our approach enables interactive visual generation, allowing users to explicitly modify reasoning steps for precise image adjustments. GoT pioneers a new direction for reasoning-driven visual generation and editing, producing images that better align with human intent. We will release our datasets and models to facilitate future research.

1 Introduction

Language provides the primary interface for expressing human intent in visual content generation. Traditional image generation systems [37, 6, 21], particularly diffusion models, process textual prompts by mapping semantic concepts to visual elements without explicit reasoning. These approaches struggle with complex scenes requiring precise spatial arrangements and object interactions that humans naturally consider when constructing scenes. Meanwhile, multimodal large language models (MLLMs) [3, 2, 25] excel at sophisticated reasoning tasks, including analyzing semantic structures, inferring relationships, grounding visual concepts, and processing detailed contexts through explicit reasoning chains. This gap between MLLMs' advanced reasoning capabilities and the limited reasoning in current generation systems raises a key question: How can we integrate the reasoning mechanisms that have revolutionized language understanding into visual generation and editing?

Prior work attempted to leverage LLMs for image generation from different perspectives. One line of research [23, 55] leverages LLMs as text encoders for better prompt interpretation. However, the reasoning capabilities of LLMs are not introduced. Another line of work develops multimodal LLMs to unify understanding and generation [44, 47, 50, 7]. Although they present unified models for different tasks, there is no evidence that generation benefits from strong understanding and reasoning abilities of the models. They merely combine independent tasks rather than truly fusing language reasoning with visual generation. Additionally, layout-based methods like GLIGEN [22], LayoutGPT [9], and RPG [52] incorporate LLMs for layout planning and diffusion models for layout-guided generation. However, these methods treat planning and generation as separate stages rather than integrating reasoning throughout the end-to-end process. Consequently, current image generation methods lack reasoning capabilities, emphasizing the need for a framework that seamlessly combines reasoning with visual generation and editing.

Inspired by chain-of-thought (CoT) reasoning of the LLMs, we introduce Generation Chain-of-Thought (GoT), a novel paradigm that enables visual generation to first output step-by-step reasoning in natural language before producing images. However, implementing GoT poses two significant challenges. First, different from CoT in LLMs, the reasoning chain for visual generation and editing requires both semantic and spatial information. It requires a new formulation and collecting training data in this new format. Second, existing diffusion-based models cannot leverage explicit language reasoning chains during visual generation. We need to design a framework supporting end-to-end language reasoning and visual generation.

To address the first challenge, we formulate GoT as a multimodal reasoning chain that integrates semantic and spatial analyses to enhance image generation and editing tasks. For visual generation, GoT provides precise control over object layout, relationships, and attributes, while for editing, it leverages semantic and spatial understanding to decompose user requests into coherent grounding and modification steps. We utilize advanced MLLMs and LLMs to construct complex annotation pipelines, which capture semantic-spatial interactions across diverse visual contexts. We assembled extensive datasets comprising 8.4M images for text-to-image generation (from Laion-Aesthetics [39], JourneyDB [41], and FLUX [21]) and 920K examples for image editing (from OmniEdit [48] and SEED-Edit-Multiturn [12]). This computationally intensive effort produced the first large-scale dataset of reasoning chains for image generation and editing.

To tackle the second challenge of architecture design supporting reasoning and generation, we construct a unified end-to-end framework. Our GoT framework integrates the reasoning capabilities of MLLMs with the high-fidelity generation qualities of diffusion models. The proposed framework leverages an MLLM to generate reasoning steps and visual tokens, providing explicit guidance that incorporates semantic relationships and spatial configurations. This guidance flows into our novel Semantic-Spatial Guidance Module (SSGM), which conditions the diffusion process to ensure that generated images are closely guided by the reasoning process. This design supports end-to-end training and inference for visual generation and editing guided by explicit reasoning chains.

By effectively integrating reasoning into visual generation, our GoT framework demonstrates significant improvements in both text-to-image generation quality and image editing accuracy. Additionally, GoT enables interactive generation, allowing users to control the generated image by directly modifying the explicit reasoning process according to their preferences. These advantages represent a substantial advancement in reasoning-guided visual synthesis.

The main contributions can be summarized as follows:

- We propose Generation Chain-of-Thought (GoT), a paradigm where an MLLM first generates an explicit semantic-spatial reasoning chain—comprising textual descriptions of objects, their attributes, inter-relationships, and precise geometric coordinates—to plan visual content before generation or editing.
- We define the formulation of semantic and spatial reasoning chains for visual generation and editing, and constructed the first large-scale GoT datasets, encompassing 8.4M image generation, 920K image editing samples. Creating this dataset, with its semantic-spatial annotations derived from complex MLLM-driven annotation pipelines, consumed over 3000 NVIDIA A100 GPU days.
- We develop a unified end-to-end framework that leverages multimodal language models and diffusion models, with a novel Semantic-Spatial Guidance Module that ensures generated images follow the reasoning process.
- Our experimental results demonstrate significant improvements in both text-to-image generation and editing.

2 Related Work

2.1 Diffusion Models

Diffusion models have revolutionized visual content creation. Early approaches [36, 30] demonstrated this paradigm's potential, while Stable Diffusion [37] improved efficiency through latent space compression. Recent models [35, 38, 32, 6, 21] have further advanced photorealism through architectural innovations and larger-scale training. Various efforts to extend diffusion models' capabilities include controllable generation methods [54, 28] and instruction-based editing frameworks [5, 40]. While some researchers have explored unifying vision tasks [11, 8], these primarily focus on traditional computer vision tasks rather than general image generation. Despite these advances, current models typically process prompts through direct mapping, using text encoders like CLIP [33] or T5 [34] to condition the diffusion process via cross-attention [45]. This approach treats text as a static representation without explicit reasoning about scene composition or object relationships. The fundamental limitation becomes evident when generating complex scenes with multiple objects and specific spatial arrangements, necessitating more sophisticated reasoning-based approaches.

2.2 Large Language Models and Reasoning

Large Language Models (LLMs) have demonstrated remarkable reasoning capabilities through chain-of-thought (CoT)[49], enabling complex problem decomposition. This paradigm extends to MLLMs [1, 2], which integrate visual and textual understanding. Some advanced works [25, 31] have enhanced spatial understanding by grounding textual concepts to image regions, enabling analysis of object relationships. Despite these capabilities, MLLMs remain underutilized for visual generation. While models like Chameleon [44] and Emu2 [43] incorporate image generation, they lack mechanisms to decompose user intent into explicit semantic-spatial reasoning steps that guide the synthesis process. More recently, [15] explored applying CoT-inspired strategies to autoregressive image generation, focusing on verifying and reinforcing the iterative token prediction steps of the generation model itself, which differs from our GoT paradigm where an explicit, structured semantic-spatial reasoning chain with coordinates is generated as a guide for image synthesis.

2.3 Layout-guided Image Generation and Editing

Recent research has explored layout-guided approaches for spatial control in visual synthesis. GLI-GEN [22] incorporated bounding boxes through gated cross-attention layers, enhancing object placement. LayoutGPT [9] proposed a two-stage pipeline converting text into scene layouts before generation. RPG [52] advanced this through recurrent planning, alternating between layout refinement and synthesis. SmartEdit [17] adapts the LLaVA [26] model to specialize in image editing tasks. FlexEdit [29] employs an MLLM to comprehend the image content, mask, and user instructions. Despite these advances, existing approaches treat layouts as static constraints or sequential plans generated before synthesis, disconnecting spatial planning from generation.

3 Generation Chain-of-Thought (GoT)

During visual generation and editing, humans naturally reason about object relationships and spatial arrangements. In contrast, most current models process prompts without explicit reasoning, making it difficult to interpret complex human intentions for generating scenes with detailed object relationships and spatial configurations.

Motivated by chain-of-thought (CoT) in language models, we propose Generation Chain-of-Thought (GoT), shifting the visual generation from direct mapping to a reasoning-guided process. Unlike language generation, which operates primarily within a semantic space, visual generation requires an integrated understanding of both semantic relationships and spatial configurations. To address this complexity, GoT employs a multi-modal reasoning formulation that bridges conceptual understanding and spatial reasoning. This formulation incorporates explicit coordinate information in format (x1,y1), (x2,y2) with range [0,1000), ensuring precise management of visual element placement. This unified semantic-spatial reasoning chain enables fine-grained control of object placement, attributes, and inter-object relationships, ultimately supporting robust and coherent visual generation.

To illustrate GoT's formulation, Fig. 1 presents examples of both text-to-image generation and editing tasks. For text-to-image, GoT generates a detailed reasoning chain specifying precise coordinates of elements. This explicit spatial reasoning enables proper arrangement of all constituents while maintaining their semantic relationships, resulting in a coherent and visually appealing composition.

The image editing example in Fig. 1 demonstrates how GoT handles manipulation tasks through structured reasoning. When tasked with *replace the giant leaf with an umbrella*, GoT first analyzes the scene and then plans edits with precise coordinates. Finally, GoT describes the edited image. This decomposition into sequential steps with explicit spatial reasoning streamlines complex manipulations, contrasting with traditional editing methods that lack spatial awareness and reasoning.

GoT endows image generation and editing with reasoning benefits. By decomposing complex instructions into clearly defined, sequential steps, GoT delivers results that more accurately fulfill human requests. Its transparent process explains the intermediate reasoning behind each change and enables both image generation and editing within a unified system.

Implementing GoT requires two key components:

- A Comprehensive Dataset: This dataset must consist of detailed reasoning chains that align with visual content, capturing both semantic relationships and spatial configurations. Such data provide the necessary foundation for the reasoning process.
- A Compatible Visual Generation Model: The model needs to accommodate chain input to integrate semantic analysis and spatial reasoning, ensuring effective execution of the reasoning steps derived from the dataset.

In the following sections, we elaborate on these components and discuss how they contribute to the robust performance of the GoT framework.

4 GoT Dataset: Semantic-Spatial Reasoning Chains for Visual Generation and Editing

Based on the formulation presented previously, we construct large-scale training datasets using advanced LLMs and MLLMs. Our GoT dataset features meticulously crafted semantic-spatial reasoning chains for generation/editing tasks, each sample containing instructions, reasoning chain annotations, and corresponding images. Construction requires careful design of task-specific annotation pipelines to ensure quality. The prompts used in the pipelines are attached in Appendix Sec. E.

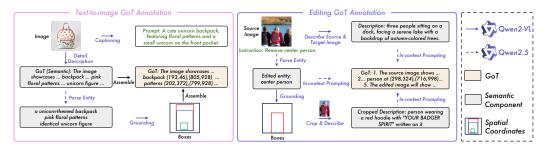


Figure 2: **GoT Dataset Construction Process. Left:** Text-to-image GoT annotation pipeline that labels detailed GoT with semantic content and spatial coordinates. **Right:** Editing GoT annotation pipeline that processes source image, target image, and instruction to generate entity-aware reasoning GoT with precise spatial grounding. Both pipelines leverage Qwen2-VL [46] and Qwen2.5 [51] models for various stages of the annotation process.

4.1 Automated Data Creation Pipeline

As illustrated in Fig. 2, our annotation pipeline demonstrates the multiple stages of processing required to generate these high-quality annotations. For text-to-image, we utilize Qwen2-VL [46] to generate concise prompts that serve as text-to-image generation prompts and detailed visual descriptions that form the semantic component of GoT. Qwen2.5 [51] then performs object entity extraction, followed by Qwen2-VL establishing spatial relationships through object grounding. The detailed visual descriptions merged with precise object groundings together constitute the complete GoT annotation for text-to-image generation.

For the image editing pipeline, we employ Qwen2-VL to generate comprehensive descriptions of source and target images, precisely localize editing regions through bounding boxes, and generate detailed descriptions of edited objects after cropping. We then leverage Qwen2.5 with carefully designed in-context prompting to synthesize coherent GoT reasoning chains, ensuring logical flow and completeness of the editing process. From this pipeline, we derive concise editing instructions as editing inputs while using the detailed semantic-spatial reasoning steps as GoT annotations. For the complex multi-turn editing dataset, we developed a related but more sophisticated protocol with Qwen2-VL and Qwen2.5 to obtain intricate step-by-step reasoning chains with multiple spatial coordinates and transformation descriptions, capturing complex editing sequences.

4.2 Dataset Construction

For text-to-image generation, we construct dataset from three sources: Laion-Aesthetics-High-Resolution (LAHR) [39] with 3.77M samples filtered for images larger than 512 pixels, JourneyDB [41] with 4.09M samples, and 600K FLUX.1-generated [21] images using LAHR prompts.

For the single-turn image editing dataset, we build on OmniEdit [48], a premier open-source image editing dataset with high-fidelity images, processing 736,691 samples covering editing operations (addition, removal, swap, changing expression/color/weather/lighting, and style transfer). The multi-turn image editing dataset is built upon SEED-Edit-Multiturn [12], resulting in 180,190 samples.

5 GoT Framework: Reasoning-guided Visual Generation and Editing

We present the GoT framework, a novel architecture that integrates a semantic-spatial aware Multi-modal Large Language Model (MLLM) with a multi-guided diffusion model. The core structural innovation lies in its unified, end-to-end design where an explicit reasoning chain (GoT) is a structured intermediate representation, directly bridging the MLLM's reasoning capabilities with the diffusion model's synthesis process. This design ensures generated images precisely follow logical reasoning steps, allowing detailed control over both semantic content and spatial relationships.

5.1 Semantic-Spatial MLLM Design

Our framework utilizes a state-of-the-art MLLM, Qwen2.5-VL-3B, as the backbone, chosen for its outstanding visual understanding and grounding capabilities. This MLLM functions as a reasoning engine, handling both generation and editing tasks through a unified architecture.

As illustrated in Fig. 3, the process begins with task-specific inputs. For editing tasks, reference images are processed through the vision encoder. For both generation and editing, the MLLM first produces the detailed GoT reasoning chain, which captures object attributes, relationships, intended modifications, and bounding box information.

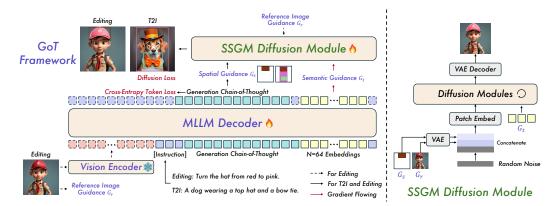


Figure 3: GoT Framework with Semantic-Spatial Guidance. Left: Our dual-task framework handling both text-to-image generation (T2I) and image editing. Right: The SSGM Diffusion Module, which combines spatial layouts guidance G_s , reference image guidance G_r , and semantic guidance G_t to generate the final image with precise content and spatial control.

A key aspect of our approach is the generation of semantic guidance G_t for the diffusion model. To achieve this, we introduce a sequence of N=64 dedicated learnable embeddings. Following the generation of the GoT reasoning chain, the MLLM's decoder, which inherently employs causal attention, processes these N learnable embeddings. The sequence of N output vectors from the MLLM decoder, corresponding to these initial learnable embeddings and now richly conditioned by the preceding GoT reasoning chain, forms the semantic guidance G_t . These G_t embeddings thus encapsulate detailed semantic information derived directly from the GoT, ready to steer the diffusion process. Concurrently, the spatial guidance G_s is derived by parsing and converting the explicit coordinate information present in the generated GoT reasoning chains.

This semantic-spatial aware design enables the MLLM to direct the SSGM Diffusion Module with precise control over content and layout. During training, the MLLM receives supervision through two pathways: cross-entropy loss on GoT reasoning tokens and gradient signals backpropagated from the end-to-end SSGM diffusion module through semantic guidance G_t .

5.2 Semantic-spatial Guided Diffusion Generation

The end-to-end diffusion module builds upon SDXL's [32] architecture, incorporating an innovative triple-guidance mechanism. At the heart of this is our Semantic-Spatial Guidance Module (SSGM), a novel architectural component specifically designed to interpret the structured outputs of the GoT (both semantic and spatial) and seamlessly inject these directives into the diffusion module.

In SSGM, the semantic guidance pathway enhances the diffusion model by channeling N=64 MLLM-generated embeddings G_t through cross-attention layers. This represents a significant structural departure from conventional methods: instead of relying on generic text encoder embeddings (e.g., from CLIP), our architecture uses G_t —embeddings directly reasoned and generated by the MLLM based on the explicit GoT. This structural choice provides a more nuanced, contextually grounded, and GoT-aligned semantic control signal for the diffusion process.

For spatial guidance in SSGM, we extract coordinate information from the generated GoT to create color-coded masks where each object or editing region receives a distinct color based on a predefined order in the GoT sequence. These colored masks are processed through a VAE encoder [18] and averaged to produce spatial latent features G_s , which are concatenated with the diffusion model's latent representations, enabling precise spatial control during both generation and editing tasks.

A crucial structural aspect of the SSGM is its ability to synergistically leverage both the semantic guidance G_t and the spatial guidance G_s , which are notably derived from the *same unified GoT reasoning chain*. This co-derivation and joint integration within SSGM ensure a high degree of coherence between the generated content's semantics ('what') and its spatial arrangement ('where'), a hallmark of our framework's design.

Following InstructPix2Pix [5], we incorporate reference image guidance as the third SSGM pathway. For editing tasks, the source image serves as a reference, while for text-to-image generation, we use a black reference image for architectural consistency. This design enables a seamless transition between generation and editing tasks without architectural modifications. All references are processed through the VAE encoder to extract visual features G_r .

Method	Architecture	Overall	Single Obj.	Two Obj.	Counting	Colors	Position	Attr. Binding
Frozen Text Encoder Mapping Methods								
SDv1.5 [37]	Unet+CLIP	0.43	0.97	0.38	0.35	0.76	0.04	0.06
SDv2.1 [37]	Unet+CLIP	0.50	0.98	0.51	0.44	0.85	0.07	0.17
SD-XL [32]	Unet+CLIP	0.55	0.98	0.74	0.39	0.85	0.15	0.23
DALLE-2 [35]	Unet+CLIP	0.52	0.94	0.66	0.49	0.77	0.10	0.19
SD3 (d=24) [6]	MMDIT+CLIP+T5	0.62	0.98	0.74	0.63	0.67	0.34	<u>0.36</u>
LLMs/MLLMs Enhanced Methods								
LayoutGPT [9]	Unet+Llama	0.41	0.97	0.51	0.26	0.56	0.11	0.07
LlamaGen [42]	Autoregressive	0.32	0.71	0.34	0.21	0.58	0.07	0.04
Chameleon [44]	Autoregressive	0.39	-	-	-	-	-	-
LWM [24]	Autoregressive	0.47	0.93	0.41	0.46	0.79	0.09	0.15
SEED-X [13]	Unet+Llama	0.49	0.97	0.58	0.26	0.80	0.19	0.14
Emu3-Gen [47]	Autoregressive	0.54	0.98	0.71	0.34	0.81	0.17	0.21
Janus [50]	Autoregressive	0.61	0.97	0.68	0.30	0.84	0.46	0.42
JanusFlow [27]	Autoregressive	0.63	0.97	0.59	0.45	0.83	0.53	0.42
GoT Framework	Unet+Qwen2.5-VL	0.64	0.99	0.69	0.67	0.85	0.34	0.27

Table 1: Evaluation of text-to-image generation on GenEval benchmark [14]. Obj.: Object. Attr.: Attribution.

5.3 Guidance Strategy

We employ a classifier-free guidance strategy integrating semantic, spatial, and reference image guidance. During diffusion, the score estimation ε_{θ} is calculated as a weighted combination of conditional and unconditional scores. Let $\varepsilon_{0}=\varepsilon_{\theta}(z_{t},\varnothing,\varnothing,\varnothing)$ denote the unconditional score estimate, $\varepsilon_{r}=\varepsilon_{\theta}(z_{t},\varnothing,\varnothing,G_{r})$ the estimate conditioned only on reference image features G_{r} , $\varepsilon_{t,r}=\varepsilon_{\theta}(z_{t},G_{t},\varnothing,G_{r})$ the estimate conditioned on semantic guidance G_{t} and reference features G_{r} , and $\varepsilon_{t,s,r}=\varepsilon_{\theta}(z_{t},G_{t},G_{s},G_{r})$ the estimate conditioned on semantic guidance G_{t} , spatial guidance G_{s} , and reference features G_{r} . The combined score is then:

$$\varepsilon_{\theta} = \varepsilon_0 + \alpha_t(\varepsilon_{t,r} - \varepsilon_r) + \alpha_s(\varepsilon_{t,s,r} - \varepsilon_{t,r}) + \alpha_r(\varepsilon_r - \varepsilon_0) \tag{1}$$

Here, z_t is the noisy latent. Guidance scales α_t , α_s , and α_r control the strength of each respective guidance type (semantic, spatial, and reference), while \varnothing denotes null conditioning. During training, we randomly sample conditioning combinations with a probability of 5%, excluding the fully-conditioned case $\varepsilon_{t,s,r}$, to enhance robustness. Guidance parameters are introduced in Sec. 6.

6 Experiments

We evaluate GoT framework on text-to-image generation, interactive image generation, and image editing. Experiments show quantitative improvements and qualitative benefits of our reasoning-guided approach, with ablation studies validating our design choices.

6.1 Text-to-Image Generation

6.1.1 Quantitative Results

Tab. 1 presents a evaluation of text-to-image generation (T2I) on GenEval [14]. The comparison spans two main categories of models: those employing frozen text encoders for direct prompt-to-image generation (primarily diffusion-based approaches) and those leveraging LLMs or MLLMs to enhance the generation process. On T2I task, GoT framework adopts $\alpha_t=7.5$ and $\alpha_s=4.0$, and more discussions on α tuning are shown in Appendix Sec. C.2. The results show our framework achieves the highest overall score of 0.64, outperforming both frozen text encoder methods and LLM/MLLM-enhanced approaches. GoT excels particularly in single object (0.99), counting tasks (0.67), and color tasks (0.85), demonstrating the effectiveness of our reasoning-guided generation paradigm. While methods like JanusFlow [27] perform better in position and attribute binding tasks, GoT's balanced performance across all metrics validates that incorporating explicit reasoning mechanisms enhances compositional generation abilities.

Among the LLM/MLLM-enhanced methods, our approach outperforms recent systems like Janus [50] and JanusFlow [27] in overall performance despite their advantages in specific areas. This suggests that while autoregressive models excel in certain spatial tasks, our GoT framework's structured reasoning provides more consistent performance across diverse generation requirements.

6.1.2 Qualitative Results

In addition to the outstanding compositional text-to-image generation capability, GoT framework also exhibits high generation quality. In Fig. 4, we showcase the generation results of our model across a

Figure 4: Text-to-Image samples generated by our model. The GoT framework can plan object placement based on the input caption and generate highly aligned and aesthetic images accordingly.

Figure 5: Samples on interactive generation with GoT framework. By modifying GoT content (description and bounding box position), user can customize their text-to-image process with: 1. Object replacement 2. Object position adjustment 3. Object attribute modification.

diverse set of prompts. We present samples from compositional prompts containing multiple objects, incorporating object attributes, relationships, and relative spatial positions. Our model effectively plans the placement of different objects, producing coherent and aesthetically pleasing images.

6.2 Interactive Generation

In our experiments, we further demonstrate the interactive capabilities of the GoT framework, illustrated in Fig. 5. This approach enables user control over the generation process by modifying the GoT content, including both textual descriptions and bounding box positions. Users can customize their text-to-image generation through three primary interaction types: object replacement, object position adjustment, and object attribute modification. The examples showcase how the framework maintains overall scene coherence while precisely implementing the requested changes. This flexibility provides an interpretable and manipulable interface for text-to-image generation that traditional black-box systems lack, allowing precise control over the output without requiring expertise.

6.3 Image Editing

6.3.1 Quantitative Results

As shown in Tab. 2, we evaluate our GoT framework against state-of-the-art image editing methods across multiple benchmarks. On Emu-Edit benchmark [40], GoT framework achieves the highest scores for both CLIP-I (0.864) and CLIP-T (0.276) metrics, outperforming previous methods including CosXL-Edit [4] and

Method	Params.	Emu-Edit		ImagenHub	Reason-Edit	
		CLIP-I	CLIP-T	GPT-40 Eval.	GPT-40 Eval.	
IP2P [5]	0.9B+0.1B	0.834	0.219	0.308	0.286	
MagicBrush [53]	0.9B+0.1B	0.838	0.222	0.513	0.334	
MGIE [10]	0.9B+7B	0.783	0.253	0.392	0.264	
Emu-Edit [40]	-	0.859	0.231	-	-	
SEED-X [13]	2.8B+14B	0.825	0.272	0.166	0.239	
SmartEdit [†] [17]	0.9B+7B	-	-	-	0.572	
CosXL-Edit [4]	-	0.860	0.274	0.464	0.325	
GoT Framework	2.8B+3B	0.864	0.276	0.533	0.561	

Table 2: Quantitative comparison on image editing benchmarks. † denotes that SmartEdit mainly supports removing and replacing operation and is not designed for general editing operations.

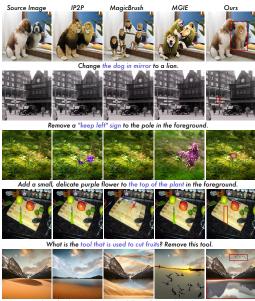
Emu-Edit [40]. Since CLIP-I and CLIP-T cannot fully reflect editing accuracy, we also evaluated using GPT-40 [1], which aligns better with human evaluation [19]. On ImagenHub [20], our approach attains the highest score of 0.533. On the reasoning-based Reason-Edit benchmark [17], our model achieves a strong score of 0.561, second only to SmartEdit (0.572) [17], which is specially designed for reasoning removing and replacing operations. This demonstrates our method's strong editing ability, especially in complex reasoning settings. GoT framework shows consistently superior performance while maintaining competitive parameter efficiency (2.8B+3B) compared to approaches like SEED-X (2.8B+14B) [13]. In the editing task, GoT framework adopts $\alpha_t = 4.0$, $\alpha_s = 3.0$, and $\alpha_t = 1.5$. The evaluation prompt of GPT-40 is shown in Appendix Sec. E.1.

6.3.2 Qualitative Results

We present qualitative comparison of image editing with other models in Fig. 6. Our approach demonstrates superior performance across diverse editing scenarios requiring semanticspatial reasoning. Examples highlight our framework's distinctive capabilities: First, our model accurately identifies and localizes objects referenced through indirect descriptions. Second, our approach handles complex spatial instructions effectively, such as removing specific signage or adding delicate elements to precise locations. Third, our framework excels at multi-step editing operations, shown in the bottom example. The red bounding boxes visible in our results indicate the coordinates predicted by the MLLM within the GoT framework, providing interpretable insight into how our system reasons about spatial relationships during editing.

6.4 Ablation Study on Framework Design

We conduct an ablation study to analyze the impact of different components in our framework. Tab. 3 presents the results of our study, where we progressively integrate different components into the baseline and evaluate their effects on *GenEval* and *ImagenHub* benchmarks.



Replace the dessert dunes with a lake and then add birds to the sky.

Figure 6: Qualitative results of image editing. Our GoT framework demonstrates superior performance in settings that require semantic-spatial reasoning. Red boxes indicate the coordinates predicted by MLLM within the GoT framework.

The baseline model leverages Qwen2.5-VL-3B and SDXL but does not incorporate GoT reasoning chains. It is trained with FLUX-GoT and OmniEdit-GoT for 10,000 steps. Adding GoT reasoning chains to the baseline model enables the LLM to achieve stronger semantic guidance capabilities. The reasoning process helps LLM plan for guidance in generation.

Introducing the Semantic-Spatial Guidance Module (SSGM) further enhances model performance, particularly in image editing. SSGM provides spatial control over the diffusion model, ensuring object placement aligns more accurately with the reasoning process. This

Method	GoT	SSGM	Pretrain	GenEval	ImagenHub
Baseline	×	×	×	0.38	0.176
+ GoT	✓	×	×	0.40	0.181
+ SSGM	✓	✓	×	0.42	0.370
GoT Framework	✓	✓	✓	0.64	0.533

Table 3: Ablation study of our GoT framework on GenEval overall and ImagenHub GPT-4o eval.

enables fine-grained editing, as reflected by the significant improvement in the ImagenHub evaluation. However, in GenEval, only the position category is notably affected by SSGM, which explains the minor performance gain.

Our final framework, which includes GoT reasoning, SSGM, and an extensive 60,000-step pretraining phase, achieves the highest scores, demonstrating the significant benefits of prolonged pretraining and the full model design. The ablation study confirms that each added component contributes positively to the overall performance, validating our framework design choices.

7 Conclusion

We introduced Generation Chain-of-Thought (GoT), a paradigm integrating MLLM reasoning into visual generation via explicit semantic-spatial chains, overcoming limitations in understanding object relationships. Our approach transforms visual generation from direct mapping into a reasoning-guided process with precise spatial control, addressing limitations in existing methods that lack explicit understanding of object relationships and arrangements. Leveraging large-scale datasets and a novel Semantic-Spatial Guidance Module, GoT achieves state-of-the-art, interactive visual synthesis aligned with human cognition. This advancement promises enhanced creative workflows and more controllable AI; however, the increased power to generate and manipulate visual content also demands robust ethical frameworks to mitigate misuse, such as creating misleading media.

8 Acknowledgement

This study was supported in part by National Key R&D Program of China Project 2022ZD0161100, in part by the Centre for Perceptual and Interactive Intelligence, a CUHK-led InnoCentre under the InnoHK initiative of the Innovation and Technology Commission of the Hong Kong Special Administrative Region Government, in part by NSFC-RGC Project N_CUHK498/24, and in part by Guangdong Basic and Applied Basic Research Foundation (No. 2023B1515130008, XW).

References

- [1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv* preprint arXiv:2303.08774, 2023.
- [2] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 2023.
- [3] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.
- [4] Frederic Boesel and Robin Rombach. Improving image editing models with generative data refinement. In *The Second Tiny Papers Track at ICLR 2024*, 2024.
- [5] Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image editing instructions. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 18392–18402, 2023.
- [6] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024.
- [7] Rongyao Fang, Chengqi Duan, Kun Wang, Hao Li, Hao Tian, Xingyu Zeng, Rui Zhao, Jifeng Dai, Hongsheng Li, and Xihui Liu. Puma: Empowering unified mllm with multi-granular visual generation. arXiv preprint arXiv:2410.13861, 2024.
- [8] Rongyao Fang, Shilin Yan, Zhaoyang Huang, Jingqiu Zhou, Hao Tian, Jifeng Dai, and Hongsheng Li. Instructseq: Unifying vision tasks with instruction-conditioned multi-modal sequence generation. arXiv preprint arXiv:2311.18835, 2023.
- [9] Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu, Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and generation with large language models. Advances in Neural Information Processing Systems, 36:18225–18250, 2023.
- [10] Tsu-Jui Fu, Wenze Hu, Xianzhi Du, William Yang Wang, Yinfei Yang, and Zhe Gan. Guiding instruction-based image editing via multimodal large language models. arXiv preprint arXiv:2309.17102, 2023.
- [11] Yulu Gan, Sungwoo Park, Alexander Schubert, Anthony Philippakis, and Ahmed M Alaa. Instructov: Instruction-tuned text-to-image diffusion models as vision generalists. *arXiv preprint arXiv:2310.00390*, 2023.
- [12] Yuying Ge, Sijie Zhao, Chen Li, Yixiao Ge, and Ying Shan. Seed-data-edit technical report: A hybrid dataset for instructional image editing. *arXiv* preprint arXiv:2405.04007, 2024.
- [13] Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi, Lin Song, Chen Li, Xiaohan Ding, and Ying Shan. Seed-x: Multimodal models with unified multi-granularity comprehension and generation. *arXiv* preprint *arXiv*:2404.14396, 2024.
- [14] Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for evaluating text-to-image alignment. Advances in Neural Information Processing Systems, 36:52132–52152, 2023.
- [15] Ziyu Guo, Renrui Zhang, Chengzhuo Tong, Zhizheng Zhao, Peng Gao, Hongsheng Li, and Pheng-Ann Heng. Can we generate images with cot? let's verify and reinforce image generation step by step. arXiv preprint arXiv:2501.13926, 2025.
- [16] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

- [17] Yuzhou Huang, Liangbin Xie, Xintao Wang, Ziyang Yuan, Xiaodong Cun, Yixiao Ge, Jiantao Zhou, Chao Dong, Rui Huang, Ruimao Zhang, et al. Smartedit: Exploring complex instruction-based image editing with multimodal large language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 8362–8371, 2024.
- [18] Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.
- [19] Max Ku, Dongfu Jiang, Cong Wei, Xiang Yue, and Wenhu Chen. Viescore: Towards explainable metrics for conditional image synthesis evaluation. *arXiv* preprint arXiv:2312.14867, 2023.
- [20] Max Ku, Tianle Li, Kai Zhang, Yujie Lu, Xingyu Fu, Wenwen Zhuang, and Wenhu Chen. Imagenhub: Standardizing the evaluation of conditional image generation models. arXiv preprint arXiv:2310.01596, 2023
- [21] Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.
- [22] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li, and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In *Proceedings of the IEEE/CVF* conference on computer vision and pattern recognition, pages 22511–22521, 2023.
- [23] Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. Llm-grounded diffusion: Enhancing prompt understanding of text-to-image diffusion models with large language models. arXiv preprint arXiv:2305.13655, 2023.
- [24] Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and language with ringattention. *arXiv e-prints*, pages arXiv–2402, 2024.
- [25] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-next: Improved reasoning, ocr, and world knowledge, January 2024.
- [26] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36:34892–34916, 2023.
- [27] Yiyang Ma, Xingchao Liu, Xiaokang Chen, Wen Liu, Chengyue Wu, Zhiyu Wu, Zizheng Pan, Zhenda Xie, Haowei Zhang, Liang Zhao, et al. Janusflow: Harmonizing autoregression and rectified flow for unified multimodal understanding and generation. arXiv preprint arXiv:2411.07975, 2024.
- [28] Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan. T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models. In *Proceedings of the AAAI conference on artificial intelligence*, pages 4296–4304, 2024.
- [29] Trong-Tung Nguyen, Duc-Anh Nguyen, Anh Tran, and Cuong Pham. Flexedit: Flexible and controllable diffusion-based object-centric image editing. arXiv preprint arXiv:2403.18605, 2024.
- [30] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.
- [31] Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu Wei. Kosmos-2: Grounding multimodal large language models to the world. *arXiv preprint arXiv:2306.14824*, 2023.
- [32] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. *arXiv* preprint arXiv:2307.01952, 2023.
- [33] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pages 8748–8763. PmLR, 2021.
- [34] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. *Journal of machine learning research*, 21(140):1–67, 2020.
- [35] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with clip latents. *arXiv* preprint arXiv:2204.06125, 1(2):3, 2022.
- [36] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine learning*, pages 8821–8831. Pmlr, 2021.

- [37] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer* vision and pattern recognition, pages 10684–10695, 2022.
- [38] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-toimage diffusion models with deep language understanding. Advances in neural information processing systems, 35:36479–36494, 2022.
- [39] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale dataset for training next generation image-text models. Advances in neural information processing systems, 35:25278–25294, 2022.
- [40] Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual, Devi Parikh, and Yaniv Taigman. Emu edit: Precise image editing via recognition and generation tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 8871–8879, 2024.
- [41] Keqiang Sun, Junting Pan, Yuying Ge, Hao Li, Haodong Duan, Xiaoshi Wu, Renrui Zhang, Aojun Zhou, Zipeng Qin, Yi Wang, et al. Journeydb: A benchmark for generative image understanding. *Advances in neural information processing systems*, 36:49659–49678, 2023.
- [42] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan. Autore-gressive model beats diffusion: Llama for scalable image generation. *arXiv preprint arXiv:2406.06525*, 2024.
- [43] Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Yueze Wang, Yongming Rao, Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative multimodal models are in-context learners. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 14398–14409, 2024.
- [44] Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint* arXiv:2405.09818, 2024.
- [45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.
- [46] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.
- [47] Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need. arXiv preprint arXiv:2409.18869, 2024.
- [48] Cong Wei, Zheyang Xiong, Weiming Ren, Xinrun Du, Ge Zhang, and Wenhu Chen. Omniedit: Building image editing generalist models through specialist supervision. *arXiv preprint arXiv:2411.07199*, 2024.
- [49] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
- [50] Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified multimodal understanding and generation, 2024a. URL https://arxiv.org/abs/2410.13848, 2024.
- [51] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.
- [52] Ling Yang, Zhaochen Yu, Chenlin Meng, Minkai Xu, Stefano Ermon, and CUI Bin. Mastering text-toimage diffusion: Recaptioning, planning, and generating with multimodal llms. In *Forty-first International Conference on Machine Learning*, 2024.
- [53] Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated dataset for instruction-guided image editing. Advances in Neural Information Processing Systems, 36:31428–31449, 2023.
- [54] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 3836–3847, 2023.
- [55] Le Zhuo, Ruoyi Du, Han Xiao, Yangguang Li, Dongyang Liu, Rongjie Huang, Wenze Liu, Lirui Zhao, Fu-Yun Wang, Zhanyu Ma, et al. Lumina-next: Making lumina-t2x stronger and faster with next-dit. arXiv preprint arXiv:2406.18583, 2024.

A Training Details

Our training process implements a two-phase approach: pretraining using LAHR-GoT, JourneyDB-GoT, and OmniEdit-GoT datasets (60,000 steps), followed by finetuning with FLUX-GoT, OmniEdit-GoT, and SEED-Edit-MultiTurn-GoT (10,000 steps). We employ low-rank adaptation (LoRA) [16] to efficiently update the Qwen2.5-VL decoder's parameters while fully optimizing the SDXL-based diffusion module. The process operates end-to-end, jointly optimizing the MLLM GoT cross-entropy token loss and diffusion MSE loss with equal weighting 1.0, demonstrating robustness without complex hyperparameter tuning. We adopt a cosine learning rate scheduler with 500 warmup steps and a maximum learning rate of 1×10^{-4} .

During the fine-tuning stage, we train the model on FLUX-GoT, OmniEdit-GoT, and SEED-Edit-MultiTurn-GoT for 10,000 steps. In this phase, we set the warmup steps to 200 and the maximum learning rate to 5×10^{-5} .

For both stages, we use the Adam optimizer with $\beta_1 = 0.9$, $\beta_2 = 0.98$, and $\epsilon = 1 \times 10^{-6}$. We also apply a weight decay of 0.05 during training. The number of batch size is set to 128.

The LLM is fine-tuned using LoRA with r=32, LoRA alpha set to 32, and a LoRA dropout rate of 0.05. For diffusion, we introduce a noise offset of 0.1.

B Statistics of GoT T2I Datasets

The GoT T2I datasets yield rich annotations: LAHR-GoT samples with prompts averaging 110.81 characters, GoT descriptions averaging 811.56 characters, and 3.78 bounding boxes per image. Similarly, JourneyDB-GoT annotations average 149.78 characters for prompts, 906.01 characters for GoT descriptions, and 4.09 boxes image.

C Visualization Results

C.1 Qualitative Analysis of Image Editing and Interactive Generation

We provide additional examples to demonstrate the capabilities of the GoT framework. Fig. 7 illustrates the image editing performance of our model. Additionally, we present the corresponding GoT content generated alongside each sample. Further examples of interactive generation using our model are shown in Fig. 8.

C.2 Visualization of Multi-Guidance Strategy Hyperparameter Selection

We analyze the effect of hyperparameter selection in the Multi-Guidance Strategy on the generated images, as depicted in Fig. 9. The definitions of these hyperparameters are provided in Sec. 5.3.

D GoT Format and Examples

This section presents examples of the GoT format in our dataset. The GoT structure varies across different tasks, including text-to-image (T2I) generation, single-turn editing, and multi-turn editing.

For text-to-image generation, Fig. 10 showcases examples from FLUX-GoT, JourneyDB-GoT, and LAHR-GoT. Our GoT format represents the structured planning process of the upstream model in generating image content. It provides a detailed breakdown of the various components within an image and their spatial relationships. To enhance spatial understanding, we append location information to key objects within the GoT representation.

Fig. 11 illustrates the GoT format for image editing within our dataset. For single-turn editing, GoT represents the reasoning plan of the upstream model for a specific editing action. It consists of a description of the source image, the object to be modified, the specific editing operation, and the resulting edited image. This structured process ensures a step-by-step transformation, beginning with the original image, identifying the target object, applying the specified modification, and generating the edited image.

For multi-turn editing, GoT follows a more complex structure, as it must encapsulate the breakdown of an instruction into a sequence of consecutive steps. In practice, we first generate a description

of the source image, then decompose the multi-turn instruction into a series of step-by-step editing commands. At each step, GoT operates as a single-turn editing process, specifying the object to be modified along with the corresponding transformation. Finally, the process concludes with a description of the fully edited image.

Furthermore, for image editing tasks, positional information is appended to each object to enhance spatial comprehension.

E Prompts for Evaluation and Dataset Construction

E.1 Prompts for Evaluating Image Editing Performance

We provide the prompts used for evaluating image editing performance with GPT-40 in Fig. 12. We are using GPT-40-2024-11-20. The final score is the average of the minimum value of the two scores for each sample.

E.2 Prompts for Text-to-Image Data Construction

Fig. 13, 14, and 16 present the key prompts utilized in text-to-image data preparation.

E.3 Prompts for Image Editing Data Construction

Fig. 15–20 illustrate the key-step prompts employed in image editing data preparation.

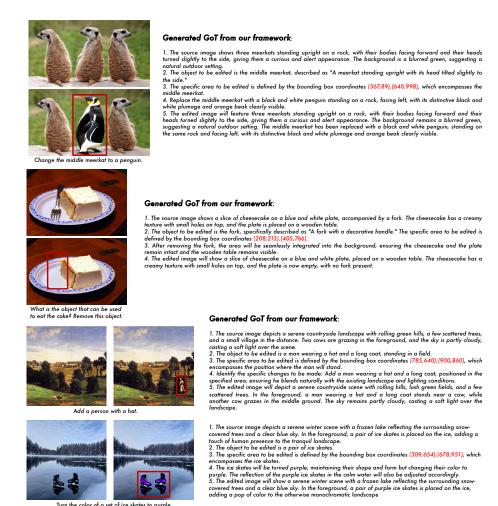


Figure 7: More samples on image editing with the GoT content generated by our model.

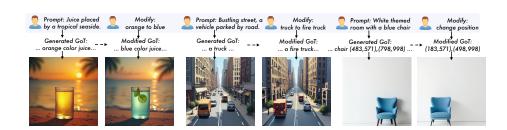


Figure 8: More examples on interactive generation.

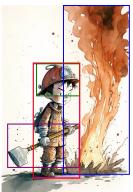
A bride in a white dress stands in a garden, holding a bouquet of flowers, with greenery and trees in the background.

Figure 9: Visualization on Multi-Guidance Strategy Hyper-parameter Selection. The above are text-to-image samples generated by GoT framework under different hyper-parameters.

FLUX-GoT

A young girl dressed as Elsa from Frozen, wearing a blue dress adorned with snowflake patterns, a matching crown, and holding a wand, stands in a snowy forest setting.

GoT:
A young girl (262,40),(862,998) stands in a snowy forest (0,0),(998,661), dressed as Elsa from Disney's "Frozen."
She wears a vibrant turquoise dress adorned with intricate silver snowflake potterns (361,914),(418,975) and a matching silver belt. The dress features long sleeves and a flowing tulle skirt that cascades behind her. Her blonde hair is styled in two braids, secured with a sparkling silver crown (427,39),(578,111) featuring a large blue gem at its center. In her right hand, she holds a wand (235,229),(335,06) with a blue handle and a glittering silver star at the top, reminiscent of Elsa's magical scepter. The background is softly blurred, showcasing a serene winter landscape with snow-covered trees and a gentle light filtering through the branches, creating a magical and sephanting attractables. enchanting atmosphere.



JourneyDB-GoT

A young fireman in a helmet and uniform stands with an axe, facing a large, orange flame against a mostly white background, rendered in a hand-drawn, colorful style reminiscent of Calvin and Hobbes.

Gof:
The image depicts a young fireman (244,299), (613,902) standing confidently in front of a large, billowing fire (479,0), (999,882). The fireman is dressed in a detailed, hand-drawn fireman's uniform, complete with a helmet (269,303), (611,474), boots, and an axe (44,616), (608,846). The uniform is rendered in a warm, earthy color palette, with the helmet featuring a prominent visor. The fire itself is a dramatic, orange-red stacted, with smoke rising in a chaotic, blob-like form in the background. The scene is set against a mostly white background, which helps to highlight the vibrant colors and intricate details of the fire man and the fire. The overall composition is dynamic, with the fireman positioned in the foreground, ready to face the challenge of the fire, while the fire's chaotic nature adds a sense of urgency and intensity to the scene. The image is reminiscent of the style of Calvin and Hobbes, with its detailed, expressive line work and a sense of narrative tension. The use of watercolor blob in the background adds a painterly touch, enhancing the visual image of the scene. the background adds a painterly touch, enhancing the visual impact of the scene.

LAHR-GoT

Prompt:Still life painting featuring a bottle of wine, a glass filled with red wine, and a box of colorful chocolates on a table

GoT:

The painting "Indulgence" by Cory Clifford captures a still life arrangement of luxurious confections and a glass of red wine, evoking a sense of opulence and relaxation. A box of assorted chocolates, each wrapped in vibrant foil, is open, revealing a variety of shapes and colors, including gold, green, red, and yellow. The chocolates (119,548),(608,908) are scattered around the box, some still in their wrappers, while others have been enjoyed. A bottle of red wine (751,44),(901,779) stands tall, its green glass reflecting the ambient light, accompanied by a filled wine glass (629,361),(803,838) that rests nearby. The background is a deep, rich blue, contrasting with the white tablecloth that spans the lower portion of the painting, creating a sense of depth and focus on the central objects. The overall composition is balanced, with the chocolates and wine glass positioned centrally, drawing the viewer's eye to the indulgent scene. and wine glass positioned centrally, drawing the viewer's eye to the indulgent scene.

Prompt:Indian Scout motorcycle with brown leather saddlebags and a green and black color scheme, parked in front of a rustic barn.

GoT:

The image showcases an Indian Scout motorcycle (325,123),(875,879), prominently positioned in the foreground. The motorcycle features a sleek, vintage design with a green and cream color scheme, accented by chrome detailing. The front wheel is slightly turned to the left, and the bike is equipped with a clear windshield and a pair of round headlights. The seat is brown leather (335,309),(485,619) attached to the rear.

The motorcycle is parked on a gravel surface, with a rustic barn-like structure (0,0),(997,694) in the background, characterized by corrugated metal siding and a wooden door. The overall composition places the motorcycle as the central focus, with the barn serving as a contrasting backdrop that emphasizes the bike's classic aesthetic.

Figure 10: Examples of GoT dataset for text-to-image generation, including FLUX-GoT, JourneyDB-GoT, and Laion-Aesthetics-High-Resolution-GoT.

OmniEdit-GoT

Instruction: Turn the color of sunglasses case to purple.

- GoT:

 1. The source image shows a person wearing a gray t-shirt and sunglasses, holding a brown leather sunglasses case. The individual appears to be in a neutral or slightly serious mood.

 2. The object to be edited is the brown leather sunglasses case.

 3. The specific area to be edited is defined by the bounding box coordinates (361,699),(685,996).

 4. The specific changes to be made include changing the color of the sunglasses case to purple, ensuring it matches the target image description.

 5. The edited image will show a person wearing a gray t-shirt and sunglasses, holding a purple sunglasses case with a pair of sunglasses inside. The background will remain unchanged but will be a solid light purple color.

Instruction: Remove a cowboy with a brown hat, red poncho, and cigar in the foreground.

- GoT:

 1. The source image features a cowboy with a brown hat, red poncho, and a cigar in the foreground, surrounded by old, weathered wanted posters for the Dalton Gang and Jesse James. The bockground is a grithy, teatured wall with a vintage Western theme.

 2. The object to be edited is the cowboy, specifically the one described as having a brown hat, red poncho, and cigar.

 3. The specific area to be edited is defined by the bounding box coordinates (78.18),166.9-979 which encompasses the entire cowboy figure.

 4. Remove the cowboy completely from the image while maintaining the surrounding wanted posters and the grithy, teatured background. Ensure the removal is seamlest, blending the area with the old, weathered posters and the vintage Western theme.

 5. The edited image will show the collection of vintage wanted posters, including those for the Dalton Gang and Jesse James, with a prominent "WANTED" sign in the foreground. The background will remain a grangry, aged wall with a sense of motion, suggesting a chaotic or historical setting. The area where the cowboy was will appear seamless, blending with the surrounding posters and background.

SEED-Edit-MultiTurn-GoT

Instruction: Change the red jacket on the middle to light green, remove the birds on the right, add a forest background, and put a car on the left.

- GoT:

 1. The source image shows a person wearing a red jacket standing on a filed walkway, surrounded by a large flock of seagulls. The scene is set against a backdrop of a body of water and a hillside with buildings, under a cloudy sky.

 2. For the first step, the object to be edited is the red jacket. The specific area to be edited is defined by the bounding box coordinates (410,351,(617,687). Change the color of the red jacket to light green, and ensure the number 15 and other text remain visible.

 3. For the second step, the object to be edited is the flock of birds. The specific area to be edited is defined by the bounding box coordinates (549,0), (999,553). Remove the flock of seagulls from this area.

- defined by the bounding box coordinates (04Y,U),(YYY,03J), remove me nox or segurus now mere.

 4. For the third step, the specific area to be edited is defined by the bounding box coordinates (0,0),(1997,714). Replace the background with a forest featuring a cloudy sky, a body of water, and a distant hilliade with buildings. Ensure the forest creates a lush, green canopy overhead.

 5. For the fourth step, the object to be edited is the left side of the image. The specific area to be edited is defined by the bounding box coordinates (0,584),(1992,999). Add a car, green with a shiny, reflective surface and a lesk design, featuring a visible rear light, to this area.

 6. The edited image depicts a person wearing a light green jacket with the number 15 on the back, walking down a perved path flanked by fall trees with lush green foliage. A car is parked on the lest of the path. The scene is seene and natural, with the overest creating a canopy overhead, and a cloudy sky, a body of water, and a distant hillside with buildings in the background.

Figure 11: Examples of GoT dataset for image editing, including OmniEdit-GoT for single-turn editing and SEED-Edit-Multiturn-GoT for multi-turn editing.

You are a professional digital artist. You will have to evaluate the effectiveness of the AI-generated image(s) based on the given rules. You will have to give your output in this way (Keep your reasoning concise and short.): "score": [...], "reasoning": "..." and don't output anything else.

Two images will be provided:

The first being the original AI-generated image and the second being an edited version of the first. The objective is to evaluate how successfully the editing instruction has been executed in the second image. Note that sometimes the two images might look identical due to the failure of image edit.

From a scale 0 to 10:

A score from 0 to 10 will be given based on the success of the editing.

- 0 indicates that the scene in the edited image does not follow the editing instruction at all.
- 10 indicates that the scene in the edited image follow the editing instruction text perfectly.
- If the object in the instruction is not present in the original image at all, the score will be 0.
- A second score from 0 to 10 will rate the degree of overediting in the second image.

 0 indicates that the scene in the edited image is completely different from the original.
- 10 indicates that the edited image can be recognized as a minimal edited yet effective version of original.

Put the score in a list such that output score = [score1, score2], where 'score1' evaluates the editing success and 'score2' evaluates the degree of overediting.

Editing instruction: <instruction>

<Image> Source Image </Image>

<Image> Edited Image </Image>

Assistant:

Figure 12: Prompt for GPT4-0 image editing evaluation. We are using GPT-40-2024-11-20. The final score is the average of the minimum value of the two scores for each sample.

Human:

<Image> Image </Image>

You are an advanced AI visual assistant specializing in highly detailed and comprehensive visual analysis for one image. Your role is to generate a single, descriptive paragraph that encapsulates all relevant details about an image. Here is the provided image prompt for this image: prompt>.

If the provided prompt aligns with the image, enhance it by adding detailed observations about the objects, their colors, shapes, textures, numeracy, and spatial relationships. If the provided prompt does not match the image content, disregard it and craft a complete description based solely on the visual elements you observe. Consider the 2D-spatial relationships (e.g., "to the left of," "near," "aligned with") and 3D-spatial relationships (e.g., "in front of," "above," "at a distance from") when describing the scene. Include details about the overall composition, highlighting how elements are arranged relative to each other, their groupings, and any complex interactions or dynamic elements within the scene. Pay close attention to the interplay of colors, textures, and shapes, ensuring that the description reflects both the visual richness and structural composition of the image. Ensure to provide the description as one single paragraph, without preamble or additional explanation.

Assistant:

Figure 13: Prompt for detailed recaption for text-to-image data.

You are tasked with identifying and extracting all the real object names from a detailed caption. An object name refers to any tangible or physical entity mentioned in the caption that can be visually grounded in the image. Ensure not to include any adjectives or single-word descriptions that do not refer to a specific object, such as "background."

Please follow these instructions:

Identify all object names in the caption in the order they appear. Maintain the exact wording of each object name as it is in the caption, including case consistency. Output the object names in a Python list format. For example, consider the following caption:

Example 1:

"In the image, a person is prominently featured at a vibrant pride parade, exuding confidence and pride. They are adorned in an extravagant outfit that mirrors the rainbow flag, with a deep V-neck top in bold, colorful stripes of red, orange, yellow, green, blue, and purple. The person's hair is styled in a striking rainbow color, complementing their outfit. They are surrounded by a lively crowd, with individuals wearing various colors and accessories, adding to the festive atmosphere. The background reveals a bustling street scene with buildings and trees, suggesting an urban setting. The overall composition is dynamic, with the person at the center, drawing attention to their vibrant attire and the energetic parade around them."

Your output should be a list of object names like this:

['person', 'pride parade', 'outfit', 'V-neck top', 'The person's hair', 'a lively crowd', 'individuals', 'street', 'buildings', 'trees']

Example 2:

"The image depicts a young boy with slender features and a pale complexion, exuding an air of arrogance and coldness. His white-blonde hair is slicked back, adding to his composed demeanor. The boy's eyes are a striking shade of cold grey, reflecting a sense of detachment and intelligence. He is dressed in a white shirt with a blue and white patterned collar, which contrasts with his pale skin and adds a touch of elegance to his appearance. The overall composition is balanced, with the boy centrally positioned against a dark background that accentuates his features and the sharpness of his expression. The interplay of colors, textures, and shapes creates a visually striking and emotionally charged image."

Your output should be a list of object names like this:

['young boy', 'white-blonde hair', "The boy's eyes", 'white shirt'] Now, given the following caption, extract the object names in the same format: <caption>
Assistant:

Figure 14: Prompt for identifying objects in text-to-image caption.

Human:

Please tell me according to the instruction: <instruction>. Which object is being replaced with another object? Please only answer the exact name of the two objects using the same words from the instruction. Use the format of a Python list including the two object names. The first is the 'object' and the second is the 'another object'.

Assistant:

Figure 15: An example of prompt for parsing the edited object. This is used when the task type is 'replace'.

Human:

<Image> Image </Image>

Please provide the bounding box coordinates of this sentence describes: <object_name> Assistant:

Figure 16: Prompt for grounding object. This works for both text-to-image and image editing data.

<Image> Image </Image>

You are an AI visual assistant, and you are seeing a single image. Please describe this image in one paragraph using no more than two sentences. Always remember to include describing <object_name> in the image.

Assistant:

Figure 17: Prompt for image description for image editing data.

Human:

<Image> Cropped Image </Image>

Please describe <object_name> briefly in several words no more than one sentence.

Assistant

Figure 18: Prompt for cropped image object description for image editing.

Human

You are a helpful visual assistant. I have an image editing data with the original instruction: <instructions>. I want to augment the instruction to obtain more free-language format instructions.

Your task is to rewrite this original instruction in English into three distinct, human-like, freeform instructions that convey the same meaning but use varied language and phrasing. The new instructions should reflect how humans might naturally request image edits.

Please provide me with three more instructions that have the same meaning as the original instruction but in a more free-language format. The new instruction can be in any format that a human might input as an editing instruction. The first instruction should be relatively concise. Use the format of a Python list which includes three items as strings.

Assistant:

Figure 19: Prompt for reinstruction for image editing data.

You are a helpful assistant for a designer. I have image editing data with the following information: instruction: <instructions>, description of source image: <source_desc>, description of target image: <target_desc>, <coord> <object_desc> Assume you are a visual assistant with access to the edit instruction and the source image. Your task is to provide a step-by-step chain of thought for the image editing process which only includes the image editing processes. The chain of thought can includes the following several type steps (can not in this order, not includes these words in the answer): Describe the source image; the object to be edited; the specific area to be edited; Identify the specific changes to be made; Describe the image after the edit. All information besides the instruction should be considered as derived from the source image. The output is meant to train a multi-modal large language model that takes the source image and instruction as input, generates the editing chain of thought, and then outputs the edited image. Therefore, your response should consider this application and provide clear, concise reasoning in numbered steps (1. 2. 3. ... etc). The response should be purely reasoning text and formatted succinctly. Ensure your answer be brief and few steps.

In context learning, example 1:

- 1. The source image shows a grand, classical building with intricate stone carvings and statues. One prominent statue, a female figure, stands on a pedestal, holding a torch and a book. The building features arched windows and a sign that reads "Learning Center."
- 2. The object to be edited is a statue of a woman holding a torch and a book.
- 3. The specific area to be edited is defined by the bounding box coordinates ((554, 166), (768, 711)), which encompasses the statue.
- 4. Remove the statue completely from the image while maintaining the surrounding architectural details and other elements like the building's facade, arched windows, and the "Learning Center" sign. 5. The edited image will show the grand, classical building with intricate stone carvings and the "Learning Center" sign. The statue, a female figure holding a torch and a book, will no longer be present, and the area where the statue was will appear seamless with the surrounding architecture. The building's arched windows and stone facade will remain intact.

In context learning, example 2:

- 1. The source image depicts a snowy mountain slope with a ski board in the foreground, indicating a skiing or snowboarding activity. The background features a clear blue sky and rocky terrain, suggesting a high-altitude or alpine setting.
- 2. The inserted object is a skier in a black jacket, complete with goggles, sitting on a snowboard. This skier will be positioned in the center of the slope, facing downhill, sitting on a snowboard.
- 3. The specific area to be edited is within the bounding box ((382, 303), (782, 813)), where the current object (a ski board) is located. This area needs to be replaced with the new skier.
- 4. The image now shows a skier dressed in a black jacket and goggles, sitting on a snowboard on a snowy slope. The background features a clear blue sky and rocky terrain, with other skiers and equipment visible in the distance. The skier is positioned in the middle of the slope, looking downhill, seamlessly blending with the existing scene.

In context learning, example 3:

- 1. The source image depicts a group of women and a child standing on a beach, all dressed in vibrant, summery outfits. The scene is bright and cheerful, with the ocean and sky forming a picturesque backdrop. The style of the image is casual and candid, capturing a moment of joy and togetherness.
- 2. The edited area is ((0, 0), (999, 999)), which is the whole image. The object to be edited is the group of women and the child, along with the beach and the background elements. These need to be transformed into a traditional Chinese ink painting style.
- 3. After the edit, the image will depict a group of women and a child standing in a traditional Chinese ink painting style, dressed in elegant, flowing garments. They will be positioned against a backdrop of serene mountains and a tranquil sea, with the overall composition reflecting the classical and detailed style of traditional Chinese ink paintings.

Assistant:

Figure 20: In-context assembling GoT prompt for image editing data.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction, including the explicit list of contributions, clearly articulate the main claims: the Generation Chain-of-Thought (GoT) paradigm, the construction of large-scale GoT datasets, a unified framework with a novel Semantic-Spatial Guidance Module, and demonstrated performance improvements. These claims are well-supported by the experimental results detailed in Section 6.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper has discussed limitations in the experiment and the conclusion section.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by
 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
 limitations that aren't acknowledged in the paper. The authors should use their best
 judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers
 will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper's primary contributions are empirically driven, focusing on the novel GoT paradigm, a framework, and large-scale datasets. It does not introduce new theoretical results that would necessitate formal mathematical assumptions and proofs.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides extensive details for reproducibility. Sections 3, 4, and 5 describe the GoT paradigm, dataset creation (including pipeline details and prompts in Appendix Sec. 12), and the framework architecture (including SSGM and guidance strategy). Appendix Section 8 ("Training Details") further specifies training parameters.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: The paper does not provide open access to the data and code.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Section 5.3 ("Guidance Strategy"), Section 6 (Experiments, e.g.,), and Appendix Section 8 ("Training Details") provide crucial training and testing details. These include information on dataset usage for different training phases, LoRA parameters, optimizer settings (Adam with specific betas, epsilon, weight decay), learning rates, batch sizes, guidance scales, and some notes on hyperparameter selection (e.g., Appendix Sec. 10.2).

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper presents quantitative results in Tables 1, 2, and 3 using various metrics but does not report error bars, standard deviations from multiple experimental runs, or formal statistical significance tests for these scores.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The paper provides substantial detail on the compute resources for dataset creation ("over 3000 NVIDIA A100 GPU days").

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research focuses on advancing visual generation and editing through explicit reasoning, aiming for outputs better aligned with human intent. We have reviewed the NeurIPS Code of Ethics and believe our work, including dataset creation methodologies and model development, aligns with its principles.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discuss the broader impacts in the conclusion section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [No]

Justification: The paper states an intention to release datasets and models but does not currently describe specific safeguards (e.g., usage policies, content moderation mechanisms) to mitigate potential misuse of the advanced generative capabilities.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [No]

Justification: The paper properly cites the original sources for existing assets such as datasets (e.g., Laion-Aesthetics, JourneyDB, OmniEdit) and foundational models (e.g., Qwen2.5-VL, SDXL).

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces new large-scale GoT datasets (over 9M samples). These datasets are documented within the paper regarding their construction methodology (Section 4.1), sources and statistics (Section 4.2, Appendix Section 9), and GoT format with examples (Appendix Section 11). This documentation is intended to accompany the assets upon their stated release.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The use of LLMs and MLLMs is fundamental to this research. The core GoT paradigm involves an MLLM generating explicit reasoning chains. MLLMs (Qwen2-VL, Qwen2.5) are extensively used in the automated dataset creation pipeline detailed in Section 4.1. The proposed GoT framework itself utilizes an MLLM (Qwen2.5-VL-3B) as its reasoning engine (Section 5.1). Furthermore, GPT-40 is used for evaluation in image editing experiments (Section 6.3.1).

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.