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Abstract

Deep Neural Networks are well known for efficiently fitting training data, yet experiencing
poor generalization capabilities whenever some kind of bias dominates over the actual task
labels, resulting in models learning “shortcuts”. In essence, such models are often prone to
learn spurious correlations between data and labels. In this work, we tackle the problem of
learning from biased data in the very realistic unsupervised scenario, i.e., when the bias is
unknown. This is a much harder task as compared to the supervised case, where auxiliary,
bias-related annotations, can be exploited in the learning process. This paper proposes a
novel 2-stage learning pipeline featuring a data augmentation strategy able to regularize
the training. First, biased/unbiased samples are identified by training over-biased models.
Second, such subdivision (typically noisy) is exploited within a data augmentation frame-
work, properly combining the original samples while learning mixing parameters, which
has a regularization effect. Experiments on synthetic and realistic biased datasets show
state-of-the-art classification accuracy, outperforming competing methods, ultimately prov-
ing robust performance on both biased and unbiased examples. Notably, being our training
method totally agnostic to the level of bias, it also positively affects performance for any,
even apparently unbiased, dataset, thus improving the model generalization regardless of
the level of bias (or its absence) in the data.

1 Introduction

The learning capabilities of deep neural networks are nowadays universally recognized, especially in clas-
sification tasks, where deep architectures are able to fit large amounts of data, reaching unprecedented
performance. Yet, being the learning process purely data-driven, such models can also extremely prone to
fail (often with high confidence) whenever test samples are drawn from a different distribution (or domain).

One of the reasons for poor generalization also lies in the possible biases present in the training samples,
i.e., whenever significant portions of data show spurious correlations with class labels. This can lead the
trained model to learn the so-called “shortcuts” to classify data, thus failing to generalize properly (Beery
et al., 2018; Geirhos et al., 2020). For example, a duck can be classified as such by a biased model due to
the presence of blue water in the surroundings, and not for the actual bird shape and appearance. Hence,
the very same model will likely fail in case the input image depicts a duck located on land or, vice versa,
another bird located on water may be mis-classified as a duck. This kind of “shortcuts” are usually learnt
since a vast majority of the samples are characterized by a spurious bias (e.g., ducks in water), while only a
few are unbiased (e.g., ducks on land).

There are several approaches to cope with this problem, depending on whether the bias is known or not.
In the supervised debiasing settings, a model is optimized in presence of biased data assuming the ground-
truth knowledge of the bias. Such additional auxiliary annotations can be used to drive model optimization
towards a data representation invariant to the domain (or attribute), as in Alvi et al. (2018); Kim et al.
(2019); Li & Vasconcelos (2019); Wang et al. (2019); Ragonesi et al. (2021); Sagawa et al. (2020); Clark
et al. (2019); Arjovsky et al. (2019) (see Figure 1(a) for a visual explanation). However, the availability of
such additional domain labels is mostly unrealistic in many practical scenarios, as it would require a great
effort during data annotation, and in some cases it could even be impossible to obtain since biases could not
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Figure 1: Problem description. (a) Biased datasets exhibit a class/domain imbalance, namely, one or more classes are
mostly observed under one domain, leaving other options under-represented. In the case of supervised debiasing, additional
information/annotations regarding the domain distribution are available. (b) In unsupervised debiasing settings, only class
labels are available. Possibly, pseudo-labelling can be adopted to fall back into the supervised settings scenario. (c) Biased
samples are fitted more easily than unbiased ones, as indicated by the different rates at which the average loss decreases. (Best
viewed in color).

be directly interpretable, nor perceivable by humans. Hence, the need for methods that can achieve robust
generalization in presence of bias, with no additional supervision nor labelling is strongly desirable.

The unsupervised debiasing scenario is in fact more realistic and challenging, and is the problem we are
addressing here (Figure 1(b)). Assuming that the ground-truth annotations for the bias are not available,
the idea is to attempt to (implicitly) infer such information and exploit it to debias our model. To this end,
we design a data augmentation strategy, while properly weighting all the data samples proportionally to their
bias level. Ultimately, the proposed approach aims at regularizing the training process by counterbalancing
the biased samples with more “neutral”, augmented examples, hence mitigating the learning of the bias,
while achieving a successful generalization on the test set, often containing balanced (biased and unbiased)
data.

In this paper, we devised a two-stage pipeline to tackle the unsupervised debiasing problem. First, we devise a
methodology for the separation of biased/unbiased samples via a pseudo-labeling approach. Second, equipped
with (noisy) bias/unbias pseudo-labels, we approach the problem of learning unbiased representations via a
novel data augmentation strategy: we design a new objective function properly weighting the contribution
of the two noisy subsets while learning an augmented version of the samples. Specifically, we generate
(augment) new data by linearly interpolating biased and unbiased pseudo-labeled samples thus producing
data which are more “neutral” than the original biased or unbiased data. This reduces the contribution of
spurious correlations, which cause overfitting of biased samples as shown in Fig. 1(c). More specifically, we
augment data by adopting a variant of Mixup (Zhang et al., 2018), i.e., a learnable version of it, where the
parameters governing the data mixing are learnt, to increase the debiasing effect and boost the method’s
performance. It is important to note that, while existing methods (Nam et al., 2020; Clark et al., 2019)
are primarily devoted to increasing accuracy on unbiased samples, overlooking the need for keeping high
accuracy on biased data as well, we aim instead at achieving high accuracy over both types of data. Notably,
the method is also completely agnostic of the presence of bias, as it shows positive effects even when no bias
is (apparently) present in the data.

We test our method on typical datasets used in the literature, both containing synthetically generated and
controlled bias (Corrupted CIFAR-10), as well as more realistic benchmarks (i.e., Waterbirds, CelebA and
BAR), showing superior performance with respect to state-of-the-art methods.

In summary, the main contributions of our work are:
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• We deal with the challenging unsupervised debiasing problem by proposing a novel two-stage ap-
proach to tackle it: first, we propose an initial data sorting technique aimed at segregating biased and
unbiased samples; second, we employ a learnable data augmentation approach to properly regularize
the training, limiting the detrimental effect of the bias.

• Our proposed approach learns unbiased models from biased and unbiased samples, by weighting their
contributions through mixing. Specifically, we propose a principled data augmentation approach,
consisting in learning the parameters controlling the mixing of the data samples. By considering
augmented (mixed) data in the loss function, we inject a strong regularization signal in the training
process, thus compensating the imbalance problem and leading to a more general and unbiased
representation learning.

• We present an extensive validation of the proposed pipeline on datasets with controlled bias as well
as realistic benchmarks, outperforming state-of-the-art approaches by a significant margin.

The rest of the paper is structured as follows. Section 2 discusses the related literature and highlights the
original contributions of our proposed approach. Section 3 introduces the problem formulation and the
related notation. The initial biased/unbiased data subdivision process is reported in Section 4. Section 5
instead details the 2nd stage consisting in the design of a loss function achieving invariant representation
learning based on sample weighting and data augmentation via the learning of the mixing parameters to
control the regularization. Sections 6 and 7 present the results and a thorough ablation analysis, respectively.
Finally, Section 8 draws conclusions and sketches future research directions.

2 Related Works

The problem of learning from biased data has been explored in past years mostly in the supervised setting,
i.e. when labels for the bias factor are available. Several methods tackled it seeking an invariant data
representation to such a known factor. These approaches relied on adversarial learning (Lemoine et al.,
2018; Alvi et al., 2018; Kim et al., 2019), variational inference (Louizos et al., 2016; Moyer et al., 2018;
Creager et al., 2019), Information Theory (Ragonesi et al., 2021), re-sampling strategies (Li & Vasconcelos,
2019), or robust optimization (Sagawa et al., 2020). In this context, it is notable to quote Invariant Risk
Minimization (Arjovsky et al., 2019), which seeks an optimal representation invariant across domains, and
EnD (Tartaglione et al., 2021), which proposes to insert an information bottleneck module to disentangle
useful information from the bias. Recently, causal inference strategies are also addressed to mitigate bias
issues, specifically in the context of multimodal (vision-language) models (such as in VQA systems (Patil
et al., 2023), and multi-label image classification (Liu et al., 2022).

A more interesting scenario is recently taking place, which is the unsupervised debiasing case, i.e., when the
data bias is unknown, which is the case we are addressing in this work (Bahng et al., 2020; Levy et al., 2020;
Nam et al., 2020; Liu et al., 2021). Several approaches have been lately proposed, the most straighforward
consisting in, first, identifying the bias, and then apply supervised techniques to reduce its impact (e.g.,
(Sagawa et al., 2019; Ross et al., 2017; Cadene et al., 2019; Sagawa et al., 2020; Selvaraju et al., 2019; Kim
et al., 2021; Liu et al., 2021; Sohoni et al., 2020)). Unfortunately, these approaches are typically leading
to suboptimal performances since the bias is typically not easily identifiable, nor sometimes can be clearly
associated to a specific attribute of the data. Hence, they likely fail since the debiasing is only based on an
approximated, hence inaccurate, estimation of the bias information, which proved to degrade the method’s
accuracy.

A large part of these techniques are based on the initial estimation or the learning of the unknown bias,
which is subsequently exploited for the actual debiasing stage in a more robust manner. For example, some
methods leverage additional supporting models (e.g., (Lemoine et al., 2018; Teney et al., 2022; Nam et al.,
2020; Li et al., 2022; Kim et al., 2022a; Liu et al., 2021; Kim et al., 2019)), typically in the form of adversarial
networks (Jung et al., 2023) or ensembles of classifiers (Kim et al., 2022b), to learn the biases in the data,
and use them to condition the primary model in order to mitigate their effects. For instance, (Kim et al.,
2019)) tries to decouple the bias contribution in the feature embeddings by first minimizing the mutual
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information between such embeddings and the bias itself. A debiased model is thus adversarially trained
against such feature embedding network by leveraging an additional network to predict the bias distribution.
At convergence, such bias prediction network is not able to predict the bias, while the feature embedding
network has successfully “unlearnt” it. The method in (Jung et al., 2023) introduced a style-transfer GAN
trained with several biased appearances. Target model bias-invariant representations are then obtained via
contrastive learning between images affected by different biases. Other works (e.g., (Hwang et al., 2022;
Nam et al., 2020; Seo et al., 2022; Ragonesi et al., 2023)) attempt to identify the so-called bias-aligned and
bias-conflicting samples (another way to name biased and unbiased samples, respectively), followed by an
adaptive re-weighting/re-sample procedure regularizing the training. The goal here is to debias the training
process by properly weighting the individual samples on the basis of the (estimated) level of bias they are
affected, so that bias-conflicting examples, usually very few, are generally given more importance with respect
to the more numerous bias-aligned data. Several methods adopt this procedure leveraging a validation set
to support the identification of the biased samples (Liu et al., 2021; Nam et al., 2022). For example, Nam
et al. (2022) proposed a method called SSA (Spread Spurious Attribute) that follows a 2-stage strategy: the
first stage consists in pseudo-labeling the samples as biased or unbiased with the help of a bias group-labeled
set (training samples with bias attribute annotations); the second stage uses Group DRO (Sagawa et al.,
2020) for the actual model debiasing, which also exploits such labeled validation set. Although this class
of methods reached reasonable performances, the need of a group-annotated validation set makes it not
fully unsupervised. contrast, our approach does not use any bias group-labeled annotation, while still being
competitive in most of the tested datasets, when compared with such weakly bias-supervised methods.

Self-supervised or clustering mechanisms (Hong & Yang, 2021; Jung et al., 2021) are also used to promote
the aggregation of samples with the same target class, but different bias. Generative bias-transformation
networks are also used as translation models to transform the bias in the samples, so that bias-invariant
representations can be learnt via contrastive learning. Similar “data transformation” approaches are also
designed, aimed at leveraging the generation of new samples, often under the form of data augmentation, in
order to counterbalance the effect of the majority of the biased examples during training. (Kim et al., 2021;
Hwang et al., 2022).

Another class of methods tackles the debiasing task considering robust risk minimization (Bahng et al., 2020;
Levy et al., 2020) in training, i.e., by learning a (debiased) network that is statistically independent from
a model trained to be strongly biased by design. Such “bias amplification” methods, as (Lee et al., 2023),
push to an extreme the training of a model to be strongly biased, that is, overfitted to the bias, to split
between bias-aligned and conflicting examples. A different approach is proposed in (Shrestha et al., 2022),
which operates at the architectural level, i.e., the network architecture is modified to impose inductive biases
that make the network robust to data bias. The first inductive bias is imposed in order to use the most
little network depth as needed for an individual example. The second inductive bias is instead pointed to
use fewer image locations for prediction.

For completeness, even if these works are not dealing with the proposed approach, vision-language models
are starting to be used to detect and mitigate biases in classification models, e.g., as in (Eyuboglu et al.,
2022; Kim et al., 2024; Zhang et al., 2023).

To recap, it can be noted that the debiasing approaches in unsupervised scenarios share similar logical struc-
tures while differentiating from the specific methods to identify the bias attributes or estimating bias-aligned
or -conflicting samples. Such methods span from the adoption of ensembling or ad-hoc auxiliary models,
individual data re-weighting and re-sampling, clustering, the use of contrastive approaches or the design of
special networks forcing feature orthogonality, to the generation of new unbiased data (augmentation) aimed
at regularizing the training.

Differently from several former methods (Teney et al., 2022; Kim et al., 2022a; Nam et al., 2020; Bahng
et al., 2020), our work does not rely on an ensemble of networks to have a reference biased model, neither
we perform data upsampling as in (Liu et al., 2021), (Nam et al., 2020) and (Li & Vasconcelos, 2019), nor
we consider the confidence of the predictions (as in (Kim et al., 2021)). Instead, we pursue an original
pseudo-labeling approach to split the dataset in two subsets, biased and unbiased, which we subsequently
use together with newly generated (augmented) data to regularize the overall training optimization process
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and debias the model. More specifically, we adopt a data augmentation approach combining biased and
unbiased samples: inspired by mixup (Zhang et al., 2018), we mix samples presenting peculiar features of the
bias regime (likely representing a shortcut to infer the class) with samples that are deemed not being affected
by it, so to produce new, more “neutral” examples able to counterbalance the bias influence. This is done by
devising an adaptive adversarial mechanism that aims at maximizing the classification performance, while
learning the parameters governing the mix of the samples. The adversarial mechanism is in fact introduced to
challenge the classifier with augmented, difficult to correctly classify, samples, which are generated specifically
to reduce the detrimental contribution of the bias during training. By optimizing such data augmentation
mechanism by learning the best parameters of the mixing, we generate synthetic data expected to heavily
reduce the spurious correlations that affect the original data, eventually leading to a stronger regularization
and effectively debias the model during the training process.

3 Problem formulation

We consider supervised classification problems with a training set Dtrain = {xk, yk, dk}Nk=1, where xk are raw
input data (e.g., images), yk class labels, and dk domain labels. In the case of a biased dataset, Dtrain has
several classes yi, i = 1, ..., C, which are considered to be observed under different domains dj , j = 1, ..., D.
In general, D can be different from C but here, for clarity and without losing generality, we consider the
case of D = C. When the majority of samples of a class yi is observed under a single domain dj , we say
that there is spurious correlation between (yi, dj), i.e., the dataset has a bias.

We define Dbias as the subset of training samples that exhibit spurious correlations and Dunbias as the under-
represented subset. Such subsets are highly imbalanced, i.e. |Dbias| >> |Dunbias|, which causes the problem
of models learning “shortcuts”. Conversely, when the bias does not account for the vast majority of class
samples, its impact can be weaker, or even negligible, and the data would not be considered as affected so
strongly by the bias anymore. Please note that the data from Dbias is not of lower quality but differs from
Dunbias only in the frequency. While previous literature sometimes uses the notation bias aligned and bias
conflicting samples (Nam et al., 2020) for Dbias and Dunbias, we opt for a simpler terminology.

As an example, in a cats vs. dogs classification problem, most of the cats may be observed in an indoor
home environment, while most of the dogs may be observed in outdoor scenes. For both classes, very few
images are outside their main distribution, and models could identify the domain (indoor/outdoor) as the
class.

When domain labels d are not available, nor we have access to other bias information, we are facing the
unsupervised debiasing problem. Hence, we consider a training set only containing input data and class label,
D = {x,y} = {xk, yk}Nk=1. We consider the task of training a neural network fθ on D, with parameters θ,
which are usually found via Empirical Risk Minimization (ERM), i.e., by minimizing the expected Cross-
Entropy loss over the training data:

θ∗ = arg min
θ

1
N

N∑
k=1
LCE(yk, fθ(xk)) (1)

In such scenario, when trained via ERM, a model focuses mostly on the more numerous biased samples,
underfitting the unbiased ones: this results in a biased model that uses spurious correlations as shortcuts to
make inference, instead of correctly learning the class semantics. In general, Dtest follows a data distribution
different from Dtrain: indeed, in the literature, the several datasets adopted for model debias can be of
different types and composition. In other words, the biased samples may not be the majority in the test set,
hence, it is important to learn a model that can be efficiently deployed to deal with both biased and unbiased
samples. As also briefly mentioned above, please also note that when a class is not observed predominantly
under a single domain/bias, the dataset could not be considered to be biased: in fact, an ERM model can
learn features of a category from a multitude of possible domains, hence mitigating the learning of spurious
correlations.

Finally, it is also important to note that the notion of domain might be very fuzzy, being possibly not
interpretable or even unknown: domains could in fact lack a manifest semantic meaning. Moreover, there
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Figure 2: The proposed two-stage approach. In the first stage (Bias Identification), we estimate a separation
of biased from unbiased samples through pseudo-labeling. In the second stage (Bias Invariant Representation
Learning), we learn how to mix biased and unbiased samples (Learnable MixUp) in order to train a final
debiased model (Debiased model training).

could also be the case of multiple predominant domains for a single class, and the opposite case of a same
predominant domain shared among a subset of classes, or any scenario in-between. Typically, the more
domains are involved, the less biased is the scenario, since heterogeneous training data may be sufficient to
train a model with standard ERM without resorting to any special algorithm. To sum up, we are trying
to face a realistic situation in which data samples are acquired without much control other than its class,
resulting in a dataset potentially biased in an unknown manner or even unbiased in fortunate cases.

Our method tackles the unsupervised debiasing problem with a two-stage approach (Figure 2). In the first
stage (Section 4), we try to separate biased from unbiased samples through a pseudo-labeling algorithm.
Equipped with such (noisy) pseudo-labels, we train a model to produce a data representation that can
accommodate both biased and unbiased samples regardless of the severity of the data bias (Section 5).

In the next section, in order to perform preliminary studies on a dataset with controlled bias, we use as
a toy benchmark a modified version of the CIFAR-10 dataset, named Corrupted CIFAR-10, which is a
modification of the original dataset (Krizhevsky et al., 2012a) that has been introduced in (Hendrycks &
Dietterich, 2019). It contains 50,000 training RGB images and 10 classes, and each image is corrupted with a
specific bias, represented here as a specific noise, e.g., Gaussian blur, salt and pepper noise, etc. Specifically,
each class has a privileged type of noise under which it is observed during training (e.g., most of car images
are corrupted with motion blur).

4 Bias Identification

In this first stage, our goal is to split the training set D into two disjoint subsets, D̂bias and D̂unbias, which
should reflect the actual ground-truth Dbias and Dunbias.

In (Nam et al., 2020; Kim et al., 2021), it is shown how the biased samples are learnt faster than the unbiased
ones: the imbalanced nature of the dataset makes the model more prone to learn first the numerous biased
samples and later the unbiased ones. This behaviour can be observed by looking at the loss function trends
of the two subsets (see Fig. 1(c)). As a proof of concept, we computed the Pearson Correlation Coefficient ρ
between correct/incorrect predictions and bias/unbias ground-truth labels for CIFAR-10 at different epochs
of training of an ERM model (see Fig. 3, magenta plot). We observe that ρ is sensibly higher than 0 as soon
as the model fits the training data sufficiently (around ρ = 0.6 when the training accuracy reaches 75%).
We computed the same metric for the loss value with similar results (blue plot). This shows that predictions
of a vanilla ERM model are sufficiently correlated with ground truth bias/unbias labels, and therefore they
can be exploited to divide the dataset.
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We propose two approaches to assign to each samples the bias/unbias pseudo-label: the first one relies on
predictions of an ERM model estimated at a specific epoch of the training process, where the epoch is
determined fixing an achievable target training accuracy. The second approach instead takes into account
the entire history of the predictions of a model along all of the training epochs. We call it identification “by
single prediction” (SP) and “by prediction history” (PH), respectively.
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Figure 3: Training accuracy and Pearson correlation coefficient ρ evolution over time. ρ is computed
between ground truth labels for Dbias, Dunbias and the binary correct/incorrect label. Similarly we
compute ρ for bias/unbias and the loss values per sample.

4.1 Identification by Single Prediction

The SP stage consists in training a neural network fϕ, with parameters ϕ, via ERM until it reaches a target
training accuracy of γ, where γ is a hyper-parameter. This trained model is denoted as fγϕ . When the
model reaches the desired accuracy level, the training stops and a forward pass of the entire training set is
performed: samples that are correctly predicted are assigned to D̂bias while those not correctly predicted
are assigned to D̂unbias. This should capture the fact that biased examples are fitted more quickly by the
model. More formally:

D̂γbias = {(x, y) ∈ D | σ(fγϕ (x)) = y}

D̂γunbias = {(x, y) ∈ D | σ(fγϕ (x)) ̸= y}
(2)

where σ is the softmax function.
Using γ as a hyper-parameter is convenient for two reasons. First, the setting of the amount of desired
accuracy is dataset agnostic. This is different from prior work (Liu et al., 2021) that employs a similar
strategy, but with the hyper-parameter controlling the number of epochs to train the model: in such a case,
the number of epochs are strictly dependent on the specific dataset the model is trained on, and final results
heavily depend on such parameter to be tuned accordingly. Second, we can easily have a precise control of
the amount of samples assigned to the two splits. In real use cases, we do not know the correct assignments of
the samples to the splits, and we have to rely on an a-priori setting of this parameter: we set γ = 0.85, which
implies that 85% of training data are correctly classified and assigned to D̂bias while 15% are misclassified
and assigned to D̂unbias. 85% is a reasonable accuracy value, easily achievable by an ERM-trained model
on a biased dataset. Besides, since in biased dataset a high percentages of samples are usually biased (e.g.
95% as minimum in former works (Nam et al., 2020; Kim et al., 2021)), setting γ to high values is hardly
a problem since the model overfits easily the training set given the multitude of biased samples. On the
other hand, setting γ too low implies that a lot of biased samples will be assigned to D̂unbias, which is not
desirable since will produce a very rough separation.
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4.2 Identification by Prediction History

The PH method, instead of looking only at predictions at a specific epoch, considers the history of samples’
predictions throughout the entire training stage. The rationale here is to make the splitting process more
robust given that easy (biased) samples are often predicted correctly from the early training stages (often
throughout the entire training), whereas hard (unbiased) samples could be difficult to be fit or are even
left unlearned by the model. A second reason to prefer a multiple prediction approach is the fact that a
prediction from a single epoch may be not representative of the actual difficulty of a specific sample: grouping
predictions together is less affected by statistical oscillations.

Hence, the PH procedure consists in ERM training (as for the SP method), but at the end of each epoch, we
perform a forward pass of the entire training set and check whether the prediction is correct or not, building
a binary vector st = {sti}Ni=1 of dimension N×1, that indicates what samples have been correctly/incorrectly
(0/1) classified at epoch t. At the end of training, we will have the N ×K matrix S, with K total number
of training epochs, which describes the history of predictions for each sample ( Figure 4).

Summing up along the epoch axis produces a new N × 1 ranking vector ŝ = {ŝi}Ni=1 =
∑K
t=1 st that

describes how many epochs each sample has been correctly classified (see Figure 4, left). We then compute
the histogram for ŝ (using K bins - in order to span all possible values of the entries of ŝ). We can observe
that most of the samples are correctly predicted throughout the entire training (K-th rightmost bin in
Fig. 4), whereas few samples are never or almost never correctly predicted (leftmost bin in Fig. 4, right).
Empirically, we found that most of the samples in the leftmost bins are unbiased: rovided with this insight,

Figure 4: Binary matrix S on the left: rows represent samples indexes i while columns represent epochs t.
sti is 0 when sample i is misclassified at epoch t or 1 when it is correctly classified. When summing up along
the epochs, we get the vector ŝ =

∑K
t=1 st (middle) that represent the “prediction’s history” of each sample

after K epochs. When computing its histogram (right), we observe that the distribution is severely skewed
towards easy samples (those correctly predicted most of the epochs). We highlighted in red the leftmost bin
which is significantly higher than its neighbors: this shows how samples that are never correctly classified
are more than those that are rarely correctly classified.

we devised a strategy to iteratively split the dataset by identifying the samples to be assigned to D̂unbias
and those to be included in D̂bias.

To this end, we train an ERM model with cross-entropy, where each sample is weighted by c = {ci}Ni=1 ∈ [0, 1].
Values equal or close to 1 keep the learning rate unaltered or almost unaltered, whereas smaller values impact
the learning rate by slowing it down. The vector c is initialized with all entries equal to 1; during training, we
leave unaltered the weights for samples that are already well predicted while we decrease them for samples
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Figure 5: Gradients for L(D̂bias, fθ) and L(D̂unbias, fθ) are evaluated to produce the weighted ERM con-
tribution. The regularization step using mixed data aims at producing an additional gradient contribution
that decreases the loss function for D̂mix as for Equation 6. (Best viewed in color)

that are difficult to predict, thus implicitly decreasing their learning rate. Every M epochs we compute the
ranking vector ŝ, and use it to modulate the weights vector c as follows:

cnew = cold − (1− ŝ + 1
M

), ŝ =
M∑
t=1

st (3)

The value of ci is clipped in the range [0, 1], so that the learning rate can only be decreased or left unaltered.
Samples that are inherently difficult to be learned (i.e. samples for which sti is often zero) will have ŝi ≪M
and thus a low updated weight cnewi . In the end, we are training a bias-amplified model.

At the end of training, after re-computing the histogram of the ranking vector ŝ, we select all samples in the
most difficult, leftmost, bin (those that have never been correctly predicted - see Fig. 4, right), and assign
them to D̂unbias, while assigning the others to D̂bias.

5 Bias-invariant representation learning

Provided with pseudo-labels for the two estimated subsets D̂bias and D̂unbias, we now have to deal with the
problem of learning data representations that are not only suitable for the biased data, but can generalize
well to unbiased samples too. The driving idea is to exploit the two resulting subsets, even if noisy, to
generate augmented data in order to counterbalance the harmful effect of the numerous biased examples in
training. Hence, we propose to combine biased and unbiased samples as an effective strategy to produce
synthetic images that exhibit attributes from both D̂bias and D̂unbias. Data augmentation is useful to attain
oversampling of unbiased samples, which is a strategy sometimes used in bias removal methods. We follow
Mixup (Zhang et al., 2018) as a state-of-the-art augmentation tool, which allows us to incorporate unbiased
data and produce augmentations which are more effective for model debiasing.

As a preliminary analysis, we show in Sec. 5.1 how a convex combination (Zhang et al., 2018) of biased
and unbiased samples results in a strong regularization that helps preventing the model from overfitting the
biased data, when added to standard weighted average of the loss terms for the two noisy subsets (Ragonesi
et al., 2023). We will refer to this baseline as vanilla mixup. Motivated by the fact that the mixing coefficients
have a strong impact on the final accuracy, we thus explore in Section 5.2 how the strategy for mixing the
samples can be learned directly from the data itself, in order to bring further improvement, leading to the
proposed learnable mix or l-mix in short.
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5.1 Vanilla Mixup as a bias regularizer

Given the two estimated pseudo-labeled subsets D̂bias and D̂unbias, we consider a neural network fθ, with
parameters θ, trained from scratch.

Weighted ERM. In this step, we seek the best parameters θ on the basis of the two subsets D̂bias and
D̂unbias via gradient descent. The θ’s updating rule is:

θ∗ = θ − η ∇θ [(1− γ) L(D̂bias, fθ) + γ L(D̂unbias, fθ)] (4)

where η is the learning rate. Note that in case the two subsets are obtained by single prediction, γ is the
same hyper-parameter introduced in the Sect. 4.1, i.e., the target training accuracy. In this step, we scale
the two loss functions with γ and 1 − γ to deal with data imbalance (|D̂bias| >> |D̂unbias|). To rebalance
the contributions from the two splits, an obvious choice is to set the weights inversely proportional to the
cardinality of the two subsets, which is nothing else than the fixed and controllable hyper-parameter γ used
to estimate the biased and unbiased subgroups. As discussed in the previous section, this value was fixed to
γ = 0.85 and maintained on all experiments for all datasets. Similar values for γ have not been shown to
provide significant discrepancies in the final performance.

Mixup as a regularizer. Subsequently, we seek a representation that can conciliate both biased and
unbiased samples and at the same time can prevent the model from overfitting the training data (especially
D̂bias). We take inspiration from Mixup (Zhang et al., 2018) as a way to combine samples from the two
subsets. Mixup consists in using a convex combination of both input samples and labels demonstrating
its efficacy as an effective regularizer. Specifically, we feed the model with synthetic (augmented) samples
resulting from a mix of examples from biased and unbiased subsets, aiming at breaking the shortcuts present
in the data (see Fig. 5).

We construct D̂mix = {xmix, ymix} by mixing examples of D̂bias and D̂unbias with corresponding labels y, as
in the Mixup method (Zhang et al., 2018), by sampling the mixing parameter λ from a Beta distribution,
i.e.:

(x̂1, ŷ1) ∈ D̂bias , (x̂2, ŷ2) ∈ D̂unbias
xmix = λ x̂1 + (1− λ) x̂2

ymix = λ ŷ1 + (1− λ) ŷ2

with λ ∼ Beta(α, β)

(5)

Once the augmented samples (xmix, ymix) are computed, the model is updated combining the weighted ERM
and the regularization term:

Lvanilla := (1− γ) L(D̂bias, fθ) + γ L(D̂unbias, fθ)︸ ︷︷ ︸
Weighted ERM

+ ζ L(D̂mix, fθ)︸ ︷︷ ︸
Regularizer

(6)

where ζ is a hyper-parameter weighting the regularization term. The hyper-parameter ζ controls the amount
of regularization in the final loss: if ζ = 0, the method corresponds to standard (weighted) ERM in which
the contributions of the losses on the two subsets are scaled by (1 − γ) and γ. When ζ > 0 the weighted
ERM optimization trajectory is corrected by the regularization term (see Fig. 5 for a pictorial representation
of the procedure). This corresponds to find parameters θ that are good for both D̂bias and D̂unbias, but can
also eventually reduce the loss value on the newly generated data samples D̂mix. We will actually show that
performance is not much affected by the choice of ζ: as described in Sect. 7.4, accuracy increases and reaches
a plateau (please, note that ζ axis is in log scale), and only with higher orders of magnitude (in the order of
ζ ∼ 103) the regularization effect becomes detrimental. We set ζ = 10 for all other experiments.

To conclude this preliminary analysis, we explored how the choice of the two parameters (α, β) impacts the
final test accuracy on a standard dataset, CIFAR-10. As shown in Fig. 6, the convex combination of biased
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Figure 6: Performance of a model trained with augmented samples generated by Mixup for different pairs
of parameters (α, β) (equations 5 and 6). Each dot represents a single run done with parameters of corre-
sponding coordinates. The right color bar represents the model’s test accuracy. We show 3 examples for
different probability density functions corresponding to specific pairs (α, β).

and unbiased samples works reasonably well for a wide range of the parameters α and β controlling the
probability density function of the Beta distribution. We employed Bayesian optimization to explore the
parameters space in order to highlight the region in which the generated samples gives the best accuracy on
the test set. Please, note that in this preliminary investigation only, we used the ground truth annotations for
Dbias and Dunbias in order to decouple the learning problem from the bias-identification problem). Figure
6 shows that the best combination is attained when the Beta distribution is slightly skewed towards the
unbiased samples, namely, they are given more importance than the biased ones. Conversely, the worst
scenario occurs when the distribution puts more emphasis to the biased samples. However, we claim that
augmented data can be generated in a more principled way, that is, by learning α and β, as detailed in the
next section.

5.2 Unbiasing by learnable data augmentation

Building on the insights gained from the analysis of Sec. 5.1, we designed an end-to-end pipeline that is
able to simultaneously learn the classification task and optimize for the best mixing strategy. Our model
(see Fig. 7) is composed of 1) a backbone network acting as feature extractor fθ, and 2) a classifier head gϕ,
with parameters θ and ϕ, respectively, the latter producing logits from the features fθ(x). We also adopt
3) a module hψ which outputs two scalar values, namely, the parameters α and β of the Beta distribution.
Samples from D̂bias and D̂unbias are fed to fθ and the corresponding feature vectors fθ(x̂1) and fθ(x̂2) are
then concatenated. The module hψ takes as input such concatenation, denoted as ∥ in the equation below,
and estimates the parameters (α, β) of the Beta distribution, which is subsequently sampled to extract the
mixing coefficient λ:

(α, β) = hψ( fθ(x̂1) ∥ fθ(x̂2) ) (7)

Specifically, we sample a vector of mixing coefficients λ’s (one for each pair in the batch) from the Beta
distribution. We rely on the reparametrization trick (Kingma & Welling, 2014) in order to have a fully
differentiable pipeline, since we need to differentiate through the sampling procedure. To do so, we employed
the Pytorch implementation of the reparametrized Beta distribution. More formally, we sample λi for the
i− th sample from the Beta distribution parametrized by α∗

i and β∗
i :

λi ∼ Beta(α∗
i , β

∗
i ). (8)

Provided with λ = {λi}Ni=0, we compute (xmix, ymix) (Eq. 5), and use it as input for fθ, whose outcome is
subsequently fed to gϕ. The logits are then passed to the gϕ softmax layer σ to infer ỹmix, which is used as
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Figure 7: Proposed pipeline for learning the parameters of the Beta distribution. Features from (x̂1, ŷ1) ∈
D̂bias and (x̂2, ŷ2) ∈ D̂unbias are extracted with fθ, concatenated and fed to the module hψ, which predicts
the α and β that parameterize a Beta distribution, which, in turn, is sampled to obtain the mixing coefficient
λ. The GRL layer on top of hψ model ensures that when gradients are back-propagated, ψ parameters are
optimized to maximize the cross entropy. Namely, we want to produce mixed samples that are challenging
for the classification network gϕ(fθ). Note also that gradients are stopped before going back to the initial
encoders (↛ denotes a StopGradient operation).

input for the Cross Entropy (CE) loss LCE .

Following the paradigm of adversarial training, we want to learn combinations of x1, x2 that generate
challenging samples for the network, acting indeed as adversaries, i.e., for which the loss value increases.
Such augmented samples are then used as training samples for effectively minimizing the loss function.

When doing backpropagation we want to seek the parameters θ and ϕ that minimize the CE loss, while
at the same time looking for the combination – i.e., the parameter λ drawn from the Beta distribution
governed by parameters α and β – of the two inputs x̂1 and x̂2 that maximize the CE loss. To do so, we
apply a Gradient Reversal Layer (GRL) (Ganin & Lempitsky, 2015) to change the sign of the gradient when
updating the weights ψ (see Fig. 7).

Formally, the optimization problem we want to solve is:

θ∗, ϕ∗ = argmin
θ,ϕ

LCE(σ(gϕ(fθ(xmix)), ymix)

ψ∗ = argmax
ψ

LCE(σ(gϕ(fθ(xmix)), ymix)
(9)

where, in the second equation, the dependency on ψ is implicit in the variables (xmix, ymix). Specifically,
this dependency is defined in equation 5, given that the mixing coefficients λi are sampled from Beta(αi, βi),
where α and β depend in turn upon ψ, as per equation 7. Note that we prevent the gradient to flow into fθ
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for the two streams by introducing a StopGradient operation (see Fig. 7, top left). Therefore, fθ is updated
only through ∂fθ(xmix)

∂θ (see Fig. 7, bottom).

Algorithm 1 Pseudocode for a single training iteration.
1: function training_iteration(D̂bias, D̂unbias, η)
2:
3: sample batches (x̂1, ŷ1), (x̂2, ŷ2) from D̂bias, D̂unbias
4: compute fθ(x̂1),fθ(x̂2)
5: detach gradient from fθ(x̂1), fθ(x̂2)
6: (α, β) = hψ( fθ(x̂1) ∥ fθ(x̂2) )
7:
8: λ ← sample from Beta(α, β)
9: xmix = λ x̂1 + (1− λ) x̂2

10: ymix = λ ŷ1 + (1− λ) ŷ2
11:
12: ỹmix ← gϕ(fθ(xmix))
13: Ldebias ← LCE(ỹmix, ymix) + ωReg
14:
15: # update networks’ parameters
16: θ ← θ − η∇θLdebias
17: ϕ← ϕ− η∇ϕLdebias
18: ψ ← ψ + η∇ψLdebias ▷ GRL inverts gradient sign
19: end function

Regularizer. We may optionally introduce a regularizer that acts as a prior knowledge on the objective
function to lead to skewed distributions. Since we deal with imbalanced data, i.e. |Dbias| >> |Dunbias|, it is
usually beneficial (see Fig. 6) to constrain hψ to learn a family of Beta distributions that are skewed towards
the minority group, i.e., the unbiased subset. This can be easily achieved by adding a regularization term
Reg that forces the expected value of the Beta distribution to be close to the (noisy) bias ratio. We chose
the simple Mean Square Error as regularizer:

Reg = MSE( α

α+ β
,

|D̂unbias|
|D̂bias|+ |D̂unbias|

). (10)

Thus, the total loss becomes:

Ldebias = LCE(σ(gϕ(fθ(xmix)), ymix) + ω Reg, (11)

where ω is a hyper-parameter that controls the amount of the regularization.

The several stages composing the proposed method and all introduced hyper-parameters will be analyzed
in our ablation study in Sect. 7. The pseudocode for the (single iteration) training process is reported in
Algorithm 1.

6 Experiments

We tested our proposed method on several benchmarks: a dataset with controlled synthetic biases, and
different realistic datasets targeting classification tasks. We made a comparison with other existing methods
tackling the debiasing problem in both supervised and, more extensively, unsupervised ways.
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Figure 8: Examples of training biased and unbiased (with red boundary) data, from Waterbirds and BAR.

6.1 Benchmarks

Synthetic bias. We consider a benchmark that has been introduced in Hendrycks & Dietterich (2019),
namely corrupted CIFAR-10 in which the amount of bias is synthetically injected and thus controlled.
Corrupted CIFAR-10 is a modification of the original dataset (Krizhevsky et al., 2012a) and has been
adopted by Nam et al. (2020) in the context of debiasing. It consists of 50,000 training RGB images and 10
classes. The bias stems from the fact that each image is corrupted with a specific noise/effect (e.g., motion
blur, shot noise, contrast enhancement, etc.). In practice, each class has a privileged type of noise under
which it is mostly observed in training (e.g., most of images depicting trucks are corrupted with Gaussian
blur).

Realistic bias. We prove the efficacy of our method on realistic image datasets, namely, Waterbirds,
CelebA, and Bias Action Recognition (BAR). Waterbirds has been introduced in (Sagawa et al., 2020) and
combines bird photos from the Caltech-UCSD Birds-200-2011 (CUB) dataset (Welinder et al., 2010), where
the background is replaced with images from the Places dataset (Zhou et al., 2018). It consists of 4,795
training images and the goal is to distinguish two classes, namely landbird and waterbird. The bias is
represented by the background of the images: most landbirds are observed on a land background while most
waterbirds are observed in a marine environment (Fig. 8 - left).

CelebA (Liu et al., 2015) consists in over 200,000 celebrity face photos annotated with 40 binary attributes
(e.g. smiling, mustache, brown hair, etc.). We consider a subset of 162,770 photos and solve the task of
deciding, whether the image depicts a blonde person or not: this is the same setting considered in past works
(Sagawa et al., 2020; Liu et al., 2021) that tackle the debiasing problem. The blonde/non blonde binary label
is spuriously correlated with the gender label (the minority group blond-male contains only 1387 images).

BAR has been introduced in (Nam et al., 2020) as a realistic benchmark to test model’s debiasing capabilities.
It is constructed using several data sources and contains 1,941 photos of people performing several actions.
The task is to distinguish between 6 categories: Climbing, Diving, Fishing, Racing, Throwing, and Vaulting.
The bias arises from the context in which action photos are observed at training time: for instance, in
training, diving actions are represented in a natural environment employing a diving suit, whereas in the
test set, they are set in an artificial environment, e.g. a swimming pool (see Fig. 8 - right). For details,
readers can refer to the original paper (Nam et al., 2020).

Validation. While previous methods (Nam et al., 2020; Liu et al., 2021; Levy et al., 2020), makes use of the
bias annotations on the validation set for the above datasets for setting hyperparameters, we make a further
effort in the direction of unsupervised debiasing and only validate the design choices and hyperparameters
of our method for the synthetically corrupted CIFAR-10, as detailed later on in section 7. The same settings
are then used for the realistic datasets without resorting to the validation set annotations for the bias, making
our method fully unsupervised.
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6.2 Performances

We report the performance of our approach on the different benchmarks above mentioned, all targeting a
classification task. Accuracy is the metric adopted. We are primarily interested in improving accuracy on the
unbiased test samples, those under-represented in the training data. However, at the same time, we do not
want to decrease performance on the biased samples: in fact, a higher generalization implies that spurious
correlations are not used anymore for classification, and this might cause a certain decrease of performance
on some samples. For this reason, we report accuracies on the testing subset of unbiased samples, as well as
over the entire test set (biased + unbiased).

Implementation details. All experiments comply the same evaluation protocol used in the competing
methods for a fair comparison. We used ResNet-18 (He et al., 2016) as a backbone for Corrupted CIFAR-10
and BAR, and ResNet-50 as backbone for Waterbirds and CelebA. We remove the last layer from such
backbones, adding a 2-layer MLP on top of it as a classifier head. As customary, ResNets are pre-trained on
ImageNet (Krizhevsky et al., 2012b). The parameter network hψ consists of a simple MLP with two hidden
layers with 64 neurons each. We rely on the Pytorch implementation of the Beta distribution for sampling
in a reparameterized fashion. We set the learning rate η = 0.001 for all datasets with batch size of 256 on
synthetic biased data and 128 for realistic bias data. We used Adam (Kingma & Ba, 2015) as optimizer.
In all experiments we adopted the prediction history (PH) method to infer the biased/unbiased samples. In
our ablation analysis in Sec. 7, we discuss how different splitting strategies influence the final outcome, as
well as further implementation details.

Supervised debiasing methods Unsupervised debiasing methods
Bias ERM REPAIR Group DRO LfF SelecMix BiaSwap Ours
ratio Li & Vasconcelos (2019) Sagawa et al. (2020) Nam et al. (2020) Hwang et al. (2022) Kim et al. (2021)
95% 45.2± 0.22 48.7 53.1 59.9 54.00 46.99 64.7 ± 1.20
98% 30.2± 0.77 37.9 40.2 49.4 47.70 41.16 57.4 ± 1.15
99% 22.7± 0.97 32.4 32.1 41.4 41.87 38.94 50.8 ± 1.03

99.5% 17.9± 0.86 26.3 29.3 31.7 38.14 35.87 43.9 ± 0.87

Table 1: Accuracy on the whole test samples of Corrupted CIFAR-10. Accuracy (in %) evaluated
on biased + unbiased test samples for different bias ratios. Results of REPAIR, Group DRO and LfF are
from Nam et al. (2020). The performance of our proposed methods are obtained with ω = 10−3. Best
performance in bold.

Supervised debiasing methods Unsupervised debiasing methods
Bias ERM REPAIR Group DRO LfF SelecMix BiaSwap Ours
ratio Li & Vasconcelos (2019) Sagawa et al. (2020) Nam et al. (2020) Hwang et al. (2022) Kim et al. (2021)
95% 39.4± 0.75 50.0 49.0 59.6 51.38 42.61 64.6 ± 1.14
98% 22.6± 0.45 38.9 35.1 48.7 44.24 35.25 57.2 ± 1.09
99% 14.2± 0.91 33.0 28.0 39.5 35.89 32.54 50.6 ± 1.01

99.5% 10.5± 0.28 26.5 24.4 28.6 31.32 29.11 43.7 ± 0.99

Table 2: Results on the unbiased test samples only of Corrupted CIFAR-10. Accuracy (in %)
evaluated only on the unbiased samples for different bias ratios. Results of REPAIR, Group-DRO and LfF
are from Nam et al. (2020). The performance of our proposed methods are obtained with ω = 10−3. Best
performance in bold.

Performance for synthetic bias. Tables 1 and 2 present the performances on synthetic biased datasets,
reporting the average accuracy (mean + standard deviation) for the whole test set and for unbiased samples
only, respectively. We compare against a model trained by Empirical Risk Minimization (ERM) as baseline,
and different former debiasing methods, either using annotation for the bias or not. For the methods
requiring explicit knowledge of the bias (i.e., supervised), we consider REPAIR (Li & Vasconcelos, 2019),
which does sample upweighting, and Group DRO (Sagawa et al., 2020), which tackles the problem using
robust optimization. We also compare our performance with that of unsupervised debiasing methods such
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as Learning from Failure (LfF) (Nam et al., 2020), BiaSwap (Kim et al., 2021) and SelectMix (Hwang et al.,
2022).

We consider different ratios of the bias (ranging from 95% up to 99.5%), as in (Nam et al., 2020), and many
other former works. This ratio indicates the actual percentage of the dataset belonging to Dbias and Dunbias,
i.e., |Dbias|/(|Dunbias|+ |Dbias|). The bias identification step has clearly an impact on the performance. We
choose the PH method to estimate D̂bias and D̂unbias subsets, setting the hyperparameter M = 5 (number
of epochs after which the ranking vector ŝ is computed, see Sect. 4.2) for all experiments. This choice is
consequence of an ablation study, showing the best performance on a validation set (see Fig. 9 and Sect.
7.1) We also set the hyperparameter ω weighting the regularization term to ω = 10−3 as a results of a careful
ablation (Sec. 7.5).

For Corrupted CIFAR-10, our method always reaches the best accuracy. We can note here that the gap
with former methods, both supervised and unsupervised, is much higher, ranging overall between about 5%
and 20% regarding the whole test set (min and max difference across bias ratios, Table 1), and between
about 5% and 22%, when testing on the biased samples only (Table 2). It is important to highlight that
the results of our proposed method are reported as mean ± standard deviation, obtained after 5 run of the
algorithms, while the accuracies reported by SelecMix and BiaSwap are the result of a single (presumably
the best) run. Further, taking into account the standard deviation, our accuracies are comparable with the
one of the winning methods.

Our results show that the obtained performances are rather stable and consistent across datasets and bias
ratios, as compared to previous approaches.

Unsupervised debiasing Supervised
ERM CVar DRO LfF JTT SSA Ours Group DRO

Dataset Test set Levy et al. (2020) Nam et al. (2020) Liu et al. (2021) Nam et al. (2022) Sagawa et al. (2020)
- ✓ ✓ ✓ 5% × ✓✓

Waterbirds All 97.3 96.0 91.2 93.3 92.6 94.7 93.7
Unbiased 72.6 (24.7)↕ 75.9 (20.1)↕ 78.0 (13.2)↕ 86.7 (6.6)↕ 87.1 (5.5)↕ 87.7 (7.0)↕ 91.4 (2.3)↕

CelebA All 95.6 82.5 85.1 88.0 92.8 89.1 92.9
Unbiased 47.2 (48.4)↕ 64.4 (18.1)↕ 77.2 (7.9)↕ 81.1 (6.9)↕ 86.7 (6.1)↕ 82.2 (6.9)↕ 88.9 (4.0)↕

BAR All 53.5 - 62.9 - - 64.8 -

Table 3: Results on realistic datasets. Accuracy (in %) evaluated on the test set composed by unbiased
test samples (Unbiased) and the entire test set (All). The performance of our proposed methods are obtained
with ω = 10−3. Best results among unsupervised debiasing methods for each dataset are in bold, and
second-best are underlined. The gaps between All and Unbiased accuracy are also reported in brackets and
indicated by ↕. The symbol ✓ refers to the use of validation set labels for the bias. SSA uses the full
validation set and 5% of it, and it is also used in training. Conversely, our method doese not use any (×).
Group DRO also uses training set labels for the bias (✓✓).

Performance on the realistic biased datasets. In these trials, we still compare against the ERM
baseline, Group DRO as supervised debiasing method, and four unsupervised debiasing algorithms, LfF
(Nam et al., 2020), CVaR DRO (Levy et al., 2020), JTT (Liu et al., 2021) and SSA (Nam et al., 2022)
adopting the same protocol previously reported. Performances are shown in Table 3. For these datasets,
we remind that we do not have the full control of the bias ratios. Specifically, in BAR we do not know
exactly the biased/unbiased ratio and, differently from Corrupted CIFAR-10, which have a balanced test
set, Waterbirds and CelebA test sets are also imbalanced. In these cases, as already highlighted previously,
it is also important not only to cope with unbiased samples, but also to maintain accuracy on biased data.
Consequently, it is paramount here to reach a good trade-off between generalizing to unbiased samples while
keeping high performance on biased data as well. Hence, performances in Table 3 are reported as accuracies
over both the entire test set (All) and the unbiased samples (Unbiased) for Waterbirds and CelebA, and
over the whole test set only (All) for BAR.
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For Waterbirds, we score favorably with respect to other unsupervised methods for the subset of unbiased
samples: we outperform the best state-of-the-art (SSA (Nam et al., 2022)), despite they employ 5% of the
validation set. We also surpass all other methods which make use of the full validation set. When addressing
the entire test set (All) our method is the second best scoring -1.3% with respect to CVar DRO, followed
by the other methods. In this respect, it is important to notice that CVar DRO, while it generally performs
well on the entire, biased + unbiased test set, it drastically experiences large drops when considering the
unbiased samples only, namely t20% and 18% for Watebirds and CelebA, respectively. The same behavior
is evident for the standard ERM, with even larger gaps, due to the fact that there is no bias mitigation
strategy in place.

For CelebA, we are the second best performers behind SSA (Nam et al., 2022) in both the full test set (All)
and the Unbiased subset, altough the gap between the two remains the same (around 7%). We still score
favorably against JTT (Liu et al., 2021) and surpass LfF (Nam et al., 2020) and CVar DRO (Levy et al.,
2020) by a large margin.

Concerning the BAR dataset, since there is no ground-truth for the bias we report only the average accuracy
over the whole test set: in this case, our method outperforms JTT (Liu et al., 2021) by a considerable
margin.

Overall, our proposed method reaches a good trade-off, resulting competitive for both types of test sets,
across the several datasets without resorting to any bias group annotation on the validation set. In other
words, we are able to learn bias invariant representations without giving up accuracy on the biased samples,
with a completely unknown bias. This is also analyzed in section 7.7, where we test on a supposedly unbiased
dataset.

Finally, we show also competitive performance against the supervised method Group DRO: without using
any bias supervision, on Waterbirds, our method surpasses its test accuracy on the entire test set, even
if the accuracy on biased data only results lower (owing to the supervision in this case). On CelebA, the
performance are less competitive with Group DRO, yet we still outperform other unsupervised debiasing
methods.

7 Ablation analysis

We include here additional analyses and experiments which are useful to justify the methodological choices,
while also presenting an extended ablation for the relevant hyperparameters. More in detail, we analyze (for
convenience, the specific section is also indicated):

• Sec. 7.1: The bias identification approaches: we compare the subdivision obtained by Prediction
History (PH) with the split obtained by Single Prediction (SP).

• Sec. 7.2: How the quality of the subdivision of the data in biased/unbiased samples affects the
final accuracy.

• Sec. 7.3: How learning the Beta distribution parameters impacts the performance, namely, we
compare our proposed l-mix strategy with the vanilla mixing mechanism mixup.

• Sec. 7.4: vanilla mixup performances by varying the parameter ζ controlling the contribution of
the regularization term.

• Sec. 7.5: l-mix performances by varying the parameter ω controlling the contribution of the
regularization term.

• Sec. 7.6: The possible augmentation policies (sampling strategies), and how these affect the
performance at the different bias ratios.

• Sec. 7.7: An application of the proposed methods to an unbiased dataset showing that they are
still beneficial in this scenario, i.e., generalization is improved with respect to standard ERM even
with no apparent bias.
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To have the full control of the experimental conditions, we conducted most of these trials and the ablation
analysis using Corrupted CIFAR-10 (bias ratio= 95%) if not differently specified.

7.1 Quality of Bias Identification

We assessed the quality of the split obtained by the Prediction History (PH) method. We consider F1-score,
Precision and Recall as metrics to evaluate the discrepancy between the pseudo-labels and the ground-truth
bias/unbias split (see Fig. 9). CIFAR-10 data (bias ratio 95%) is considered. We evaluated the method over
different values of M , namely the amount of epochs before refreshing the assignment: we can notice that
as long as M increases, recall decreases and precision increases, while F1-score is significantly higher than
the random split case (see Table 4). We chose M = 5 for all our experiments, while different values are not
affecting significantly the performance.
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Figure 9: Performance of the Bias Identification method on Corrupted CIFAR-10 (bias
ratio 0.95), for different parameter choice M , i.e. how often the ranking vector is
updated (Eq. 3). We report Precision, Recall and F1-score as metrics.

7.2 Effect of Bias Identification on model performance

We investigate how different amounts of noise in the pseudo-labeling stage impact the final outcome in
terms of test accuracy. We employed our proposed method on CIFAR-10, see Table 4. We show the test
accuracies in the ideal case of perfect subdivision between biased and unbiased samples (oracle, F1 = 1),
by applying our approach on top of Single Prediction and Prediction History procedures, and in the case of
random split. We noted that passing from the oracle conditions (best) to the random split (worst), accuracy
drops significantly. Interestingly, the method trained on the random pseudo-labeling always achieves better
accuracy than that of the ERM baseline (see Table 1), and even higher than those achieved by some methods
specifically designed to model debiasing. Even a coarse split (better than random) considerably increases
the final performance with respect to ERM training. Also, our mixing strategy has a strong regularization
effect even in suboptimal conditions (i.e., when mixing mostly biased samples). Comparing with the two
bias identification strategies SP and PH, we see that the difference is not severe (drop between 1-4% for
Single Prediction).

7.3 Learnable mix vs. vanilla mixup

In Table 5, we analyze how learning the parameters of the Beta distribution results in improved performance
on both the whole test test (All) and the unbiased subset. The improvement is consistent across all datasets
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Oracle Random split SP PH

Bias ratio F1 Test Acc. F1 Test Acc. F1 Test Acc. F1 Test Acc.

95% 1.0 66.3 0.37 50.3 0.65 60.9 0.74 64.6
98% 1.0 59.4 0.34 40.4 0.62 54.4 0.67 57.2
99% 1.0 54.7 0.33 29.7 0.58 49.3 0.63 50.6
99.5% 1.0 49.0 0.32 21.5 0.54 42.5 0.59 43.7

Table 4: Ablation study on bias identification on Corrupted CIFAR-10. The table reports F1
scores for D̂bias / D̂unbias splitting, obtained with our bias identification strategies Single Prediction (SP) and
Prediction History (PH) presented in Section 4. We compare them to oracle (groundtruth) and randomly
generated subsets. We report the final test accuracy on the whole test set for the four different cases. Best
accuracies are obtained with oracle split, while the worst for random split. PH performs very favourably
with respect to the oracle in terms of test accuracy, even if the split is not perfect.

analyzed. We set ζ = 10 for the vanilla mixup (Zhang et al., 2018) strategy and ω = 10−3 for our proposed
learnable strategy l-mix (for the latter, also check the ablation study in Sect. 7.5).

CIFAR-10 (95%) Waterbirds CelebA BAR

All Unbiased All Unbiased All Unbiased All

vanilla mixup 63.3 63.3 94.3 87.1 88.3 81.6 64.3
learnable mix 64.7 64.6 94.7 87.7 89.1 82.1 64.8

Table 5: Ablation study on vanilla mixup vs. learnable strategy l-mix. For the latter, the parameters α and
β of the Beta distribution are learned by the neural network hψ (equations 7 and 9). For vanilla mixup, the
parameters are kept fixed (Zhang et al., 2018). In our experiments, we set ζ = 10 and ω = 10−3.

7.4 Ablation study on ζ hyperparameter for vanilla mixup

We also conducted an analysis on the impact of the ζ hyperparameter acting as regularization term in the loss
Lvanilla (Eq. 6) adopting the vanilla mixup technique. We investigated ζ in the range [0, 100, 101, 102, 103]
and evaluated the performance on Corrupted CIFAR-10 on both biased and unbiased test samples, see Fig.
10. Even in this case, we observe a large range in which the method is benefiting from the regularization
effect, showing accuracies always better than the case of ζ = 0 representing the standard ERM training. As
reported in Sect. 6, we always used ζ = 10 for all our experiments.

7.5 Ablation study on ω hyperparameter

Similarly, we set different values of the parameter ω of Eq. 11, i.e., [0, 10−4, 10−3, 10−2, 10−1], and evaluated
the performance of our learnable mechanism l-mix on Corrupted CIFAR-10 (bias ratio = 95%). In Table
6, we report the accuracy on the unbiased and on the full test set. We can note that there is a large range
of ω values, 10−4 < ω < 10−2, in which the accuracy is reaching higher values with respect to the the case
ω = 0 (please, note the logarithmic scale in the x axis). This empirically shows that ω is not a so sensitive
parameter, and for this reason, we fix ω = 10−3 in all our experiments.

7.6 Augmentation strategies

We report in Table 7 an ablation study on the augmentation strategies, consisting in sampling x̂1, x̂2 in
different ways from either D̂bias or D̂unbias or both. We consider the Corrupted CIFAR-10 benchmark, and
show the final accuracies for the unbiased and full test sets, for all the bias ratios considered.
From the figures on the table, one can note that sampling both x̂1, x̂2 from D̂bias overfits the biased data
and results in the worst accuracy, while mixing both samples from D̂unbias increases the generalization over
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Figure 10: Test accuracy for unbiased samples (red) and full set of samples (blue) for different values of the
hyperparameter ζ. For ζ = 0.0, the loss corresponds only to the weighted ERM of Eq. 6. Note that ζ axis
is in logarithmic scale.

Corrupted CIFAR-10 Waterbirds CelebA
ω All Unbiased All Unbiased All Unbiased
0 61.8 62.0 91.6 84.3 85.4 78.9
10−4 63.7 63.8 92.6 86.2 87.1 80.6
10−3 64.7 64.6 94.7 87.7 89.1 82.2
10−2 61.9 62.2 91.9 85.1 86.7 80.1
10−1 60.6 61.5 89.6 82.3 83.8 75.7

Table 6: Test accuracy for unbiased samples and the full test set (All) for different values of the hyperpa-
rameter ω evaluated on different benchmarks. The values for ω are chosen on a logarithmic scale.

unbiased samples, but provides suboptimal results, especially for the biased test set. Mixing samples from
D̂bias and D̂unbias, corresponding to our strategy l-mix, provides the best accuracy for all bias ratios.

In order to decouple the sampling strategy from the learning problem, we also considered the vanilla Mixup
data-augmentation as a baseline (2nd and 7th rows in Table 7). Results are slightly higher than those of
mixing D̂bias - D̂bias (3rd and 8th rows), but lower than the other combinations. This was somehow expected
as most of the samples in the dataset are biased, therefore it is very likely that, by selecting pairs to be mixed
randomly, biased/biased pairs are picked more often, while biased/unbiased or unbiased/unbiased pairs are
less frequently considered. We also report the baseline case in which no augmentation is performed (1st
and 6th rows), i.e. xmix, ymix in equations 5 and 6 are just individual samples randomly drawn from D:
performances in this case are significantly lower than those obtained by our proposed approach.

To conclude, this analysis proves that by choosing pairs from D̂bias and D̂unbias is much more effective, even
when the two splits are not accurate.

7.7 Impact on unbiased datasets

Test accuracy
ERM vanilla mixup l-mix
92.94 93.65 94.02

Table 8: Ablation study on unbiased
CIFAR-10.

To conclude, we tested our proposed methods on the standard
CIFAR-10 dataset, without any induced bias. With this test, we
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Set 1 Set 2 Bias ratio
95% 98% 99% 99.5%

No augmentation 58.8% 46.1% 40.0% 33.6%

A
llVanilla MixUp 44.2% 39.4% 37.2% 35.2%

D̂bias D̂bias 35.2% 34.0% 32.9% 32.0%
D̂unbias D̂unbias 60.2% 54.1% 48.4% 40.4%
D̂bias D̂unbias 63.8% 56.4% 50.9% 43.1%
No augmentation 55.3% 41.5% 34.8% 27.1%

U
nb

ia
se

d
O

nl
y

Vanilla MixUp 42.1% 36.7% 36.5% 34.4%

D̂bias D̂bias 29.7% 28.4% 26.7% 27.5%
D̂unbias D̂unbias 63.1% 55.3% 48.7% 42.5%
D̂bias D̂unbias 63.3% 55.9% 49.4% 42.7%

Table 7: Ablation analysis on the augmentation strategies. For Corrupted CIFAR-10, we report the
accuracy resulting from different augmentation strategies and no augmentation, by varying the bias ratio.
Our strategy results the winner over all the other mixing policies for both the entire test set (All) and the
Unbiased Only portion (best results are in bold).

want to prove that even in the presence of a non-biased dataset,
our proposed method is beneficial, showing an improved general-
ization capacity. In other words, we can tackle a real-world un-
supervised debiasing problem, in which we do not actually know
a priori whether a dataset is biased or not. We expect that our
proposed method does not underperform with respect to standard
ERM training.

Differently from Corrupted CIFAR-10, the standard version of the dataset does not exhibit any known
shortcut when it comes to predict the class labels. We compared our proposed method l-mix, the non-
learned version, vanilla mixup, and standard ERM, using the same architecture fθ (ResNet-18) as backbone
for a fair comparison. The dataset split is performed with the PH approach (M = 5), and regularization
parameters were set to ζ = 10 for vanilla mixup, and ω = 10−3 for l-mix. We can observe that in both cases,
our results exceed the ERM baseline, thus showing that our approaches are agnostic to the fact that the
dataset might be biased or not, making them more amenable to be utilized in real use cases.

8 Conclusions

In this work, we address the problem of data bias in the realistic, unsupervised debiasing scenario, i.e.,
when the bias factor or attribute is unknown, and propose a novel approach to mitigate this issue. Our
proposed method is composed of two sequential stages. First, we introduce two strategies to subdivide the
training dataset into two subsets (biased and unbiased samples), namely SP and PH. Relying on the history
of predictions, PH results in cleaner separation of biased/unbiased samples, which in turn results in better
performance for the subsequent bias mitigation stage.

Second, we show how to effectively exploit such subdivision in order to produce augmented samples by
mixing estimated biased and unbiased samples by properly learning mixing coefficients in an adversarial
way. Such mixed samples act as a regularizer which breaks the spurious correlations between data and class
labels, thus increasing accuracy.

The overall approach scores favorably against state of the art approaches and is also quite robust to the
choice of hyper-parameters, for which we present a comprehensive ablation analysis. Notably, the method
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is completely agnostic of the presence of bias, and it also outperforms standard ERM even when no bias is
(apparently) present in the data.

Broader Impact Statement

This research addresses the challenge of developing AI systems that can learn effectively from data affected
by bias, especially in the realistic case of unknown bias. The goal is then to mitigate the bias effect in training
that could lead to limited generalization and unfair or harmful outcomes. This is particularly important in all
actual scenarios, i.e., whenever one does not know a priori whether the real dataset collected evidences some
form of bias or not. Our system proved to perform well in both cases, being able to reach top performances
even when the dataset is unbiased, demonstrating that its mechanism is adaptative to the different data
conditions. More in general, effective generalization from biased data can enable AI systems to perform well
across diverse populations, improving fairness and inclusivity in their applications. By introducing methods
to detect and mitigate bias during learning, this work contributes to the development of more equitable and
transparent AI systems. Nonetheless, careful evaluation and ethical oversight are essential to ensure these
methods are applied responsibly, particularly in real-world, high-impact settings.
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