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ABSTRACT

Hamiltonian Monte Carlo and underdamped Langevin Monte Carlo are state-of-
the-art methods for taking samples from high-dimensional distributions with a
differentiable density function. To generate samples, they numerically integrate
Hamiltonian or Langevin dynamics. This numerical integration introduces an
asymptotic bias in Monte Carlo estimators of expectation values, which can be
eliminated by adjusting the dynamics with a Metropolis-Hastings (MH) proposal
step. Alternatively, one can trade bias for variance by avoiding MH, and select
an integration step size that ensures sufficiently small asymptotic bias, relative
to the variance inherent in a finite set of samples. Such unadjusted methods
often significantly outperform their adjusted counterparts in high-dimensional
problems where sampling would otherwise be prohibitively expensive, yet are
rarely used in statistical applications due to the absence of an automated way of
choosing a step size. We propose just such an automatic tuning scheme that takes
a user-provided asymptotic bias tolerance and selects a step size that ensures it.
The key to the method is a relationship we establish between the energy change
during integration and the asymptotic bias. We show that this procedure rigorously
bounds the asymptotic bias for Gaussian target distributions. We then numerically
show that the procedure works beyond Gaussians. To demonstrate the practicality
of the proposed scheme, we provide a comprehensive comparison of adjusted
and unadjusted samplers on Bayesian inference problems and on a statistical
physics model in more than one million parameters. With our tuning scheme,
the unadjusted methods achieve close to optimal performance, significantly and
consistently outperforming their adjusted counterparts.

1 INTRODUCTION

Sampling offers a way to compute expectation values E,[f] = [ p(z) f(x)dx, where f(x) is some
function of parameters & € R¢ and p(x) = e *(*)/Z is a given probability density, often with
7 = f e~ £®) dz unknown. This is a key tool in many disciplines, from social science (Gelman
et al.,[2013), to high energy physics (Duane et al.,|1987), computational chemistry |Leimkuhler &
Matthews| (2015)), statistical physics (Leimkuhler & Matthews|, 2015)), and machine learning (Neal,
2012). Often a gradient VL(x) is available, either analytically, or via automatic differentiation
(Griewank & Walther, 2008; Margossian, [2019); examples appear in Bayesian statistics (gtrumbelj
et al., 2024} |Carpenter et al.|[2017), machine learning (Baydin et al.|[2018)), lattice quantum problems
(Gattringer & Lang, |2010), and cosmology (Campagne et al.| 2023 [Horowitz & Lukic, 2025)).

Markov Chain Monte Carlo (MCMC; (Metropolis et al., |1953)) is a commonly employed class of
sampling methods in which a Markov chain {x;} , is designed to have a stationary distribution
p(x) (or close to p), so that the expectation value E,[f] can be approximated by f = 1 3" | f(x;).
When a (smooth) gradient is available, Hamiltonian Monte Carlo (HMC; |[Duane et al.| (1987);
Neal| (2011); Betancourt| (2018)) and underdamped Langevin Monte Carlo (LMC;|Horowitz (1991);
Leimkuhler & Matthews| (2015)) are state-of-the-art algorithms. Despite their success (gtrumbelj
et al.,[2024), MCMC often presents a computational bottleneck (Gattringer & Lang,2010;|Leimkuhler
& Matthews) 2015} [Simon-Onfroy et al.l [2025)), especially in the high-dimensional applications,
forcing practitioners to resort to more approximate methods, such as the Laplace approximation
(Millea & Seljakl 2022) or an ensemble Kalman filter (Houtekamer & Mitchell, 2005).
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Figure 1: Graphical representation of the bias decomposition from Equation (Z). Both adjusted and
unadjusted methods have initialization bias, which typically decays exponentially fast for HMC-like
algorithms (Margossian & Gelman, |[2024) (with a rate denoted by c in the Figure). Both methods
also have the variance associated with the finite number of samples taken. It decays inversely
proportionally to the number of samples ¢, with a proportionality constant that is determined by the
autocorrelation time. Unadjusted methods additionally have asimptotic bias, which depends strongly

on the step size €; as O(e*), for the example from Appendix

Bias-variance tradeoff To understand the challenge faced by MCMC, consider the root mean
squared error (RMSE) of the Monte Carlo estimator:

RMSE[f] = Enc[(f - Ep[f])*]'/?, M

where E ;¢ [-] denotes the expectation with respect to the Monte Carlo randomness. The RMSE can
be decomposed as ~ ~ B
RMSE[f]? = Bias[f]* + Var|[f], ()

where Bias[f] = Eyc[f — Ep[f]] and Var[f] = Enxc[(f — Emc[f])?]. The bias term arises
either from the chain not yet reaching its stationary state and being influenced by its initial position
(initialization bias), or because the stationary distribution of the chain p(x) does not equal the target
distribution p() (asymptotic bias). Initialization bias is an important issue (Margossian et al., 2024),
but we will not study it here, noting that for long enough chains it can be eliminated by discarding
initial samples (Margossian & Gelmanl 2024)). The variance term comes from the finite chain length
and the correlation between the samples. This decomposition is illustrated in Figure[T]

One of the main practical goals in designing MCMC methods is to obtain a desired RMSE at the
lowest possible computational budget. This amounts to balancing the cost of generating samples,
correlations between the samples, and the asymptotic bias. For example, the use of Metropolis-
Hastings adjustment (Chib & Greenberg |1995)) ensures that a chain satisfies detailed balance, so that
the asymptotic bias vanishes, but for finite-length chains, it does not remove the variance. Noting that
chains are finite in practice, one could negotiate the tradeoff differently and reduce the variance at the
cost of introducing some bias. This strategy is the focus of the present work.

Illustrative example The shortcoming of performing MH is the scaling with the dimension that it
implies for the sampler. To develop an intuition, we consider a simple problem, where the target is a
product of K independent D-dimensional distributions q:

K

p(x) = HQ(%‘DJC@‘DH e TiD4+D-1)s

i=1
where D is a small number. Suppose we are interested in the expectation value of a function of only
one of those parameters, such as f(xz) = 2. We will measure the performance as the number of
evaluations of Vp(z) (which is typically the bottleneck of computation and thus a proxy for the
wall-clock time) that the sampler uses to get the relative RMSE, i.e. RMSE[f]/E,[f] (averaged over
128 chains) below 10%.

Figure [2] shows performance as a function of the dimension of the problem d = K'D. As can be
seen, the number of gradient calls scales as d'/* for Metropolis adjusted methods, in accordance with
(Beskos et al., [2013)). This is because even though the Hamiltonian and Langevin dynamics operate
independently on each copy of the distribution, the energy change Ay (defined below), and therefore
the MH acceptance probability, involves a sum over all parameters. Optimal performance requires a
fixed acceptance rate (Beskos et al., 2013} Neal, 201 1)), so to compensate for the increasing number of
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Figure 2: Sampling cost scaling with the dimensionality for product targets. Cost is measured by the
number of gradient calls needed to achieve low error. MH adjusted methods are shown in dashed lines,
and unadjusted methods are shown in solid lines. Step size for the unadjusted schemes is selected
by the scheme proposed in this paper. d'/* power law grey lines are shown in the background. A
Standard Gaussian target is shown on the left (D = 1), and a product of banana-shaped Rosenbrock
distributions (D = 2) on the right. In both cases, the cost of the MH adjusted methods scales as d*/*,
while the cost of the unadjusted method remains constant with dimension.

parameters, the step size needs to decrease, so that the integrator uses more gradient evaluations for a
fixed trajectory length. Unadjusted methods, by contrast, do not suffer from this scaling since they
operate on each copy independently. They need to ensure that the bias is small, but this is independent
of the number of parameters in these examples.

The example in Figure[2]is idealized, but a similar scaling has been observed for mean field models
(Durmus & Eberlel 2023)) and real problems, like cosmological field level inference (Simon-Onfroy
et al., 2025)). Thus, particularly for high-dimensional problems, unadjusted samplers may be signifi-
cantly more efficient. Crucially, however, they are only viable if the step size can be chosen so that
the asymptotic bias is small compared to the variance of the finite set of samples taken.

Our contributions We propose an automated step size adaptation scheme for unadjusted HMC and
LMC, making them usable in a black-box manner, i.e. without manually tuning any hyperparameters.
We expect this to have a significant practical impact on applications that require gradient-based
sampling in high dimensions. The central idea is that the energy error that arises from integrating
with step size € provides a measure of the asymptotic bias, and step size can be adaptively varied
in a short initial chain to target an energy error which results in low asymptotic bias relative to
the variance. In Section 4 we show analytically for Gaussians that the energy error variance can
be used to upper bound the bias. In Section [5} we numerically confirm the analytical results and
show that the same upper bound generally extends to non-Gaussian targets. In Section [6] we use
the bound to construct our adaptation algorithm. In Sectionf7] we demonstrate its effectiveness on a
range of standard benchmarks and on a real-world lattice field theory problem in more than 1 million
dimensions.

2 RELATED WORK

HMC is a state-of-the-art Markov kernel for densities with smooth gradients, as is underdamped
Langevin Monte Carlo (LMC). The latter should be distinguished from overdamped Langevin
dynamics and the corresponding Metropolis Adjusted Langevin Algorithm (MALA; Rossky et al.
(1978)). In HMC and LMC, each parameter x; has an associated momentum variable u;. The state
of the Markov chain «,, is used as an initial condition (¢ = 0) = x,, of the dynamics, along with
random initial values for the momenta u;(0) ~ A/(0, 1). The next state in HMC is then generated by
solving for (¢ = T'), where T is a predefined trajectory length and z(¢) = (x(t), u(t)) are solutions

of the Hamiltonian equations with Hamiltonian function #(z) = 3 Ju|® + L(z):
iw(t) = u(?) iu(t) =—-VL(x) 3)
a7 a7 '



Note that the value of the Hamiltonian function, also called the energy, is a conserved quantity of the
Hamiltonian equations, meaning that the energy difference Ay (z’, z) = H(z') — H(z) vanishes for
exact solutions of the Hamiltonian dynamics: Ay (z(t), z(0)) = 0. In LMC, after every step with
Hamiltonian dynamics, the velocity is partially randomized, which corresponds to the discretization
of the Langevin stochastic differential equation (Leimkuhler & Matthews|, 2015).

In statistics, MH adjusted versions of these dynamics are used almost exclusively. However, unad-
justed versions are used in some fields with high-dimensional distributions, such as Lattice quantum
chromodynamics (Liischer, 2018} [Clark & Kennedy, [2007) and Molecular Dynamics (Leimkuhler &
Matthews| 2015). Commonly, underdamped Langevin dynamics or Nosé-Hoover thermostat (Evans
& Holianl [1985)) are employed. Another promising option is Microcanonical Langevin Monte Carlo
(MCLMC; |Robnik et al.| (2024); Robnik & Seljak! (2024); Minary et al.| (2003); |Steeg & Galstyan
(2021))), which makes use of velocity norm preserving dynamics. Domain knowledge and trial
runs are used in these fields to select an appropriate step size, which ensures a sufficiently small
asymptotic bias. Unadjusted methods have also been analyzed theoretically, establishing a bound
on the asymptotic bias (Durmus & Eberle| |[2023)) and the mixing time (Bou-Rabee & Eberlel 2023}
Camrud et al., 2024)). For mean-field models, the bound on both is dimension-free (Bou-Rabee &
Schuh} [2023)) and thus unadjusted methods provably outperform adjusted methods. However, these
bounds assume some global knowledge of the distribution that is not available in practice. A notable
gap in the above work is an algorithm for choosing the step size e. Without a principled way to do so,
general practitioners cannot use unadjusted algorithms in a black-box fashion, which gravely limits
their applicability.

3 MEASURING ASYMPTOTIC BIAS

Origin of bias  Generically, Hamiltonian equations like (3)) cannot be solved exactly, so a numerical
integrator like velocity Verlet (Leimkuhler & Matthews, |2015)) is used to approximate it. Velocity
Verlet is an example of a splitting method, where to solve the dynamics numerically, one first
analytically solves for « at fixed v and vice versa. The first solution is called the position update and
is given by ®7'(2) = (z + eu, u) for Equation (3), while the second is called the velocity update and
is given by ®; (z) = (¢, u — eVL(x)). The joint solution is then approximated by a composition of
these maps, which for velocity Verlet is,

Z(t+€) = B (2(1) = (D)) 0 D] 0 D))y)(2(1)). 4)

Due to this approximation, the stationary distribution p(a) of the sampler no longer equals the desired
target distribution p(x) and expectation values acquire an asymptotic bias, which vanishes in the limit
of step size going to zero (Durmus & Eberle, [2023). In the case of LMC, the update is additionally
complemented by partial refreshments of the velocity (Leimkuhler & Matthews|, 2015)):

z(t+¢€) = (<I>?/2<I>E o CI)?/Q)(z(t)), 5)

where ®9(z) = (x, e~ /Tu + (V1 — e=2¢/L)n) and n ~ N(0, ). The parameter L determines
the amount of momentum refreshment and plays a similar role as the trajectory length in HMC.

Summary statistics When minimizing bias, it is important to determine the expectation with
respect to which the bias is defined. For instance, an important expectation in Bayesian statistics
(where quantification of uncertainty is key) is of the second moments, so that we are concerned with
expectations of the form [E,,[x;;], or more generally the covariance matrix ¥, = E,[(x — E[z])(x —
E[z])?]. For Gaussian distributions, the covariance matrix contains all the information about the
posterior, but even for non-Gaussian distributions, they are often used as a summary statistics.

From a theoretical perspective, it may also be interesting to consider the bias of a wider set of
functions, such as any Lipschitz-continuous functions. In what follows, we consider a metric that
controls the more general bias and a metric measuring the covariance matrix bias.

Covariance matrix error To quantify expectation value error of the second moments, we introduce
a scalar measure of the covariance matrix error, which we define as

2
bcov

1
(2,,%,) = Eﬂ{([- 2;12q)2}, (6)

4



where ), is the true covariance matrix of the target distribution p and X}, is the covariance matrix
of some other distribution ¢. In the simple case where the covariance matrices are diagonal, b,

is the relative error of the variance estimate, averaged over the parameters, i.e., b2, (X,,%,) =

1 Zle([Ep}“ — [24]i)?/[X,)%. This convergence metric is often used in practice (Grumitt et al.,
2022} |Robnik et al.l 2024). The diagonal form is preferable in high dimensions as it does not require
storage of the full covariance matrix. Nonetheless, we will measure error with (6) when feasible
because it additionally penalizes the off-diagonal terms and has a number of nice properties: it is a
divergence on the space of positive-definite matrices (meaning that it is non-negative, and zero if and
only if the two matrices are the same), can be connected to the effecive sample size and is invariant to
the linear change of basis of the parameter space. Proofs of these properties are provided in Appendix

[Al

Wasserstein distance The Wasserstein distance W, (p, ¢) between densities p and ¢ is (Kantorovich|
1960):

. v 1/v
Wo(p, @) = (infreriip) / Iz — &'||" n(x, &' )dzda') ", ™

where II(p, q) is the set of probability densities on R? x R? with marginals p and q. Wasserstein
distance has several nice properties: it is invariant to change of basis, is a metric on the space of
distributions, and most importantly in the present context, it upper bounds the bias of Lipschitz-
continuous functions. That is, for any Lipschitz-continuous function f, with Lipschitz constant
L (meaning that |f(x) — f(x')| < L ||z — 2’| for any &, ' € R%), the bias associated with this
function is upper bounded by W (p, p), which is in turn upper bounded by Wa(p, p):

Ep[f] = Es[f] < LWi(p, p) < LW2(p, D). ®

The first inequality is Kantorovich-Rubinstein duality (Villanil2003)), and the second is a consequence
of Jensen’s inequality. We will focus on W;.

Energy error variance per dimension Our goal is to control some measure of the bias. We will
focus on b2, , because it is of practical interest in various fields like Bayesian inference and on W,
because it provides a bound on the bias of all Lipschitz continuous functions. We will do this by
monitoring the energy error Ay (®.(2(t)), z(t)) induced by numerical integration with step size
e. Computing the energy error is a side product of the integration step, for example for HMC, the
position update energy change is £(x + ew) — L£(x) and 3 ||u — eVL(x)||? — 3 ||u||? for the velocity
update. For all models of practical interest this incurs a negligible cost compared to the gradient
evaluation, because £(x) is a side product of the gradient evaluation.

We define the Energy Error Variance Per Dimension (EEVPD),
EEVPD = Varg.; u~n(0,1) A1 (Pc(x, ), (z,u))]/d. 9)

Crucially, this is a quantity that can easily be estimated in practice: © ~ p, u ~ N(0, ) is the
stationary distribution of the chain, so computing EEVPD amounts to collecting the samples from
the stationary chain, evaluating the one-step energy error for each of those samples and computing
their variance. This can be done online, using a running average of the first and second moment, so
that the step size e can be adaptively varied to target a desired value of EEVPD.

4 ANALYTIC RESULTS FOR GAUSSIAN DISTRIBUTIONS

We begin by showing that EEVPD can be used to control the asymptotic covariance matrix bias
b%,,(2,3) and Wasserstein distance W(p, p) for Gaussian target distributions, p = N'(0,%). The

key tool is that the stationary distribution p of unadjusted HMC and LMC for Gaussians is known

exactly (Gouraud et al.,[2025) and is also Gaussian, with p = N(0, il) 3 has the same eigenvectors
as X, but its eigenvalue associated to the i-th eigenvector is

. o}

o

=yt (1

where o7 is the corresponding eigenvalue of 3. Therefore the EEVPD has a closed form:
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Figure 3: The asymptotic covariance matrix error b.,, (2, ) as a function of EEVPD. Unadjusted
HMC (left), and unadjusted MCLMC (right) are shown. The relation is shown for various problems
from Section[5] The analytical equality for the Standard Gaussians from Theorem[4.2]is shown in
black and agrees perfectly with the numerical results for HMC (left). The inequality for arbitrary
Gaussian distributions is shown as a shaded grey region, and also applies perfectly for Gaussians up
to EEVPD = 0.397, as per Theorem @ We see that most targets abide by this inequality.

Lemma 4.1. For a Gaussian distribution with covariance matrix eigenvalues {o?}%_, and an HMC
or LMC sampler with a stable velocity Verlet integrator, meaning that step size € < 2min; o;,

d
EEVPD = — > " E(¢?/07),
i=1

IS

3

where E(y) = m.

The key result of this section is then:

Theorem 4.2. For a Gaussian distribution N'(0, X)) with covariance matrix eigenvalues {o2}%_,
and HMC or LMC sampler with a stable velocity Verlet integrator, meaning that the step size
€ < 2min; 0, the covariance matrix bias is upper bounded by

b2,,(5.5) < ¢~ (EEVPD),
as long as EEVPD < 0.397. Here,
4.%'3/2
p(r) = 1+ 21722

Similarly, the Wasserstein distance between the target and stationary distributions is upper bounded
by
Wa(p, p)?/d < oy} (EEVPD),

as long as EEVPD < 6.75. Here, oy = Eo W=t with W (y) = % V/}JM. Both bounds

are sharp and realized if and only if the target is isotropic, i.e. ¥, o< I.

All the proofs are given in Appendix [B] Note that the conditions on EEVPD are not a severe limitation
in practice, see for example Table[2] where significantly lower values of EEVPD are used.

5 NUMERIC RESULTS FOR NON-GAUSSIAN DISTRIBUTIONS

We now examine the validity of Theorem [&.2]for standard Bayesian inference benchmark problems.
We focus on verifying the bound on b, due to the difficulty of numerically computing the Wasser-
stein distance for the problems considered here. Even though the exact asymptotic error-EEVPD



relation of Theorem [.2]applies only for HMC and LMC, unadjusted MCLMC has a notion of energy
(Robnik et al., 2024)), so we will also test MCLMC here. Benchmark problem descriptions are in
Appendix For each problem, we show the asymptotic value of b, (3, ¥)? as a function of
EEVPD in Figure Asymptotic b, is computed by running unadjusted chains with different step
sizes, each using 10® gradient calls. We eliminate the initial 10* calls to eliminate the initialization
bias and use the subsequent samples to compute the expectation values for the covariance matrix
and EEVPD. We monitor b, (%, 2)2 from Equation @ and check that it has converged to the
asymptotic value. If the convergence has not yet been achieved, i.e., the bias is still decaying, we do
not show these measurements on the plots. This happens for some of the harder problems at small
step sizes, where the chains are not long enough for the variance to become negligible. We have
checked that the variation between the chains is negligible, but nonetheless average the results over 4
independent chains.

Numerical results for unadjusted HMC on Gaussians agree perfectly with Theorem 4.2} for the
standard Gaussian, the equality holds, while for the Ill-conditioned Gaussian, the inequality holds for
EEVPD < 0.397 as per the theorem. The inequality also applies to the majority of non-Gaussian
benchmark problems, illustrating its broader applicability. One exception is the Brownian motion
example, where it is off by approximately a factor of 1.5 at small €, meaning that one would think
one has < 2% asymptotic error, when in fact it was 3%. The Rosenbrock and Funnel examples are
only shown at small step sizes, because the problem becomes numerically unstable at higher step
sizes, incurring divergences. Very similar results also apply to MCLMC, except that the bias at a
fixed EEVPD is usually lower for MCLMC. This suggests that the tuning scheme we develop for
unadjusted HMC can also be applied to MCLMC, but a slightly larger EEVPD may be used.

6 AUTOMATIC TUNING SCHEME

Stepsize The core findings of sections 4] and [5] are that by controlling EEVPD, we can in turn
control the asymptotic bias of expectations of interest. Our tuning scheme for step size is therefore
straightforward: for any unadjusted sampler with an appropriate notion of energy, we keep a running
estimate of EEVPD, and adaptively vary ¢ to target a desired value of EEVPD in a stochastic
optimization scheme. In practice, an optimization algorithm such as dual averaging (Nesterov, [2009;
Hoffman & Gelman, 2014) can be used here, but the choice of optimizer has little effect on the results;
we use the scheme in Appendix [D.4] We note that a running average estimate of EEVPD converges
significantly faster than say, a running average of the second moment. This is because the energy
changes in the subsequent steps are very mildly correlated. For example, integrated autocorrelation
time for EEVPD time series is around 2 for standard Gaussian problem in d = 100 and around 5
for the Brownian motion problem from Appendix [D} Therefore, the variance of EEVPD estimate is
small, even for a relatively small number of samples. We observe that for the experiments considered
in this work, the EEVPD converges to the desired value in an order of a few tens of steps.

It remains to select the desired bias tolerance and the corresponding desired EEVPD. This depends
on the application and the accuracy requirements; we, nonetheless, provide some guidance. Certainly,
asymptotic bias squared should be smaller than the mean squared error tolerance (because mean
squared error is composed of the bias and the variance, which are both non-negative), but by how
much? Appendix shows that for estimating [E[x?] of a standard normal distribution with finite chain
length of unadjusted HMC, the optimal squared bias should be one fifth of the mean squared error
tolerance. This suggests that EEVPD of 3 x 10~ should be used if 10% relative RMSE is required
and 3 x 107 if relative RMSE 1% is required. For convenience, a conversion tableis provided in
appendix.

Momentum decoherence scale A final hyperparameter of unadjusted HMC is the number of steps
between momentum refreshes, and for unadjusted LMC, the amount of noise in each partial refresh.
Both can be understood in terms of a single hyperparameter, the momentum decoherence length L.
For HMC, L is simply the number of steps in a trajectory times the step size, since this is precisely
the length along the trajectory after which momentum completely decoheres. For LMC, L is given
in Section 3| In either case, we select L based on the autocorrelation length of the the chain, as in
(Robnik et al., 2024 2025]).
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7 EXPERIMENTS

Our central contribution is a scheme which makes unadjusted HMC, LMC and MCLMC black-box
samplers, in the sense of requiring no manual tuning on the part of a user. It is therefore natural
to compare performance to the state of the art black-box sampler, the No-U-Turn Sampler (NUTS;
Hoffman & Gelman|(2014)). In addition, it is of interest to compare unadjusted samplers to their
adjusted counterparts.

Samplers With this in mind, we report results on NUTS, unadjusted LMC (uLMC), adjusted
LMC (aLMC), in particular, the version proposed in (Riou-Durand & Vogrincl 2023), which is also
known as Metropolis Adjusted Langevin Trajectories (MALT), unadjusted MCLMC (uMCLMC), and
adjusted MCLMC (aMCLMC). While the other algorithms are evaluated with their respective tuning
schemes, for aLMC, we perform a grid search to demonstrate that black-box uLMC outperforms
even optimal aLMC. We omit reporting of unadjusted and adjusted HMC, since the performance
and implementation closely resemble that of LMC, and LMC is generally considered the preferred
option (Riou-Durand & Vogrinc| |2023). Further details of the experiment are provided in Appendix
For the unadjusted methods, we use the scheme from Section@ and take EEVPD of 3 x 10~4,
corresponding to the RMSE = 10%, which will be our notion of convergence. For MCLMC we
use a slightly larger value of 5 x 10~%, as suggested by Figure [3| In Appendix @ we perform an
ablation study for LMC, to examine the change in performance as desired EEVPD is varied. The
performance does not change much in a range of reasonable EEVPD, and the value of 3 x 10~ is
conservative, in the sense that larger values improve performance. The only exception is Stochastic
Volatility, where we find that a smaller value is needed; we use 5 X 10~7 for HMC, and 2 x 108 for
MCLMC.

Evaluation metric In addition to b%ov (2, Esampler) We consider a more standard metric of conver-

gence: following Hoffman & Sountsov| (2022)) we define the squared error of the expectation value

E[f ()] as

(Esampler [f] - E[f])2
Var[f]

V(f) = 7 (11)

and consider the average second-moment error across parameters, b2, g = d! Z?:l b2 (z2). b?wq
can be interpreted as the accuracy equivalent to 100 effective samples (Hoffman & Sountsov, 2022).
In typical applications, computing the gradients V log p(x) dominates the total sampling cost, so we
take the number of gradient evaluations as a proxy of a wall-clock time. As in (Hoffman & Sountsovl,
2022)), we measure the sampler’s performance as the number of gradient calls n needed to achieve low
error, bi,ug < 0.01 or b?,, < 0.01. We estimate the standard deviation of results by a bootstrapping
procedure (see Table[d). We avoid using the effective sample size from the chain autocorrelation
(Gelman et al.l 2013)) because it would give unadjusted methods an unfair advantage, given that it

only measures the Monte Carlo variance error, but not the asymptotic bias.



aLMC uLMC | aMCLMC uMCLMC ulLMC NUTS
grid search EEVPD | acc. rate EEVPD grid search | acc. rate
Standard Gaussian 803 563 436 246 568 2391
Rosenbrock 19,862 16,820 18,214 10,688 8410 27,070
Brownian 4667 2168 2876 1628 2407 5334
German Credit 7924 4730 6123 3960 4423 10,484
Item Response 5234 2020 5470 1612 930 6944
Stochastic Volatility 37,904 40,131 38,357 16,854 26,982 30,234

Table 1: Number of gradient calls needed to get b?wg below 0.01. Lower is better. The row below the

method name denotes how the step size was determined.

Bayesian benchmarks Table [T shows the results on a set of common benchmarks for Bayesian
inference adapted from the Inference Gym (Sountsov et al.,|2020) and described in appendix The
corresponding results for the b, metric are shown in Table3|in the appendix. The problems vary in
dimensionality (36—2429) and are both synthetic (the first three problems) and with real data (the
last three problems). We see that the unadjusted algorithms almost always perform better than their
adjusted counterparts and better than NUTS. This is especially impressive since the hyperparameters
of the adjusted samplers were found by grid search, or were shown to be near optimal in the case
of aMCLMC (Robnik et al.,[2025). Brownian motion was the only problem where EEVPD-based
bound in Section [5|has failed, but here the unadjusted samplers nonetheless converge to the desired
error and achieve close to optimal performance. Tables [T] and [3] also show unadjusted LMC with
hyperparameters (L, €) determined by grid search. This shows that the performance of LMC with our
tuning is close to optimal, except for Rosenbrock and Item response where performance is off by a
factor of two, due to our conservative choice of EEVPD (see Appendix [E).

¢* field theory We test our scheme on a real-world problem from statistical physics, the ¢* model
in 10242 > 10° dimensions (see Appendix . We focus on the unadjusted microcanonical sampler
since it dominated in all the above experiments and compare it to the NUTS baseline. We find that
NUTS obtains bfwg < 0.01 in 133, 266 gradient calls. Adjusted MCLMC yields the same in 39, 240
calls, while unadjusted MCLMC remarkably only needs 1344 gradient calls, a 100 fold improvement
over NUTS. We view this as an exemplary case of constant efficiency with varying dimension of an
unadjusted method (as shown in figure[5), here on a non-product, realistic problem.

Marginal posterior Figure[d]shows the marginal posterior density for the funnel problem, obtained
by the unadjusted MCLMC algorithm with asymptotic bias of 1% requirement. The posterior is
practically indistinguishable from a very long NUTS chain, showing that the discretization error is
very small, as desired and demonstrating that our scheme produces accurate marginal posteriors.

8 CONCLUSIONS

We have shown that unadjusted gradient-based samplers can be turned into fully automatic black-box
algorithms. With our adaptation scheme, unadjusted HMC, LMC and MCLMC do not need manual
tuning and consistently outperform adjusted methods like NUTS, especially in high dimensions. This
makes them a scalable alternative for a broad range of applications, from probabilistic programming
to computational science, and opens new directions for efficient Bayesian inference.

Limitations The proposed scheme automatically selects a step size that in general performs well
but it is certainly possible that there are models where bias is larger than expected. We therefore
encourage the practice of validating results common in numerical analysis (Dalla Brida & Liischer,
2017): rerun the sampler with a smaller step size and check that results do not change significantly.
Since the asymptotic bias depends strongly on the step size this provides strong evidence that the
asymptotic bias is negligible. We note that running a few parallel MCMC chains for validation
purposes is a common practice (Gelman & Rubin, |1992; Margossian & Gelman, 2024), even for
Metropolis adjusted chains, which still have the initialization bias, and is therefore not a drastic
change to the standard MCMC workflow.



REPRODUCIBILITY STATEMENT

Proofs are provided in Appendix [B] The technical details behind the experiments are in Appendix
D] The code itself is provided in anonymous GitHub repositories. Samplers are implemented in
https://anonymous.4open.science/r/blackjax-2118/. Code for benchmarking
is in https://anonymous.4open.science/r/sampler-benchmarks—-5B6A/
README .md| and the code to specifically obtain the results in this paper is https:
//anonymous .4open.science/r/sampler—-benchmarks—-5B6A/uHMC_paper/
uHMC_paper_results.md.
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A COVARIANCE MATRIX ERROR

Let SPD(d) be the space of symmetric positive definite matrices of size d x d.
Lemma A.1. b2, (A, B) = 3 Tv{(I — A~'B)?} is a divergence on SPD(d), meaning that for all

cov

A, B € SPD(d),
1. v2,,(A,B) >0
2. b2, (A,B) =0ifand only if A = B.

Proof. Without loss of generality, we may assume that A is diagonal with positive entries, because
the trace is invariant under the change of basis and A must be diagonal in some basis because it is
positive-definite. R =1 — A~ B thenhas R;; = 1 — Ai_ilB,-i on the diagonal and R;; = —Ai_ilBij
off the diagonal. The trace is

d
Tr{R?*} = 2(1 — A;'Biu)? + ZA;lBijA;leji,
i=1 i#]
where the first and the second term are the contribution from the diagonal and off-diagonal elements
respectively. Both terms are non-negative: the first term because it is a sum of squares, the second
because all factors A;;, A;; and B;; Bj; = (Bz-j)2 are non-negative. This already proves (1).

2

The implication b7, (A, A) = 0 in (2) is trivial. To prove the other implication in (2), now suppose
b2

2.w(A,B) = 0. This implies that both terms in the above equation are zero, as they are both
non-negative. In the second term, A;; > 0 are non-zero for any i, so the term can only be zero if
B;; = 0 for any ¢ # j. The first term can only be non-zero if A;; = B;; for any 7. We have shown
that A;; = B;; for any ¢, j, thus A = B. O

Note that the above result is not obvious from the fact that we are computing a trace of the matrix

squared. There are non-zero matrices whose square is zero.

b2, has another nice property — it can be related to the effective sample size in a covariance matrix

independent way:

Lemma A.2. Let x*) for k = 1,2...n be exact i.i.d samples from p = N(0,%) and let ¥ =
L x®) (2 ®N)T | be the empirical estimate for ¥. Then

Ekfc[b%OU(E? S)} = (d + 1)/”3
where E o |] is the expectation with respect to the sample realizations.

Proof. The empirical estimate is unbiased:

_ 1<
Erc[E] = - ZEMc[cc(k)(w(’“))T} =3,
k=1
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and
- = 1
Enc[XapXed = XapXea + - (Zaced + SadSec)-
The expected error of the empirical covariance matrix is then:

1 _ 1 o
Enclbly,) =1— 23[2_1]@]EMC[E¢J‘] + =i Eme[EnEn][E

d
1. 1 _ d+1
where Einstein’s convention of summing over the repeated indices was used. O

This result implies that for Gaussian distributions, b2, could be used to define the effective sample
size (ESS) of the estimate. Concretely, given some samples whose empirical covariance matrix error
is b?,,, we can define their effective sample size to be neg = (d + 1)/b2,,, i.., this is the number
of exact samples that would yield the same covariance matrix error as given samples. For example,
given a target distribution p in d = 9, suppose it takes 1000 samples from a Markov chain to achieve
b2,, = 0.1. This would correspond to (9 + 1)/0.1 = 100 effective samples, so 0.1 effective samples
per step. Although this result rigorously only holds for Gaussian target distributions it offers some

interpreteability to the value of b, .

Note that we could also take the more transparently non-negative definition b% (A, B) =
LT {(I-A7'B)(I - A7'B)"} = L||T - A_lBHi, where ||| - is the Frobenius norm. How-
ever, b% cannot be related to the effective sample size in a covariance matrix independent way.
Instead,

Enmc[by] = éEA{C[(éij — 27k Ek5) (655 — [271aS))] (12)
=1- 2%[2_111‘@1\4(1[21‘;‘] + é[(E_l)Q]ijEMC[W]ﬂ = %(1 + %TT{Z} Tr{x7'}),

so we will note use this definition here.

Finally, b.,,, is invariant to the linear change of basis

Lemma A.3. For an invertible matrix A, and a change of basis *' = Az, the covariance matrix
error does not change, that is, b2, (3 p(a)s Zg(a)) = b2op (Ep(a)s Zg(ar))-

Proof. The covariance matrix transforms as
_ !0 / ! __ T
Ep@nlii = / ziaip(@')de' = [AX) ) A" i,
hence the covariance matrix bias is invariant:

1 _ 2
b0 (Zp(a)s Sq(a)) = ng{(f — (ASy)AT) N (AZ @) AT)) }

T {(1_(AT)*12*1 A*l)(Azq(w)AT))Q}

: p(@)
T{ (1 = (A7) 72k By A7)}

Te{ (A7) 7 (I = 2k Bgia) AT }

1
d
1
d
1
d
=020, (Zpa)s Zq(a))-

B PROOFS

B.1 LemMmA[ 1l EEVPD

Proof. We will work in the eigenbasis, where the dynamics is decoupled. It then suffices to analyze
each dimension separately. Let x;(t) and u;(t) be components of x(t) and u(t) along the dimension
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that we analyze and o7 the eigenvalue of the covariance matrix in that direction. The velocity Verlet
integrator update (@) with step size € can be written compactly as (Gouraud et al, 2025)

cosh ao;sinh

o= !

. = Az,.
a~lo; “sinh  cosh ! !

Here, z;(t) = (z;(t), ui (1)), a = (1 —y;/4)~ Y2, y; = €% /o? and sin h = \/y; /v. The energy error
is

) 1 1 1
Ay =Ap(P(2z:),2i) = §<I>E(zi)TD<I>€(zi) - §ziTDzi = 3% 2T Mz;,

where D = Diag(1/02,1) and
T 12 (o) =2 sin® h —(ao;)"tsinhcosh
M=A"DA-D=(1-a%) {—(aai)_lsinhcosh —sin?h '

Denote by p; the stationary distribution for z;, namely z; ~ N(0,5;), u; ~ N(0,1), where
&; = 0;/a is taken from Equation (I0).

The contribution to the EEVPD from z; is
Varg, [AY] = Ep, [(Af)?] — Es[AR]%
The expectation value in the second term is
. 1
Es[Ay] = §(M11Eﬁ[$2] + MaoEj[u?))
and for the first

E5[(AR)?] =

—_

Eﬁ[(M11I2 —+ 2M12xu + M22U2)2]

— |

(MlzlEﬁ[Iﬂ + M222E;5[u4] + (4M122 + 2M11M22)]E;5[1'2]Eﬁ[u2]).

=~ |

In both expressions we have dropped the vanishing contributions that contain Ez[zu ] 0, Ej[zu?] =
0 or Es[z3u] = 0. Combining both terms together and using Ez[z?] = 3E;[2?]? and ﬁ[u“]
3E;5[u?]? we get

i1
Var[Ay] = 7 (M Es[2)? + 2MELE5[u?)? + AMEE;[2%u?]).

Inserting E5[2?] = 02a? and E;[u?] = 1 gives

(1_0‘2)2 -4 -4 ) 2 ) yg

Var[A#] = (sm h + sin* h + 2sin” h cos h) = (1-a??sin h:m’

which is E(y) from the statement of the theorem. EEVPD is thus

d d
1 |
EEVPD = - > Var[A}] = y E, E(y;).

i=1

B.2 THEOREM[4.2} BIAS BOUNDS

Proof. Let’s start with the covariance matrix bias. Due to Equation (10), the asymptotic covariance

error (6 is
d d
=2 (1= -l =53 B(E/od)

We thus see that ¢ from the statement of the theorem is ¢ = E o B~!,

b2

CO’U

&\H
&\H

where B(y) = W
Lemma shows that o(z) restricted to 0 < z < 11 — 44/7 is a convex, monotonically increasing
function. By Jensen’s inequality this implies that

©(beon (2, 2)%) < EEVPD,
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aslong as p(b2,,) < @(11—4v/7) = (—=134+52y/7)/9 ~ 0.397674. The assumption of the theorem
that EEVPD < 0.397 is a sufficient condition for this to hold. Since ¢(x) is not a linear function,
Jensen’s inequality becomes an equality if and only if o; = o for all 7, j. ¢ is a monotonically
increasing function so it is a bijection and its inverse is also a monotonically increasing function. The
inverse can therefore be applied to both sides of the above inequality to yield the desired result.

The proof of the Wasserstein distance part of the theorem is similar. For zero-mean Gaussian
distributions with covariance matrices ¥, and > , the Wasserstein distance reduces to (Olkin &
Pukelsheim, [1982)

Wa(N(0,2,), N (0,2,))2 = Te{, + 2, - 2(5h/22,55/%) 2},

By using Equation (I0) for unadjusted HMC or LMC with the velocity Verlet integrator we therefore

get
d

WQ(p7]5)2 = ¢ Z W(62/0i2)7
i=1
where
2(1—y/8 =1 —y/4)
W(y) =
y(1—y/4)
is as in the statement of the theorem. Lemma shows that oy () is a convex, monotonically
increasing function for 0 < pw (z) < 27/4 = 6.75. By Jensen’s inequality this implies that

pw(w) < EEVPD,

as long as EEVPD < 6.75. Here w = Wx(p, p)?/de?. Since ¢y is not a linear function, Jensen’s
inequality becomes an equality if and only if o; = o for all 4, j. pw is a monotonically increasing
function so it is a bijection and its inverse is also a monotonically increasing function. The inverse
can therefore be applied to both sides of the above inequality to yield

w < ¢y (EEVPD).

B.3 CONVEXITY

Lemma B.1. o(z) = 42%/2/(1 4+ 2'/2)? is monotonically increasing for x > 0 and convex for
0<z<1l—4V7

Proof. ¢(x) is monotonically increasing because its derivative
() = 221/2(3 + 21/2)
(1 +21/2)8
is positive (all terms are positive). To show that it is convex, we compute its second derivative
—4x1/2
o () = 3—4x x
21/2(1 4 z1/2)
The denominator is positive for 2 > 0. The numerator is a quadratic polynomial p(y) = 3 — 4 — 32
iny = /2. Its roots are y; o = —2 %+ /7. Since p(0) = 3 > 0 the numerator is positive for

0 <y < —2+ /7 corresponding to 0 < = < (=2 + v/7)? = 11 — 4/7 so () restricted to this
interval is convex. O

Lemma B.2. ow (z) from Theorem{.2|is monotonically increasing and convex for 0 < pw () <
27/4.

Proof. To prove that ¢y is monotonically increasing we will show that its derivative is positive. We
cannot solve for for W~ explicitly, but nontheless

P (w) = E' (W= (w) (W) (w) =
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where we have denoted y = W1 (w). We will show that both denominator and numerator are
positive for 0 < y < 4, i.e. in the range where the velocity Verlet integrator is stable.

The numerator is
) — 3V (1= y/6)
(y) - 2
(1-y/4)
which is positive for 0 < y < 4.

To simplify the denominator we use the reparametrization y = 4 sin” £, such that 0 < ¢ < 7/2. In
the new parametrization

in*(¢£/2
W((y) = 1111(25(/25))
We get ’
W'(y) = l+cosf—cos”E s "

128 cos*(£/2) cost(€) T 128 cost(£/2) cost(€)
where we have used that — cos? £ > —1.

To prove that ¢y is convex, we will show that its second derivative is positive. We have

) = B~ ) (Y )+ BV )Y ) = oy~ T

Which after some algebra reduces to

y (2 —5)(s% —1)(s* + 45> + 75> + 65 — 6)
ew(y) = 5 :
8(s2+s5—1)

where we have first reparametrized y(¢) = 4 sin® £ and then s(£) = 1/ cos(€). The range 0 < y < 4
corresponds to 0 < £ < m/2 which in turn corresponds to 1 < s < oo.

All the factors except for (2 — s) are non-negative at s = 1 and monotonically increasing for
s > 1, so they are all positive for s > 1. The second derivative is then positive for 1 < s < 2,
corresponding to 0 < £ < /3 or 0 < y < 3. ww () is thus monotonically increasing and convex
for 0 < pw(x) < E(3) =27/4. O

C BIAS-VARIANCE TRADEOFF

We have shown how to control the covariance matrix bias to be below some desired threshold.
However, typically bias is not of direct interest, but instead we want to control the error of the
expectation values, which additionally contains the variance, i.e. the second term in Equation (2).
The variance of a stationary chain is

n

Var[f] = Var, [f)(1+2) (1~ k/n)pr)/n = Vary[f]7u/n, (13)

k=1
where the autocorrelation coefficients are p,, = E[(f(x;) — Ep[f])(f(itx) — Ep[f])]/Vary[f].

We would therefore like to know how to optimally set the bias, given some error tolerance. Here we
will provide a heuristic, based on estimating the second moment E[22] of a one-dimensional standard
Gaussian target with velocity Verlet unadjusted HMC.

In this case, py, = pk (Gouraud et al., [2025)), where
o T .
p = cos” (— arcsin(ae/0)). (14)
€

This makes the sum in Equation (T3) expressable in terms of geometric series:

1+ 2 1_ Y23
Tim=1+25(p)—2,05’(,0)/”:12(1_np122) -
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relative RMSE tolerance | Bias tolerance | EEVPD

50% 22% 3.0x 1072
10% 4.5% 3.3x 1074
5% 2.2% 4.3 x 1075
1% 0.45% 3.5 x 1077

Table 2: Tabulated values of EEVPD (third column) that ensure a desired asymptotic covariance
matrix bias (second column). A useful, quick recipe to compute approximation for small b2, is
EEVPD = ¢(b?,,) ~ 4b3,,. Optimal asymptotic bias should be smaller than the given relative

cov
root mean square error tolerance (Equation (I))), for example, one can use the prescription Bias® <

RMSE? /5 from Appendix This error is given in the first column.

where S(p) = Yp_, p*¥ = p(1 — p")/(1 — p). The variance at the lowest order in the small-¢-
expansion is then

2
21 2 _
Var[z?] < e GIE% Tint (€) = ¢y /€, (16)

where ¢, is constant, independent of the step size and < denotes asymptotic equivalence as € — 0.
The bias of the second moment in this limit is
_ 1
C1—e€2/4
where we have used Equation (I0) and denoted ¢, = 1/4.
Combining Equations (I6) and we get for the RMSE in the small step size limit:

RMSE? = ¢ye* + ¢, /e, (18)

where ¢, and ¢, are defined above and are independent of the step size. We would like to set the step
size so that it minimizes the RMSE. The optimum is found at
d
0= d—RMSE2 =deye — ¢y /€2, (19)
€
which gives the optimal step size eqpt = (¢y/ 4cb)1/ 5. At the optimal step size, bias squared is one
fifth of the error squared:

Bias[z?] —1x€2/4 = cyé?, (17)

Bias?® 1 1
2 = Cy /€opt = g ) (20)
RMSE 14 Cufcopt

U
Co€opt

This is the prescription that we use in Table [2] and in the numerical experiments of Section [7} It
is based on the Gaussian assumption, so it might suboptimal for the non-Gaussian distributions.
However, the samples would still eventually converge below the required RMSE, as long as the
EEVPD-based bound holds. We note that the results in Section[/|do not even exhibit a significant
decrease in efficiency compared to the grid search results and all unadjusted samplers converge to the
desired accuracy.

D EXPERIMENT DETAILS

D.1 BENCHMARK PROBLEMS
The following benchmarks are used:

¢ A Standard Gaussian in d = 100.

* An ill-conditioned Gaussian in d = 100 and condition number x = 1000. The eigenvalues
of the covariance matrix are equally spaced in log.

* A Rosenbrock function with ) = 0.1 from |Grumitt et al.|(2022). This is a banana shaped
target in two dimensions, see Figure 8 in [Robnik et al.| (2024). We use a product of 18
independent copies, so the total dimension of the target is 36. An exception is Figure 2]
where we study the performance as a function of the number of copies.
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* A Funnel problem in 101 dimensions: this is a hierarchical Bayesian model with a funnel
shape (Grumitt et al., 2022). The goal is to infer the hierarchical parameter 6 and the latent
variables {z; };%], given the noisy observations y; ~ N(z;,1). The prior is Neal’s funnel
(Neal, 2011): 6 ~ N(0,3), z; ~ N(0,¢e?/2). We set 6y, = 0 and generate the data with
the generative process described above. Given this data we then sample from the posterior
for 6 and {z; }1°9.

* A Brownian motion example from the Inference Gym (Sountsov et al. [2020), where
it is named BrownianMotionUnknownScalesMissingMiddleObservations.
This is a 32 dimensional hierarchical Bayesian model where Brownian motion with unknown
innovation noise and measurement noise is fitted to the noisy and partially missing data.

* The German Credit model, also known as Sparse logistic regression (GermanCredit—
NumericSparselogisticRegression)is a S1-dimensional Bayesian hierarchical
model, where logistic regression is used to model the approval of the credit based on the
information about the applicant.

* An Item Response theory model (SyntheticItemResponseTheory), whichis a 501-
dimensional hierarchical problem where students’ ability is inferred, given the test results.

* Stochastic Volatility is a 2429-dimensional hierarchical non-Gaussian random walk fit to the
S&P500 returns data, adapted from NumPyro (Phan et al., 2019).

* Lattice ¢* field theory: see section for details. We take the number of points in the
lattice in each of the two directions to be 1024, so that the problem has 10242 = 1048576
dimensions.

The ground truth covariance matrix for the first two problems is known exactly. For the Rosenbrock
function, we compute it by drawing exact samples from the posterior. For the other problems, we
obtain the ground truth by running very long NUTS chains.

We note that even though these benchmark problems are the same as in (Hoffman & Sountsov, [2022)
and the evaluation metric is the same, the results cannot be compared, because Hoffman & Sountsov
(2022) run a large number of chains in parallel (4096 chains) and combines the samples at each fixed
time to compute the expectation values. We on the other hand are interested in the more standard
regime where one chain is sequentially run for a longer time and samples at different times are
combined to compute the expectation values. This of course results in longer time to convergence,
but lower total calculation cost. Furthermore NUTS in (Hoffman & Sountsov}|2022)) was adapted to
the many-short-chains regime and is therefore not the same algorithm as a more standard NUTS used
here.

D.2 COVARIANCE MATRIX BIAS

We here provide the results complementary to Section /| for the b.,, metric. We do not show it for
the higher dimensional problems (Item response and Stochastic Volatility), because their covariance
matrix is impractically large. Qualitatively the conclusions are as in Section[7}

* Unadjusted versions of the algorithms tend to perform better than their adjusted counterparts.

* EEVPD based tuning yields close to optimal performance when compared to grid search.
An exception is the Rosenbrock distribution, where the conservative choice of EEVPD
yields some decrease in performance, but the unadjusted algorithm still performs better than
the adjusted one.

* MCLMC performs better than LMC.

A notable difference is that all samplers need a larger number of gradient evaluations here, because
bcov 1s @ more stringent metric than b .

D.3 LATTICE ¢* FIELD THEORY

This is a classic interacting lattice field theory on the plane. We will adopt its treatment from Robnik
& Seljak! (2024). In a continuum, the ¢ scalar function ¢(x, y) on the plane. The probability density
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aLMC uLMC | aMCLMC uMCLMC ulLMC NUTS
grid search EEVPD | acc. rate EEVPD grid search | acc. rate
Standard Gaussian 79,841 64,254 43,389 26,032 65,604 240,456
Rosenbrock 659,359 415,988 540866 348,048 271,825 852,135
Brownian 93,787 112,242 76,931 41,838 73,632 146,333

German Credit 462,843 380,569 | 462,770 249,674 306904 756,792

Table 3: Number of gradient calls needed to get b2,, below 0.01.

cov

on the field configuration space is proportional to e~ 5?! where the action is
Slow)) = [ (= 600+ me? + 2")dudy, @

The parameters of the theory are the mass m? < 0, and the quartic coupling A > 0.

The system is interesting as it exhibits spontaneous symmetry breaking, and belongs to the same
universality class as the Ising model. It does not admit analytic solutions due to the quartic interaction
term. It is numerically solved by discretizing the field on a lattice and making the lattice spacing as
fine as possible (Gattringer & Lang|[2009). The discretized field is specified by a vector of values on
a lattice ¢;; for 4, j = 1,2,... L. The dimensionality of the configuration space is d = L?. We will
impose periodic boundary conditions, such that ¢; ;1 = ¢;1 and ¢r1,; = ¢1;. The lattice action
is (Vierhaus| 2010)

L
Siat[6] = Y 264 (205 — i1,y — bigi1) +m5 + A (22)

i,j=1
We will fix m? = —4 (which removes the diagonal terms qbfj in the action) as is common (Albergo

et al., 2021; Gerdes et al., 2022). In all experiments we fix A\ = 4, where \ = Ll/”()\ —Ac)/Ac.
Here, v = 1 and \¢ = 4.25 are taken from (Vierhaus, 2010). This choice ensures that all of the
experiments are performed at approximately the same location in the phase diagram in disordered
phase, with minimal dependence on the lattice size (Gerdes et al.l 2022} |Goldenteld, |2018)).

As in the other experiments, we take the average squared bias of the second moments as the conver-
gence metric, b2, = d~" Eé 1—1 b?(|¢i]?). The only difference is that we here consider the second

moments of the Fourier transform quS instead of the field itself. The Fourier transform is defined as

$kl =L Zﬁmzl Gpme 2T kntim)/L \We use only 2 chains for ¢* at 10242 dimensions, since
this is what fits on a GPU.

Scaling We examine the scaling of the performance with lattice size L, as shown in Figure [5]
We observe that up to 10 dimensions, utMCLMC performance is constant, which gives rise to its
outstanding performance relative to adjusted methods at 10242 dimensions.

D.4 STEP SIZE ADAPTATION

We here describe the scheme for quickly adapting the step size € to achieve a desired EEVPD. We
verified that it indeed yields the desired EEVPD in the experiments performed in this work, but we
do not provide any convergence guarantees. More generally, one can instead use a more established
dual averaging algorithm (Hoffman & Gelman, [2014; Nesterov, 2009).

Suppose we did a leapfrog step with size ¢;, and found some energy error A¥,. Using only this
knowledge and the scaling from Equation (#.T)) for small step sizes, A o< €5, we could estimate the
optimal step size to use in the next iteration as €51 = &, /6 where

k \2
(AF)° 1

i ad (23)

& =

[=2]
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Figure 5: ¢* performance scaling as the lattice size is increased. Cost of the Metropolis adjusted
MCLMC and NUTS grows with the number of parameters as d*/* (Grey lines in the background),
while unadjusted MCLMC performance stays constant.
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Figure 6: The step size adaptation algorithm from Section applied to the Rosenbrock target
distribution in d = 36 with MCLMC sampler. The sequential algorithm was initialized from the
standard Gaussian distribution with a random initial velocity orienation. Top: the step size as a
function of leapfrog integration steps. Bottom: per dimension squared energy error for each step. The
algorithm quickly converges to the targeted EEVPD = 0.001, shown with a black line.
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and « is the desired EEVPD. As we do more leapfrog steps, we can improve our estimate by averaging
the energy errors. Our estimate of the optimal step size is then a weighted sum:

(ke w(E )y §k>_1/6 94
e = ( > iy w(&k)yn* ' 24

We have introduced two types of weights:

* The weights w parametrize our trust in the predictions from the too large and too small €.
We take the log-normal penalty

1
w(é) = exp{—g(logoz/a? } (25)
with g¢ = 1.5.
* 7 is the forgetting factor. It is related to the effective sample size n of the estimate (if w were
constant) by v = Z—j& n is also the number of steps after which the weights have decayed to

e 2=0.13. In general, we don’t want n to be too small, so that EEVPD is well determined
and yet not too large during the burn-in such that the initially heavily biased estimates are
forgotten quickly. We find n = 50 to work well on all the experiments considered in this
work. An example run is shown in Figure [§]

The pseudocode for the proposed algorithm is shown in[T}

Data: initial condition (z, u),
initial step size € > 0,
number of integration steps N > 0,
desired EEVPD a > 0.
Result: step size €
A, B+ 0
for n <~ 0to N do
(z, u), AE + O (z,u) ;
¢ <+ Equation 23) (AE, ¢, o) ;
A Ay +Ew(§)
B+ By+w(§);
e+ (A/B)~Y/6;
end
Algorithm 1: Step size adaptation

D.5 DETAILS OF EXPERIMENTS

We use an run of NUTS to find a diagonal preconditioning matrix. Preconditioning can be viewed as
reparametrization of the parameter space, so the goal here is to compare different samplers on exactly
the same problem, i.e., same target, same parametrization. In practice, however, we recommend using
unadjusted methods for preconditioning which is in fact the default behavior in our implementation,
even when adjusted methods are later used for sampling. This is because the unadjusted methods
converge significantly faster and the bias in the preconditioner is acceptable even if one desires
asymptotically unbiased samples.

We determine step size by running a short warm-up chain. For unadjusted methods, we use the
algorithm from [D.4]to select a step size that ensures a desired EEVPD. For adjusted MCLMC we
use the dual averaging algorithm (Nesterov, |2009) from |Hoffman & Gelman|(2014)) to adapt the step
size to achieve an acceptance rate of 90%.

We take the tuning steps as our burn-in, initializing the chain with the final state returned by the
tuning procedure. For each model we run at least 128 chains, and take the median of the error across
chains at each step. This reduces the error in the quantities in Tables[T|and [3] The errors are shown in
Table[d] They are calculated by bootstrap: for a given model, we produce a set of chains (at least 128),
and calculate the bias b, Or b,y at each step of the chain. We then resample (with replacement)
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aLMC uLMC aMCLMC uMCLMC NUTS

Model metric
Standard Gaussian b, 0.42% 1.02% 1.51% 0.77% 0.13%
bcow 0.06% 0.32% 0.31% 0.29% 0.06%
Rosenbrock bavg 0.07% 5.69% 0.06% 2.05% 0.02%
beov 0.03% 1.64% 0.01% 0.90% 0.01%
Brownian Motion bavg 0.37% 6.14% 0.38% 2.77% 0.16%
beow 0.05% 4.96% 0.06% 0.49% 0.03%
German Credit bavg 0.06% 7.49% 0.10% 2.25% 0.04%
bcov 0.05% 11.58% 0.08% 0.93% 0.05%
Item Response bavg 0.62% 8.08% 1.23% 411% 0.44%
Stochastic Volatility b, 0.04% 8.88% 0.06% 1.87% 0.02%

Table 4: Relative error associated with Tables and

104,

b S

=@==(Gaussian
=g==_Rosenbrock
=@==_Brownian Motion
1034 =e= German Credit
== |tem Response

# gradients to low error

T T T T T T
10-© 10~> 104 1073 102 10°1
EEVPD

Figure 7: Performance of unadjusted LMC as a function of EEVPD (which in turn sets the step size).
As can be seen, performance does not change much within a resonable range of EEVPD. The value
EEVPD = 3 x 10~ that we use in Sectionis shown as a vertical dashed line.

100 times from this set, and compute our final metric (number of gradients to low bias) 100 times. We
take the standard deviation of this list of length 100 as the estimate of the error and report it relatively
to the values in Tables[Tland 3

NUTS is run using the BlackJax (Cabezas et al.l 2024) implementation, with the provided window
adaptation scheme. For adjusted LMC (MALT), we perform a search over different values of
trajectory length, and at each, choose € to target an acceptance rate of 0.8.

D.6 COMPUTING ARCHITECTURE
¢* field theory example was run on the NVIDIA A100 GPU (40GB). The other experiments were
run on 128 CPU cores, where each core is a 2x AMD EPYC 7763 (Milan) CPU.

E ABLATION STUDY

Here, we investigate how performance of unadjusted LMC, with the tuning algorithm proposed in
Section |§| varies with the EEVPD value being targeted. Figure [7|shows that our choice of 3 x 10~*
is within the safe range for problems that we consider, albeit it is somewhat conservative for the Item
Response and Rosenbrock problems.
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