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ABSTRACT

Contrastive learning dramatically improves the performance in self-supervised
learning by maximizing the alignment between two representations obtained from
the same sample while distributing all representations uniformly. Extended su-
pervised contrastive learning boosts downstream performance by pulling embed-
ding vectors belonging to the same class together, even though vectors are ob-
tained from different samples. In this work, we generalize the supervised con-
trastive learning approach to the universal framework allowing us to fully utilize
the ground truth similarities between samples. All pairs of representations are
relatively pulled together in proportion to the label similarity, not equally pulling
representations having the same class label. To quantitatively interpret the feature
space after contrastive learning, we propose a label similarity aware alignment and
uniformity, which measures how genuinely similar samples are aligned and how
feature distribution preserves the maximal information. We prove asymptotically
and empirically that our proposed contrastive loss optimizes two properties, and
optimized properties positively affect task performance. Comprehensive experi-
ments on NLP, Vision, Graph, and Multimodal benchmark datasets using BERT,
ResNet, GIN, and LSTM encoders consistently showed that our loss outperforms
the previous self-supervised and supervised contrastive losses upon a wide range
of data types and corresponding encoder architectures. Introducing a task-specific
label similarity function further facilitates downstream performance.

1 INTRODUCTION

Contrastive learning is one of the widely used methods in self-supervised learning. Since it is hard
to define similarities between samples in unsupervised learning lacking annotations, SimCLR (Chen
et al., 2020) regard an augmented sample as a positive representation and maximize mutual infor-
mation between the original and the positive representation compared to remaining pairs with other
samples in the same mini-batch using NT-Xent loss function. This approach is simple but pow-
erful, so that self-supervised learning using derivatives of SimCLR framework with NT-Xent loss
(He et al., 2020; Grill et al., 2020; Caron et al., 2020) becomes a powerful contrastive pre-training
method over wide-range of research fields. (Radford et al., 2021; Gao et al., 2021; You et al., 2020)

Often neglected due to record-breaking success in self-supervised learning, contrastive learning us-
ing triplet loss (Weinberger et al., 2005) or N-pair loss (Sohn, 2016) had recorded outstanding per-
formances in supervised classification. More recently, SupCon (Khosla et al., 2020) generalized
SimCLR as a supervised contrastive framework. The underlying logic of SupCon is to maximize
the mutual information between original and positive representations having the same class label,
in addition to their augmented feature vectors. SupCon framework shows an extraordinary perfor-
mance on image classification and other tasks (Gunel et al., 2020; Li et al., 2022; Mai et al., 2022).

One remaining challenge for contrastive learning is to address real-world problems that are insuffi-
cient to define every classification inference as perfectly correct or perfectly wrong. For example,
consider the problem of counting the number of people in an image. Yet the label above is discrete
(y ∈ N) as classic classification, reducing this problem into a multiclass classification neglects rel-
ative correctness between the label and answers; for ground truth 3, answering 4 is relatively more
correct than answering 6. Since real-world labels are often continuous (y ∈ R, i.e. regression) or
multidimensional (y ∈ Rd), considering subtle differences between labels becomes more important.
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In this work, we propose a new contrastive objective function that further generalizes the SupCon
loss to reflect relative similarity between samples. Label-similarity Aware Contrastive Loss (LAS-
Con) measures the ground truth label similarity and carefully contrast representations in proportion
to the similarity - representation pairs having similar labels are pulled stronger than pairs having
distinct labels. LASCon loss maintains useful properties of SimCLR and SupCon, while learns con-
tinuous relations between samples unlike SimCLR or SupCon which learn discrete relationships.

We interpret the enhanced quality of continuous decision boundaries by assessing a generalized
alignment and uniformity, which measures how well representations of similar samples are aligned
and how uniformly representations are distributed to available feature space. Our new circular visu-
alization method also effectively captures subtle distributional changes allowing us to interpret the
quality of embedding spaces intuitively. While the concept of label similarity aware contrastive loss
were recently proposed independently by several papers throughout multiple domains, to the best of
our knowledge this is the first study quantitatively investigating topologies of representation space
and find their connection to downstream performances.

Our resulting loss showed an extraordinary performances on four downstream tasks in NLP, Vision,
Graph, and Multimodal tasks. Further development using non-linear label similarity shows that our
loss can further boost supervised representation learning by focusing on strong-positive samples.

2 PRELIMINARY

Before we discuss about diverse contrastive losses and their properties, we would first revisit two
core concepts: alignment and uniformity. Then we would compare previous self-supervised and
supervised contrastive loss functions by summarizing different views on positive samples.

2.1 ALIGNMENT AND UNIFORMITY

Contrastive learning has shown remarkable success in a wide range of tasks. While exact archi-
tecture and training methodologies differ, recent research on contrastive learning tends to share a
loss function based on NT-Xent (Negative Cross Entropy) loss function suggested by Chen et al.
(2020). Wang & Isola (2020) suggested understanding of NT-Xent loss function as simultaneously
optimizing two criteria, alignment and uniformity. Interpretations of two properties are as follows:

• Alignment: How embedding vectors of positive input pairs are close to each other.
• Uniformity: How input representations are uniformly distributed in embedding space.

The simultaneous optimization of alignment and uniformity is crucial in contrastive learning. A
perfectly aligned embedding space can map similar samples to the same point, but this representation
space is useless since the encoder cannot distinguish different samples. Similarly, an embedding
space with perfect uniformity is impractical because the encoder loses all applicable information
among training data while distributing all data points uniformly. Chen et al. (2021) further generalize
the standard self-supervised contrastive loss by multiplying scaling constant to the uniformity term.
Wang & Liu (2021) interpret effects of temperature using alignment/uniformity

2.2 CONTRASTIVE LOSS FUNCTIONS

2.2.1 SELF-SUPERVISED CONTRASTIVE LOSS: NT-XENT

Definition Chen et al. (2020) proposes Normalized Temperature-scaled Cross Entropy (NT-Xent)
loss, which is maximizing softmax-like relative similarity defined as:

u(xi,xj) =
exp (zi · zj/τ)∑

a∈I\{i} exp(zi · za/τ)
within the minibatch I and the normalized representation vectors {zi}i∈I . An adjustable tempera-
ture τ > 0 is used to control the penalties for hard negative samples. (Wang & Liu, 2021)

Positive Pair Two augmented representations from the same sample. Since self-supervised learning
condition does not consider any label information, each data is augmented twice and these aug-
mented representations coming from the same raw data are considered as positive pairs.
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Figure 1: Visualization of contrastive learning frameworks.

For an index of positive sample j(i) ∈ I for i ∈ I , the NT-Xent loss is then defined as

LSELF
i = − log u(xi,xj(i)), LSELF =

∑
i∈I

LSELF
i (1)

The quality of contrastive learning depends on the definition of semantic resemblance. Hence exist-
ing works often focus on developing new augmentation (You et al., 2020; Wei & Zou, 2019) or gener-
ating hard/adversarial negatives (Kalantidis et al., 2020; Ho & Nvasconcelos, 2020). Von Kügelgen
et al. (2021); Tian et al. (2020) studied the effects of augmentation on representation level.

2.2.2 SUPERVISED CONTRASTIVE LOSS

Definition Khosla et al. (2020) suggested applying contrastive learning to the supervised classifi-
cation of images, where the goal is to predict the discrete class label y for given inputs. One can
naturally consider pair of items belonging to the same class as positive pairs, and others as negatives.

For the positive indices P (i) = {j ∈ I \ {i} | yj = yi}, the supervised contrastive loss is defined as

LSUP
i =

−1

|P (i)|
∑

p∈P (i)

log u(xi,xp), LSUP =
∑
i∈I

LSUP
i (2)

LSUP is a generalization of LSELF, as Equation 2 reduces to the Equation 1 for the case where every
input data belongs to distinct class, and the only positive pair comes from the augmentation.

Positive Pair Representations having the same class label. Detailed definition of class label differs
depending on fields and tasks. Gunel et al. (2020); Li et al. (2022); Mai et al. (2022) applied SupCon
on NLP (GLUE), Graph (Drug-Protein Interaction), and Multimodal (CMU-MOSI) tasks.

2.3 GENERALIZED CONTRASTIVE LOSS

Previous Approach Generalizing contrastive loss has been suggested very recently in some applica-
tion domains. Wang et al. (2022) derived a contrastive loss by assuming that predicting distribution
is proportional to the similarity between label distributions and assessed on gaze estimation. Anony-
mous (2022) showed that generalization of SupCon by smoothing the binary nature of SupCon can
lead to outstanding performance in predicting sentiment from speech input. Dufumier et al. (2021b)
suggested the usage of proxy labels to incorporate prior information into the self-supervised con-
trastive learning. Dufumier et al. (2021a) formulated above approach using conditional alignment
and uniformity, approaching the similar mathematical formulation of loss function as ours.

Limitation and Motivation Previous works have extended contrastive losses and showed empirical
effectiveness. However, for representation learning, we found that previous works lack a quantita-
tive assessment of embedding space topologies and their correlation with performances. We also
inquired the universality for diverse fields and tasks utilizing various architectures and data formats.
Therefore we combine and extend previous contrastive frameworks by formulating label-similarity
aware supervised contrastive loss, carefully investigating the transformation of embedding spaces
using generalized alignment/uniformity, and conducting experiments on various domains.
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3 LABEL SIMILARITY AWARE CONTRASTIVE LEARNING

3.1 PROBLEM DEFINITION

Our target problem aims to predict label yi ∈ Y from its input data xi ∈ X . We consider the
underlying true labeling function F , whose value is known only at the training data points. For
multimodal setting, the input data is a collection of multiple data formats xi = {xA

i ,x
B
i ,x

C
i } ∈ X .

We would annotate the underlying distribution of data as pdata, where the minibatch {xi : i ∈ I} are
sampled from. For the indices of minibatch I = {1, 2, . . . |I|}, we define A(i) = {j ∈ I : j ̸= i}.

On the space of all possible labels Y , we introduce label similarity function s : Y × Y → [0, 1]
which measures how similar two labels are. For implementation purposes, we consider the mini-
batch - normalized relative label similarity s̃ to be close to 1 for the similar pair as:

s̃(yi, yj) =
s(yi, yj)∑

k∈A(i) s(yi, yk)

Our goal is to boost the encoder network to build a more effective representation space, which can
better reflects the genuine similarities between samples using their labels.

3.2 REPRESENTATION LEARNING FRAMEWORK

Our formulation of the problem and supervised contrastive learning condition does not rely on aug-
mentation as a method to generate positive pairs. However, to make a fair comparison, we structured
a similar framework to that used in SimCLR and SupCon including the augmentation module.

Here, we would reformulate the main components of our framework and their notations. Section
D.1 and Figure 10 provides more detailed explanation.

• Augmentation Module, Aug(·). For each input x, we generate one random augmentation,
x′ = Aug(x). The augmented sample represents a different view of the data and contains
some modified subset of the information in the original sample. Augmentation strategy
varies depending on the specific task and data format. The augmentation module is omitted
for multimodal tasks since multiple encoders already provide different views.

• Encoder Module, Enc(·). For each input x, encoder maps x to a representation vector
r = Enc(x). Both original and augmented samples separately pass the same encoder,
resulting in a pair of representation vectors. r is normalized to the unit hypersphere.

• Projection Module Proj(·). For each representation r, projector transforms r to a vector
z = Proj(r). We set Proj(·) as multi-layer perceptron with a single hidden layer. Re-
sulting vector z is normalized to a unit hypersphere, which enables using an inner product
to measure the cosine similarity between samples. The projection layer is replaced to the
prediction layer at the inference time.

• Prediction Module Pred(·). For each representation r, predictor maps r to a prediction
p = Pred(r) ∈ Rd. We set Pred(·) as multi-layer perceptron with one hidden layer.

3.3 ALIGNMENT AND UNIFORMITY: GENERALIZATION

3.3.1 GENERALIZATION OF ALIGNMENT

Wang & Isola (2020) considers a metric to measure alignment of representation as average distance
between representations of positive pair as following:

LSELF
align (f ;α) = − E

(xi,xj)∼ppos

[∥zi − zj∥α2 ], α > 0

Where ppos denotes the distribution of positive pairs of data. Since we consider all data pairs to have
some degree of similarity, our generalized notion of alignment can be then stated analogously as:

Lalign(f ;α) = − E
(xi,xj)∼pdata

[
s(F(xi),F(xj))∥zi − zj∥α2

]
α > 0 (3)

where in our case xi,xj are i.i.d samples from pdata. Note that minimizing this metric can be
understood as pulling the representation vectors, with higher weight on closely-labeled data pairs.
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3.3.2 UNIFORMITY: UNIVERSALLY GENERALIZED

Wang & Isola (2020) also considers uniformity as logarithm of average Gaussian potential;

Luniform(f ; t) = log E
(xi,xj)∼pdata

[
exp
(
−t∥zi − zj∥22

)]
, t > 0 (4)

Since the definition does not require label information, uniformity metric can be used as is.

3.4 LASCON: LABEL-SIMILARITY AWARE SUPERVISED CONTRASTIVE LOSS

3.4.1 DERIVATION OF LASCON

Now, we are ready to build LASCon by generalizing NT-Xent loss

Recall the definition of softmax-like relative similarity :

u(xi,xj) =
exp (zi · zj/τ)∑

a∈A(i) exp(zi · za/τ)
Both NT-Xent loss (Equation 1) and SupCon loss (Equation 2) are defined as an expectation of log
relative similarity over positive pairs. Analogously, we define LASCon as weighted summation with
label similarity as weights over all samples in the minibatch.

LLAS = E
(xi,xj)∼pdata

[−s(F(xi),F(xj)) log u(xi,xj)]

Again, for implementation purposes, we rescale the loss function and exclude similarity with itself
to match the NT-Xent and SupCon. For the minibatch, LLAS is defined as

LLAS
i =

∑
j∈A(i)

s̃(yi, yj) log u(xi,xj), LLAS = − 1

|I|
∑
i∈I

LLAS
i

3.4.2 LASCON OPTIMIZES ALIGNMENT AND UNIFORMITY

We connect the LASCon loss function to optimization of alignment and uniformity by adapting
theoretical results for NT-Xent loss (Wang & Isola, 2020) to the LLAS.
Theorem 1 (Asymptotics of LLAS). For fixed temperature τ > 0 , the LASCon loss converges to

lim
|I|→∞

LLAS − log |I| = E
(xi,xj)∼pdata

[−s(F(xi),F(xj)) log u(xi,xj)]− log |I|

= −1

τ
E

(xi,xj)∼pdata

[s(F(xi),F(xj))(zi · zj)] + E
xi∼pdata

[
log E

xa∼pdata
[exp(zi · za/τ)]

]
as minibatch size |I| → ∞. Also, the followings holds:

1. The first term is minimized if and only if the encoder shows perfect alignment.

2. If distribution of f(x) for x ∼ pdata is the uniform distribution on the hypersphere, f
minimizes the second term.

We provide the complete proof of Theorem 1 in Section A.1.

3.4.3 LASCON IS A GENERALIZATION OF SUPCON AND NT-XENT

After we made the LASCon minimizing generalized definition of alignment and uniformity, LAS-
Con becomes a generalization of SupCon and NT-Xent.

LASCon is a generalization of SupCon For classification tasks, 1yi=yj
can be used as similarity

function s. SupCon then can be induced from LASCon loss where P (i) = {j ∈ A(i)|yi = yj}:

LLAS
i = −

∑
j∈A(i)

s(yi, yj)∑
a∈A(i) s(yi, ya)

log u(xi,xj)

= −
∑

j∈A(i)

1yi=yj∑
a∈A(i) 1yi=ya

log u(xi,xj) = − 1

|P (i)|
∑

p∈P (i)

log u(xi,xp) = LSUP
i

5



Under review as a conference paper at ICLR 2023

Table 1: Summary of downstream tasks.
Field Dataset Label Range Threshold Meaning of Labels Encoder
NLP IMDB [1, 10] 7 Movie Review Rating BERT-base
Vision FreiHAND - - 3D Coordinate of Hand Landmark ResNet-152
Graph Davis [5, 11] 7 Binding Affinity of Drug Molecule GIN + 1DCNN
Multimodal CMU-MOSI [-3, 3] 0 Sentiment of Speech Video 2 LSTM + BERT-base

LASCon is a generalization of NT-Xent In self-supervised setting, we only know that augmented
sample has same label to original label; similarity function s(yi, yk) is given 1k=j(i).

LLAS
i = = −

∑
k∈A(i)

s(yi, yk)∑
a∈A(i) s(yi, ya)

log u(xi,xk)

= −
∑

k∈A(i)

1k=j(i)∑
a∈A(i) 1a=j(i)

log u(xi,xk) = − log u(xi,xj(i)) = LSELF
i

Here, 1xi=xj(i)
can be regarded as discretization of similarity function.

3.4.4 ANOTHER GENERALIZATION OF SUPCON, IN AND OUT VERSION OF LASCON

As in Khosla et al. (2020) and Anonymous (2022), generalization can be done in multiple ways;
analogously to SupCon, one can consider two versions of LASCon depending on whether label
similarity is weighted before or after taking logarithm.

LLAS
in = − 1

|I|
∑
i∈I

log

 ∑
j∈A(i)

s̃(yi, yj)u(xi,xj)


LLAS
out = − 1

|I|
∑
i∈I

∑
j∈A(i)

s̃(yi, yj) log u(xi,xj).

We mainly discussed out version due to mainly two reasons. First, in SupCon loss function, au-
thors have shown the superiority of out version both empirically and by gradient computation. This
analysis is also done for regression tasks in Anonymous (2022). Another reason is that out version
is amenable to adaptation of rich theoretical results and proofs done for NT-Xent loss, which we
discuss in Theorem 1 and the Section A.1.
Our experimental results are consistent with such previous considerations, out version showing bet-
ter performance in various tasks spanning multiple domains. (Table 2) We also provide the compu-
tation of gradient and comparison in Section A.2.

4 METHOD

4.1 TASK DEFINITION

We evaluate the efficacy of LASCon Loss on four downstream tasks each representing four pillars
of machine learning - NLP, Vision, Graph, and Multimodal. We provide a brief summary about
datasets in Table 1. Additional data statistics and implementation details are provided in Section C,
and sections specified at the end of the descriptions.

NLP Task - IMDB Semantic analysis is one of the most important challenge in NLP. As a repre-
sentative task addressing text semantics, IMDB aims to predict the numeric review score using the
comment. Maas et al. (2011) collected 50,000 movie reviews and scores ranging [1,10] and 0.5 as a
minimum unit. Following Yang et al. (2019), we use the even split having 25,000 labeled samples
for training and test and set 7 as a threshold for SupCon. We test four augmentations following Wei
& Zou (2019), and text input is encoded via BERT-base (Devlin et al., 2018). (Section D.2)

Vision Task - FreiHAND 3D pose estimation is crucial for solving the 3D semantic segmentation
problem in Computer Vision. FreiHAND focuses on the hand, which is challenging since the hand is
small but complicated. Zimmermann et al. (2019) annotated 224×224 RGB-formatted hand images
to designate coordinates of 21 keypoints correspond joints and tips of fingers and wrist. Therefore
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label in FreiHAND is vector y ∈ R21×3; a special similarity function is required (Equation 6).We
could not test SupCon since no standard classification criterion is proposed. Total 134,200 images
are splitted into 130,240 training and 3,960 evaluation set. We apply five augmentations together
following Spurr et al. (2021), and use ResNet-152 (He et al., 2016) for encoder (Section D.3).

Graph Task - Davis Drug efficacy prediction is the urgent problem in health/clinical machine learn-
ing. Davis is a widely-used dataset containing interaction intensity of drugs with specific protein
family, kinase. Davis et al. (2011) consists 25,772 pairs of drug-protein interaction intensity, with
the range [5, 11] after log-scaling; smaller means stronger binding. Following Huang et al. (2021),
we set 7 as a threshold for SupCon. We adopt the GraphDTA framework (Nguyen et al., 2021)
using Graph Isomorphism Network (Xu et al., 2019) for drug molecules and 1DCNN for protein
sequences. Three graph augmentation methods (You et al., 2020) are assessed. (Section D.4)

Multimodal Task - CMU-MOSI Understanding human communication is a representative multi-
disciplinary task since a model gets a collection of text (NLP), video (Vision), and audio input data.
CMU-MOSI (CMU-Multimodal Corpus of Sentiment Intensity) aims to predict the sentiment of
speaker from the speech video. Zadeh et al. (2016) collected 2,199 video clips and manually anno-
tated the sentiment of each utternace video within the range [-3, 3]. Following Han et al. (2021); Yu
et al. (2021) we use BERT (Devlin et al., 2018) for text and two unidirectional LSTMs (Hochreiter
& Schmidhuber, 1997) for audio and visual input (Section D.5).

4.2 EXPLORING REPRESENTATION SPACE

Quantitative Analysis We implement alignment (3) and uniformity (4) in minibatch as:

Lalign =
1

|I|
∑
i∈I

∑
j∈A(i)

s̃(yi, yj)∥zi − zj∥22

Luniform =
1

2|I|(|I| − 1)

∑
i∈I

∑
j∈A(i)

exp
(
−2∥zi − zj∥22

)
Where the normalization of similarity and rescaling for implementation purposes were made. Note
that we flip the sign of resulting alignment and uniformity to compare in positive range.

Qualitative Analysis Circular graphs approximately describe distributions of representation spaces.
The hue of a point indicates the label of corresponding datapoint, and the saturation means the
estimated density at the point. The dimension of representation is reduced by principal component
analysis (PCA), and density is estimated via Gaussian kernel density estimation (KDE) in R2.

4.3 LABEL SIMILARITY FUNCTION

One significant advantage of our loss function is optimizability on diverse tasks. Users have freedom
to choose arbitrary label similarity function α which can better capture properties of specific data
types or further fit to their purpose. Since our NLP, Graph, Multimodal tasks have one dimensional
real-valued labels, we define similarity function s(yi, yj) as follows. First, we are normalize ỹi = yi

M
for M = maxi∈I |yi|. Then, for yi, yj ∈ Y and an activation function α ∈ {id, tanh},

s(yi, yj) = 1− α

(
c · |ỹi − ỹj |

2

)
c ∈ R (5)

However, for vision task FreiHAND, since labels are in R21×3 we used L1 distance between labels
to define similarity. For M = maxi,j∈I ∥yi − yj∥1 and m = mini,j∈I ∥yi − yj∥1,

s(yi, yj) = 1− α

(
c ·

∥yi − yj∥1 −m

M −m

)
c ∈ R (6)

Here, we extend linear implementation(α = id(·)) by applying α = tanh(·) as a representative
non-linear label similarity function. Furthermore, we propose a hyperparameter c in Equation 5 and
Equation 6 that controls steepness of label similarity function near zero (Figure 13). Underlying
logic on this setting is that larger gradient around zero may encourage model to become more sensi-
tive on more hard samples having similar labels. Unlike classification tasks, Extensive experiments
were conducted with varying α and c.
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Table 2: Results with linear label similarity.
Tasks NLP (IMDB) Vision (FreiHAND) Graph (Davis) Multimodal (CMU-MOSI)
Models in/out MAE(↓) Corr(↑) 3D EPE(↓) 2D EPE(↓) AUC(↑) MSE(↓) Corr(↑) MAE(↓) Corr(↑) Acc-7(↑)
SimCLR 1.282 0.868 0.1012 25.9564 0.7955 0.299 0.795 0.707 0.800 46.550
SupCon in 1.144 0.888 - - - 0.307 0.780 0.707 0.805 45.627

out 1.134 0.889 - - - 0.287 0.777 0.704 0.804 46.696
Ours in 1.191 0.878 0.0784 18.6674 0.8416 0.308 0.786 0.708 0.801 46.113

out 1.110 0.895 0.0726 18.4676 0.8533 0.276 0.811 0.703 0.802 46.939

Table 3: Quantitative analysis on generalized alignment and uniformity.
Tasks NLP (IMDB) Vision (FreiHAND) Graph (Davis) Multimodal (CMU-MOSI)
Models in/out Align(↓) Uniform(↓) Align(↓) Uniform(↓) Align(↓) Uniform(↓) Align(↓) Uniform(↓)
SimCLR 1.457 2.406 0.522 10.227 4.398 2.742 1.598 1.403
SupCon in 0.444 0.703 - - 2.000 1.050 1.235 1.286

out 0.460 0.811 - - 1.701 1.170 0.133 0.275
Ours in 0.851 1.484 0.136 4.984 3.008 1.492 1.577 0.863

out 0.312 0.575 0.132 2.618 2.639 1.425 0.104 0.221

5 RESULTS

5.1 RESULTS WITH NAIVE LINEAR LABEL SIMILARITY

Label-similarity aware learning achieves SOTA performances. We provide performances using
linear label similarity, which is α(x) = x and c = 1, in Table 2. The model trained with LAS-
Con showed significant performance improvement in all datasets. Specifically, LASCon achieved
13.42 %, 7.27 %, and 7.69 % performance improvement for NLP, Vision, and Graph tasks using
previous SimCLR approach. Even comparing with SupCon, LASCon recorded 2.16 % and 3.99 %
enhancement in NLP and Graph tasks. We would also highlight that Vision/Graph/Multimodal tasks
which have previous SOTA method on the same dataset, our naive implementation using linear label
similarity showed better performance. This result is noteworthy since our framework is universal,
which can be further optimized for specific tasks and data formats.

Great Alignment/Uniformity make Great Downstream Performances Table 3 and Figure 2 em-
pirically and visually show that LASCon transforms an embedding space to better reflects genuine
similarity between labels and it leads performance improvement. Embedding space generated via
LASCon showed the lowest alignment and uniformity, which means that samples with similar la-
bels are nearly located, while all embedding vectors are distributed. Correlation graphs in Figure
3 (a,b) implies that measured alignment and uniformity directly affects downstream performances;
better the embedding space constructed, better the downstream performance. One exception is
Graph-Davis; we hypothesized that highly biased label distribution ( 60 % samples belongs to the
same label 5.0; Figure 8) made extremely low alignment and uniformity after SupCon. Comparing
circular graphs of SimCLR with others in Figure 2(a), SupCon and LASCon showed much clear
decision boundary while SimCLR locate some positive vectors in between negative samples. LAS-
Con, however, shows much smooth distribution of embedding distributions than SupCon; SupCon
indeed locate some extreme representations (colored with red or blue) near the decision boundary.
Figure 2(c) shows biased distribution; again, highly biased label distribution seems to cause locality.

5.2 STRONG-POSITIVE SAMPLING VIA NON-LINEAR LABEL SIMILARITY

Table 4 empirically proves that introducing a non-linear label similarity function can further boost
downstream task performances. Introducing non-linear not always enhance performance; using
c = 0.5 rather hampers model performance. However, the non-linear similarity function with c =
2.0 tends to boost the model to learn beneficial relationships between samples. We interpret these
results by introducing the concept of strong-positive sampling. Recall that real-world problems
often require continuous decision boundaries. Unlike classification representation learning which
is sufficient to regard only the macro relationship between the distinct label, our target problem
necessitates focusing on micro relationships between similar samples. To this end, exaggerating
the gradient near perfect similarity could encourage the model to become more sensitive to strong
positives having similar labels. Empirically, better performance was observed with large gradients.
Comprehensive and task-specific optimization of c and its relationship with temperature will be an
interesting future research topic.
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(c) Graph-Davis

(b) Vision-FreiHAND
SimCLR SupCon OURS OURSSimCLR

SimCLR SupCon OURS

SupCon

(d) Multimodal-CMU-MOSI
OURSSimCLR SupCon

(a) NLP-IMDB

Figure 2: Circular distribution of representation spaces, depending on contrastive loss function. Hue
indicates label, and saturation means estimated density.

Table 4: Results with non-linear label similarity.
Tasks NLP (IMDB) Vision (FreiHAND) Graph (Davis) Multimodal (CMU-MOSI)
Sim Coef MAE(↓) Corr(↑) 3D EPE(↓) 2D EPE(↓) AUC(↑) MSE(↓) Corr(↑) MAE(↓) Corr(↑) Acc-7(↑)
Linear - 1.110 0.895 0.0726 18.4676 0.8533 0.276 0.811 0.703 0.802 46.550

0.5 1.319 0.857 0.0769 19.9356 0.8618 0.278 0.811 0.718 0.798 45.384
Tanh 1.0 1.183 0.887 0.0690 17.5392 0.8606 0.274 0.812 0.709 0.803 45.384

2.0 1.097 0.893 0.0684 17.4586 0.8618 0.277 0.811 2 0.705 0.805 45.870

(a) (b)

Figure 3: Correlation with performances

(a) (b)

Figure 4: Ablation study on augmentations

5.3 ABLATION STUDY: ROBUSTNESS ON AUGMENTATION

We show the performance change depending on augmentation strategies; Figure 4(a) for NLP-IMDB
and 4(b) for Graph-Davis. LASCon loss with out configuration shows the best performance invariant
to augmentation strategy. One exception is a random deletion in NLP task; we hypothesized that
random deletion may introduce critical modification significantly changes the meaning significantly.
Investigating and optimizing the effects of augmentation would also be a interesting future work.

6 CONCLUSION

In this study, we analyze LASCon, a label similarity aware contrastive learning framework, in
order to address real-world problems having relative similarity between samples. We combine
previous approaches and re-interpret LASCon using label similarity-aware alignment and unifor-
mity. Our quantitative analysis of representation space shows a general correlation that great align-
ment/uniformity makes great performance; we also found that this relationship may be disturbed by
extremely biased label distribution. Through comprehensive analysis of four main fields in machine
learning utilizing diverse architectures and data formats, LASCon is proved suitable for real-world
problems. Our non-linear label similarity results show the potential of LASCon to be optimized for
all types of tasks the user wants. Extending our results to the semi-supervised setting where unla-
beled data can be used together with labeled data to build richer representation space seems to be
an important direction with growing applications. Also, rigorous theoretical analysis of the conver-
gence rate of our generalized contrastive loss and the usage of various model architectures remains
an interesting future work.
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ETHICS STATEMENT

We strongly believe that building better representation space by contrastive learning and more specif-
ically LASCon can be used to improve various domains and applications. Such applications should
be carefully monitored to ensure it’s ethical and fair usage.

Our experiments were conducted on some publically available datasets which were collected from
human subjects. FreiHAND dataset consists of images of human hand postures, and CMU-MOSI
dataset consists of speech video. While these are widely used and thus are routinely checked by the
community, it is possible that datasets of human origin contains unintentional biases and stereotypes.
Consistent and extensive monitoring, following in depth discussion toward ethical usage of large
datasets and representation learning methodologies by the community is indispensable.

REPRODUCIBILITY STATEMENT

We believe that our community can become healthier and more productive when all researchers
comply with Code of Ethics. To this end, we provide transparent and comprehensive results of
our results, including the ones which were not thoroughly discussed in main manuscript due to
unsatisfactory performance. We also attached the code used for the experiment on the FreiHAND
dataset as the supplementary material, for the clear demonstration of concept and reproducibility.
The collection of full code for all experiments will also be made publically available shortly.
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A MORE ON LOSS FUNCTION

Throughout the section, we consider 1 as the indicator function, which takes the value of 1 or 0
depending on the given condition.

A.1 PROOF OF THEOREM 1

Proof. Since the results are mostly adaptation of the results proven on NT-Xent loss to our LLAS,
most of the proofs can be also applied without much changes; Interested readers can refer to the
Wang & Isola (2020) for more detailed proof.

Recall that our loss function is defined as

LLAS = − 1

|I|
∑
i∈I

∑
j∈A(i)

s̃(yi, yj) log u(xi,xj)

= − 1

|I|
∑
i∈I

∑
j∈A(i)

s̃(yi, yj) log
exp(zi · zj/τ)∑

a∈A(i) exp(zi · za/τ)

= − 1

|I|
∑
i∈I

∑
j∈A(i)

s̃(yi, yj)(zi · zj/τ) +
1

|I|
∑
i∈I

∑
j∈A(i)

s̃(yi, yj) log
∑

a∈A(i)

exp(zi · za/τ)

= − 1

|I|
∑
i∈I

∑
j∈A(i)

s̃(yi, yj)(zi · zj/τ) +
1

|I|
∑
i∈I

log
∑

a∈A(i)

exp(zi · za/τ)

Since sum of s̃ over A(i) is 1 for each i ∈ I .

The asymptotics for the first term can be obtained as:

lim
|I|→∞

− 1

τ |I|
∑
i∈I

∑
j∈A(i)

s̃(yi, yj)(zi · zj) → −1

τ
E

(xi,xj)∼pdata

[s(F(xi),F(xj))(zi · zj)]

by the strong law of large numbers. Note that excluding the term of zi with itself does not change
the asymptotic result as batch size grows to infinity.

For the second term, we note that for each i ∈ I , we have

lim
|I|→∞

log

 1

|I|
∑

a∈A(i)

exp(zi · za/τ)

 = log E
xa∼pdata

[exp(zi · za/τ)] a. s.

by the Strong Law of Large Numbers and the Continuous Mapping Theorem. Again, while the
exact number of sample |A(i)| = |I| − 1, the estimator remains asymptotically unbiased. By the
boundedness of ezi·za/τ on the hypersphere and the Lebesgue’s Dominated Convergence Theorem,
we obtain the same result as in NT-Xent loss.

lim
|I|→∞

1

|I|
∑
i∈I

log
∑

a∈A(i)

exp(zi · za/τ) → E
xi∼pdata

[
log E

xa∼pdata
exp(zi · za/τ)

]
a. s.

First term is minimized by and only by the perfectly aligning encoder : For zi, zj ∈ Sd,

−s(F(xi),F(xj))(zi · zj) = s(F(xi),F(xj))(∥zi − zj∥22/2− 1)

Hence a perfectly aligning encoder, which gives ∥zi − zj∥22 = 0 almost surely, minimizes the first
term. Existence of such encoder gives the converse.

Second term is minimized by perfectly uniform encoder : Since the second term remained un-
modified, the proof from Wang & Isola (2020) (Appendix A.2) can be directly applied.
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A.2 GRADIENTS OF LOSS

Here, as in Anonymous (2022), we derive the gradients and prove that arguments about LSUP
out and

LSUP
in remains within our generalization. For simplicity, let C =

∑
a∈A(i) s(yi, ya) ∈ R.

A.2.1 LASCON: IN

We first compute the gradient of LLAS
in .

∂LLAS
in

∂zi
= − ∂

∂zi
log

 1

C

∑
a∈A(i)

s(yi, ya)u(xi,xa)


= − ∂

∂zi
log

∑
a∈A(i)

s(yi, ya)u(xi,xa)

= − ∂

∂zi
log

∑
a∈A(i) s(yi, ya) exp(zi · za/τ)∑

a∈A(i) exp(zi · za/τ)

= − ∂

∂zi
log

∑
a∈A(i)

s(yi, ya) exp(zi · za/τ) +
∂

∂zi
log

∑
a∈A(i)

exp(zi · za/τ)

= −1

τ

∑
a∈A(i) zas(yi, ya) exp(zi · za/τ)∑
a∈A(i) s(yi, ya) exp(zi · za/τ)

+
1

τ

∑
a∈A(i) za exp(zi · za/τ)∑
a∈A(i) exp(zi · za/τ)

=
1

τ

 ∑
a∈A(i)

za
(
u(xi,xa)−Xin(xi,xa)

)
where Xin(xi,xa) is defined as

Xin(xi,xa) =
s(yi, ya) exp(zi · za/τ)∑

j∈A(i) s(yi, yj) exp(zi · zj/τ)

A.2.2 LASCON: OUT

We then compute the gradient of LLAS
out .

∂LLAS
out

∂zi
= − 1

C

∂

∂zi

∑
a∈A(i)

s(yi, ya) log u(xi,xa)

=
1

C

∂

∂zi

(
−
∑

a∈A(i)

s(yi, ya)
zi · za

τ
+
∑

j∈A(i)

s(yi, yj) log
∑

a∈A(i)

exp(zi · za/τ)

)

=
1

Cτ

(
−
∑

a∈A(i)

s(yi, ya)za +
∑

j∈A(i)

s(yi, yj)

∑
a∈A(i) za exp(zi · za/τ)∑
a∈A(i) exp(zi · za/τ)

)

=
1

τ

 ∑
a∈A(i)

za
(
u(xi,xa)−Xout(xi,xa)

)
where Xout(xi,xa) is defined as

Xout(xi,xa) =
s(yi, ya)∑

j∈A(i) s(yi, yj)

We notice that as in Khosla et al. (2020), taking z as weighted average of samples reduces LLAS
in to

LLAS
out , thus stabilization argument is applicable.

15



Under review as a conference paper at ICLR 2023

B ADDITIONAL RESULTS

In this section, we provide additional u-map visualization (McInnes et al., 2018) of embedding
spaces and summarized results.

B.1 UMAP VISUALIZATION OF EMBEDDING SPACE

(a) NLP-IMDB

SimCLR SupCon OURS

SimCLR SupCon OURS

(d) Multimodal-CMU-MOSI

(b) Vision-FreiHAND

(c) Graph-Davis

SupConSimCLR OURS

SupConSimCLR OURS

Figure 5: Umap visualization of embedding space.
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B.2 SUMMARIZED RESULTS OVER TEMPERATURE.

Table 5: NLP contrastive learning on CMU-MOSI with diverse loss functions. We use the best
performances on each experimental setting over temperature.

Synonym Replacement Random Deletion
Models MAE(↓) Corr(↑) Acc-2(↑) F1(↑) MAE(↓) Corr(↑) Acc-2(↑) F1(↑)
SimCLR 1.282 0.868 92.496 92.494 1.180 0.882 90.903 90.873
SupCon-i 1.144 0.888 91.773 91.757 1.101 0.893 91.343 91.307
LASCon-iT2 1.145 0.888 90.784 90.722 1.109 0.890 91.231 91.199
LASCon-iT1 1.131 0.891 91.987 91.970 1.127 0.885 92.501 92.487
LASCon-iT0.5 1.147 0.836 91.936 91.918 1.175 0.888 92.683 92.676
LASCon-iL 1.191 0.878 91.375 91.345 1.127 0.892 90.904 90.853
SupCon-o 1.134 0.889 91.871 91.853 1.111 0.893 90.939 90.895
LASCon-oT2 1.097 0.893 90.239 90.173 1.100 0.895 91.964 91.939
LASCon-oT1 1.183 0.887 90.196 90.121 1.147 0.887 90.892 90.847
LASCon-oT0.5 1.319 0.857 89.849 89.808 1.297 0.860 91.132 91.119
LASCon-oL 1.110 0.895 92.976 92.973 1.137 0.892 92.049 92.025

Random Swapping Random Insertion
Models MAE(↓) Corr(↑) Acc-2(↑) F1(↑) MAE(↓) Corr(↑) Acc-2(↑) F1(↑)
SimCLR 1.170 0.879 91.421 91.403 1.203 0.875 90.455 90.411
SupCon-i 1.157 0.890 91.893 91.874 1.113 0.890 92.853 92.848
LASCon-iT2 1.127 0.894 92.275 92.259 1.108 0.893 91.239 91.209
LASCon-iT1 1.155 0.886 92.388 92.380 1.130 0.890 91.876 91.854
LASCon-iT0.5 1.115 0.893 91.931 91.910 1.149 0.890 90.647 90.588
LASCon-iL 1.145 0.884 91.612 91.582 1.194 0.887 91.531 91.499
SupCon-o 1.135 0.890 92.423 92.412 1.120 0.891 92.035 92.011
LASCon-oT2 1.108 0.892 92.028 92.006 1.155 0.886 90.561 90.518
LASCon-oT1 1.139 0.887 90.480 90.430 1.178 0.883 90.476 90.412
LASCon-oT0.5 1.244 0.870 91.644 91.636 1.260 0.870 92.075 92.071
LASCon-oL 1.100 0.896 92.548 92.539 1.075 0.893 90.601 90.553

Table 6: Graph contrastive learning on Davis with diverse loss functions. We use the best perfor-
mances on each experimental setting over temperature.

Node Masking Node Dropping Subgraph Masking
Models MSE(↓) Corr(↑) Acc-2(↑) MSE(↓) Corr(↑) Acc-2(↑) MSE(↓) Corr(↑) Acc-2(↑)
SimCLR 0.305 0.789 0.942 0.286 0.806 0.943 0.299 0.795 0.942
SupCon-i 0.308 0.787 0.940 0.302 0.793 0.941 0.307 0.788 0.942
LASCon-iT2 0.298 0.794 0.941 0.305 0.790 0.942 0.305 0.791 0.941
LASCon-iT1 0.302 0.790 0.943 0.296 0.796 0.941 0.300 0.793 0.943
LASCon-iT0.5 0.303 0.791 0.942 0.297 0.797 0.943 0.299 0.794 0.941
LASCon-iL 0.304 0.791 0.942 0.296 0.796 0.942 0.308 0.786 0.941
SupCon-o 0.290 0.801 0.944 0.291 0.801 0.944 0.287 0.802 0.943
LASCon-oT2 0.279 0.809 0.944 0.280 0.810 0.944 0.277 0.811 0.944
LASCon-oT1 0.275 0.813 0.945 0.276 0.811 0.945 0.274 0.812 0.944
LASCon-oT0.5 0.277 0.811 0.945 0.275 0.813 0.943 0.278 0.811 0.944
LASCon-oL 0.276 0.812 0.944 0.279 0.811 0.944 0.276 0.811 0.943

Table 7: Vision contrastive learning on FreiHAND with diverse loss functions. We use the best
performances on each experimental setting over temperature.

FreiHAND
Models 3D EPE(↓) 2D EPE(↓) AUC(↑) Alignment(↓) Uniformity(↓)
SimCLR 0.1012 25.9564 0.7955 0.5217 10.2271
PeCLR 0.0842 19.6219 0.8299 0.1664 9.4734
LASCon-iT2 0.0754 18.3845 0.8477 0.1248 5.8775
LASCon-iT1 0.0809 19.3998 0.8366 0.1255 4.8791
LASCon-iT0.5 0.0871 20.5561 0.8240 0.1752 5.0987
LASCon-iL 0.0784 18.6674 0.8416 0.1365 4.9839
LASCon-oT3 0.0659 16.4900 0.8668 0.1521 7.6807
LASCon-oT2 0.0684 17.4586 0.8618 0.1902 4.1051
LASCon-oT2 τ = 0.1 0.0748 24.5997 0.8488 0.1044 10.6777
LASCon-oT2 τ = 1.0 0.0683 17.7334 0.8619 0.1985 3.0022
LASCon-oT1 0.0690 17.5392 0.8606 0.0768 2.0115
LASCon-oT0.5 0.0769 19.9356 0.8446 0.0192 1.4438
LASCon-oL 0.0726 18.4676 0.8533 0.1321 2.6182
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Table 8: Multimodal contrastive learning on CMU-MOSI with diverse loss functions. We use the
best performances on each experimental setting over temperature.

CMU-MOSI
Models MAE(↓) Corr(↑) Acc-7(↑) Acc-5(↑) Acc-2(↑) Acc-2(↑) F1(↑) F1(↑)
baseline 0.722 0.797 43.246 49.223 82.556 84.654 82.479 84.644
NTXent 0.707 0.800 46.550 52.964 82.410 84.197 82.321 84.167
SupCon-i 0.707 0.805 45.627 51.603 83.625 84.909 83.622 84.948
LASCon-iT2 0.703 0.805 45.287 51.603 82.896 84.604 82.814 84.576
LASCon-iT1 0.709 0.803 44.801 50.777 82.507 84.146 82.431 84.125
LASCon-iT0.5 0.706 0.804 45.287 51.555 83.139 85.163 83.080 85.165
LASCon-iL 0.708 0.801 46.113 52.527 83.188 84.909 83.131 84.905
SupCon-o 0.704 0.804 46.696 52.915 82.556 84.451 82.476 84.433
LASCon-oT2 0.705 0.805 45.870 51.798 82.556 84.197 82.505 84.200
LASCon-oT1 0.709 0.803 45.384 51.361 82.896 84.400 82.856 84.409
LASCon-oT0.5 0.718 0.798 45.384 51.215 82.313 83.740 82.266 83.742
LASCon-oL 0.703 0.802 46.939 52.575 82.604 84.248 82.572 84.270

C DATASETS

C.1 NLP-IMDB

The label of IMDB ranges from [1, 10], 0.5 as a minum unit. We provide the label distribution in
Figure 6.

Figure 6: Label distribution of IMDB dataset.

C.2 VISION-FREIHAND

Since FreiHAND comprises 3D image, we provide the label distribution on three respective cartesian
axises in Figure 7.

(a) x-axis (c) z-axis(b) y-axis

Figure 7: Label distribution of FreiHAND dataset.

C.3 GRAPH-DAVIS

We illustrate the label distribution of Davis dataset in Figure 8. Davis is extremely biased dataset;
about 60 % of samples are having the same label 5.0. Therefore we also provide a close distribution
ignoring samples belonging to the label 5.0 at Figure 8 (b).
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(a) (b)

Figure 8: Label distribution of Davis dataset.

C.4 MULTIMODAL-CMU-MOSI

The label of CMU-MOSI ranges from [-3, 3]. We visualize the label distribution in Figure 9.

Figure 9: Label distribution of CMU-MOSI dataset.
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D EXPERIMENTAL DETAILS

We provide experimental details and hyperparameter settings for each downstream task. We adopt
the most widely used augmentation strategy and encoder architecture in each field to minimize
deviation according to model configuration. We aim to maintain the same optimization method with
the state-of-the-art work. One exception is the NLP task since the IMDB dataset was originally a
classification task using different loss functions with regression.

Except for the vision task, we report the best performance over the temperature range [0.1, 1.0].
Among five experimental results using {0,1,2,3,4} as random seeds, we report the average perfor-
mance among three after excluding results from seeds with the highest and lowest error.

We also state practical details about device specification, memory usage, and time consumption
which are needed to reproduce or develop from our work.

D.1 FRAMEWORK

Given an input batch of data, the augmentation module modifies the input data to generate an ad-
ditional derivative of the input data. Forward propagation through the encoder module converts
two batches of data to a fixed size of representation vectors, which will lie on the unit hypersphere
by normalization. During training, the projection module consisting of two fully-connected lay-
ers transforms unit representations into another unit hypersphere. The supervised contrastive loss
is computed on the outputs of the projection layers. At inference regression, a regression module
comprising a linear classifier replaces the projection module to generate a prediction.

Figure 10: Illustration on LASCon framework.

D.2 NLP-IMDB

Encoder We mainly adopt the pretrained BERT (Bidirectional Encoder Representations from Trans-
formers) encoder, which is one of the most widely-used pre-trained language model. Similar to
previous works done by Yang et al. (2019); Sun et al. (2019), we download the BERT-base model
provided by the HuggingFace Transformers (Wolf et al., 2019) and finetune using IMDB dataset.

Augmentation Wei & Zou (2019) provides four simple but powerful augmentation techniques for
language tasks. We obtain augmented sentence via the default setting of synonym replacement
(SR), random insertion (RI), random swap (RS), and random deletion (RD). Table 9 gives specific
examples of sentence augmentation.

Table 9: Sentence augmentation example.
None The storyline of the movie is great, and the acting is perfect.
Synonym Replacement The plot line of the movie is great, and the acting is perfect.
Random Insertion The storyline of performing the movie is great, and the acting is perfect.
Random Swap The storyline of the movie is great, and perfect acting is the.
Random Deletion The storyline of the movie is great, and the acting is.

Optimization We use Adam optimizer for optimizing parameters in each module in the framework.
Initial learning rate is 1e-5 for BERT encoder and 1e-3 for other modules. Supervised contrastive
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loss is applied for 1 epoch, then supervised L1 loss is utilized for 1 epoch of prediction. We test the
wide range of temperature in the range [0.1, 1.0].

Practical We use NVIDIA GeForce RTX 3090 for experiment. 7GB of GPU memory and 20 minute
of time is required to reproduce our result, for one stage of contrastive learning and five stage of fine-
tuning with five independent seeds.

D.3 VISION-FREIHAND

We adopt many settings from PeCLR (Spurr et al., 2021).

Encoder We use ResNet-152 He et al. (2016) for encoder model. For pretraining process, two layer
MLP is used as projection head. Input dimension of projection head is 2048, hidden dimension is
512, output dimension is 128.

Augmentation We use color jitter, resize, rotate, color drop, and crop for augmentation. Rotation
angle is in r ∈ [−45◦, 45◦]. Color jitter is applied the aspect of hue, saturation, and brightness.
Hue and saturation is scaled in s ∈ [0.01, 1.0]. Meanwhile, brightness is factored in s ∈ [0.5, 1.0].
Cropping is applied to crop box which all of keypoints exist in. Please refer Figure 11 for examples
of augmentation.

Figure 11: Examples of augmentation in FreiHAND

Optimization Supervised pretraining is performed for 100 epoch, which is adopted in PeCLR. For
optimizer, ADAM wrapped with LARS is used with 256 batch size. Learning rate is set to lr =√
|I| ∗ 1e− 4 for minibatch I . In addition, linear warmup is applied for first 10 epoch. Temperature

of loss is τ = 0.5. Fine tuning is performed for 100 epoch. In fine tuning, ADAM optimizer is used
with 128 batch size, and learning rate lr = 5e− 4.

Practical We use NVIDIA GeForce RTX 3090 for experiment. 20GB of GPU memory and 10 hours
of time are needed for pretraining. For fine tuning, 4 GB of GPU memory and 7 hours of time are
needed.

D.4 GRAPH-DAVIS

Encoder We inherit most of the encoder settings from Liu et al. (2022). The main graph encoder for
the graph task is five layers of Graph Isomorphism Network (GIN) proposed by Xu et al. (2019).
Since the drug-protein interaction prediction task requires additional protein sequence input, we
use GraphDTA (Nguyen et al., 2021) framework as a wrapping encoder. Three layers of 1D CNN
independently map 1D protein sequence input as a fixed length of a vector. The concatenation of the
molecular representation vector from GIN and the protein representation vector from CNN roles as
an embedding vector.

Augmentation We apply node masking (NM), node dropping (ND), and subgraph masking (SM)
graph augmentation. Specifically, 20 % of random node attributes are masked to zero vector for node
masking. For node dropping, 20 % of random nodes are erased from the graph, and corresponding
edges are removed simultaneously. Subgraph masking is an extension of node masking so that
consecutive 20 % of node attributes and connected edge attributes are masked to zero vectors. Figure
12 graphically explains three augmentation strategies.

Optimization The experiment settings are the same as GraphDTA. Both pretraining and finetuning
is performed for 200 epochs with batch size of 256 with Learning rate equals to lr = 5e− 4.
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Figure 12: Examples of augmentation in FreiHAND

Practical We use NVIDIA GeForce RTX 3090 for experiment. 4GB of GPU memory and 3 hours
of time are needed for pretraining. For fine tuning, 3 GB of GPU memory and 2 hours of time are
needed.

D.5 MULTIMODAL-CMU-MOSI

Encoder We use three independent encoders for representing text, acoustic and visual input. Follow-
ing previous studies (Yu et al., 2021; Han et al., 2021), 12-layers BERT Devlin et al. (2018) encodes
text input and two unidirectional LSTMs Hochreiter & Schmidhuber (1997) encode acoustic and
visual data.

Augmentation Since multiple encoders provide diverse view of input data, we do not use augmenta-
tion method for multimodal task.

Optimization We use Adam optimizer for optimizing parameters in each module in the framework.
Initial learning rate is 1e-5 for BERT encoder and 1e-3 for other modules. Supervised contrastive
loss is applied for 100 epochs, then supervised L1 loss is utilized for another 100 epochs of predic-
tion. We test the wide range of temperature in the range [0.1, 1.0].

Practical We use NVIDIA GeForce RTX 3090 for experiment. For batch size 32, 16 GB of GPU
memory and 20 minutes of time are needed for pretraining. For fine tuning, 16 GB of GPU memory
and 1 hour of time are needed.

D.6 LABEL SIMILARITY FUNCTION

We provide a brief graph of label similarity functions to explain gradients near zero.

Figure 13: Label similarity functions
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E FULL RESULTS

E.1 IMDB

Table 10: NLP contrastive learning on IMDB dataset with diverse loss functions and temperatures.
Augmentation = Synonym Replacement.

IN OUT
T MAE(↓) Corr(↑) Acc-2(↑) F1(↑) MAE(↓) Corr(↑) Acc-2(↑) F1(↑)

SimCLR
1.0 1.415 0.856 86.843 86.527
0.9 1.482 0.846 84.599 84.005
0.8 1.306 0.865 91.556 91.547
0.7 1.547 0.862 87.499 87.249
0.6 1.268 0.869 89.564 89.507
0.5 1.282 0.868 92.496 92.494
0.4 1.372 0.858 89.837 89.756
0.3 1.595 0.871 92.236 92.230
0.2 1.367 0.865 89.317 89.169
0.1 1.444 0.858 90.233 90.189

SupCon
1.0 1.539 0.840 82.387 80.900 1.846 0.748 78.464 77.419
0.9 1.156 0.886 92.657 92.651 1.134 0.889 91.871 91.853
0.8 1.144 0.888 91.773 91.757 1.297 0.884 89.908 89.834
0.7 1.163 0.881 92.216 92.200 1.994 0.772 81.449 80.607
0.6 1.317 0.879 91.559 91.527 1.951 0.745 80.197 78.434
0.5 1.151 0.886 90.337 90.282 2.162 0.739 82.204 81.947
0.4 1.746 0.876 73.967 68.097 1.150 0.881 91.693 91.672
0.3 1.271 0.875 92.344 92.333 1.174 0.892 92.281 92.268
0.2 1.160 0.886 92.833 92.830 1.275 0.889 92.639 92.624
0.1 1.280 0.872 89.253 89.168 1.921 0.772 80.031 79.133

LASCon Linear
1.0 1.237 0.879 92.605 92.599 1.246 0.884 91.017 90.979
0.9 1.675 0.846 75.924 72.610 2.737 nan 62.217 51.047
0.8 1.192 0.887 93.124 93.119 1.994 nan 78.581 73.024
0.7 1.293 0.856 91.465 91.438 1.245 0.878 90.225 90.151
0.6 1.248 0.880 91.293 91.259 1.280 0.869 89.348 89.237
0.5 1.178 0.887 93.227 93.224 1.110 0.895 92.976 92.973
0.4 1.147 0.891 92.396 92.379 1.213 0.884 87.509 87.290
0.3 1.401 0.876 86.661 86.005 1.176 0.885 90.959 90.922
0.2 1.191 0.878 91.375 91.345 1.519 0.830 88.351 88.154
0.1 1.202 0.879 88.711 88.601 1.419 0.860 86.009 85.597

LASCon Tanh 0.5
1.0 2.316 nan 71.549 65.317 1.692 0.820 87.784 87.697
0.9 1.347 0.876 86.748 86.502 1.333 0.867 91.651 91.638
0.8 1.227 0.879 92.849 92.845 1.490 0.857 88.451 88.332
0.7 1.240 0.878 92.471 92.462 1.319 0.857 89.849 89.808
0.6 1.283 0.872 89.913 89.787 1.322 0.864 88.792 88.714
0.5 1.208 0.887 92.459 92.445 1.358 0.857 87.895 87.748
0.4 1.147 0.836 91.936 91.918 2.032 0.745 80.676 78.928
0.3 1.150 0.889 89.819 89.739 1.352 0.854 89.077 88.991
0.2 1.397 0.870 91.996 91.971 2.055 0.842 90.405 90.375
0.1 1.213 0.882 92.440 92.437 2.048 0.838 73.705 67.912

LASCon Tanh 1.0
1.0 1.568 0.816 86.145 85.429 1.210 0.879 92.592 92.584
0.9 1.274 0.878 90.264 90.176 1.479 0.878 77.971 75.345
0.8 1.131 0.891 91.987 91.970 1.153 0.888 92.492 92.486
0.7 1.148 0.888 90.720 90.645 1.186 0.880 90.425 90.384
0.6 1.229 0.885 91.712 91.685 1.183 0.887 90.196 90.121
0.5 1.189 0.883 91.527 91.495 1.407 0.863 87.815 87.647
0.4 1.180 0.888 91.653 91.621 2.022 0.735 78.092 76.037
0.3 1.162 0.889 92.203 92.186 1.225 0.879 92.440 92.428
0.2 1.204 0.879 91.507 91.481 1.193 0.881 90.819 90.774
0.1 1.589 0.880 91.732 91.713 1.225 0.878 90.304 90.244

LASCon Tanh 2.0
1.0 1.233 0.879 91.695 91.668 1.184 0.886 91.431 91.388
0.9 1.322 0.872 90.341 90.251 1.126 0.894 91.521 91.493
0.8 1.232 0.878 92.292 92.276 1.112 0.890 90.063 89.998
0.7 1.228 0.879 92.049 92.025 1.260 0.884 90.461 90.401
0.6 1.160 0.891 92.759 92.749 1.559 0.827 84.599 83.987
0.5 1.226 0.877 90.615 90.543 1.405 0.842 83.301 82.452
0.4 1.243 0.880 91.813 91.793 1.097 0.893 90.239 90.173
0.3 1.317 0.889 92.039 92.014 1.211 0.885 91.357 91.299
0.2 1.145 0.888 90.784 90.722 1.134 0.890 91.588 91.564
0.1 1.460 0.867 86.739 86.501 1.101 0.889 89.327 89.244
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Table 11: NLP contrastive learning on IMDB dataset with diverse loss functions and temperatures.
Augmentation = Random Deletion.

IN OUT
T MAE(↓) Corr(↑) Acc-2(↑) F1(↑) MAE(↓) Corr(↑) Acc-2(↑) F1(↑)

SimCLR
1.0 1.260 0.869 92.033 92.022
0.9 1.288 0.871 91.268 91.241
0.8 1.225 0.871 90.409 90.371
0.7 1.279 0.871 90.131 90.080
0.6 1.260 0.876 91.744 91.729
0.5 1.215 0.875 92.317 92.314
0.4 1.511 0.858 90.876 90.847
0.3 1.324 0.866 89.172 89.080
0.2 1.180 0.882 90.903 90.873
0.1 1.342 0.872 88.691 88.598

SupCon
1.0 1.666 0.840 90.976 90.951 1.245 0.893 93.572 93.571
0.9 1.273 0.884 90.017 89.939 1.247 0.871 89.865 89.748
0.8 1.638 0.870 92.455 92.443 1.437 0.889 78.731 73.171
0.7 1.319 0.877 88.865 88.698 1.111 0.893 90.939 90.895
0.6 1.799 0.793 85.385 84.516 1.757 0.868 77.273 71.690
0.5 2.214 0.578 71.045 64.936 1.138 0.891 91.765 91.742
0.4 1.308 0.876 88.876 88.637 1.513 0.879 78.664 74.493
0.3 1.101 0.893 91.343 91.307 1.314 0.881 89.853 89.709
0.2 1.187 0.881 91.565 91.536 1.169 0.885 91.083 91.047
0.1 1.440 0.844 85.321 84.391 1.788 0.831 78.963 73.405

LASCon Linear
1.0 1.166 0.887 92.831 92.824 1.141 0.890 91.456 91.422
0.9 1.236 0.882 91.036 90.981 1.182 0.883 91.375 91.342
0.8 1.233 0.880 91.751 91.733 1.196 0.881 89.167 89.050
0.7 1.199 0.886 91.633 91.607 1.332 0.883 85.571 84.949
0.6 1.508 0.882 77.888 72.314 1.137 0.892 92.049 92.025
0.5 1.269 0.890 92.503 92.488 1.161 0.888 91.500 91.475
0.4 1.680 0.886 77.005 71.418 1.179 0.885 92.136 92.124
0.3 1.181 0.879 93.087 93.084 1.462 0.883 77.847 72.271
0.2 1.127 0.892 90.904 90.853 1.168 0.888 93.244 93.241
0.1 1.363 0.865 90.009 89.937 1.240 0.876 89.340 89.254

LASCon Tanh 0.5
1.0 1.175 0.888 92.683 92.676 1.297 0.860 91.132 91.119
0.9 1.230 0.872 89.761 89.621 1.701 0.835 88.579 88.466
0.8 1.756 0.811 83.720 83.266 1.523 0.851 88.917 88.811
0.7 1.313 0.870 91.427 91.393 1.492 0.841 89.253 89.185
0.6 1.176 0.890 92.608 92.597 1.502 0.831 82.768 82.116
0.5 1.182 0.886 92.351 92.328 1.327 0.864 89.513 89.446
0.4 1.320 0.883 92.864 92.854 1.308 0.859 89.059 88.987
0.3 1.221 0.890 92.039 92.007 2.287 0.845 90.504 90.481
0.2 1.366 0.885 93.137 93.133 1.907 0.791 70.812 66.227
0.1 1.463 0.849 81.195 80.571 1.332 0.859 90.981 90.960

LASCon Tanh 1.0
1.0 1.366 0.874 88.245 87.962 1.147 0.887 90.892 90.847
0.9 1.220 0.872 91.260 91.229 1.189 0.887 91.599 91.564
0.8 1.225 0.882 92.112 92.097 1.193 0.882 89.277 89.183
0.7 1.435 0.876 81.083 79.027 1.309 0.879 91.676 91.639
0.6 1.582 0.868 83.145 82.482 1.207 0.885 88.943 88.781
0.5 2.177 0.597 78.429 72.867 1.373 0.875 87.927 87.663
0.4 1.246 0.883 87.841 87.586 1.298 0.862 91.052 91.000
0.3 1.142 0.890 92.937 92.931 1.298 0.878 92.080 92.066
0.2 1.127 0.885 92.501 92.487 1.201 0.885 90.855 90.814
0.1 1.432 0.880 80.553 77.139 1.301 0.876 90.055 89.986

LASCon Tanh 2.0
1.0 1.267 0.884 89.507 89.418 1.339 0.880 91.157 91.080
0.9 1.190 0.886 92.277 92.261 1.176 0.885 91.363 91.322
0.8 1.273 0.879 90.147 90.082 1.195 0.889 93.080 93.076
0.7 1.145 0.889 92.577 92.563 1.100 0.895 91.964 91.939
0.6 1.205 0.884 90.113 90.025 1.740 0.780 80.916 80.275
0.5 1.337 0.865 90.021 89.975 1.165 0.890 90.196 90.131
0.4 1.109 0.890 91.231 91.199 1.300 0.875 92.347 92.335
0.3 1.119 0.893 91.301 91.255 1.227 0.876 91.691 91.668
0.2 1.235 0.885 89.985 89.922 1.272 0.883 89.299 89.199
0.1 1.398 0.863 85.845 85.302 1.169 0.890 92.172 92.158
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Table 12: NLP contrastive learning on IMDB dataset with diverse loss functions and temperatures.
Augmentation = Random Swapping.

IN OUT
T MAE(↓) Corr(↑) Acc-2(↑) F1(↑) MAE(↓) Corr(↑) Acc-2(↑) F1(↑)

SimCLR
1.0 1.674 0.860 72.701 68.668
0.9 1.780 0.838 86.265 85.915
0.8 1.267 0.874 91.903 91.894
0.7 1.528 0.838 89.239 89.160
0.6 1.299 0.865 89.932 89.864
0.5 1.170 0.879 91.421 91.403
0.4 1.304 0.865 89.677 89.615
0.3 1.298 0.862 90.904 90.871
0.2 1.232 0.877 91.599 91.583
0.1 1.208 0.877 92.491 92.489

SupCon
1.0 1.292 0.884 86.903 86.483 1.286 0.864 88.660 88.415
0.9 1.253 0.883 92.477 92.468 1.196 0.885 92.791 92.783
0.8 1.167 0.888 91.665 91.631 1.271 0.882 90.531 90.467
0.7 1.157 0.890 91.893 91.874 1.135 0.890 92.423 92.412
0.6 1.228 0.886 90.863 90.812 1.427 0.858 90.033 89.937
0.5 1.233 0.879 91.081 91.020 1.220 0.883 90.831 90.778
0.4 1.331 0.878 92.941 92.936 1.514 0.878 80.568 77.142
0.3 1.498 0.850 82.479 81.023 1.275 0.888 93.057 93.052
0.2 1.784 0.856 90.145 90.077 1.174 0.884 92.425 92.413
0.1 2.254 0.783 85.789 85.010 1.146 0.890 92.233 92.220

LASCon Linear
1.0 1.193 0.877 90.963 90.911 1.264 0.873 88.236 88.105
0.9 1.992 nan 76.856 71.264 1.298 0.878 90.517 90.457
0.8 1.243 0.884 90.536 90.468 1.524 0.816 85.661 84.977
0.7 1.789 0.841 78.095 72.532 1.178 0.879 91.761 91.725
0.6 1.389 0.871 85.640 85.262 1.585 0.879 82.025 80.478
0.5 1.239 0.883 91.080 91.025 1.260 0.881 92.563 92.547
0.4 1.302 0.884 89.808 89.732 1.100 0.896 92.548 92.539
0.3 1.145 0.884 91.612 91.582 1.447 0.846 86.663 86.397
0.2 1.171 0.887 92.404 92.390 1.177 0.889 89.993 89.918
0.1 1.714 0.874 92.480 92.475 1.953 0.864 77.676 72.108
LASCon Tanh 0.5
1.0 1.476 0.882 84.237 83.693 1.271 0.865 91.873 91.868
0.9 1.137 0.888 92.459 92.447 1.300 0.861 91.280 91.271
0.8 1.193 0.890 92.248 92.234 1.393 0.846 90.183 90.158
0.7 2.177 nan 77.305 71.727 1.381 0.851 87.735 87.602
0.6 1.258 0.884 92.759 92.751 1.808 0.835 87.241 87.076
0.5 1.200 0.884 91.433 91.405 1.436 0.834 87.936 87.758
0.4 1.115 0.893 91.931 91.910 2.081 0.822 75.159 70.270
0.3 1.118 0.891 91.579 91.556 1.390 0.857 91.268 91.261
0.2 1.198 0.882 92.207 92.193 1.244 0.870 91.644 91.636
0.1 1.250 0.879 91.571 91.554 1.249 0.874 90.793 90.765

LASCon Tanh 1.0
1.0 1.176 0.884 92.971 92.969 1.821 0.841 72.972 67.199
0.9 1.155 0.886 92.388 92.380 1.248 0.879 90.581 90.528
0.8 2.084 nan 77.251 71.661 1.356 0.875 85.553 85.066
0.7 1.241 0.874 89.645 89.566 1.424 0.883 90.100 89.982
0.6 1.193 0.884 92.663 92.654 1.534 0.818 85.084 84.647
0.5 1.424 0.881 79.069 73.563 1.139 0.887 90.480 90.430
0.4 1.766 0.832 86.469 86.021 1.291 0.880 92.540 92.532
0.3 1.158 0.886 92.172 92.161 1.322 0.859 87.395 87.095
0.2 1.209 0.884 91.063 91.012 1.448 0.875 83.339 82.680
0.1 1.277 0.878 92.112 92.104 1.328 0.869 90.108 90.030

LASCon Tanh 2.0
1.0 1.286 0.879 88.351 88.251 1.161 0.886 90.764 90.717
0.9 1.172 0.893 92.628 92.617 1.350 0.858 89.029 88.905
0.8 1.521 0.874 83.321 82.803 1.412 0.846 88.139 87.916
0.7 1.654 0.864 73.896 68.188 1.318 0.856 90.831 90.755
0.6 1.127 0.894 92.275 92.259 1.196 0.885 91.051 90.990
0.5 1.341 0.855 87.425 87.171 1.298 0.882 87.327 87.001
0.4 1.383 0.876 85.895 85.302 2.408 0.840 77.656 72.076
0.3 1.438 0.861 89.276 89.098 1.154 0.889 91.205 91.178
0.2 1.135 0.890 92.857 92.851 1.174 0.891 90.601 90.552
0.1 1.211 0.883 92.416 92.411 1.108 0.892 92.028 92.006
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Table 13: NLP contrastive learning on IMDB dataset with diverse loss functions and temperatures.
Augmentation = Random Insertion.

IN OUT
T MAE(↓) Corr(↑) Acc-2(↑) F1(↑) MAE(↓) Corr(↑) Acc-2(↑) F1(↑)

SimCLR
1.0 1.463 0.862 90.032 89.995
0.9 1.465 0.868 90.417 90.372
0.8 1.218 0.872 92.093 92.087
0.7 1.917 0.868 90.936 90.896
0.6 1.549 0.868 75.593 70.215
0.5 2.041 nan 76.099 70.494
0.4 1.203 0.875 90.455 90.411
0.3 1.272 0.876 91.207 91.171
0.2 1.244 0.874 91.172 91.139
0.1 1.507 0.860 76.559 70.975

SupCon
1.0 1.189 0.882 92.284 92.273 1.120 0.891 92.035 92.011
0.9 1.113 0.890 92.853 92.848 1.546 0.885 90.687 90.608
0.8 1.145 0.887 92.307 92.296 1.209 0.891 91.841 91.804
0.7 1.249 0.890 87.583 87.232 1.820 0.876 64.035 52.939
0.6 1.793 0.843 83.515 82.936 1.248 0.879 91.399 91.354
0.5 1.216 0.882 90.660 90.578 1.471 0.826 80.016 77.548
0.4 2.048 0.832 90.927 90.882 1.443 0.872 82.393 80.562
0.3 1.371 0.880 86.053 85.511 1.800 0.889 77.788 72.216
0.2 1.164 0.887 92.707 92.698 1.170 0.889 90.953 90.909
0.1 1.673 0.845 81.364 78.420 1.316 0.895 87.427 86.973

LASCon Linear
1.0 1.715 0.807 83.617 82.567 1.296 0.888 86.821 86.590
0.9 2.606 0.295 78.307 72.745 1.257 0.884 89.964 89.866
0.8 1.210 0.883 92.839 92.832 1.205 0.879 91.003 90.950
0.7 1.193 0.876 92.120 92.106 1.279 0.887 88.617 88.394
0.6 1.477 0.882 91.652 91.615 1.181 0.886 90.429 90.354
0.5 1.194 0.884 93.043 93.041 1.237 0.881 91.513 91.476
0.4 1.219 0.879 92.599 92.592 1.075 0.893 90.601 90.553
0.3 1.258 0.863 88.392 88.203 1.180 0.881 91.157 91.117
0.2 1.194 0.887 91.531 91.499 1.122 0.891 92.411 92.398
0.1 1.371 0.872 89.316 89.213 1.206 0.886 89.225 89.126

LASCon Tanh 0.5
1.0 2.086 nan 78.088 72.526 1.382 0.853 86.533 86.290
0.9 2.360 0.574 74.153 68.431 1.778 0.816 77.725 72.165
0.8 1.154 0.886 92.163 92.147 1.355 0.855 90.408 90.381
0.7 1.239 0.870 89.497 89.382 1.409 0.847 88.897 88.811
0.6 1.149 0.890 90.647 90.588 1.289 0.859 90.271 90.235
0.5 1.288 0.881 89.816 89.750 1.390 0.851 89.145 89.069
0.4 1.194 0.888 92.217 92.193 1.713 0.860 77.915 72.357
0.3 2.492 0.531 70.451 64.061 1.392 0.870 86.791 86.492
0.2 2.512 0.833 90.831 90.795 1.326 0.858 90.923 90.907
0.1 1.305 0.879 92.645 92.640 1.260 0.870 92.075 92.071

LASCon Tanh 1.0
1.0 2.251 0.865 88.419 88.241 1.190 0.887 89.648 89.579
0.9 1.157 0.888 91.697 91.661 1.324 0.883 89.925 89.847
0.8 2.766 0.298 76.475 70.876 1.227 0.880 93.172 93.167
0.7 1.130 0.890 91.876 91.854 1.305 0.883 86.340 85.832
0.6 1.189 0.882 91.505 91.479 1.259 0.878 89.395 89.281
0.5 1.141 0.885 89.741 89.636 1.178 0.883 90.476 90.412
0.4 1.153 0.884 91.071 91.019 1.853 0.871 92.148 92.134
0.3 1.294 0.885 89.451 89.358 1.302 0.873 88.016 87.810
0.2 1.389 0.873 86.877 86.327 1.312 0.881 86.801 86.616
0.1 1.630 0.813 82.805 82.057 1.226 0.878 90.068 89.997

LASCon Tanh 2.0
1.0 2.571 0.779 82.712 82.113 1.385 0.882 85.485 85.212
0.9 1.290 0.868 89.975 89.875 1.224 0.880 91.149 91.114
0.8 1.142 0.888 90.860 90.817 1.446 0.876 83.041 82.042
0.7 1.130 0.890 92.396 92.383 1.188 0.895 92.136 92.119
0.6 1.382 0.874 77.967 72.436 1.155 0.886 90.561 90.518
0.5 1.616 0.811 85.071 84.208 1.436 0.868 81.593 80.300
0.4 1.108 0.893 91.239 91.209 1.156 0.891 91.329 91.276
0.3 1.121 0.891 90.245 90.190 1.162 0.886 91.877 91.851
0.2 1.731 0.852 75.837 70.183 1.370 0.887 82.000 79.845
0.1 1.304 0.864 88.183 88.026 1.212 0.886 91.267 91.221
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E.2 DAVIS

Table 14: Graph contrastive learning on Davis dataset with diverse loss functions and temperatures.
Augmentation = Subgraph Masking.

IN OUT
T MSE(↓) RMSE(↓) MAE(↓) Corr(↑) Acc-2(↑) F1(↑) MSE(↓) RMSE(↓) MAE(↓) Corr(↑) Acc-2(↑) F1(↑)

NT-Xent
1.0 0.301 0.549 0.324 0.793 0.942 0.937
0.9 0.307 0.554 0.326 0.790 0.940 0.936
0.8 0.308 0.555 0.322 0.788 0.940 0.936
0.7 0.307 0.554 0.327 0.788 0.942 0.936
0.6 0.310 0.557 0.330 0.787 0.940 0.936
0.5 0.305 0.552 0.323 0.790 0.942 0.937
0.4 0.313 0.559 0.326 0.783 0.941 0.936
0.3 0.318 0.564 0.332 0.779 0.940 0.935
0.2 0.299 0.547 0.324 0.795 0.942 0.938
0.1 0.304 0.551 0.328 0.792 0.943 0.938

SupCon
1.0 0.318 0.564 0.328 0.780 0.941 0.936 0.306 0.553 0.318 0.789 0.942 0.938
0.9 0.331 0.576 0.343 0.768 0.939 0.933 0.292 0.540 0.312 0.800 0.943 0.938
0.8 0.329 0.574 0.336 0.771 0.938 0.932 0.298 0.546 0.316 0.796 0.942 0.937
0.7 0.323 0.568 0.329 0.775 0.940 0.935 0.299 0.547 0.320 0.794 0.941 0.937
0.5 0.329 0.573 0.328 0.772 0.940 0.934 0.296 0.544 0.315 0.798 0.944 0.939
0.4 0.319 0.564 0.325 0.779 0.940 0.935 0.296 0.544 0.320 0.798 0.943 0.939
0.3 0.320 0.566 0.330 0.776 0.940 0.935 0.295 0.543 0.319 0.800 0.943 0.939
0.2 0.311 0.558 0.326 0.785 0.941 0.935 0.287 0.536 0.313 0.802 0.943 0.938
0.1 0.307 0.554 0.323 0.788 0.942 0.938 0.297 0.545 0.317 0.796 0.943 0.938

LASCon Linear
1.0 0.308 0.555 0.320 0.786 0.941 0.936 0.278 0.528 0.310 0.810 0.944 0.940
0.9 0.320 0.566 0.328 0.777 0.941 0.935 0.277 0.526 0.309 0.811 0.945 0.941
0.8 0.336 0.580 0.338 0.764 0.937 0.931 0.280 0.529 0.313 0.809 0.943 0.939
0.7 0.355 0.596 0.351 0.749 0.939 0.932 0.277 0.526 0.308 0.812 0.944 0.940
0.6 0.325 0.570 0.331 0.773 0.941 0.935 0.282 0.530 0.313 0.807 0.944 0.940
0.5 0.331 0.575 0.336 0.770 0.940 0.935 0.276 0.525 0.305 0.811 0.943 0.938
0.4 0.358 0.598 0.356 0.748 0.940 0.933 0.277 0.526 0.308 0.812 0.944 0.939
0.3 0.311 0.557 0.327 0.787 0.940 0.936 0.282 0.531 0.306 0.807 0.943 0.938
0.2 0.308 0.555 0.322 0.788 0.942 0.938 0.280 0.529 0.309 0.808 0.944 0.938
0.1 0.310 0.557 0.330 0.785 0.941 0.937 0.298 0.546 0.320 0.795 0.942 0.937
LASCon Tanh 0.5
1.0 0.332 0.576 0.337 0.768 0.939 0.933 0.283 0.532 0.311 0.807 0.943 0.939
0.9 0.321 0.567 0.332 0.778 0.941 0.936 0.279 0.528 0.312 0.808 0.944 0.940
0.8 0.327 0.572 0.328 0.772 0.940 0.934 0.278 0.527 0.310 0.811 0.944 0.940
0.7 0.332 0.576 0.331 0.769 0.940 0.933 0.279 0.528 0.306 0.808 0.943 0.939
0.6 0.330 0.574 0.336 0.770 0.939 0.934 0.280 0.529 0.306 0.807 0.942 0.938
0.5 0.365 0.604 0.364 0.741 0.937 0.929 0.285 0.534 0.309 0.806 0.941 0.936
0.4 0.361 0.601 0.363 0.743 0.940 0.931 0.281 0.530 0.310 0.807 0.943 0.939
0.3 0.307 0.554 0.325 0.788 0.941 0.937 0.281 0.531 0.311 0.808 0.945 0.941
0.2 0.307 0.554 0.322 0.789 0.939 0.935 0.297 0.545 0.317 0.796 0.942 0.937
0.1 0.299 0.547 0.317 0.794 0.941 0.936 0.339 0.582 0.342 0.761 0.939 0.932

LASCon Tanh 1.0
1.0 0.329 0.573 0.333 0.770 0.939 0.933 0.279 0.528 0.308 0.809 0.944 0.939
0.9 0.336 0.580 0.334 0.764 0.939 0.933 0.277 0.526 0.308 0.811 0.944 0.939
0.8 0.336 0.579 0.339 0.764 0.939 0.934 0.278 0.528 0.309 0.810 0.944 0.940
0.7 0.335 0.578 0.339 0.765 0.939 0.933 0.277 0.526 0.311 0.811 0.945 0.941
0.6 0.339 0.582 0.334 0.761 0.940 0.934 0.279 0.529 0.309 0.809 0.945 0.941
0.5 0.336 0.579 0.335 0.765 0.939 0.933 0.274 0.524 0.306 0.812 0.944 0.941
0.4 0.358 0.599 0.357 0.746 0.937 0.930 0.277 0.526 0.304 0.812 0.944 0.940
0.3 0.310 0.557 0.330 0.785 0.941 0.937 0.281 0.530 0.310 0.807 0.945 0.941
0.2 0.322 0.567 0.326 0.775 0.940 0.934 0.281 0.530 0.310 0.808 0.943 0.939
0.1 0.300 0.547 0.321 0.793 0.943 0.939 0.290 0.539 0.315 0.801 0.943 0.939

LASCon Tanh 2.0
1.0 0.319 0.565 0.322 0.779 0.941 0.936 0.280 0.529 0.308 0.809 0.944 0.939
0.9 0.329 0.574 0.333 0.770 0.939 0.934 0.280 0.529 0.310 0.809 0.943 0.939
0.8 0.322 0.567 0.328 0.774 0.939 0.933 0.284 0.533 0.312 0.805 0.944 0.940
0.7 0.333 0.576 0.330 0.767 0.940 0.933 0.280 0.529 0.310 0.808 0.944 0.940
0.6 0.340 0.583 0.339 0.761 0.939 0.933 0.286 0.535 0.312 0.804 0.943 0.939
0.5 0.346 0.588 0.342 0.755 0.938 0.931 0.280 0.529 0.307 0.809 0.945 0.941
0.4 0.346 0.589 0.348 0.756 0.940 0.933 0.277 0.526 0.307 0.811 0.944 0.939
0.3 0.311 0.558 0.324 0.785 0.940 0.935 0.278 0.527 0.310 0.809 0.944 0.940
0.2 0.305 0.552 0.324 0.790 0.941 0.935 0.282 0.531 0.308 0.808 0.944 0.940
0.1 0.305 0.552 0.326 0.791 0.941 0.937 0.293 0.541 0.320 0.799 0.942 0.937
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Table 15: Graph contrastive learning on Davis dataset with diverse loss functions and temperatures.
Augmentation = Node Masking.

IN OUT
T MSE(↓) RMSE(↓) MAE(↓) Corr(↑) Acc-2(↑) F1(↑) MSE(↓) RMSE(↓) MAE(↓) Corr(↑) Acc-2(↑) F1(↑)

NT-Xent
1.0 0.354 0.595 0.361 0.751 0.939 0.932
0.9 0.335 0.578 0.357 0.765 0.939 0.932
0.8 0.310 0.557 0.330 0.786 0.942 0.938
0.7 0.308 0.555 0.327 0.787 0.942 0.937
0.6 0.305 0.552 0.325 0.789 0.942 0.937
0.5 0.305 0.552 0.324 0.791 0.942 0.937
0.4 0.346 0.588 0.347 0.757 0.940 0.932
0.3 0.321 0.567 0.337 0.776 0.941 0.935
0.2 0.320 0.566 0.337 0.779 0.940 0.935
0.1 0.313 0.560 0.335 0.787 0.941 0.936

SupCon
1.0 0.326 0.571 0.339 0.772 0.939 0.932 0.301 0.549 0.318 0.794 0.942 0.938
0.9 0.309 0.556 0.318 0.787 0.939 0.934 0.303 0.550 0.322 0.790 0.942 0.938
0.8 0.325 0.570 0.327 0.774 0.940 0.934 0.299 0.546 0.323 0.794 0.942 0.938
0.5 0.327 0.572 0.331 0.772 0.941 0.935 0.299 0.546 0.315 0.795 0.943 0.938
0.4 0.312 0.559 0.323 0.785 0.942 0.937 0.298 0.545 0.320 0.796 0.943 0.937
0.3 0.320 0.566 0.332 0.778 0.940 0.935 0.299 0.547 0.317 0.794 0.944 0.939
0.2 0.310 0.557 0.320 0.787 0.941 0.936 0.290 0.539 0.318 0.801 0.944 0.939
0.1 0.308 0.555 0.323 0.787 0.940 0.935 0.294 0.542 0.317 0.798 0.942 0.937

LASCon Linear
1.0 0.326 0.571 0.332 0.773 0.940 0.935 0.278 0.528 0.306 0.810 0.944 0.940
0.9 0.325 0.570 0.331 0.775 0.940 0.934 0.282 0.531 0.308 0.807 0.943 0.938
0.8 0.323 0.568 0.330 0.775 0.940 0.935 0.279 0.528 0.308 0.809 0.944 0.940
0.7 0.332 0.576 0.329 0.767 0.939 0.933 0.280 0.529 0.313 0.811 0.942 0.938
0.6 0.321 0.566 0.332 0.777 0.940 0.933 0.276 0.525 0.307 0.812 0.944 0.940
0.5 0.326 0.571 0.330 0.772 0.940 0.933 0.279 0.528 0.312 0.809 0.945 0.941
0.4 0.332 0.576 0.343 0.767 0.940 0.934 0.285 0.534 0.309 0.806 0.945 0.941
0.3 0.309 0.556 0.325 0.790 0.941 0.937 0.280 0.529 0.307 0.808 0.944 0.940
0.2 0.304 0.551 0.322 0.791 0.942 0.938 0.282 0.531 0.310 0.808 0.943 0.939
0.1 0.310 0.556 0.325 0.785 0.941 0.936 0.287 0.536 0.318 0.804 0.943 0.938
LASCon Tanh 0.5
1.0 0.335 0.579 0.336 0.764 0.939 0.933 0.279 0.529 0.310 0.809 0.944 0.939
0.9 0.324 0.569 0.326 0.773 0.941 0.935 0.278 0.527 0.308 0.810 0.943 0.939
0.8 0.341 0.584 0.339 0.760 0.939 0.933 0.281 0.530 0.311 0.808 0.944 0.940
0.7 0.330 0.575 0.330 0.768 0.940 0.933 0.278 0.527 0.308 0.809 0.945 0.941
0.6 0.323 0.568 0.321 0.775 0.941 0.935 0.277 0.527 0.307 0.811 0.945 0.940
0.5 0.346 0.588 0.344 0.756 0.938 0.932 0.278 0.527 0.307 0.810 0.945 0.941
0.4 0.318 0.564 0.332 0.778 0.940 0.934 0.286 0.535 0.311 0.804 0.944 0.940
0.3 0.303 0.551 0.324 0.791 0.942 0.936 0.285 0.534 0.312 0.806 0.943 0.939
0.2 0.307 0.554 0.325 0.788 0.943 0.938 0.288 0.537 0.316 0.802 0.943 0.938
0.1 0.307 0.554 0.322 0.789 0.941 0.937 0.335 0.578 0.333 0.764 0.940 0.932

LASCon Tanh 1.0
1.0 0.329 0.573 0.330 0.772 0.938 0.931 0.281 0.530 0.311 0.808 0.944 0.940
0.9 0.334 0.578 0.332 0.766 0.938 0.932 0.273 0.523 0.308 0.814 0.944 0.940
0.8 0.345 0.588 0.345 0.756 0.937 0.931 0.278 0.528 0.308 0.810 0.944 0.941
0.7 0.331 0.575 0.318 0.768 0.938 0.932 0.276 0.525 0.305 0.811 0.944 0.940
0.6 0.321 0.566 0.327 0.776 0.940 0.933 0.279 0.528 0.308 0.809 0.945 0.939
0.5 0.355 0.596 0.353 0.750 0.936 0.930 0.276 0.526 0.307 0.810 0.945 0.941
0.4 0.357 0.598 0.348 0.747 0.939 0.931 0.279 0.528 0.308 0.811 0.944 0.940
0.3 0.303 0.550 0.332 0.791 0.940 0.936 0.275 0.525 0.309 0.813 0.945 0.942
0.2 0.302 0.550 0.323 0.790 0.943 0.937 0.278 0.528 0.312 0.811 0.944 0.940
0.1 0.311 0.558 0.325 0.785 0.941 0.936 0.293 0.542 0.320 0.799 0.944 0.939

LASCon Tanh 2.0
1.0 0.318 0.564 0.329 0.780 0.939 0.933 0.285 0.534 0.310 0.804 0.944 0.940
0.9 0.335 0.579 0.334 0.767 0.939 0.933 0.285 0.534 0.315 0.805 0.943 0.939
0.8 0.318 0.563 0.324 0.780 0.941 0.936 0.283 0.533 0.311 0.807 0.944 0.939
0.7 0.341 0.584 0.339 0.760 0.940 0.934 0.286 0.535 0.320 0.804 0.943 0.940
0.6 0.338 0.581 0.336 0.762 0.938 0.930 0.283 0.532 0.313 0.806 0.945 0.941
0.5 0.352 0.593 0.345 0.752 0.938 0.931 0.284 0.533 0.312 0.806 0.942 0.938
0.4 0.327 0.572 0.334 0.774 0.939 0.934 0.283 0.531 0.311 0.806 0.944 0.940
0.3 0.311 0.558 0.321 0.785 0.941 0.934 0.279 0.528 0.305 0.809 0.944 0.940
0.2 0.298 0.546 0.316 0.794 0.941 0.936 0.279 0.528 0.310 0.809 0.944 0.940
0.1 0.317 0.563 0.328 0.780 0.941 0.936 0.283 0.532 0.311 0.805 0.945 0.940
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Table 16: Graph contrastive learning on Davis dataset with diverse loss functions and temperatures.
Augmentation = Node Dropping.

IN OUT
T MSE(↓) RMSE(↓) MAE(↓) Corr(↑) Acc-2(↑) F1(↑) MSE(↓) RMSE(↓) MAE(↓) Corr(↑) Acc-2(↑) F1(↑)

NT-Xent
1.0 0.306 0.554 0.319 0.788 0.940 0.935
0.9 0.314 0.560 0.333 0.786 0.941 0.937
0.8 0.321 0.567 0.332 0.776 0.942 0.937
0.7 0.308 0.555 0.327 0.787 0.941 0.936
0.6 0.307 0.554 0.327 0.787 0.943 0.937
0.5 0.320 0.566 0.327 0.776 0.941 0.935
0.4 0.310 0.557 0.325 0.786 0.941 0.935
0.3 0.306 0.553 0.329 0.788 0.942 0.936
0.2 0.290 0.538 0.325 0.802 0.943 0.938
0.1 0.286 0.535 0.315 0.806 0.943 0.938

SupCon
1.0 0.355 0.595 0.343 0.751 0.937 0.930 0.297 0.545 0.315 0.796 0.943 0.938
0.9 0.353 0.594 0.351 0.751 0.938 0.932 0.297 0.545 0.318 0.796 0.942 0.938
0.8 0.338 0.581 0.342 0.764 0.939 0.934 0.291 0.539 0.315 0.801 0.944 0.940
0.7 0.320 0.566 0.330 0.777 0.941 0.935 0.295 0.543 0.317 0.798 0.944 0.940
0.5 0.326 0.571 0.330 0.774 0.942 0.935 0.291 0.539 0.312 0.800 0.943 0.938
0.4 0.323 0.568 0.328 0.775 0.940 0.933 0.292 0.540 0.318 0.800 0.943 0.938
0.3 0.313 0.559 0.327 0.784 0.940 0.935 0.293 0.541 0.314 0.798 0.942 0.937
0.2 0.309 0.556 0.322 0.787 0.941 0.936 0.286 0.535 0.310 0.804 0.944 0.939
0.1 0.302 0.549 0.313 0.793 0.941 0.937 0.294 0.542 0.318 0.798 0.943 0.938

LASCon Linear
1.0 0.329 0.574 0.341 0.770 0.940 0.934 0.282 0.531 0.314 0.807 0.945 0.941
0.9 0.332 0.576 0.328 0.768 0.941 0.935 0.283 0.533 0.313 0.806 0.944 0.940
0.8 0.344 0.587 0.338 0.760 0.941 0.935 0.281 0.530 0.310 0.808 0.945 0.940
0.7 0.331 0.575 0.336 0.769 0.940 0.933 0.281 0.530 0.312 0.808 0.944 0.939
0.6 0.336 0.580 0.337 0.763 0.940 0.933 0.279 0.528 0.310 0.811 0.944 0.939
0.5 0.327 0.572 0.331 0.772 0.940 0.934 0.282 0.531 0.312 0.808 0.945 0.940
0.4 0.320 0.566 0.333 0.778 0.941 0.935 0.283 0.532 0.311 0.807 0.944 0.940
0.3 0.322 0.568 0.334 0.778 0.940 0.935 0.285 0.534 0.315 0.805 0.945 0.940
0.2 0.307 0.554 0.320 0.788 0.942 0.937 0.288 0.537 0.316 0.803 0.944 0.940
0.1 0.296 0.544 0.317 0.796 0.942 0.938 0.288 0.537 0.320 0.802 0.942 0.938
LASCon Tanh 0.5
1.0 0.334 0.578 0.332 0.765 0.940 0.933 0.277 0.526 0.311 0.811 0.943 0.939
0.9 0.342 0.585 0.340 0.760 0.939 0.933 0.278 0.527 0.308 0.810 0.945 0.942
0.8 0.315 0.561 0.327 0.780 0.940 0.934 0.276 0.526 0.307 0.812 0.945 0.941
0.7 0.324 0.569 0.334 0.776 0.942 0.937 0.283 0.532 0.310 0.807 0.945 0.941
0.6 0.335 0.579 0.336 0.766 0.939 0.932 0.281 0.530 0.310 0.809 0.944 0.939
0.5 0.332 0.576 0.339 0.767 0.941 0.935 0.278 0.527 0.311 0.809 0.944 0.940
0.4 0.317 0.564 0.331 0.779 0.942 0.936 0.282 0.531 0.309 0.808 0.943 0.939
0.3 0.312 0.558 0.324 0.785 0.940 0.935 0.275 0.524 0.308 0.813 0.943 0.939
0.2 0.307 0.554 0.323 0.788 0.941 0.936 0.280 0.529 0.310 0.809 0.944 0.940
0.1 0.297 0.546 0.316 0.797 0.943 0.938 0.282 0.531 0.321 0.807 0.943 0.939

LASCon Tanh 1.0
1.0 0.322 0.567 0.330 0.777 0.942 0.936 0.283 0.532 0.312 0.808 0.945 0.941
0.9 0.324 0.569 0.321 0.774 0.940 0.934 0.279 0.528 0.311 0.811 0.944 0.940
0.8 0.309 0.556 0.318 0.786 0.942 0.937 0.278 0.527 0.307 0.810 0.945 0.941
0.7 0.349 0.591 0.344 0.753 0.937 0.930 0.276 0.526 0.309 0.811 0.945 0.941
0.6 0.332 0.576 0.337 0.769 0.940 0.935 0.279 0.527 0.309 0.810 0.945 0.940
0.5 0.318 0.564 0.325 0.779 0.941 0.935 0.280 0.529 0.305 0.809 0.944 0.940
0.4 0.307 0.554 0.322 0.788 0.941 0.937 0.287 0.536 0.314 0.803 0.942 0.938
0.3 0.315 0.561 0.333 0.781 0.939 0.933 0.279 0.529 0.313 0.809 0.944 0.939
0.2 0.312 0.558 0.324 0.785 0.940 0.935 0.282 0.531 0.309 0.807 0.944 0.940
0.1 0.296 0.544 0.314 0.796 0.941 0.936 0.288 0.537 0.315 0.804 0.944 0.940

LASCon Tanh 2.0
1.0 0.318 0.564 0.323 0.778 0.941 0.936 0.286 0.534 0.306 0.804 0.945 0.940
0.9 0.321 0.567 0.329 0.776 0.940 0.935 0.280 0.529 0.313 0.810 0.944 0.940
0.8 0.343 0.586 0.340 0.758 0.938 0.932 0.285 0.534 0.311 0.806 0.944 0.939
0.7 0.315 0.562 0.330 0.781 0.941 0.935 0.282 0.531 0.311 0.806 0.945 0.940
0.6 0.333 0.577 0.334 0.766 0.939 0.933 0.287 0.535 0.313 0.802 0.946 0.942
0.5 0.359 0.599 0.353 0.745 0.937 0.930 0.280 0.529 0.308 0.809 0.944 0.940
0.4 0.318 0.563 0.327 0.778 0.941 0.934 0.281 0.530 0.309 0.807 0.943 0.939
0.3 0.321 0.566 0.334 0.776 0.941 0.935 0.282 0.531 0.313 0.807 0.945 0.941
0.2 0.305 0.552 0.323 0.790 0.942 0.936 0.281 0.531 0.311 0.807 0.944 0.940
0.1 0.306 0.554 0.323 0.788 0.941 0.936 0.288 0.536 0.312 0.803 0.944 0.940
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E.3 CMU-MOSI

Table 17: Multimodal contrastive learning on CMU-MOSI with diverse loss functions and temper-
atures.

IN OUT
T MAE(↓) Corr(↑) Acc-7(↑) Acc-5(↑) Acc-2(↑) F1(↑) MAE(↓) Corr(↑) Acc-7(↑) Acc-5(↑) Acc-2(↑) F1(↑)

NT-Xent
1.0 0.718 0.792 45.675 51.312 82.750 84.400 82.717 84.420
0.9 0.746 0.785 44.509 49.903 82.362 84.299 82.311 84.310
0.8 0.718 0.801 45.530 51.166 82.410 84.248 82.328 84.226
0.7 0.707 0.800 46.550 52.964 82.410 84.197 82.321 84.167
0.6 0.771 0.778 43.052 48.348 81.730 83.435 81.711 83.479
0.5 0.777 0.778 42.711 47.619 81.924 83.537 81.937 83.603
0.4 0.810 0.764 41.448 46.842 80.466 81.911 80.478 81.987
0.3 0.710 0.801 46.161 52.381 82.410 84.248 82.311 84.211
0.2 0.718 0.794 45.675 51.749 83.771 85.467 83.669 85.417
0.1 0.712 0.799 46.307 52.235 82.750 84.502 82.716 84.522

SupCon
1.0 0.712 0.798 45.675 51.701 82.459 84.146 82.428 84.170 0.709 0.801 46.793 52.527 82.702 84.248 82.664 84.261
0.9 0.719 0.795 45.773 51.361 82.993 84.604 82.953 84.614 0.707 0.803 45.821 52.138 82.993 84.909 82.939 84.912
0.8 0.712 0.798 46.259 52.284 82.750 84.451 82.710 84.464 0.708 0.802 45.294 51.562 83.195 84.996 83.119 84.975
0.7 0.718 0.798 46.550 51.944 82.507 84.146 82.466 84.158 0.709 0.802 46.987 52.478 83.382 84.858 83.374 84.896
0.6 0.718 0.794 46.453 52.478 82.945 84.654 82.871 84.635 0.711 0.801 45.481 50.729 82.604 84.350 82.552 84.354
0.5 0.720 0.794 45.724 51.895 82.702 84.654 82.637 84.651 0.705 0.801 46.842 52.381 82.702 84.502 82.625 84.484
0.4 0.721 0.795 44.752 50.729 82.459 84.146 82.437 84.179 0.704 0.804 46.696 52.915 82.556 84.451 82.476 84.433
0.3 0.720 0.798 45.578 51.118 82.604 84.096 82.565 84.106 0.705 0.803 45.287 51.312 82.702 84.502 82.646 84.502
0.2 0.713 0.800 45.092 50.826 83.382 85.112 83.300 85.084 0.711 0.799 46.064 51.846 82.653 84.248 82.590 84.237
0.1 0.707 0.805 45.627 51.603 83.625 84.909 83.622 84.948 0.708 0.801 46.647 52.332 83.236 84.807 83.200 84.820

LASCon Linear
1.0 0.708 0.801 46.113 52.527 83.188 84.909 83.131 84.905 0.734 0.799 43.732 49.660 81.778 83.079 81.774 83.125
0.9 0.717 0.800 45.578 51.992 83.139 84.909 83.090 84.913 0.729 0.797 45.287 51.312 81.438 82.927 81.427 82.971
0.8 0.714 0.799 45.335 51.652 83.042 84.451 82.996 84.453 0.712 0.799 46.696 53.013 82.362 84.096 82.292 84.083
0.7 0.716 0.796 46.307 52.624 82.119 83.740 82.076 83.752 0.703 0.802 46.939 52.575 82.604 84.248 82.572 84.270
0.6 0.728 0.792 43.975 50.486 81.876 83.486 81.841 83.506 0.714 0.797 46.259 52.332 82.216 83.994 82.171 84.006
0.5 0.713 0.799 45.675 51.798 83.042 84.654 82.984 84.648 0.721 0.796 45.432 51.409 82.021 83.689 81.940 83.665
0.4 0.722 0.795 44.801 50.923 82.653 83.841 82.641 83.872 0.723 0.797 44.898 50.729 81.924 83.689 81.848 83.673
0.3 0.711 0.801 45.384 51.701 82.507 84.197 82.445 84.191 0.727 0.799 44.849 51.020 82.167 83.638 82.172 83.694
0.2 0.719 0.792 45.578 52.041 82.847 84.248 82.805 84.252 0.734 0.794 44.655 50.680 81.633 83.283 81.611 83.319
0.1 0.728 0.796 44.534 50.802 82.362 83.613 82.400 83.701 0.738 0.791 44.558 50.632 81.633 83.232 81.608 83.262

LASCon Tanh 0.5
1.0 0.706 0.804 45.287 51.555 83.139 85.163 83.080 85.165 0.718 0.798 45.384 51.215 82.313 83.740 82.266 83.742
0.9 0.715 0.798 45.821 52.235 82.702 83.841 82.683 83.868 0.744 0.789 43.537 49.174 81.098 82.419 81.075 82.447
0.8 0.709 0.798 47.182 53.401 82.264 83.943 82.213 83.947 0.732 0.791 44.849 50.632 81.438 82.876 81.396 82.887
0.7 0.729 0.793 44.169 50.292 82.070 83.740 82.045 83.770 0.728 0.791 43.197 49.271 81.195 82.927 81.122 82.915
0.6 0.708 0.800 46.064 52.041 82.993 84.705 82.935 84.701 0.738 0.794 43.246 48.737 81.584 82.927 81.558 82.952
0.5 0.710 0.800 46.404 52.575 83.382 85.010 83.365 85.043 0.733 0.792 43.878 49.903 81.244 82.774 81.184 82.770
0.4 0.737 0.791 43.732 49.927 82.289 83.537 82.291 83.588 0.735 0.794 43.732 49.271 81.851 83.232 81.851 83.283
0.3 0.722 0.794 44.655 51.603 82.896 84.553 82.860 84.571 0.753 0.783 43.246 49.368 80.807 82.317 80.805 82.373
0.2 0.706 0.802 46.016 52.235 82.556 84.096 82.511 84.101 0.723 0.794 44.218 50.049 81.924 83.587 81.827 83.548
0.1 0.718 0.800 44.995 51.263 82.653 84.096 82.640 84.132 0.720 0.792 44.606 51.069 82.313 83.892 82.282 83.913

LASCon Tanh 1.0
1.0 0.719 0.792 45.287 51.652 81.827 83.181 81.804 83.207 0.709 0.803 45.384 51.361 82.896 84.400 82.856 84.409
0.9 0.711 0.801 45.578 51.555 82.847 84.400 82.826 84.431 0.712 0.798 46.307 52.721 82.945 84.705 82.895 84.710
0.8 0.711 0.801 45.190 51.020 82.896 84.400 82.846 84.398 0.715 0.799 45.918 52.041 82.459 83.943 82.412 83.946
0.7 0.709 0.803 44.801 50.777 82.507 84.146 82.431 84.125 0.718 0.797 44.947 50.389 82.604 84.146 82.575 84.168
0.6 0.726 0.794 44.558 50.923 81.876 83.587 81.833 83.602 0.714 0.804 45.627 51.409 82.556 84.350 82.495 84.346
0.5 0.711 0.795 45.773 52.964 82.945 84.604 82.905 84.616 0.719 0.799 45.190 51.020 82.021 83.689 81.988 83.712
0.4 0.721 0.796 43.367 49.854 83.163 85.061 83.066 85.024 0.729 0.797 45.238 50.826 81.681 83.283 81.615 83.273
0.3 0.736 0.784 44.169 50.486 81.584 82.978 81.591 83.036 0.732 0.796 43.635 49.903 81.973 83.537 81.936 83.553
0.2 0.737 0.792 44.606 51.312 82.070 83.486 82.060 83.528 0.728 0.792 44.558 50.194 81.147 82.825 81.111 82.849
0.1 0.711 0.793 46.501 52.672 82.459 84.096 82.395 84.086 0.728 0.795 43.440 49.417 81.438 83.079 81.395 83.093

LASCon Tanh 2.0
1.0 0.703 0.805 45.287 51.603 82.896 84.604 82.814 84.576 0.706 0.803 44.995 51.312 83.333 85.112 83.276 85.109
0.9 0.712 0.799 45.821 51.992 81.924 83.841 81.856 83.837 0.705 0.805 45.870 51.798 82.556 84.197 82.505 84.200
0.8 0.717 0.798 45.432 51.312 83.090 84.451 83.036 84.440 0.711 0.800 45.675 51.701 82.750 84.451 82.724 84.478
0.7 0.711 0.802 45.675 52.187 83.382 85.112 83.324 85.108 0.713 0.797 46.939 52.964 82.604 84.350 82.548 84.350
0.6 0.728 0.787 46.599 53.158 82.216 83.638 82.186 83.658 0.710 0.804 45.530 51.603 82.702 84.299 82.676 84.325
0.5 0.730 0.794 44.704 51.069 82.313 83.740 82.276 83.753 0.712 0.798 45.870 51.798 82.604 84.299 82.557 84.305
0.4 0.729 0.787 45.724 52.041 82.362 83.841 82.331 83.862 0.718 0.799 45.700 51.676 82.289 83.765 82.269 83.796
0.3 0.721 0.799 45.044 51.215 83.431 85.315 83.386 85.326 0.725 0.797 44.801 50.923 82.459 83.943 82.440 83.975
0.2 0.711 0.801 46.307 52.478 82.896 84.451 82.841 84.445 0.725 0.795 45.287 51.458 82.216 83.689 82.140 83.665
0.1 0.730 0.790 44.849 50.534 82.945 84.350 82.919 84.371 0.726 0.792 45.141 51.458 81.778 83.232 81.777 83.282
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