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Abstract
This paper addresses weak features learning
(WFL), focusing on learning scenarios charac-
terized by low-quality input features (weak fea-
tures; WFs) that arise due to missingness, mea-
surement errors, or ambiguous observations. We
present a theoretical formalization and error anal-
ysis of WFL for continuous WFs (continuous
WFL), which has been insufficiently explored in
existing literature. A previous study established
formalization and error analysis for WFL with dis-
crete WFs (discrete WFL); however, this analysis
does not extend to continuous WFs due to the in-
herent constraints of discreteness. To address this,
we propose a theoretical framework specifically
designed for continuous WFL, systematically cap-
turing the interactions between feature estima-
tion models for WFs and label prediction models
for downstream tasks. Furthermore, we derive
the theoretical conditions necessary for both se-
quential and iterative learning methods to achieve
consistency. By integrating the findings of this
study on continuous WFL with the existing theory
of discrete WFL, we demonstrate that the WFL
framework is universally applicable, providing
a robust theoretical foundation for learning with
low-quality features across diverse application do-
mains.

1. Introduction
The performance and explainability of machine learning
models are strongly influenced by the quality of input fea-
tures. However, in many real-world applications, constraints
such as high observation costs, low observation precision,
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and privacy concerns often result in features deviating from
their true values. These deviations manifest as missing
values, erroneous observations, or ambiguous information.
Such low-quality input features are termed Weak Features
(WFs) (Sugiyama & Uchida, 2025). Due to the absence of
direct observation of true values, WFs destabilize the learn-
ing process of predictive models, leading to performance
degradation. Furthermore, the inaccuracies and incomplete-
ness inherent in WFs significantly hinder the explainability
of model outputs and decision-making processes. To ad-
dress these challenges, methods such as impute-then-regress
(ItR) (Josse et al., 2024; Bertsimas et al., 2021; Le Morvan
et al., 2020a;b; 2021), which imputes missing data prior
to prediction, and complementary features learning (CFL)
(Sugiyama & Uchida, 2024), which utilizes values differing
from the true values, have been proposed. Additionally,
a generalized framework, weak features learning (WFL)
(Sugiyama & Uchida, 2025), has been developed to system-
atically address a broader range of WFs.

WFL aims to mitigate the impact of WFs and improve the
generalization performance and explainability of predictive
models (Sugiyama & Uchida, 2025). A common approach
involves constructing feature estimation models g to esti-
mate the true values of WFs (termed exact values) from
observed features (ordinary features; OFs) that are not WFs,
and then learning a label prediction model f using both
the estimated values for the WFs and the OFs to predict
the labels of downstream tasks. In practice, ItR and CFL
employ sequential learning, where g and f are optimized
consecutively, or iterative learning, where they are opti-
mized alternately (Yoon et al., 2018; Mattei & Frellsen,
2019; Le Morvan et al., 2020a; Ipsen et al., 2021; 2022;
Zaffran et al., 2023; Sugiyama & Uchida, 2024).

However, fundamental questions remain unanswered, such
as how the interaction between g and f influences learning
errors and under what conditions these methods can be guar-
anteed to be effective. Specifically, these questions can be
framed as: (1) How do g and f interact and influence each
other’s error bound? and (2) What are the precise conditions
under which consistency with the optimal hypothesis is the-
oretically guaranteed? For WFL with all WFs restricted
to discrete (discrete WFL), a unified formulation has been
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proposed, offering systematic answers to these questions via
generalization error analysis within a generalized class of
learning algorithms (Sugiyama & Uchida, 2025). Discrete
WFs include cases such as missing or noisy discrete features,
sets that contain the exact discrete value, and observations
consisting solely of incorrect discrete values. Discrete WFL
is designed to address the presence of such discrete WFs.

In contrast, the theoretical framework for continuous WFL
that uniformly addresses continuous WFs, such as missing
or noisy continuous values and interval observations that
contain the exact continuous value, is not yet well estab-
lished. This is primarily because the theoretical framework
for discrete WFL heavily depends on the mathematical prop-
erties of discreteness, making it difficult to directly extend to
continuous WFL. Although some theoretical analyses exist
for ItR applied to missing data, they lack finite-sample gener-
alization error analyses for arbitrary distributions and fail to
accommodate diverse types of continuous WFs (Josse et al.,
2024; Bertsimas et al., 2021; Le Morvan et al., 2020a;b;
2021). Additionally, while cases involving erroneous obser-
vations (Ristovski et al., 2010; Hu et al., 2020; Berikov &
Litvinenko, 2021) or interval-based observations contain-
ing exact values (Cheng et al., 2023) have been analyzed
in contexts where they are observed as target labels, no
analyses have addressed scenarios where such observations
serve as input features affecting a downstream task. There-
fore, constructing a more general and systematic theoretical
framework for continuous WFL remains a critical challenge.
Such a framework should not only function equivalently to
the discrete WFL framework and provide consistent guaran-
tees across various types of WFs, but also adapt flexibly to
arbitrary generative distributions of continuous WFs.

Our main contributions in this paper are the following:

1. We propose a risk-based formulation to unify the treat-
ment of arbitrary continuous WFs. By employing a novel
proof technique distinct from that used in discrete WFL, we
theoretically demonstrate that the proposed objective func-
tion is valid for modeling the true input-output relationship
(Section 3.1). This establishes the theoretical justification
of our formulation. Based on this, we introduce the learn-
ing algorithm class for continuous WFL (LAC-cWFL), a
counterpart to LAC-dWFL (Sugiyama & Uchida, 2025).
LAC-cWFL offers a consistent theoretical framework for
continuous WFs and flexibly incorporates three learning
steps: (i) Learning g using WFs as weak supervision, (ii)
Learning f with g fixed, and (iii) Learning g with f fixed.

2. We derive new inequalities to analyze the interaction
between g and f in continuous WFL (Section 4.1). These
inequalities quantitatively characterize how the mutual de-
pendence between g and f influences learning errors, form-
ing a foundation for comprehensively understanding WFL
algorithms. In Appendix A, we leverage these inequali-

ties to investigate the theoretical integration of discrete and
continuous WFL.

3. We conduct a theoretical investigation into the influence
of g on f ’s learning via the generalization error analysis
in step (ii) of LAC-cWFL (Section 4.2). Furthermore, our
theoretical framework can be combined with the theories of
existing methods for step (i) to establish conditions under
which sequential learning, executing (i) and (ii) consecu-
tively, achieves consistency.

4. We Theoretically analyze the influence of f on g’s learn-
ing in step (iii) of LAC-cWFL (Section 4.3). By integrating
the analyses in Contributions 3 and 4, we derive the con-
ditions under which iterative learning, alternating between
steps (ii) and (iii), achieves consistency.

5. We extend our analysis to derive analogous theoretical
results for ItR in scenarios where all features are continuous
and could be missing (Appendix B). This extension estab-
lishes a comprehensive foundation for the generalization
error analysis of ItR with continuous missing features.

Our results are correspond in parallel with those of discrete
WFL (Sugiyama & Uchida, 2025). Consequently, the anal-
yses in this paper demonstrate that the WFL framework
(Sugiyama & Uchida, 2025) serves as a universal frame-
work, equally applicable to both discrete and continuous
WFs.

2. Related work
2.1. Review of Ordinary Supervised Learning

This paper builds on the foundational principles of empirical
risk minimization (ERM) in supervised learning (Shalev-
Shwartz & Ben-David, 2014; Mohri et al., 2018), which
we briefly revisit here. Let the input space be defined as
X d ∈ Rd and the label space as Y ∈ R. Here, d ∈ N+

represents an input dimension. Denote the random vari-
ables representing instances by X and the random vari-
able for labels by Y . Their realizations (x, y) are assumed
to independently follow the true distribution p∗(x, y) over
X × Y . The goal of ERM is to learn a label prediction
model f : X → Y ∈ F that minimizes the expected risk
with respect to a loss function l : Y × Y → R+:

Rl(f) := Ep∗(x,y)[l(f(X), Y )], (2.1)

where F is the hypothesis set of label prediction models.
Since p∗(x, y) is unknown, ERM approximates Rl with the
empirical risk computed as an average with finite samples
and learns f by minimizing this empirical risk.

2.2. Discrete WFL

Discrete WFL was formulated as follows (Sugiyama &
Uchida, 2025). In WFL, the random variables represent-
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ing an instance X are partitioned into the exact values of
WFs, denoted by Xw, and OFs, denoted by Xo, such
that X = (Xw,Xo). The possible value sets of Xw

and Xo are denoted by Xw =
∏

j∈[Fw] Xw
j and X o, re-

spectively, where Xw × X o = X , Fw is the number
of WFs, and [Fw] = {1, . . . , Fw}. Notably, Xw is a
finite set. The observed values of WFs are denoted by
the random variables Xw. Feature estimation models,
which estimate the exact values of WFs Xw, are defined as
g = (g1, . . . , gFw) ∈ G = G1 × · · · × GFw : X o → Xw,
where gj ∈ Gj : X o → Xw

j for all j ∈ [Fw]. Here, Gj

represents the hypothesis set for estimating Xw
j .

In discrete WFL, where all WFs are discrete, the goal is
to minimize the generalization error Rl,g of f , evaluated
using the loss function l, and the estimation error R01,j of
gj , measured by the 0-1 loss (Sugiyama & Uchida, 2025):

Rl,g(f) := Ep∗(xo,y)[l(f(g(X
o),Xo), Y )], (2.2)

R01,j(gj) := Ep∗(x)[1[gj(Xo )̸=Xw
j ]], ∀j ∈ [Fw]. (2.3)

Minimizing these risks aims to achieve a highly accurate
f and improve the explainability of f by mitigating inac-
curacies or ambiguities in the input features. The objective
function of discrete WFL is defined as the weighted sum of
these risks using a weighting parameter λ ∈ R+:

RdWFL
l,λ (f, g) := Rl,g(f) + λ

∑
j∈[Fw] R01,j(gj). (2.4)

It has been shown that for any l bounded by Ul < ∞, f ∈ F
and g ∈ G, the inequality Rl(f) ≤ RdWFL

l,Ul
(f, g) holds

(Theorem 3.1 in (Sugiyama & Uchida, 2025)). This result
showed that minimizing RdWFL

l,λ contributes to obtaining an
f that captures the true input-output relationship, thereby
justifying the formulation. This work builds on (Sugiyama
& Uchida, 2025) further conducted a theoretical analysis
of a generalized learning algorithm class for discrete WFL
under the formulation.

However, this analysis expresses the estimation errors of g
using the 0-1 loss, rendering the same proof strategy inap-
plicable to continuous WFL. In this study, we construct a
theoretical framework for continuous WFL that accounts
for the unique characteristics of continuous WFs. Specifi-
cally, we represent the estimation errors of g using the mean
squared error (MSE) instead of the 0-1 loss, thereby estab-
lishing a theoretical framework for continuous WFL that
parallels that of discrete WFL.

2.3. Theoretical Analysis for ItR

ItR is a framework that imputes missing values in input
features and subsequently performs predictions using the
imputed data (Le Morvan et al., 2021). Approaches for
handling missing values are generally categorized into two
strategies: leveraging the absence of values as informative

signals and estimating the exact values. The former ap-
proach is implemented using decision-tree-based methods
(Twala et al., 2008; Chen & Guestrin, 2016) or through im-
putation with placeholder values that signify missingness
(Josse et al., 2024). However, when the presence or absence
of missingness is independent of Y , this approach may not
contribute meaningfully to predicting Y . In such cases, em-
ploying ItR with imputation through a feature estimation
model g could become essential.

Several theoretical studies have investigated ItR. Josse et
al. demonstrated that in regression or binary classification
tasks where only one variable is missing and the missing
mechanism is Missing at Random, there exists a predictive
function f such that f ◦ g serves as the Bayes rule for any
constant-value imputation g (Josse et al., 2024) Bertsimas
et al., while restricting their analysis to regression tasks,
demonstrated that for any almost everywhere continuous
function g, there exists an f such that f ◦g is the Bayes rule
(Bertsimas et al., 2021). Morvan et al. extended the work
of Bertsimas et al., providing a comprehensive analysis of
the Bayes rule under arbitrary missing mechanisms and any
measurable g, where all features could potentially be miss-
ing (Le Morvan et al., 2021). Morvan et al. also conducted
generalization error analysis in the restricted setting where
the true regression model is linear (Le Morvan et al., 2020b).

Despite these advances, the aforementioned studies did not
investigate learning algorithms capable of asymptotically
obtaining the optimal f ◦ g. Moreover, generalization error
analysis under finite sample regimes, applicable to arbitrary
data distributions, has yet to be unachieved. In this study,
we conduct finite-sample generalization error analysis of
ItR for any downstream task. This analysis encompasses
situations where any continuous feature can be missing,
for any measurable g. Through this generalization error
analysis, we further investigate the conditions under which
sequential or iterative learning methods for f and g achieve
consistency. The scenario where only some features may
be missing is addressed in Sections 3 and 4, while the case
where all features are missing is discussed in Appendix B.

3. Formulation
3.1. Formulation of continuous WFL

In this section, we present the formulation of continuous
WFL from the perspective of risk minimization. Most no-
tations remain consistent with Section 2.2, but two key
differences exist. First, in discrete WFL, Xw is a finite set,
whereas in continuous WFL, it is defined as Xw ⊆ RFw

.
Next, we define the probability density function (PDF) asso-
ciated with the feature estimation models g as qg(xw|xo).
The PDF qg will later be utilized as a probabilistic model
derived from the deterministic model g. Similar to discrete
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WFL (Sugiyama & Uchida, 2025), we focus on binary clas-
sification as the downstream task; but, our formulation and
analysis can be readily extended to other downstream tasks
without losing generality.

The main objectives of WFL are twofold: improving the gen-
eralization performance in a downstream task and restoring
the explainability lost due to WFs. The loss of explainabil-
ity stems from the imprecision of information encoded in
WFs, Xw. A natural approach to address this issue is to
accurately estimate the exact values of WFs, Xw. There-
fore, in continuous WFL, it is natural to learn f and g by
minimizing the following two risks. The first risk evaluates
the generalization error of f :

Rl,g(f) := Ep∗(xo,y)qg(xw|xo)[l(f(X), Y )]

= Ep∗(xo,y)[l(f(g(X
o),Xo), Y )],

(3.5)

The second risk measures the estimation errors of g:

RMSE,j(gj) := Ep∗(x)[lMSE(gj(X
o), Xw

j )],∀j ∈ [Fw],

(3.6)

where lMSE(y, y
′) := (y−y′)2 represents the mean squared

error (MSE). The objective function for continuous WFL is
defined as a linear combination of these two risks using a
weight parameter λ ∈ R+:

RcWFL
l,λ (f, g) := Rl,g(f) + λ

∑
j∈[Fw]

RMSE,j(gj). (3.7)

The objective function RcWFL
l,λ facilitates the unified treat-

ment of any continuous WFs. This is because the error of
gj is defined through the risk RMSE,j to be minimized irre-
spective of the type of WF. For various types of continuous
WFs, weakly supervised learning methods that minimize
RMSE,j using Xw

j as weak supervision have already been
established (Wasserman & Lafferty, 2007; Li et al., 2017;
Kostopoulos et al., 2018; Ristovski et al., 2010; Hu et al.,
2020; Berikov & Litvinenko, 2021; Cheng et al., 2023).
Therefore, to minimize RcWFL

l,λ , these WSL methods can be
employed to learn gj based on the type of WF.

Moreover, RcWFL
l,λ can be interpreted as a natural formula-

tion, where R01,j replaced by RMSE,j in RdWFL
l,λ defined

in Eq. (2.4). However, justifying this formulation for con-
tinuous WFL is non-trivial. The justification for discrete
WFL relies on the inequality derived using the properties
of R01,j (Theorem 3.1 in (Sugiyama & Uchida, 2025)),
which cannot be directly applied to continuous WFL. In the
case of discrete WFL, the key approach involved expressing
the upper bound of Rl(f)−Rl,g(f) in terms of R01,j(gj).
In this work, we successfully derive the upper bound of
Rl(f) − Rl,g(f), expressed in terms of RMSE,j(gj). The
validity of our formulation is demonstrated by the following
theorem. The proof can be found in Appendix C.1.

Theorem 3.1. Let σ ∈ R+, and define qg as the PDF of
N (g(xo), σ2IFw×Fw). For any measurable f ∈ F , g ∈ G,
and l bounded by Ul < ∞, the following holds:

Rl(f) ≤

Rl,g(f) + Ul

{
Cσ + 1

2σ2

∑
j∈[Fw] RMSE,j(gj)

} 1
2 .

(3.8)

Here, Cσ := Ep∗(x,y)[log p∗(X
w|Xo, Y )] +

log
√

(2π)Fwσ2Fw . The definition of qg corresponds to
adding Gaussian noise with mean 0 and variance σ2 to the
output of g. This definition imposes no constraints on the
learning of g, thus preserving the generality of our results.
According to the definition of Cσ, when for any j ∈ [Fw],
Xw

j is a set of finite-precision decimals (in this case,
Ep∗(x,y)[log p∗(X

w|Xo, Y )] ≤ 0 holds), and qg is defined
with σ2 = (2π)−1, it follows that Cσ ≤ 0. Thus, under this
mild assumption, Cσ can be disregarded. The LHS of Eq.
(3.8) quantifies how well f captures the true input-output
relationship. Thus, Theorem 3.1 establishes that minimizing
the two components of our objective function ensures that
f effectively captures the true input-output information.

3.2. Learning Algorithm Class for continuous WFL

In this section, we introduce a unified learning algorithm
class capable of handling not only arbitrary continuous WFs
but also various methods in continuous WFL. Under the
proposed formulation in Section 3.1, we define the following
learning algorithm class:

Definition 3.2 (LAC-cWFL). The learning algorithm class
for continuous WFL (LAC-cWFL) refers to the set of al-
gorithms that learn the feature estimation models g and
label prediction model f through any combination of the
following three steps:

(i) Learning g by using Xw as weak supervision and min-
imizing

∑
j∈[Fw] RMSE,j , either directly or indirectly.

(ii) Fixing g and learning f by minimizing Rl,g .

(iii) Fixing f and learning g by minimizing RcWFL
l,λ .

LAC-cWFL acts as a continuous counterpart to LAC-dWFL
(Sugiyama & Uchida, 2025). Similar to LAC-dWFL, LAC-
cWFL unifies a broad range of methods, such as sequential
learning (comprising steps (i) and (ii)) and iterative learning
(comprising steps (ii) and (iii)) (Yoon et al., 2018; Mattei &
Frellsen, 2019; Ipsen et al., 2021; Josse et al., 2024; Le Mor-
van et al., 2020a; 2021; Ipsen et al., 2022; Sugiyama &
Uchida, 2025). Furthermore, various weakly supervised
learning methods can be applied to step (i) by utilizing
Xw as weak supervision (Wasserman & Lafferty, 2007; Li
et al., 2017; Kostopoulos et al., 2018; Ristovski et al., 2010;
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Hu et al., 2020; Berikov & Litvinenko, 2021; Cheng et al.,
2023). In Section 4, we perform a generalization error anal-
ysis of this unified class of learning algorithms, revealing
the mutual influences between g and f during learning and
the conditions under which WFL attains optimal models.

4. Theoretical analysis
4.1. Construction of an Analytical Tool

The formulation introduced in Section 3 and LAC-cWFL
correspond to those of discrete WFL (Sugiyama & Uchida,
2025). However, determining whether similar theoretical
analyses can be applied to them, as in the case of discrete
WFL, is not straightforward. This difficulty arises because
the analytical method for discrete WFL is derived using
the properties of R01,j , and the method cannot be applied
directly to continuous WFL. In discrete WFL, deriving an in-
equality that expresses the upper bound of |Rl(f)−Rl,g(f)|
in terms of R01,j(gj) and Rl(f) enabled discussions on
how g influences the learning of f and vice versa (Lemma
4.1 in (Sugiyama & Uchida, 2025)). Therefore, for con-
tinuous WFL, it is essential to identify an inequality that
expresses the upper bound of |Rl(f) − Rl,g(f)| in terms
of RMSE,j(gj) and Rl(f). The challenge is distinct from
Theorem 3.1, as the upper bound must explicitly depend on
Rl(f). Equation (3.8) in Theorem 3.1 does not express this
dependency.

We derive an inequality that resolves this issue. First, we
establish the following lemma, which is valid within a more
general framework that is independent of the definition of
qg

1. The proof is provided in Appendix C.2.

Lemma 4.1. For any measurable f ∈ F , qg(xw|xo) and l
bounded by Ul < ∞, the following inequality holds:

|Rl(f)−Rl,g(f)| ≤
(√

Rl(f) +
√
Rl,g(f)

)
×{

2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), qg(X

w|Xo))
]} 1

2 .

(4.9)

Here, DH denotes the Hellinger distance.

Although Lemma 4.1 has a broad scope, one of the our
goals is analyzing the relationship between the estima-
tion errors of g, represented by

∑
j∈[Fw] RMSE,j(gj), and

f , with the goal of constructing a theory that parallels
discrete WFL. To this end, we define qg as the PDF of
N (g(xo), σ2IFw×Fw) and derive the following lemma as

1Lemma 4.1 is valid for both discrete and continuous WFs,
and it remains applicable even when the feature estimation models
are probabilistic. However, this lemma cannot directly be used
to derive the results of discrete WFL presented in (Sugiyama &
Uchida, 2025). In contrast, the lemma has the potential to enable
a unified analysis of discrete WFL and continuous WFL. This
direction is explored in Appendix A.

a specific case of Lemma 4.1. The proof is provided in
Appendix C.3.

Lemma 4.2. Let qg be the PDF of N (g(xo), σ2IFw×Fw),
where σ2 ∈ R+. For any measurable f ∈ F , g ∈ G and l
bounded by Ul < ∞, the following inequality holds:

|Rl(f)−Rl,g(f)| ≤
(√

Rl(f) +
√
Rl,g(f)

)
×
{
2Ul

(
Cσ + 1

2σ2

∑
j∈[Fw] RMSE,j(gj)

)} 1
2

.
(4.10)

Equation (4.10) of Lemma 4.2 corresponds to the inequal-
ity in discrete WFL, which expresses the upper bound of
|Rl(f)−Rl,g(f)| in terms of R01,j(gj) and Rl(f) (Eq.(4.6)
in (Sugiyama & Uchida, 2025)). This parallel suggests that
Eq. (4.10) provide a sufficient foundation for deriving anal-
ogous analyses to those in discrete WFL. Using Lemma 4.2,
we theoretically elucidate the mutual influence of g and f
in LAC-cWFL. In Section 4.2, we analyze the learning of
f under LAC-cWFL’s step (ii), whereas in Section 4.3, we
focus on the learning of g under the step (iii).

4.2. Analysis of Learning Label Prediction Model f

This section examines the learning of f in LAC-cWFL’s
step (ii). As f in WFL utilizes the output of g as input, the
learning of f inherently depends on g. We theoretically
investigate how the estimation errors of g influence the
learning of f .

For theoretical analysis, we introduce the following defini-
tions. Let S := {(xi, yi)}ni=1 denote an ordinary dataset
and S := {(x̄w

i ,x
o
i , yi)}ni=1 a weak dataset, where both

datasets contain n ∈ N+ samples, and the i-th sample in S
and S corresponds to the same instance, for any i ∈ [n]. Let
R̂l and R̂l,g denote the empirical risks computed by sample
average over S and S, respectively. For any g ∈ G, the
empirical risk minimizer of LAC-cWFL’s step (ii) is defined
as follows:

fg,S := argminf∈F R̂l,g(f).

Using Lemma 4.2, the error bound for fg,S learned in LAC-
cWFL’s step (ii) is established in the following theorem.
The proof is provided in Appendix C.4.

Theorem 4.3. Suppose S and S are ordinary and weak
datasets consisting of n samples, respectively. Let qg be the
PDF of N (g(xo), σ2IFw×Fw), where σ2 ∈ R+. For any
measurable g ∈ G, Ll-Lipschitz continuous l bounded by
Ul < ∞ and δ ∈ (0, 1), the following inequality holds with
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probability at least 1− δ:

Rl,g(fg,S)−Rl(fF ) ≤

4
(
LlR

∗
n(F) + LlR

g
n(F) + Ul

√
log(4/δ)

2n

)
+
{
2
(
Rl(fF ) + 4LlR

∗
n(F) + 2Ul

√
log(4/δ)

2n

) 1
2

+
(
2Ul

(
Cσ + 1

2σ2

∑
j∈[Fw] RMSE,j(gj)

)) 1
2
}

×
{
2Ul

(
Cσ + 1

2σ2

∑
j∈[Fw] RMSE,j(gj)

)} 1
2

,

(4.11)

where fF := argminf∈F Rl(f) represents the true risk
minimizer in ordinary supervised learning.

Here, R∗
n(F) and Rg

n(F) denote the Rademacher com-
plexities associated with the distributions p∗(x) and
p∗(x

o)qg(x
w|xo), respectively, and represent the complex-

ity of F . For kernel ridge regression and multilayer per-
ceptrons, the order of the Rademacher complexity’s upper
bound is Op(1/n

1/2) (Mohri et al., 2018; Neyshabur et al.,
2015). In the subsequent discussions, R∗

n(F) and Rg
n(F)

are assumed to have this order. Additionally, we assume that
F is sufficiently expressive and that Rl(fF ) = 0. Given
that Xw

j is a set of finite decimal numbers, for any j ∈ [Fw]

and σ2 = (2π)−1, it follows that Cσ ≤ 0. Therefore, under
this mild assumption, Cσ will be ignored in the subsequent
discussion.

Theorem 4.3 establishes an error bound for learning f un-
der continuous WFL, which parallels the result for discrete
WFL (Theorem 4.2 in (Sugiyama & Uchida, 2025)). This
demonstrates that our framework successfully achieved re-
sults for learning f in continuous WFL, analogous to those
in discrete WFL. The main contributions of Theorem 4.3
are twofold:

The first contribution of Theorem 4.3 lies in elucidating
how the estimation errors of fixed g, measured by the MSE,
influence the convergence rate of f ’s generalization error
Rl,g(f) with respect to the number of training samples
n. Specifically, the orders of the first and second terms
on the RHS of Eq. (4.11) are Op(1/n

1/2) and Op(1/n
1/4),

respectively. Therefore, when
∑

j∈[Fw] RMSE,j(gj) is large,
the second term, which decreases more slowly, becomes
dominant.

The second contribution of Theorem 4.3 lies in its ability to
combine Eq. (4.11) with the theoretical bounds for learning
g in LAC-cWFL’s step (i), thereby enabling an analysis of
the effect of g’s learning on f ’s learning and the asymptotic
properties of sequential learning. For example, in the case
of WFs with missing data, if ĝj is obtained as an empirical
risk minimizer for RMSE,j , an error bound of RMSE,j(ĝj)
can be derived (e.g., Theorem 11.3 in (Mohri et al., 2018))
and subsequently incorporated into Eq. (4.11). This com-

bination demonstrates that learning g improves the error
bound’s order from Op(1/n

1/4) to Op(1/(nm)1/4), where
m ≤ n is the number of samples available for learning g.
Consequently, learning g improves convergence rates.

Additionally, this combination enables a consistent analysis
of sequential learning as represented by LAC-cWFL’s steps
(i) and (ii), thereby elucidating conditions for achieving
consistency as follows theorem. This theorem shows that
sequential learning is asymptotically sufficient under these
conditions. The proof is provided in Appendix C.5.

Theorem 4.4. Suppose that Xw
j is a set of finite-precision

decimals, for any j ∈ [Fw]. Assume the existence of true de-
terministic functions g∗j : X o → Xw

j exist for any j ∈ [Fw],
such that (g∗1 , . . . , g

∗
Fw) ∈ G and f∗ : X → Y such that

f∗ ∈ F . Furthermore, assume that l bounded by Ul < ∞
is Ll-Lipschitz continuous, that R∗

n(F) and Rg
n(F) asymp-

totically converge to 0 as n → ∞, and that for all j ∈ [Fw],
the number of samples available for learning gj tends to in-
finity as n → ∞. Then, using consistent methods for learn-
ing g and settings σ2 = (2π)−1 for qg, sequential learn-
ing under continuous WFL is consistent (i.e. as n → ∞,
Rl,g(fg,S) → Rl(fF )).

4.3. Analysis of Learning Feature Estimation Models g

This section examines the learning of g in the context of
LAC-cWFL’s step (iii). We aim to elucidate how the gen-
eralization performance and properties of f influence the
learning of g when the objective function RcWFL

l,λ is mini-
mized with f fixed.

LAC-cWFL’s step (iii) focuses on minimizing the two terms
on the RHS of Eq. (3.7) with respect to g. This requires
a distinct analytical approach compared to the single-risk
minimization in Section 4.2. In the analysis of discrete WFL
(Sugiyama & Uchida, 2025), structural risk minimization
(SRM) was employed to handle the minimization of mul-
tiple terms (Mohri et al., 2018). To develop a theoretical
framework of continuous WFL that corresponds in parallel
with that of discrete WFL, we analyze the learning of g
using SRM.

As a preparation, for any j ∈ [Fw], we intro-
duce the following definitions according to the theory
of discrete WFL (Sugiyama & Uchida, 2025). Let
lj denote the loss function for gj , calculated using
Xw

j . Define the datasets Sj := {(x̄w
ij ,x

o
i )}ni=1. Let

Rlj (gj) := Ep∗(x,y)p̄∗(x̄w
j |x,y)[lj(gj(X

o), Xw
j ))] represent

the expected risk of gj computed using Xw
j and R̂lj repre-

sent the empirical risk, which approximates Rlj by taking
the sample average over Sj . We assume that Rlj satisfies
either R01,j(gj) = Rlj (gj) or R01,j(gj) ≤ Rlj (gj) for any
gj , or that the optimal solutions of Rlj equal those of R01,j .
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For any r = (r1, . . . , rFw) ∈ RFw

+ define the following
hypothesis set:

G(r, S) = G1(r1, S1)× · · · × GFw(rFw , SFw),

where, Gj(rj , Sj) := {gj |gj ∈ Gj ∧ R̂lj (gj) ≤ rj},∀j ∈
[Fw]. In this section, Rl,g(f) is expressed as Rl,f (g)(≡
Rl,g(f)) to emphasize the optimization with respect to g.
The empirical risk of Rl,f (g) is described as R̂l,f (g)(≡
R̂l,g(f)). Using these definitions, the learning of g in LAC-
cWFL’s step (iii) is expressed as follows:

g
(r)

f,S
= arg min

g∈G(r,S)
R̂l,f (g). (4.12)

By applying Lemma 4.2, we derive the following error
bound for g(r)

f,S
. The proof is provided in Appendix C.6.

Theorem 4.5. Suppose S and S are ordinary and weak
datasets consisting of n samples, respectively. Let qg be the
PDF of N (g(xo), σ2IFw×Fw), where σ2 ∈ R+. For any
measurable label prediction model f ∈ F , l bounded by
Ul < ∞ and δ ∈ (0, 1), the following inequality holds with
probability at least 1− δ:

Rl,f (g
(r)

f,S
)−Rl(f) ≤(

4R∗
n(G̃l,f (r,S)) + 2Ul

√
log(2/δ)

2n

)
+
{
2
√

Rl(f)

+
(
2Ul

(
Cσ + 1

2σ2

∑
j∈[Fw] RMSE,j(g

(rj)

S,j
)
)) 1

2
}

×
{
2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(g
(rj)

S,j
)
)} 1

2

.

(4.13)

Here, gG(r,S),j := argmingj∈Gj(rj ,Sj)
RMSE,j(gj) and

G̃l,f (r, S) := {(xo, y) 7→ l(f(g(xo),xo), y) : g ∈
G(r, S)}.

The term RMSE,j(g
(rj)

S,j
) in Eq. (4.13) can be further upper-

bounded by defining Gj(rj , Sj) as the set of empirical
risk minimizers obtained through a learning method us-
ing Sj . Consider, for instance, the case where Xw

j de-
notes features with missing values, and the missingness
mechanism is missing completely at random (MCAR). As-
sume further that Gj is sufficiently expressive such that
mingj∈Gj

RMSE,j(gj) = 0, and that Y is a bounded inter-
val such that lMSE ≤ UlMSE

. Suppose that Gj(rj , Sj) is
defined as the set of empirical risk minimizers obtained us-
ing only the samples for which Xw

j is observed, where these
samples are independently and identically distributed. Then,
for any δ ∈ (0, 1), RMSE,j(g

(rj)

S,j
) can be upper bounded

with probability at least 1 − δ, as follows (Mohri et al.,

2018):

RMSE,j(g
(rj)

S,j
) ≤ 8UlMSE

R∗
n′
j
(Gj) + 2UlMSE

√
log(1/δ)

2n′
j

,

(4.14)

where n′
j denotes the number of training samples used

to obtain g
(rj)

S,j
. Under the assumption that the missing-

ness mechanism is MCAR, it follows that n′
j → ∞ as

n → ∞. Details are provided in Appendix C.7. Accord-
ingly, if Gj(rj , Sj) is defined as the set of ERM solutions
obtained by such a method achieving consistency, and if
the order of R∗

n(Gj) is Op(1/n
1/2), then the order of the

upper bound of RMSE,j(g
(rj)

S,j
) is also Op(1/n

1/2). More-
over, if R∗

n(Gj) → 0 as n → ∞, then it follows that
RMSE,j(g

(rj)

S,j
) → 0 as n → ∞. In the following discussion,

we assume that RMSE,j(g
(rj)

S,j
) can be upper bounded by a

probability inequality of the same form as Eq.(4.14).

Similar to the analysis of f ’s learning in Section 4.2, Theo-
rem 4.5 yields results that closely align with those of discrete
WFL (Theorem 4.4 in (Sugiyama & Uchida, 2025)). This
confirms that the analysis of g learning in LAC-cWFL’s step
(iii) aligns with its counterpart in discrete WFL.

Theorem 4.5 elucidates how the generalization performance
and properties of f affect the learning of g in continuous
WFL. Equation (4.13) expresses the effect of f ’s general-
ization error Rl(f) on the convergence rate of Rl,f ’s error
bound with n training samples. Specifically, the orders of
the first and second terms on the RHS of Eq. (4.13) are
Op(1/n

1/2) and Op(1/n
1/4), respectively. Therefore, as

Rl(f) increases, the slower-decreasing second term domi-
nates the reduction rate. Although Rl(f) affects the learning
of g and cannot be minimized directly, Theorem 3.1 demon-
strates that the two terms in RcWFL

l,λ , as defined in Eq. (3.7),
contribute to the minimization Rl(f). Consequently, a re-
duction in Rl(f) can be expected as a result of the iterative
learning process.

Furthermore, Theorems 4.3 and 4.5 reveal the conditions un-
der which the iterative learning composed of LAC-cWFL’s
steps (ii) and (iii) achieves consistency. The proof is pro-
vided in Appendix C.8.

Theorem 4.6. In addition to the conditions stated in Theo-
rem 4.4, assume that f obtained in LAC-cWFL’s step (ii) is
Lipschitz continuous. Furthermore, for any j ∈ [Fw], define
Gj(rj , Sj) as the set of empirical risk minimizers obtained
by methods that use Sj and are guaranteed to achieve con-
sistency. Moreover, suppose the Rademacher complexities
about g converge to 0 as n → ∞. Under these conditions,
the iterative learning composed of LAC-cWFL’s steps (ii)
and (iii) achieves consistency.

In the preceding discussion, for the sake of simplicity, the
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variance σ2 of qg was defined as a constant independent of
xo. In contrast, it is also possible to define this variance as a
function σ2(xo). In this case, for Theorem 3.1, Lemma 4.2,
Theorem 4.3, and Theorem 4.5, the inequalities presented
in each result continue to hold when σ2 in the upper bounds
is replaced by maxxo σ2(xo).

5. Experiments
In Section 4, it was theoretically demonstrated that sequen-
tial learning alone is sufficient for continuous WFL. In this
section, we investigate whether the error bound for f , de-
rived in Theorem 4.3, can adequately explain the relation-
ship between the number of training samples n and the
generalization error Rl,g(fg,S) in practical tasks. We adopt
the experimental methodology of discrete WFL (Sugiyama
& Uchida, 2025) to examine the relationship between them
across various estimation errors for g.

5.1. Experimental Settings

For real-world datasets, we utilize four datasets from
OpenML (Vanschoren et al., 2013): hls4ml lhc jets hlf
(Pierini et al., 2020), electricity (Harries et al., 2014), mv
(Luis, 2014), and Run or walk information (Viktor, 2017).
We refer to them as Jets, Electricity, Mv, and Run-or-Walk,
respectively. Details of these datasets are summarized in
Appendix F.1. Half of the samples in each dataset were used
as test data to estimate the expected risk. This experiment
focused on scenarios involving OFs alongside continuous
features with missing values as WFs. Here, the missing
mechanism was assumed to be Missing Completely At Ran-
dom, with a missing rate of 50% for any WFs. For g and f ,
we used two-layer perceptrons with hidden layers of width
500 and ReLU as an activation function, following the exper-
imental setup of discrete WFL (Sugiyama & Uchida, 2025).
Logistic loss is employed as l. Details of the experimental
settings are summarized in Appendix F.1. The experimental
results shown below are the average of 5 trials. The experi-
mental scripts used in this paper are available at the follow-
ing URL: https://github.com/KOHsEMP/continuous WFL

5.2. Impact of g on f ’s learning

We examines whether Theorem 4.3 can explain the learning
behavior of f with g fixed in real-world data. To verify this,
g must be created with several estimation errors. However,
precisely controlling estimation errors of g via learning al-
gorithms is challenging. In discrete WFL, since WFs are
discrete, this issue was addressed by creating randomly in-
correct models with certain error rates (Sugiyama & Uchida,
2025). In contrast, continuous WFL requires controlling the
MSE of g, making the same approach infeasible.

To address this limitation, we construct gj with MSE α ∈

R+ using the following sampling method to generate the
predicted value x̂w

j for an exact value xw
j , where j ∈ [Fw]:

β ∼ Bern(1/2),where β ∈ {0, 1},
x̂w
j ∼ β ×N (xw

j + β
√
α+ (1− β)

√
α, α/k2),

(5.15)

where k ∈ R+. In this study, k is set to 2. This approach
allows precise control over the estimation errors of g, en-
abling an investigation of f ’s learning results across varying
levels of g’s errors.

Figure 5.1 illustrates the relationship between the number
of training samples n and the generalization error Rl,g(f)
when f trained with g of varying estimation errors. Here,
the MSE of g is controlled within the range [0.001, 0.5].
The results indicate that lower estimation error for g result
in a faster decrease in Rl,g(f) as n increases.

Additionally, Figure 5.2 compares the observed general-
ization error Rl,g(f) with the error bound in Theorem 4.3.
From Figure 5.2, the decrease in Rl,g(fg,S) and the error
bound shows similar behavior, with greater reductions when
the MSE of g is smaller. This indicates that Theorem 4.3
can well explain the relationship between g’s MSE and
Rl,g(fg,S). Discrepancies between Rl,g(fg,S) and the er-
ror bound can be caused by the fact that the error bound
does not account for the importance of WFs in predicting
Y , as in the case of discrete WFL (Sugiyama & Uchida,
2025). While our derived bound cannot account for the
feature importance of WFs, it captures fundamental charac-
teristics common across diverse scenarios. Additionally, our
results are considered to provide an important foundation
for deriving error bounds that reflect the feature importance
of WFs.

6. Conclusion
In this paper, we presented a unified framework for the
formulation and theoretical analysis of continuous WFL.
First, we proposed a formulation of continuous WFL that
is capable of handling arbitrary continuous WFs. We val-
idated this formulation by demonstrating that minimizing
the proposed objective function helps to the label predic-
tion model f to capture the true input-output relationships.
Under this formulation, we conducted generalization error
analyses for LAC-cWFL, which encompasses both the fea-
ture estimation models g and f . Through this analysis, we
provided a detailed understanding of how g and f affect
each other’s error bound in finite-sample settings. Further-
more, we identified the conditions under which sequential
and iterative learning strategies within LAC-cWFL achieve
consistency. Finally, through numerical experiments using
real-world datasets, we confirmed that our theoretical find-
ings align well with the actual learning behavior. The results
of this study are shown to correspond parallelly with the
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Figure 5.1. The relationship between Rl,g(fg,S) and the training data size n for various MSEs of g.
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Figure 5.2. A comparison between Rl,g(fg,S) for various MSEs of g and the error bound derived in Theorem 4.3.

findings of discrete WFL, which addresses discrete WFs.
Thus, our findings demonstrate that the WFL framework
operates universally for both discrete and continuous WFs,
offering theoretical support for a wide range of application
domains where low-quality features are prevalent.

Impact Statement
Our paper presents a formalization and theoretical analysis
of continuous WFL that accommodates arbitrary continu-
ous WFs. The relationship revealed in this study between
low-quality continuous features and the predictive perfor-
mance in downstream tasks is also relevant to discussions
on the safety of machine learning. For example, our find-
ings may inform questions such as: what kinds of WFs tend
to induce models with socially undesirable bias, or which
WFs contribute to model vulnerabilities. The theoretical re-
sults presented in this work are considered to offer a critical
foundation for such discussions.
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A. Considerations for the theoretical integration of discrete WFL and continuos WFL
The results presented in the main body of this paper provide a unified theoretical foundation for WFL in a wide range of
scenarios where some features are continuous WFs. Combined with the analysis results from discrete WFL (Sugiyama
& Uchida, 2025), our findings clarify numerous theoretical properties of WFL across various problem settings. However,
these frameworks do not address situations where discrete and continuous WFs coexist. This limitation arises because
discrete WFL represents the estimation errors of the feature estimation models g using the 0-1 loss, whereas continuous
WFL expresses them using the mean squared error (MSE).

On the other hand, Lemma 4.1, which is fundamental to the results in this paper, is applicable regardless of the nature of
the WFs (discrete or continuous). Hence, in this section, we explore a methodology for extending Lemma 4.1 to enable an
analysis of an integrated WFL framework that unifies discrete and continuous WFL. We aim to explore how the theoretical
framework established for discrete WFL and continuous WFL can be extended to the broader case of integrated WFL, which
encompasses arbitrary WFs regardless of whether they are discrete or continuous.

Most of the notations used here are consistent with those in the main body of this paper. By contrast, since Lemma 4.1
assumes that the feature estimation model is probabilistic model, we define the feature estimation model as probabilistic
model q(xw|xo) in this section. Thus, the discussion in this section can also be interpreted as a generalization of the
analysis of discrete WFL and continuous WFL with respect to feature estimation models, which were previously restricted
to deterministic models.

A.1. Formulation of Integrated WFL

In this section, we formulate integrated WFL based on risk minimization. In integrated WFL, the objective is to improve the
generalization performance of downstream tasks and restore the explainability lost due to the presence of WFs by accurately
estimating the exact values of WFs using a probabilistic model q. To achieve this, we aim to learn a label prediction model f
and a feature estimation model q that minimize the following two objectives. The first objective is the generalization error of
f , evaluated by the following risk:

Rl,q(f) := Ep∗(xo,y)q(xw|xo)[l(f(X), Y )]. (A.16)

The second objective is the estimation error of q, evaluated by the following Hellinger divergence:

Ep∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]
. (A.17)

Finally, the objective function for integrated WFL is defined as a linear combination of these two terms:

RiWFL
l,λ (f, q) := Rl,q(f) + λEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]
, λ ∈ R+. (A.18)

The objective function RiWFL
l,λ is justified by the following theorem, the proof of which can be found in Appendix D.1.

Theorem A.1. For any measurable f ∈ F , probabilistic model q(xw|xo) and l bounded by Ul, the following inequality
holds:

Rl(f) ≤ Rl,q(f) + 2Ul(Ep∗(xo,y)[D
2
H(p∗(x

w|Xo, Y ), q(xw|Xo))])
1
2 . (A.19)

Theorem A.1 demonstrates that minimizing the two terms defining RiWFL
l,λ contributes to construction of f that captures

the true input-output relationship. This result validates the formulation of integrated WFL in a manner consistent with the
discrete and continuous WFL frameworks, affirming the justification of the objective function under this formulation.

Next, we define a generalized class of learning algorithms for integrated WFL, analogous to LAC-dWFL (Sugiyama &
Uchida, 2025) and LAC-cWFL, as follows:
Definition A.2 (LAC-iWFL). The learning algorithm class for integrated WFL (LAC-iWFL) refers to the class of learning
algorithms that learn the feature estimation model q and the label prediction model f in integrated WFL through any
combination of the following three steps: (i) Learning q by directly or indirectly minimizing the second term on the RHS of
Eq. (A.18). (ii) Learning f with a fixed q using Rl,q as the objective function. (iii) Learning q with a fixed f using RiWFL

l,λ

as the objective function.

The next section analyze the generalization error of LAC-iWFL.
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A.2. Theoretical Analysis for Learning f with fixed q

In this section, we analyze the generalization error when learning f using a fixed q as part of LAC-iWFL’s step (ii).
For theoretical analysis, we introduce some definitions. Similar to Section 4.2, we define the ordinary dataset S =
{(xi, yi)}i=1,...,n and the weak dataset S = {(x̄w

i ,x
o
i , yi)}i=1,...,n, where the i-th sample in S and S correspond to the

same instance for any i ∈ [n]. The empirical risks R̂l and R̂l,g are computed by the sample average over S and S,
respectively. For any q, the empirical risk minimizer obtained from LAC-iWFL’s step (ii) is defined as follows:

fq,S := argminf∈F R̂l,q(f).

Based on Lemma 4.1, the generalization error bound for fq,S , learned through LAC-iWFL’s step (ii) , is derived in the
following theorem. The proof is provided in Appendix D.2.
Theorem A.3. Suppose S and S are ordinary and weak datasets consisting of n samples, respectively. For any measurable
g ∈ G, Ll-Lipschitz continuous l bounded by Ul < ∞ and δ ∈ (0, 1), the following inequality holds with probability at
least 1− δ:

Rl,q(fq,S)−Rl(fF )

≤ 4

(
LlR

∗
n(F) + LlR

q
n(F) + Ul

√
log(4/δ)

2n

)

+

{
2

(
Rl(fF ) + 4LlR

∗
n(F) + 2Ul

√
log(4/δ)

2n

) 1
2

+
(
2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]) 1
2

}

×
(
2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]) 1
2

.

(A.20)

Here, fF := argminf∈F Rl(f) is the true risk minimizer in ordinary supervised learning. Also, R∗
n(F) and Rq

n(F) denote
the Rademacher complexities calculated using p∗(x, y) and p∗(x

o, y)q(xw|xo), respectively.

Theorem A.3 allows for the analysis of generalization error in learning f while accounting for the estimation error of the
probabilistic feature estimation model q in scenarios involving mixed discrete and continuous WFs. This result elucidates
the effect of q’s estimation error on the error bound for f . We assume that F is sufficiently expressive and that Rl(fF ) = 0.
Additionally, we assume that the orders of R∗

n(F) and Rq
n(F) are Op(1/n

1/2). Then, the order of the first term on the RHS
of Eq. (A.20) is Op(1/n

1/2), while the order of the second term is Op(1/n
1/4). Therefore, Eq. (A.20) implies that larger

the estimation error in q, as measured by the Hellinger distance, result in the slower-converging second term dominating the
error bound, thereby slowing the rate of error reduction.

While Theorem A.3 clarifies the impact of q’s estimation error on learning f , constructing a parallel discussion analogous to
Section 4.2 remains challenging. This difficulty arises because the Hellinger distance, used to measure q’s estimation error,
evaluates the divergence between the conditional joint distributions Xw|Xo, Y and Xw|Xo, without assessing estimation
errors for individual WFs. Moreover, to the best of ours’ knowledge, there are no theoretically guaranteed methods for
learning q from Xw as weak supervision that their theories can be combined with Theorem A.3, as in Theorem 4.3. For the
reasons outlined above, it is currently challenging to conduct further theoretical analysis of integrated WFL. This limitation
also applies to the learning of q with fixed f in LAC-iWFL’s step (iii).

In contrast, the discussions above can also be extended to scenarios where q’s estimation error is measured using the
Kullback-Leibler (KL) divergence DKL(·||·). Specifically, integrated WFL can be formulated with the following objective
function, allowing for similar discussions:

RiWFL
l,λ,KL(f, q) := Rl,q(f) + λDKL(p∗(X

w|Xo, Y )||q(Xw|Xo)), λ ∈ R+. (A.21)

This is because, by utilizing the following inequality, we can derive equivalent inequalities corresponding to Theorem A.1
and Theorem A.3, which evaluates the estimation error of q in terms of the KL divergence:

Ep∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]
≤ Ep∗(xo,y)

[ ∫
Xw

p∗(x
w|Xo, Y ) log

p∗(x
w|Xo, Y )

q(xw|Xo)
dxw

]
= DKL(p∗(X

w|Xo, Y )||q(Xw|Xo)).

(A.22)
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This suggests that the integrated WFL framework is compatible with methods that learn q as a maximum likelihood
estimation problem. However, it remains challenging to express the error bound of f in a form that depends on divergences
individually evaluating the estimation error for each WF. Addressing these challenges in the theoretical analysis of integrated
WFL will be an important direction for future research.

B. Impute-then-Regress: the Case All Features Are Continuous and Can Be Missing
The results presented in the main body of this paper provide a unified theoretical framework for WFL that handles datasets
where some features are continuous WFs, clarifying several theoretical properties. However, the analysis in Section 4 has a
limitation: it cannot accommodate cases where all features are WFs. This limitation arises because the analysis in Section 4
assumes that the exact values of WFs are estimated using OFs. This issue is particularly significant in the context of ItR
problems. In real-world scenarios, it is not uncommon for all features to be subject to missingness. Moreover, the latest
theoretical studies on ItR assume scenarios where all features are continuous and may be missing (Le Morvan et al., 2021).
Therefore, to conduct a comprehensive generalization error analysis for ItR from the perspective of continuous WFL, it is
necessary to extend the analysis in Section 4 to include cases where “all features are continuous and may be missing.”

In this section, we extend the analysis in Section 4 to conduct a finite-sample generalization error analysis for the case where
“all features are continuous and may be missing.” These results correspond in parallel with those presented in Section 4. The
findings of this section, combined with the results of Section 4 and the theoretical analysis of discrete WFL (Sugiyama
& Uchida, 2025), establish a unified generalization error analysis framework applicable to a broad range of ItR problem
settings.

B.1. Preliminary

To address cases where all features may be missing, we introduce definitions partially different from those in the Main
Body, adhering to the definitions of the latest theoretical study on ItR (Le Morvan et al., 2021). Let X = (X1, . . . , Xd)
denote the sequence of random variables representing the complete input features without missingness, and let Y denote the
random variable representing the downstream task label. Here, d represents the dimensionality of the input features. The
sets of possible values for X and Y are denoted by X =

∏d
j=1 Xj ⊆ Rd and Y , respectively. Define X = (X1, . . . , Xd)

as the sequence of random variables representing the incomplete input features that may contain missing values. The set of
possible values for X is denoted by X =

∏d
j=1(Xj ∪ {NA}), where NA indicates a missing value. Let M = (M1, ...,Md)

represent the sequence of random variables indicating the missingness of features. The set of possible values for M is
{0, 1}d. For any j ∈ [d], Mj = 0 indicates that Xj is observed (i.e., Xj = Xj), while Mj = 1 indicates that Xj is missing
(i.e., Xj = NA). By definition, X is uniquely determined by X and M . Additionally, M can be uniquely determined from
X . From this fact, we omit M when both X and M are arguments. the realizations of X , Y , M , and X are represented as
x, y, m and x̄, respectively. The true joint probability distribution of X , Y and M is denoted as p∗(x, y,m). All samples
(x, y,m) are assumed to be independently drawn from p∗(x, y,m). For a given m, let obs(m) ⊆ {1, . . . , d} denote the
set of indices corresponding to observed features, and mis(m) ⊆ {1, . . . , d} denote the set of indices corresponding to
missing features.

Define the label prediction model as f ∈ F : X → Y , where F is the hypothesis class for label prediction models. Define
the feature imputation models g = (g1, . . . , gd) ∈ G1 × · · · × Gd : X × {0, 1}d → X as follows:

gj =

{
Xj if Mj = 0

ϕ
(M)
j (Xobs(M)) if Mj = 1

, (B.23)

where ϕ
(M)
j : Xobs(M) → Xj and Gj represents the hypothesis class of feature imputation models for the j-th feature. The

PDF associated with g is denoted by qg(xmis(m)|xobs(m),m).

B.2. Formulation

we formalize ItR in the scenario where all features are continuous and potentially missing so that it corresponds in parallel to
the discussion in Section 3.1. ItR aims to achieve two main goals: improving the generalization performance of downstream
tasks and restoring the interpretability lost due to missing values. Consequently, we aim to learn f and g that minimize the
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following two risks. The first risk evaluates the generalization error of the label prediction model f :

Rl,g(f) := Ep∗(y,m)qg(x|m,y)[l(f(X), Y )] = Ep∗(x,m,y)[l(f(g(X)), Y )]. (B.24)

The second risk evaluates the estimation error of the feature imputation models g under specific missing patterns:

R
(m)
MSE,j(gj) := Ep∗(x|m)[lMSE(Xj − gj(X))] = Ep∗(x|m)[lMSE(Xj − ϕ

(m)
j (Xobs(m)))],∀j ∈ [d], (B.25)

where lMSE(y, y
′) = (y − y′)2 represents the mean squared error (MSE). Finally, the objective function for ItR with only

continuous and potentially missing features is defined as a linear combination of these risks:

RItR
l,λ (f, g) := Rl,g(f) + λEp∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)

]
, λ ∈ R+. (B.26)

Theorem 3.1, which corresponds to the formalization involving OFs and continuous WFs, can be generalized to the ItR
framework. Consequently, the validity of the formalization with the objective function RItR

l,λ in the current setting is
demonstrated as the following theorem. The proof is provided in Appendix E.1.

Theorem B.1. Let qg be the PDF of N (gmis(m)(xobs(m)), σ
2I|mis(m)|×|mis(m)|), where σ ∈ R+. For any measurable

f ∈ F , g ∈ G, and l bounded by Ul < ∞, the following inequality holds:

Rl(f) ≤ Rl,g(f) + Ul

{
1

2

(
C ′

σ +
1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)

])} 1
2

, (B.27)

where C ′
σ = Ep∗(x,y,m)[p∗(Xmis(M)|Xobs(M), Y,M)] + Ep∗(m)[

1
2 log(2π)

|mis(M)|σ2|mis(M)|].

According to the definition of C ′
σ, when for any j ∈ [d], Xj is a set of finite-precision decimals (in this case,

Ep∗(x,y,m)[p∗(Xmis(M)|Xobs(M), Y,M)] ≤ 0 holds), and qg is defined with σ2 = (2π)−1, it follows that C ′
σ ≤ 0.

Thus, under this mild assumption, C ′
σ can be disregarded.

Next, we define a general class of learning algorithms for ItR, analogous to LAC-cWFL, as follows:

Definition B.2 (LAC-ItR). The learning algorithm class for Impute then Regress (LAC-ItR) refers to the set of algorithms
for learning the feature imputation model g and the label prediction model f in ItR using one or a combination of the
following three steps:

(i) Learning g by directly or indirectly minimizing the second term on the RHS of Eq. (B.26).

(ii) Learning f using Rl,g as the objective function while fixing g.

(iii) Learning g using RItR
l,λ as the objective function while fixing f .

Analogous to LAC-cWFL, LAC-ItR encompasses a wide range of methods, including sequential learning, which involves
steps (i) and (ii), and iterative learning, which alternates between steps (ii) and (iii) (Yoon et al., 2018; Mattei & Frellsen,
2019; Ipsen et al., 2021; Josse et al., 2024; Le Morvan et al., 2020a; 2021; Ipsen et al., 2022). In the following sections, we
provide a generalization error analysis for this class of learning algorithms.

B.3. Deriving Analysis Inequalities

To conduct a theoretical analysis for ItR involving continuous and potentially missing features, analogous to Section 4, it is
necessary to derive results corresponding to Lemmas 4.1 and 4.2. In fact, the proofs of these lemmas can be extended to
the problem setting of this section, leading to the following two lemmas. The first lemma assumes the use of an arbitrary
probabilistic model for missing value imputation and corresponds to Lemma 4.1 in parallel. The proof is provided in
Appendix E.2.
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Lemma B.3. For any measurable probabilistic model q(xmis(m)|xobs(m),m)), f ∈ F and l bounded by Ul < ∞, the
following inequality holds:

|Rl(f)−Rl,g(f)|

≤
(√

Rl(f) +
√

Rl,g(f)
)

×
{
2UlEp∗(m)p∗(xobs(m),y|m)

[{
DH(p∗(Xmis(M)|Xobs(M), Y,M), q(Xmis(M)|Xobs(M),M))

}2]} 1
2

.

(B.28)

When the probabilistic model q(xmis(m)|xobs(m),m)) is defined as the PDF of
N (gmis(m)(xobs(m)), σ

2I|mis(m)|×|mis(m)|), where g is a deterministic feature imputation model and σ ∈ R+,
the second lemma holds. The proof is provided in Appendix E.3.

Lemma B.4. Let qg be the PDF of N (gmis(m)(xobs(m)), σ
2I|mis(m)|×|mis(m)|), where σ ∈ R+. For any measurable

f ∈ F , g ∈ G and l bounded by Ul < ∞, the following inequality holds:

|Rl(f)−Rl,g(f)| ≤
(√

Rl(f) +
√

Rl,g(f)
){

2Ul

(
C ′

σ +
1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)]

])} 1
2

, (B.29)

where, C ′
σ = Ep∗(x,y,m)[p∗(Xmis(M)|Xobs(M), Y,M)] + Ep∗(m)[

1
2 log(2π)

|mis(M)|σ2|mis(M)|].

Lemma B.4 correspond to Lemma 4.2. While Lemma B.3 is more broadly applicable than Lemma B.4, our analysis, similar
to Section 4, focuses on the relationship between the estimation errors of g represented by MSE and f . Hence, we proceed
by using Lemma B.4 with qg set as the PDF of N (gmis(m)(xobs(m)), σ

2I|mis(m)|×|mis(m)|). This setting does not restrict
the learning method for g, preserving the generality of our analysis for deterministic models g.

B.4. Theoretical Analysis for Learning f with fixed g

In this section, we analyze the learning of f by minimizing Rl,g in LAC-ItR’s step (ii) with g fixed. We first assume that n
samples {(xi, yi,mi)}ni=1 are independently drawn from p∗(x, y,m). The ordinary dataset and weak dataset are defined
as S := {(xi, yi)}ni=1 and S := {(x̄i, yi,mi)}ni=1, respectively. Here, the i-th samples in S and S correspond to the same
instance, for any i ∈ [n]. Hereafter, R̂l and R̂l,g denote the empirical risks that approximate Rl and Rl,g by sample averages
based on S and S, respectively. For any g ∈ G, the empirical risk minimizer obtained from LAC-ItR’s step (ii) is defined as
follows:

fg,S := argminf∈F R̂l,g(f).

From Lemma 4.2, the error bound for fg,S obtained using LAC-ItR’s step (ii) is derived in the following theorem. The proof
is provided in Appendix E.4.

Theorem B.5. Let qg be the PDF of N (gmis(m)(xobs(m)), σ
2I|mis(m)|×|mis(m)|), where σ ∈ R+. Let S and S represent

the ordinary dataset and weak dataset, respectively, consisting of n samples. For any measurable g ∈ G, Ll-Lipschitz
continuous l bounded by Ul < ∞ and δ ∈ (0, 1), the following inequality holds with probability at least 1− δ:

Rl,g(fg,S)−Rl(fF )

≤ 4

(
LlR

∗
n(F) + LlR

g
n(F) + Ul

√
log(4/δ)

2n

)

+

{
2

(
Rl(fF ) + 4LlR

∗
n(F) + 2Ul

√
log(4/δ)

2n

) 1
2

+

(
2Ul

(
C ′

σ +
1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)]

])) 1
2
}

×
{
2Ul

(
C ′

σ +
1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)]

])} 1
2

.

(B.30)
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Here, fF := argminf∈F Rl(f) is the true risk minimizer in ordinary supervised learning, and C ′
σ =

Ep∗(x,y,m)[p∗(Xmis(M)|Xobs(M), Y,M)] + Ep∗(m)[
1
2 log(2π)

|mis(M)|σ2|mis(M)|].

According to the definition of C ′
σ, when for any j ∈ [d], Xj is a set of finite-precision decimals (In this case,

Ep∗(x,y,m)[p∗(Xmis(M)|Xobs(M), Y,M)] ≤ 0 holds), and qg is defined with σ2 = (2π)−1, it follows that C ′
σ ≤ 0.

Thus, under this mild assumption, C ′
σ can be disregarded in discussions concerning error bounds.

Theorem B.5 parallels the result in Theorem 4.3 Therefore, it provides theoretical insights equivalent to those discussed in
Section 4.2 for ItR involving only continuous missing features, elucidating the influence of g on the learning efficiency of f .
This result further reveals conditions under which sequential learning in the current setting becomes consistent, as follows.
The proof is shown in Appendix E.5.

Theorem B.6. Suppose Xj is a set of finite-precision decimals for any j ∈ [d]. Assume the existence of true deterministic
functions g∗j : X × {0, 1}d → Xj ,∀j ∈ [d], such that (g∗1 , . . . , g

∗
d) ∈ G and f∗ : X → Y such that f∗ ∈ F . Additionally,

assume that l is Ll-Lipschitz continuous, that R∗
n(F) and Rg

n(F) asymptotically converge to 0 as n → ∞, and that for
all j ∈ [d], the number of samples available for learning gj tends to infinity as n → ∞. Under these conditions, using
consistent methods for learning g and setting σ2 = (2π)−1 in qg, sequential learning in ItR becomes consistent, i.e., as
n → ∞, Rl,g(fg,S) → Rl(fF ).

B.5. Theoretical Analysis for Learning g with fixed f

This section analyzes the learning of g by minimizing RItR
l,λ (f, g) in LAC-ItR’s step (iii) while f is fixed. To conduct a

similar analysis as in Section 4.3, we introduce the following definitions.

Definition B.7. Let p̂(m) denote the empirical distribution of M computed from a finite number of samples. For any
r = (r1, . . . , rd) ∈ Rd

+ and any S, defined the following hypothesis set:

G(r, S) = G1(r1, S1)× · · · × Gd(rd, Sd),

where,Gj(rj , Sj) :=
{
gj |gj ∈ Gj ∧ Ep̂(m\j)

[
R̂

(M\j ,Mj=1)

MSE,j (gj)
]
≤ rj

}
,

Sj := {x̄i|mij = 0, i ∈ [d]},∀j ∈ [d].

Here, \j represents the index set excluding j, and R̂
(M\j ,Mj=1)

MSE,j denotes the empirical risk approximating R
(M\j ,Mj=1)

MSE,j by
calculating the sample average over Sj .

The learning of g under LAC-ItR’s step (iii) is then expressed as follows:

g
(r)

f,S
:= [g

(rd)

S,d
, . . . , g

(rd)

S,d
]

where g
(rj)

S,j
:= arg min

gj∈Gj(rj ,Sj)
Ep̂(m\j)

[
R̂

(M\j ,Mj=1)

MSE,j (gj)
]
, ∀j ∈ [d]. (B.31)

Under these definitions, the following theorem holds for the case where the missing mechanism is Missing Completely At
Random (MCAR). The proof is provided in Appendix E.6.

Theorem B.8. Let qg be the PDF of N (gmis(m)(xobs(m)), σ
2I|mis(m)|×|mis(m)|), where σ ∈ R+. Suppose S and S

represent the ordinary dataset and weak dataset, respectively, consisting of n samples, and the missing mechanism is MCAR.
For any measurable f ∈ F , l bounded by Ul < ∞ and δ ∈ (0, 1), the following inequality holds with probability at least
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1− δ:

Rl,f (g
(r)

f,S
)−Rl(f)

≤ 2

(
R∗

n(G̃j(rj , Sj)) + Ul

√
log((d+ 1)/δ)

2n

)

+

{
2
√

Rl(f) +

(
2Ul

(
C ′

σ +
1

2σ2

(
Ep(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j

(
gG(r,S),j

)]

+ 4R∗
n(G̃j(rj , Sj)) + 2Ul

√
log((d+ 1)/δ)

2n

))) 1
2
}

×
{
2Ul

(
C ′

σ +
1

2σ2

(
Ep(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j

(
gG(r,S),j

)]
+ 4R∗

n(G̃j(rj , Sj)) + 2Ul

√
log((d+ 1)/δ)

2n

))} 1
2

.

(B.32)

Here, G̃j(rj , Sj) := {(x,m) 7→ lMSE(xj , gj(x̄,m)) : gj ∈ Gj(rj , Sj)}, C ′
σ =

Ep∗(x,y,m)[p∗(Xmis(M)|Xobs(M), Y,M)] + Ep∗(m)[
1
2 log(2π)

|mis(M)|σ2|mis(M)|], and gG(r,S),j :=

argmingj∈Gj(rj ,Sj)
Ep(m)

[∑
j∈mis(M) R

(M)
MSE,j

(
gj
)]

.

Theorem B.8 parallels Theorem 4.5. Hence, it provides theoretical insights equivalent to Section 4.3 regarding the influence
of f on the learning of g under MCAR assumptions for ItR settings with only continuous missing features. Additionally,
Theorems B.5 and B.8 elucidate the conditions under which iterative learning achieves consistent when all features are
continuous and potentially subject to missingness, as follows: The proof is provided in Appendix E.7.

Theorem B.9. In addition to the conditions stated in Theorem B.6, suppose f obtained in LAC-ItR’s step (ii) be Lipschitz
continuous, and the Rademacher complexities about g converge to 0 asymptotically as n → ∞. Under these conditions, the
iterative learning in LAC-ItR’s steps (ii) and (iii) achieves consistency.

As in Section 4, for the sake of simplicity, the variance σ2 of qg is defined in this section as a constant independent of xo, but
it is also possible to define this variance as a function σ2(xo) that depends on xo. In this case, Theorem B.1, Lemma B.4,
Theorem B.5, and Theorem B.8 still hold, with each occurrence of the constant σ2 in the corresponding upper bounds
replaced by maxxo σ2(xo).

C. Proofs for Main Body
C.1. Proof of Theorem 3.1

In the corresponding theorem for the formulation of discrete WFL (Theorem 3.1 in (Sugiyama & Uchida, 2025)) derives an
upper bound on the 0-1 loss with respect to gj using the fact that the WFs are discrete and that qg is defined as a deterministic
probability distribution. In contrast, for continuous WFL, taking into account the continuity of WFs, we define qg as a
Gaussian distribution. By leveraging the definition, we derive the term including the MSE with respect to gj as being
upper-bounded by Rl(f)−Rl,g(f).
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Proof of Theorem 3.1. For any measurable f ∈ F , g ∈ G, and l bounded by Ul < ∞, the following inequality holds:

Rl(f)−Rl,g(f) = Ep∗(x,y)[l(f(X), Y )]− Ep∗(xo,y)qg(xw|xo)[l(f(X), Y )]

= Ep∗(xo,y)

[ ∫
Xw

l(f(xw,Xo), Y ){p∗(xw|Xo, Y )− qg(x
w|Xo)}dxw

]
≤ UlEp∗(xo,y)

[ ∫
Xw

{p∗(xw|Xo, Y )− qg(x
w|Xo)}dxw

]
≤ UlEp∗(xo,y)

[√
1

2

∫
Xw

p∗(xw|Xo, Y ) log
p∗(xw|Xo, Y )

qg(xw|Xo)
dxw

]

≤ Ul

{
1

2
Ep∗(x,y)

[
log

p∗(X
w|Xo, Y )

qg(Xw|Xo)

]} 1
2

= Ul

{
1

2
(LLp∗ − Ep∗(x,y)[log qg(X

w|Xo)])

} 1
2

. (C.33)

Here, LLp∗ = Ep∗(x,y)[log p∗(X
w|Xo, Y )]. In the first inequality, the condition l(y, y′) ≤ Ul,∀y, y′ ∈ Y is used. The

second inequality employs Pinsker’s inequality, while the third uses Jensen’s inequality.

From the definition of qg , it follows that −Ep∗(x,y)[log qg(X
w|Xo)] can be reformulated as follows:

−Ep∗(x)[log qg(X
w|Xo)] = log

√
(2π)Fwσ2Fw +

1

2σ2
Ep∗(x)[(X

w − g(Xo))⊤(xw − g(Xo))]

= log
√
(2π)Fwσ2Fw +

1

2σ2

∑
j∈[Fw]

Ep∗(x)[(X
w
j − gj(X

o))2].

= log
√
(2π)Fwσ2Fw +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj).

Substituting this result into Eq. (C.33), we obtain:

Rl(f)−Rl,g(f) ≤ Ul

{
1

2

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj)

)} 1
2

. (C.34)

Hence, Theorem 3.1 is established.

C.2. Proof of Lemma 4.1

In the corresponding lemma for the theoretical analysis of discrete WFL (Lemma 4.1 in (Sugiyama & Uchida, 2025))
derives an upper bound on the 0-1 loss with respect to gj using the fact that the WFs are discrete and that qg is defined as
a deterministic probability distribution. In contrast, the analysis of continuous WFL cannot rely on these properties. To
address this, we first derive Lemma 4.1, and by defining qg as a Gaussian distribution, we subsequently derive Lemma 4.2,
which plays a central role in the theoretical analysis of continuous WFL.
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Proof of Lemma 4.1. The LHS of Eq. (4.9) can be upper-bounded as follows:

|Rl(f)−Rl,g(f)|
= |Ep∗(x,y)[l(f(X), Y )]− Ep∗(xo,y)qg(xw|xo)[l(f(X), Y )]|

=

∣∣∣∣∣Ep∗(xo,y)

[ ∫
Xw

l(f(xw,Xo), Y ){p∗(xw|Xo, Y )− qg(x
w|Xo)}dxw

]∣∣∣∣∣
≤ Ep∗(xo,y)

[ ∫
Xw

l(f(xw,Xo), Y )|p∗(xw|Xo, Y )− qg(x
w|Xo)|dxw

]
= Ep∗(xo,y)

[ ∫
Xw

l(f(xw,Xo), Y )

(√
p∗(xw|Xo, Y ) +

√
qg(xw|Xo)

)
·
∣∣∣∣√p∗(xw|Xo, Y )−

√
qg(xw|Xo)

∣∣∣∣dxw

]
= Ep∗(xo,y)

[ ∫
Xw

l(f(xw,Xo), Y )
√
p∗(xw|Xo, Y )

∣∣∣∣√p∗(xw|Xo, Y )−
√

qg(xw|Xo)

∣∣∣∣dxw

]
+ Ep∗(xo,y)

[ ∫
Xw

l(f(xw,Xo), Y )
√
qg(xw|Xo)

∣∣∣∣√p∗(xw|Xo, Y )−
√

qg(xw|Xo)

∣∣∣∣dxw

]

≤
{
Ep∗(x,y)[{l(f(X), Y )}2]

(a1)

· Ep∗(xo,y)

[ ∫
Xw

∣∣∣∣√p∗(xw|Xo, Y )−
√
qg(xw|Xo)

∣∣∣∣2dxw

]
(a2)

} 1
2

+

{
Ep∗(xo,y)qg(xw|xo)[{l(f(X), Y )}2]

(a3)

· Ep∗(xo,y)

[ ∫
Xw

∣∣∣∣√p∗(xw|Xo, Y )−
√
qg(xw|Xo)

∣∣∣∣2dxw

]
(a2)

} 1
2

. (C.35)

Here, in the second inequality, Cauchy-Schwarz inequality is used since l, p∗ and qg are measurable functions.

The terms (a1) and (a3) in Eq. (C.35) can be bounded as follows:

(a1) = Ep∗(x,y)[{l(f(X), Y )}2] = Ep∗(x,y)[{l(f(X), Y )}2 − 0]

≤ 2UlEp∗(x,y)[l(f(X), Y )] = 2UlRl(f). (C.36)

(a3) = Ep∗(xo,y)qg(xw|xo)[{l(f(X), Y )}2] = Ep∗(xo,y)qg(xw|xo)[{l(f(X), Y )}2 − 0]

≤ 2UlEp∗(xo,y)qg(xw|xo)[l(f(X), Y )] = 2UlRl,g(f). (C.37)

Here in terms (a1) and (a3), the fact that the function x 7→ x2 is 2Ul-Lipschitz continuous on the interval [0, Ul] was utilized.
Applying the above inequalities to Eq. (C.35), Lemma 4.1 can be showed:

|Rl(f)−Rl,g(f)| ≤
(√

Rl(f) +
√
Rl,g(f)

){
2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), qg(X

w|Xo))
]} 1

2

. (C.38)

Here, DH represents the Hellinger distance.

C.3. Proof of Lemma 4.2

Proof of Lemma 4.2. The term Ep∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), qg(X

w|Xo))
]

in Eq. (4.9) can be upper-bounded as fol-
lows:

Ep∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), qg(X

w|Xo))
]
≤ Ep∗(xo,y)

[∫
Xw

p∗(x
w|Xo, Y ) log

p∗(x
w|Xo, Y )

qg(xw|Xo)
dxw

]
= LLp∗ − Ep∗(x)[log qg(X

w|Xo)]

(C.39)
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Here, LLp∗ = Ep∗(x,y)[log p∗(X
w|Xo, Y )]. Defining qg by the PDF of N (g(xo), σ2IFw×Fw) where σ2 ∈ R+, the term

−Ep∗(x)[log qg(X
w|Xo)] can rewritten as follows:

−Ep∗(x)[log qg(X
w|Xo)] = log

√
(2π)Fwσ2Fw +

1

2σ2
Ep∗(x)[(X

w − g(Xo))⊤(Xw − g(Xo))]

= log
√
(2π)Fwσ2Fw +

1

2σ2

∑
j∈[Fw]

Ep∗(x)[(X
w
j − gj(X

o))2]

= log
√
(2π)Fwσ2Fw +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj).

Substituting this result into Eq. (C.39), we obtain:

Ep∗(xo,y)

[
{DH(p∗(X

w|Xo, Y ), qg(X
w|Xo))}2

]
≤ LLp∗ + Z(σ2) +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj). (C.40)

Here, Z(σ2) := log
√

(2π)Fwσ2Fw Applying the above result to Eq. (4.9), we establish Eq. (4.10) in Lemma 4.2:

|Rl(f)−Rl,g(f)| ≤
(√

Rl(f) +
√
Rl,g(f)

){
2Ul

(
LLp∗ + Z(σ2) +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj)

)} 1
2

. (C.41)

C.4. Proof of Theorem 4.3

Using Lemma 4.2, we establish the following lemma:

Lemma C.1. Let qg be the PDF of N (g(xo), σ2IFw×Fw), where σ2 ∈ R+. For any measurable f ∈ F , g ∈ G and l
bounded by Ul < ∞, the following inequality holds:

|Rl(f)−Rl,g(f)|

≤
{
2
√

Rl(f) +

(
2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj)

)) 1
2
}{

2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj)

)} 1
2

.
(C.42)

Here, Cσ = Ep∗(x,y)[log p∗(X
w|Xo, Y )] + log

√
(2π)Fwσ2Fw .

Proof of Lemma C.1. From Eq. (C.41), for any measurable f ∈ F , g ∈ G and l bounded by Ul < ∞, the following holds:

∣∣∣√Rl(f)−
√
Rl,g(f)

∣∣∣ ≤ {2Ul

(
LLp∗ + Z(σ2) +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj)

)} 1
2

. (C.43)

Thus,
√
Rl,g(f) can be upper-bounded as follows:√

Rl,g(f) =
√

Rl(f) +
∣∣∣√Rl(f)−

√
Rl,g(f)

∣∣∣
≤
√
Rl(f) +

{
2Ul

(
LLp∗ + Z(σ2) +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj)

)} 1
2

. (C.44)

21



Unified Analysis of Continuous Weak Features Learning with Applications to Learning from Missing Data

Applying Eq. (C.44) to Eq. (4.10) in Lemma 4.2, we conclude that Lemma C.1 holds:

|Rl(f)−Rl,g(f)|

≤
{
2
√
Rl(f) +

(
2Ul

(
LLp∗ + Z(σ2) +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj)

)) 1
2
}

×
{
2Ul

(
LLp∗ + Z(σ2) +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj)

)} 1
2

. (C.45)

Using Lemma C.1, Theorem 4.3 is demonstrated as follows:

Proof of Theorem 4.3. In the ordinary supervised learning setting described in Section 2.1, we define the empirical risk
minimizer as follows:

fS := argminf∈F R̂l(f).

The LHS of Eq. (4.11) can be decomposed as follows:

Rl,g(fg,S)−Rl(fF ) = Rl,g(fg,S)− R̂l,g(fg,S)

(a1)

+ R̂l,g(fg,S)−Rl,g(fS)

(a2)

+Rl,g(fS)−Rl(fS)
(a3)

+Rl(fS)−Rl(fF )
(a4)

.
(C.46)

The terms (a1) and (a2) in Eq. (C.46) can be upper-bounded as follows:

(a1) ≤ max
f∈F

|Rl,g(f)− R̂l,g(f)|,

(a2) ≤ R̂l,g(fS)−Rl,g(fS) ≤ max
f∈F

|Rl,g(f)− R̂l,g(f)|.

The term (a3) in Eq. (C.46) can be upper-bounded using Lemma C.1 as follows:

(a3) ≤
{
2
√
Rl(fS) +

(
2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj)

)) 1
2
}{

2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj)

)} 1
2

. (C.47)

Here, Rl(fS) can be further bounded as follows:

Rl(fS) = Rl(fS)− R̂l(fS) + R̂l(fS)−Rl(fF ) +Rl(fF )

≤ Rl(fS)− R̂l(fS) + R̂l(fF )−Rl(fF ) +Rl(fF )

≤ Rl(fF ) + 2max
f∈F

|Rl(f)− R̂l(f)|. (C.48)

Applying the above inequality to Eq. (C.47), the term (a3) in Eq. (C.46) can be bounded as follows:

(a3) ≤
{
2

(
Rl(fF ) + 2max

f∈F
|Rl(f)− R̂l(f)|

) 1
2

+

(
2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj)

)) 1
2
}

×
{
2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj)

)} 1
2

.

(C.49)
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Similarly, the term (a4) in Eq. (C.46) can be bounded as follows:

Rl(fS)−Rl(fF ) ≤ 2max
f∈F

|Rl(f)− R̂l(f)|.

Combining the results above, the LHS of Eq. (C.46) can be upper-bounded as follows:

Rl,g(fg,S)−Rl(fF )

≤ 2max
f∈F

|Rl,g(f)− R̂l,g(f)|+ 2max
f∈F

|Rl(f)− R̂l(f)|

+

{
2

(
Rl(fF ) + 2max

f∈F
|Rl(f)− R̂l(f)|

) 1
2

+

(
2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj)

)) 1
2
}

×
{
2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj)

)} 1
2

.

(C.50)

Using the uniform law of large numbers (Mohri et al., 2018), for any δ ∈ (0, 1), the following inequality holds with
probability at least 1− δ/2:

max
f∈F

|Rl,g(f)− R̂l,g(f)| ≤ 2Rg
n(F̃l) + Ul

√
log(4/δ)

2n
,

max
f∈F

|Rl(f)− R̂l(f)| ≤ 2R∗
n(F̃l) + Ul

√
log(4/δ)

2n
.

Here, F̃l := {(x, y) 7→ l(f(x), y) : f ∈ F}. Additionally, from the assumption that l is Ll-Lipschitz continuous and
Lemma 26.9 in (Shalev-Shwartz & Ben-David, 2014), it follows that R∗

n(F̃l) ≤ LlR
∗
n(F) and Rg

n(F̃l) ≤ LlR
g
n(F). Thus,

for any δ ∈ (0, 1), the following inequality holds with probability at least 1− δ:

Rl,g(fg,S)−Rl(fF )

≤ 4

(
LlR

∗
n(F) + LlR

g
n(F) + Ul

√
log(4/δ)

2n

)

+

{
2

(
Rl(fF ) + 4LlR

∗
n(F) + 2Ul

√
log(4/δ)

2n

) 1
2

+

(
2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj)

)) 1
2
}

×
{
2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(gj)

)} 1
2

.

(C.51)

C.5. Proof of Theorem 4.4

Proof of Theorem 4.4. Firstly, since Xw
j is a set of finite-precision decimals, for any j ∈ [Fw], and σ2 = (2π)−1, it follows

that Cσ ≤ 0.

The remainder of this proof follows a structure similar to that of the proof for discrete WFL (Sugiyama & Uchida, 2025).

By assumption, there exist true deterministic functions g∗j : X o → Xw
j for any j ∈ [Fw], and (g∗1 , . . . , g

∗
Fw) ∈ G. Therefore,

when gS = (gS,1, . . . , gS,Fw) is obtained by the methods that achieve consistency (Mohri et al., 2018; Cheng et al., 2023),
the following holds:

n → ∞, RMSE,j(gS,j) → 0, ∀j ∈ [Fw]. (C.52)
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By assumption, there exists a true deterministic function f∗ : X → Y for label prediction, and f∗ ∈ F . Hence, the
following holds:

Rl(fF ) = 0. (C.53)

Thus, if R∗
n(F) and Rg

n(F) are monotonically decreasing with respect to n and converge to 0, the error bound established
in Theorem 4.3 converges to 0 as n → ∞.

C.6. Proof of Theorem 4.5

For a weak dataset S and a positive real-valued vector r, define the following feature estimation models:

g
(r)

S
:= (g

(r1)

S,1
, . . . , g

(rFw )

S,Fw
), (C.54)

where g
(rj)

S,j
:= arg min

gj∈G(rj ,S)

R̂MSE,j(gj), ∀j ∈ [Fw]. (C.55)

Using Lemma C.1, we establish Theorem 4.5 as follows.

Proof. Proof of Theorem 4.5

The LHS of Eq. (4.13) can be reformulated as follows:

Rl,f (g
(r)

f,S
)−Rl(f) = Rl,f (g

(r)

f,S
)− R̂l,f (g

(r)

f,S
)

(a1)

+ R̂l,f (g
(r)

f,S
)−Rl,f (g

(r)

S
)

(a2)

+Rl,f (g
(r)

S
)−Rl(f)

(a3)

. (C.56)

The terms (a1) and (a2) in Eq. (C.56) can be upper-bounded as follows:

(a1) ≤ max
g∈G(r,S)

|Rl,f (g)− R̂l,f (g)|, (C.57)

(a2) ≤ R̂l,f (g
(r)

S
)−Rl,f (g

(r)

S
) ≤ max

g∈G(r,S)
|Rl,f (g)− R̂l,f (g)|. (C.58)

The term (a3) in Eq.(C.56) can be upper-bounded using Lemma C.1 as follows:

(a3) ≤ |Rl,f (g
(r)

S
)−Rl(f)|

≤
{
2
√

Rl(f) +

(
2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(g
(rj)

S,j
)

)) 1
2
}{

2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(g
(rj)

S,j
)

)} 1
2

.

(C.59)

Therefore, by applying Eqs. (C.57), (C.58), and (C.59) to Eq. (C.56), we obtain:

Rl,f (g
(r)

f,S
)−Rl(f)

≤ 2 max
g∈G(r,S)

|Rl,f (g)− R̂l,f (g)|

+

{
2
√

Rl(f) +

(
2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(g
(rj)

S,j
)

)) 1
2
}{

2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(g
(rj)

S,j
)

)} 1
2

.

(C.60)

From the uniform law of large numbers (Mohri et al., 2018), for any δ ∈ (0, 1), the following holds with a probability of at
least 1− δ:

max
g∈G(r,S)

|Rl,f (g)− R̂l,f (g)| ≤ 2R∗
n(G̃l,f (r, S)) + Ul

√
log(2/δ)

2n
. (C.61)
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Furthermore, by applying Eq. (C.61) to Eq. (C.60), we obtain that, for any δ ∈ (0, 1), with probability at least 1 − δ,
Eq. (4.13) holds:

Rl,f (g
(r)

f,S
)−Rl(f)

≤ 4R∗
n(G̃l,f (r, S)) + 2Ul

√
log(2/δ)

2n

+

{
2
√
Rl(f) +

(
2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(g
(rj)

S,j
)

)) 1
2
}{

2Ul

(
Cσ +

1

2σ2

∑
j∈[Fw]

RMSE,j(g
(rj)

S,j
)

)} 1
2

.

(C.62)

C.7. Proof of Eq. 4.14

Proof of Eq. 4.14. Since, by the assumption about Gj(rj , Sj) and the fact that g(rj)
S,j

∈ Gj(rj , Sj), the following holds:

R̂MSE,j(g
(rj)

S,j
) = min

gj∈Gj

R̂MSE,j(gj). (C.63)

Moreover, by the assumption about Gj , the following holds:

RMSE,j(gGj ) = 0, (C.64)

where gGj
:= arg min

gj∈Gj

RMSE,j(gj). In this case, the LHS of Eq. 4.14 can be upper bounded as follows:

RMSE,j(g
(rj)

S,j
) = RMSE,j(g

(rj)

S,j
)− R̂MSE,j(g

(rj)

S,j
) + R̂MSE,j(g

(rj)

S,j
)−RMSE,j(gGj )

≤ RMSE,j(g
(rj)

S,j
)− R̂MSE,j(g

(rj)

S,j
) + R̂MSE,j(gGj )−RMSE,j(gGj )

≤ 2 max
gj∈Gj

|RMSE,j(gj)− R̂MSE,j(gj)|. (C.65)

By applying Theorem 11.3 in (Mohri et al., 2018) to the RHS of the last inequality above, we obtain that, for any δ ∈ (0, 1),
with probability at least 1− δ, the following holds:

RMSE,j(g
(rj)

S,j
) ≤ 8UlMSER

∗
n′
j
(Gj) + 2UlMSE

√
log(1/δ)

2n′
j

. (C.66)

C.8. Proof of Theorem 4.6

Proof of Theorem 4.6. Firstly, since Xw
j is a set of finite-precision decimals, for any j ∈ [Fw], and σ2 = (2π)−1, it follows

that Cσ ≤ 0.

The remainder of this proof follows a structure similar to that of the proof for discrete WFL (Sugiyama & Uchida, 2025).
From assumption, there exist true deterministic functions g∗j : X o → Xw

j for any j ∈ [Fw], and (g∗1 , . . . , g
∗
Fw) ∈ G. In this

case, for any r and S, it holds that g∗ ∈ G(r, S). Hence, the following holds:

RMSE,j(gG(r,S),j) = 0, ∀j ∈ [Fw]. (C.67)

For any j ∈ [Fw], define Gj(rj , Sj) as the set of hypotheses that satisfy the following two conditions: (i) each element is a
solution obtained by methods that are guaranteed to achieve consistency (Mohri et al., 2018; Cheng et al., 2023), and (ii) its
empirical risk is at most rj . As n increases and rj → 0, the assumptions on Rlj and the theoretical guarantees of these
learning methods for gj imply the following:

RMSE,j(gj) → 0, ∀gj ∈ Gj(rj , Sj), ∀j ∈ [Fw]. (C.68)
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Additionally, by assumption, there exists a true deterministic function f∗ : X → Y for label prediction, and f∗ ∈ F .
Therefore, the following holds:

Rl(fF ) = 0. (C.69)

Thus, under the conditions of Theorem 4.4, the following holds for fg,S obtained through LAC-dWFL’s step (ii):

n → ∞, Rl,g(fg,S) → 0. (C.70)

Furthermore, using Theorem 3.1 with Cσ ≤ 0 and σ2 = (2π)−1, and additionally letting rj → 0 as n increases for any
j ∈ [Fw], the following holds:

n → ∞, Rl(fg,S) → 0, ∀g ∈ G(r, S). (C.71)

Since l is Ll-Lipschitz continuous and fg,S is Lf -Lipschitz continuous, the following holds (Shalev-Shwartz & Ben-David,
2014):

R∗
n(G̃l,f (r,S)) ≤ LlLfR

∗
n(G(r,S)). (C.72)

Consequently, if R∗
n(G(r,S)) and R∗

n(Gj(rj , Sj)) for any j ∈ [Fw] are monotonically decreasing with respect to n and
converge to 0, the error bound established in Theorem 4.5 converges to 0 as n → ∞.

D. Proofs for Appendix A
D.1. Proof of Theorem A.1

Proof of Theorem A.1. For any f ∈ F , q and l bounded by Ul, Rl(f)−Rl,q(f) can be upper-bounded as follows:

Rl(f)−Rl,q(f)

= Ep∗(x,y)[l(f(X), Y )]− Ep∗(xo,y)q(xw|xo)[l(f(X), Y )]

≤ Ep∗(xo,y)

[ ∫
Xw

l(f(xw,Xo), Y )(p∗(x
w|Xo, Y )− q(x

w|Xo))dxw

]
= Ep∗(xo,y)

[ ∫
Xw

l(f(xw,Xo), Y )
(√

p∗(xw|Xo, Y ) +
√
q(xw|Xo)

)
×
(√

p∗(xw|Xo, Y )−
√
q(xw|Xo)

)
dxw

]
≤
{
Ep∗(x,y)[(l(f(X), Y ))2]× Ep∗(xo,y)

[ ∫
Xw

(√
p∗(xw|Xo, Y )−

√
q(xw|Xo)

)2
dxw

]} 1
2

+

{
Ep∗(xo,y)q(xw|xo)[(l(f(X), Y ))2]× Ep∗(xo,y)

[ ∫
Xw

(√
p∗(xw|Xo, Y )−

√
q(xw|Xo)

)2
dxw

]} 1
2

≤
(√

Rl(f) +
√

Rl,q(f)
){

2UlEp∗(xo,y)[D
2
H(p∗(x

w|Xo, Y ), q(xw|Xo))]
} 1

2

≤ 2Ul(Ep∗(xo,y)[D
2
H(p∗(x

w|Xo, Y ), q(xw|Xo))])
1
2 . (D.73)

Since l, p∗ , f and q are all measurable functions, the second inequality uses the Cauchy-Schwarz inequality. The third
inequality uses the fact that l is upper bounded by Ul. Hence, Theorem A.1 is showed.

D.2. Proof of Theorem A.3

Using Lemma 4.1, we establish the following lemma:
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Lemma D.1. For any measurable f ∈ F , q and l bounded by Ul, the following inequality holds:

|Rl(f)−Rl,q(f)| ≤
{
2
√
Rl(f) +

(
2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]) 1
2

}

×
{
2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]} 1
2

.

(D.74)

Proof of Lemma D.1. Using Lemma 4.1, for any measurable f ∈ F , q and l bounded by Ul < ∞, the following inequality
holds: ∣∣∣√Rl(f)−

√
Rl,q(f)

∣∣∣ ≤ {2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]} 1
2

.

From this inequality,
√
Rl,g(f) can be upper-bounded as follows:√
Rl,q(f) ≤

√
Rl(f) +

∣∣∣√Rl(f)−
√
Rl,q(f)

∣∣∣
≤
√

Rl(f) +
{
2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]} 1
2

. (D.75)

Applying the above result to Eq. (4.9) in Lemma 4.1 establishes Lemma (D.1):

|Rl(f)−Rl,q(f)| ≤
{
2
√
Rl(f) +

(
2UlEp∗(xo,y)

[
{D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]) 1
2

}
(D.76)

×
{
2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]} 1
2

. (D.77)

Using Lemma D.1, we now prove Theorem A.3 as follows.

Proofs of Theorem A.3. The empirical risk minimizer in the ordinary supervised learning setting is defined as follows:

fS := argminf∈F R̂l(f).

The LHS of Eq. (A.20) can be decomposed as follows:

Rl,q(fq,S)−Rl(fF ) = Rl,q(fq,S)− R̂l,q(fq,S)

(a1)

+ R̂l,q(fq,S)−Rl,q(fS)

(a2)

+Rl,q(fS)−Rl(fS)
(a3)

+Rl(fS)−Rl(fF )
(a4)

.
(D.78)

The terms (a1) and (a2) in Eq. (D.78) can be upper-bounded as follows:

(a1) ≤ max
f∈F

|Rl,q(f)− R̂l,q(f)|,

(a2) ≤ R̂l,q(fS)−Rl,q(fS) ≤ max
f∈F

|Rl,q(f)− R̂l,q(f)|.

The term (a3) in Eq. (D.78) can be upper-bounded using Lemma D.1 as follows:

(a3) ≤
{
2
√
Rl(fS) +

(
2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]) 1
2

}

×
{
2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]} 1
2

.

(D.79)

27



Unified Analysis of Continuous Weak Features Learning with Applications to Learning from Missing Data

Here, Rl(fS) can be upper-bounded as follows:

Rl(fS) = Rl(fS)− R̂l(fS) + R̂l(fS)−Rl(fF ) +Rl(fF )

≤ Rl(fS)− R̂l(fS) + R̂l(fF )−Rl(fF ) +Rl(fF )

≤ Rl(fF ) + 2max
f∈F

|Rl(f)− R̂l(f)|. (D.80)

Applying the above inequality to Eq. (D.79), the term (a3) in Eq. (D.78) can be bounded as follows:

(a3) ≤
{
2

(
Rl(fF ) + 2max

f∈F
|Rl(f)− R̂l(f)|

) 1
2

+
(
2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]) 1
2

}

×
{
2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]} 1
2

.

(D.81)

Similarly, the term (a4) in Eq. (D.78) can be upper-bounded as follows:

Rl(fS)−Rl(fF ) ≤ 2max
f∈F

|Rl(f)− R̂l(f)|.

Combining the above results, the LHS of Eq. (D.78) can be upper-bounded as follows:

Rl,q(fq,S)−Rl(fF )

≤ 2max
f∈F

|Rl,q(f)− R̂l,q(f)|+ 2max
f∈F

|Rl(f)− R̂l(f)|

+

{
2

(
Rl(fF ) + 2max

f∈F
|Rl(f)− R̂l(f)|

) 1
2

+
(
2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]) 1
2

}

×
{
2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]} 1
2

.

(D.82)

By the uniform law of large numbers (Mohri et al., 2018), for any δ ∈ (0, 1), the following holds with probability at least
1− δ/2:

max
f∈F

|Rl,q(f)− R̂l,q(f)| ≤ 2Rq
n(F̃l) + Ul

√
log(4/δ)

2n
,

max
f∈F

|Rl(f)− R̂l(f)| ≤ 2R∗
n(F̃l) + Ul

√
log(4/δ)

2n
.

Here, F̃l := {(x, y) 7→ l(f(x), y) : f ∈ F}. From the assumption of l and Lemma 26.9 in (Shalev-Shwartz & Ben-David,
2014), it follows that R∗

n(F̃l) ≤ LlR
∗
n(F) and Rg

n(F̃l) ≤ LlR
g
n(F). Thus, for any δ ∈ (0, 1), the following inequality

holds with probability at least 1− δ:

Rl,q(fq,S)−Rl(fF )

≤ 4

(
LlR

∗
n(F) + LlR

q
n(F) + Ul

√
log(4/δ)

2n

)

+

{
2

(
Rl(fF ) + 4LlR

∗
n(F) + 2Ul

√
log(4/δ)

2n

) 1
2

+
(
2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]) 1
2

}

×
(
2UlEp∗(xo,y)

[
D2

H(p∗(X
w|Xo, Y ), q(Xw|Xo))

]) 1
2

.

(D.83)

This concludes the proof of Theorem A.3.
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E. Proofs for Appendix B
E.1. Proof of Theorem B.1

Proof of Theorem B.1. The LHS of Eq. (B.27) can be upper-bounded as follows:

Rl(f)−Rl,g(f)

= Ep∗(x,y)[l(f(X), Y )]− Ep∗(y,m)qg(x|y,m)[l(f(X), Y )]

= Ep∗(m)p∗(x,y|m)[l(f(X), Y )]− Ep∗(y,m)qg(xmis(m)|xobs(m),m)p∗(xobs(m)|m,y)[l(f(X), Y )]

= Ep∗(m)

[
Ep∗(x,y|M)[l(f(X), Y )]− Ep∗(xobs(M),y|M)qg(xmis(M)|xobs(M),M)[l(f(X), Y )]

]
≤ Ep∗(m)

[
Ep∗(xobs(M),y|M)

[ ∫
Xmis(M)

l(f(Xobs(M),xobs(M)), Y )

×
∣∣∣∣p∗(xmis(M)|Xobs(M), Y,M)− qg(xmis(M)|Xobs(M),M)

∣∣∣∣dxmis(M)

]]
≤ UlEp∗(m)

[
Ep∗(xobs(M),y|M)

[ ∫
Xmis(M)∣∣∣∣p∗(xmis(M)|Xobs(M), Y,M)− qg(xmis(M)|Xobs(M),M)

∣∣∣∣dxmis(M)

]]
≤ UlEp∗(m)

[
Ep∗(xobs(M),y|M)

[
1

2

{∫
Xmis(M)

p∗(xmis(M)|Xobs(M), Y,M)

× log
p∗(xmis(M)|Xobs(M), Y,M)

qg(xmis(M)|Xobs(M),M)
dxmis(M)

} 1
2

]]

≤ Ul

{
1

2
Ep∗(x,y,m)

[
log

p∗(Xmis(M)|Xobs(M), Y,M)

qg(Xmis(M)|Xobs(M),M)

]} 1
2

= Ul

{
1

2

(
LL′

p∗
+ Ep∗(x,m)

[
− log qg(Xmis(M)|Xobs(M),M)

])} 1
2

. (E.84)

Here, LL′
p∗

= Ep∗(x,y,m)[p∗(Xmis(M)|Xobs(M), Y,M)]. The second inequality uses l(y, y′) ≤ Ul,∀y, y′ ∈ Y . The third
inequality uses Pinsker’s inequality, and the fourth inequality uses Jensen’s inequality. Furthermore, the following holds:

− Ep∗(x,y,m)[log qg(Xmis(M)|Xobs(M),M)]

=
1

2
log(2π)|mis(M)|σ2|mis(M)|

+ Ep∗(x,y,m)

[
1

2σ2
(Xmis(M) − gmis(M)(Xobs(M)))

⊤(Xmis(M) − gmis(M)(Xobs(M)))

]
= Ep∗(m)

[
1

2
log(2π)|mis(M)|σ2|mis(M)|

]
+ Ep∗(m)

[
1

2σ2

∑
j∈mis(M)

Ep∗(x|M)[(Xj − gj(X̃))2]

]

= Ep∗(m)

[
1

2
log(2π)|mis(M)|σ2|mis(M)|

]
+ Ep∗(m)

[
1

2σ2

∑
j∈mis(M)

R
(M)
MSE,j(gj)

]
. (E.85)

Substituting this result into Eq. (E.84) establishes Eq. (B.27) in Theorem B.1:

Rl(f)−Rl,g(f) ≤ Ul

{
1

2

(
C ′

σ +
1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)

])} 1
2

. (E.86)

Here, C ′
σ = Ep∗(x,y,m)[p∗(Xmis(M)|Xobs(M), Y,M)] + Ep∗(m)[

1
2 log(2π)

|mis(M)|σ2|mis(M)|]
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E.2. Proof of Lemma B.3

Proof of Lemma B.3. The LHS of Eq. (B.28) can be bounded from above as follows:

|Rl(f)−Rl,g(f)|
=
∣∣Ep∗(x,y)[l(f(X), Y )]− Ep∗(y,m)qg(x|y,m)[l(f(X), Y )]

∣∣
=
∣∣Ep∗(m)p∗(x,y|m)[l(f(X), Y )]− Ep∗(y,m)qg(xmis(m)|xobs(m),m)p∗(xobs(m)|m,y)[l(f(X), Y )]

∣∣
=
∣∣Ep∗(m)

[
Ep∗(x,y|M)[l(f(X), Y )]− Ep∗(xobs(M),y|M)qg(xmis(M)|xobs(M),M)[l(f(X), Y )]

]∣∣
≤ Ep∗(m)

[
Ep∗(xobs(M),y|M)

[ ∫
Xmis(M)

l(f(Xobs(M),xobs(M)), Y )

×
∣∣∣∣p∗(xmis(M)|Xobs(M), Y,M)− qg(xmis(M)|Xobs(M),M)

∣∣∣∣dxmis(M)

]]
= Ep∗(m)

[
Ep∗(xobs(M),y|M)

[ ∫
Xmis(M)

l(f(Xobs(M),xobs(M)), Y )

×
(√

p∗(xmis(M)|Xobs(M), Y,M) +
√
qg(xmis(M)|Xobs(M),M)

)
×
∣∣∣∣√p∗(xmis(M)|Xobs(M), Y,M)−

√
qg(xmis(M)|Xobs(M),M)

∣∣∣∣dxmis(M)

]]
= Ep∗(m)

[
Ep∗(xobs(M),y|M)

[ ∫
Xmis(M)

l(f(Xobs(M),xobs(M)), Y )
√

p∗(xmis(M)|Xobs(M), Y,M)

×
∣∣∣∣√p∗(xmis(M)|Xobs(M), Y,M)−

√
qg(xmis(M)|Xobs(M),M)

∣∣∣∣dxmis(M)

]]
+ Ep∗(m)

[
Ep∗(xobs(M),y|M)

[ ∫
Xmis(M)

l(f(Xobs(M),xobs(M)), Y )
√

qg(xmis(M)|Xobs(M),M)

×
∣∣∣∣√p∗(xmis(M)|Xobs(M), Y,M)−

√
qg(xmis(M)|Xobs(M),M)

∣∣∣∣dxmis(M)

]]
≤
{
Ep∗(m)p∗(x,y|m)[{l(f(X), Y )}2]

(a1)

× Ep∗(m)p∗(xobs(m),y|m)

[
D2

H(p∗(Xmis(M)|Xobs(M), Y,M), qg(Xmis(M)|Xobs(M),M))

]
(a2)

} 1
2

+

{
Ep∗(m)p∗(xobs(m),y|m)qg(xmis(m)|xobs(m),m)[{l(f(X), Y )}2]

(a3)

× Ep∗(m)p∗(xobs(m),y|m)

[
D2

H(p∗(Xmis(M)|Xobs(M), Y,M), qg(Xmis(M)|Xobs(M),M))

]
(a2)

} 1
2

(E.87)

Here, the second inequality uses the Cauchy-Schwarz inequality, since l, f , p∗, and qg are all measurable functions.

The terms (a1) and (a3) in Eq. (E.87) can be bounded as follows:

(a1) = Ep∗(x,y)[l(f(X), Y )2 − 0]

≤ 2UlEp∗(x,y)[l(f(X), Y )] = 2UlRl(f),

(E.88)
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(a3) = Ep∗(m)p∗(xobs(m),y|m)qg(xmis(m)|xobs(m),m)[{l(f(X), Y )}2 − 0]

≤ 2UlEp∗(m)p∗(xobs(m),y|m)qg(xmis(m)|xobs(m),m)[l(f(X), Y )] = 2UlRl,g(f). (E.89)

In the above, it is used that the function x 7→ x2 is 2Ul-Lipschitz continuous when its domain is restricted to [0, Ul].
Applying these results to Eq. (E.87), we have demonstrated Lemma B.3:

|Rl(f)−Rl,g(f)|

≤
(√

Rl(f) +
√

Rl,g(f)
)

×
{
2UlEp∗(m)p∗(xobs(m),y|m)

[
D2

H(p∗(Xmis(M)|Xobs(M), Y,M), qg(Xmis(M)|Xobs(M),M))
]} 1

2

.

E.3. Proof of Lemma B.4

Proof of Lemma B.4. The term Ep∗(m)p∗(xobs(m),y|m)

[
D2

H(p∗(Xmis(M)|Xobs(M), Y,M), qg(Xmis(M)|Xobs(M),M))
]

in Eq. (B.28) can be bounded as follows:

Ep∗(m)p∗(xobs(m),y|m)

[
D2

H(p∗(Xmis(M)|Xobs(M), Y,M), qg(Xmis(M)|Xobs(M),M))
]

≤ Ep∗(m)p∗(xobs(m),y|m)

[
∫
Xmis(M)

p∗(xmis(M)|Xobs(M), Y,M) log
p∗(Xmis(M)|Xobs(M), Y,M)

qg(Xmis(M)|Xobs(M),M)
dxmis(M)

]
= LL′

p∗
− Ep∗(x,y,m)[log qg(Xmis(M)|Xobs(M),M)]. (E.90)

Here, LL′
p∗

= Ep∗(x,y,m)[p∗(Xmis(M)|Xobs(M), Y,M)]. Defining qg by the PDF of
N (gmis(m)(xobs(m)), σ

2I|mis(m)|×|mis(m)|) where σ ∈ R+, The term −Ep∗(x,y,m)[log qg(Xmis(M)|Xobs(M),M)] can
be rewritten as follows:

− Ep∗(x,y,m)[log qg(Xmis(M)|Xobs(M),M)]

=
1

2
log(2π)|mis(M)|σ2|mis(M)|

+ Ep∗(x,y,m)

[
1

2σ2
(Xmis(M) − gmis(M)(Xobs(M)))

⊤(Xmis(M) − gmis(M)(Xobs(M)))

]
= Ep∗(m)

[
1

2
log(2π)|mis(M)|σ2|mis(M)|

]
+ Ep∗(m)

[
1

2σ2

∑
j∈mis(M)

Ep∗(x|M)[(Xj − gj(X̃))2]

]

= Ep∗(m)

[
1

2
log(2π)|mis(M)|σ2|mis(M)|

]
+ Ep∗(m)

[
1

2σ2

∑
j∈mis(M)

R
(M)
MSE,j(gj)

]
. (E.91)

Substituting the above into Eq. (E.90), we obtain:

Ep∗(m)p∗(xobs(m),y|m)

[{
DH(p∗(Xmis(M)|Xobs(M), Y,M), qg(Xmis(M)|Xobs(M),M))

}2]
≤ LL′

p∗
+ Z ′(σ2) + Ep∗(m)

[
1

2σ2

∑
j∈mis(M)

R
(M)
MSE,j(gj)

]
. (E.92)

Here, Z ′(σ2) := Ep∗(m)

[
1
2 log(2π)

|mis(M)|σ2|mis(M)|].
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Thus, applying the above results to Eq. (B.28) completes the proof of Lemma B.4 as stated in Equation (B.29).

|Rl(f)−Rl,g(f)|

≤
(√

Rl(f) +
√

Rl,g(f)
){

2Ul

(
LL′

p∗
+ Z ′(σ2) + Ep∗(m)

[
1

2σ2

∑
j∈mis(M)

R
(M)
MSE,j(gj)

])} 1
2

.
(E.93)

E.4. Proof of Theorem B.5

First, we use Lemma B.4 to prove the following lemma:
Lemma E.1. Let qg be the PDF of N (gmis(m)(xobs(m)), σ

2I|mis(m)|×|mis(m)|), where σ ∈ R+. For any measurable
f ∈ F , g ∈ G and l bounded above by Ul < ∞, the following inequality holds:

|Rl(f)−Rl,g(f)| ≤
{
2
√
Rl(f) +

(
2Ul

(
C ′

σ +
1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)]

])) 1
2
}

×
{
2Ul

(
C ′

σ +
1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)]

])} 1
2

,

(E.94)

where C ′
σ = Ep∗(x,y,m)[p∗(Xmis(M)|Xobs(M), Y,M)] + Ep∗(m)[

1
2 log(2π)

|mis(M)|σ2|mis(M)|].

Proof of Lemma E.1. From Lemma B.4, for any measurable f ∈ F , g ∈ G and l bounded above by Ul < ∞, the following
holds: ∣∣∣√Rl(f)−

√
Rl,g(f)

∣∣∣ ≤ {2Ul

(
LL′

p∗
+ Z ′(σ2) + Ep∗(m)

[
1

2σ2

∑
j∈mis(M)

R
(M)
MSE,j(gj)

])} 1
2

.

Using the above result,
√
Rl,g(f) can be bounded as follows:√

Rl,g(f) ≤
√
Rl(f) +

∣∣∣√Rl(f)−
√

Rl,g(f)
∣∣∣

≤
√
Rl(f) +

{
2Ul

(
LL′

p∗
+ Z ′(σ2) + Ep∗(m)

[
1

2σ2

∑
j∈mis(M)

R
(M)
MSE,j(gj)

])} 1
2

. (E.95)

Substituting this inequality into Eq. (B.29) completes the proof of Lemma E.1 as given in Eq. (E.94).

|Rl(f)−Rl,g(f)| ≤
{
2
√

Rl(f) +

(
2Ul

(
LL′

p∗
+ Z ′(σ2) +

1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)

])) 1
2
}

×
{
2Ul

(
LL′

p∗
+ Z ′(σ2) +

1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)]

])} 1
2

. (E.96)

Using Lemma E.1, we now prove Theorem B.5.

Proof of Theorem B.5. Define the empirical risk minimizer under the ordinary supervised learning setting described in
Section 2.1, as follows:

fS := argmin
f∈F

R̂l(f). (E.97)
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The LHS of Eq. (B.30) can be rewritten as follows:

Rl,g(fg,S)−Rl(fF ) = Rl,g(fg,S)− R̂l,g(fg,S)

(a1)

+ R̂l,g(fg,S)−Rl,g(fS)

(a2)

+Rl,g(fS)−Rl(fS)
(a3)

+Rl(fS)−Rl(fF )
(a4)

.
(E.98)

The terms (a1) and (a2) in Eq. (E.98) can be upper-bounded as:

(a1) ≤ max
f∈F

|Rl,g(f)− R̂l,g(f)|,

(a2) ≤ R̂l,g(fS)−Rl,g(fS) ≤ max
f∈F

|Rl,g(f)− R̂l,g(f)|. (E.99)

The term (a3) in Eq. (E.98) can be upper-bounded using Lemma E.1 as follows:

(a3) ≤
{
2
√
Rl(fS) +

(
2Ul

(
C ′

σ +
1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)]

])) 1
2
}

(E.100)

×
{
2Ul

(
C ′

σ +
1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)]

])} 1
2

. (E.101)

Here, F̃l := {(x, y) 7→ l(f(x), y) : f ∈ F}, C ′
σ = Ep∗(x,y,m)[p∗(Xmis(M)|Xobs(M), Y,M)] +

Ep∗(m)[
1
2 log(2π)

|mis(M)|σ2|mis(M)|]. Using these, Rl(fS) can be upper-bounded as follows:

Rl(fS) = Rl(fS)− R̂l(fS) + R̂l(fS)−Rl(fF ) +Rl(fF )

= Rl(fS)− R̂l(fS) + R̂l(fF )−Rl(fF ) +Rl(fF )

≤ Rl(fF ) + 2max
f∈F

|Rl(f)− R̂l(f)|. (E.102)

Hence, the term (a3) in Eq. (E.98) can also be upper-bounded as:

(a3) ≤
{
2
(
Rl(fF ) + 2max

f∈F
|Rl(f)− R̂l(f)|

) 1
2

+

(
2Ul

(
C ′

σ +
1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)]

])) 1
2
}

(E.103)

×
{
2Ul

(
C ′

σ +
1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)]

])} 1
2

. (E.104)

Similarly, the term (a4) in Eq. (E.98) can be upper-bounded as:

Rl(fS)−Rl(fF ) ≤ 2max
f∈F

|Rl(f)− R̂l(f)|.

From the above, the LHS of Eq. (B.30) can be upper-bounded as:

Rl,g(fg,S)−Rl(fF )

≤ 2max
f∈F

|Rl,g(f)− R̂l,g(f)|+ 2max
f∈F

|Rl(f)− R̂l(f)|

+

{
2
(
Rl(fF ) + 2max

f∈F
|Rl(f)− R̂l(f)|

) 1
2

+

(
2Ul

(
C ′

σ +
1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)]

])) 1
2
}

(E.105)

×
{
2Ul

(
C ′

σ +
1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)]

])} 1
2

.
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By the uniform law of large numbers (Mohri et al., 2018), for any δ ∈ (0, 1), the following holds with probability at least
1− δ/2:

max
f∈F

|Rl,g(f)− R̂l,g(f)| ≤ 2Rg
n(F̃l) + Ul

√
log(4/δ)

2n
,

max
f∈F

|Rl(f)− R̂l(f)| ≤ 2R∗
n(F̃l) + Ul

√
log(4/δ)

2n
.

Here, F̃l := {(x, y) 7→ l(f(x), y) : f ∈ F}.

From the assumption that l and Lemma 26.9 in (Shalev-Shwartz & Ben-David, 2014), it follows that Rg
n(F̃l) ≤ LlR

g
n(F)

and R∗
n(F̃l) ≤ LlR

∗
n(F). Thus, for any δ ∈ (0, 1), the following holds with probability at least 1− δ:

Rl,g(fg,S)−Rl(fF )

≤ 4

(
LlR

∗
n(F) + LlR

g
n(F) + Ul

√
log(4/δ)

2n

)

+

{
2

(
Rl(fF ) + 4LlR

∗
n(F) + 2Ul

√
log(4/δ)

2n

) 1
2

+

(
2Ul

(
C ′

σ +
1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)]

])) 1
2
}

(E.106)

×
{
2Ul

(
C ′

σ +
1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gj)]

])} 1
2

.

E.5. Proof of Theorem B.6

Proof of Theorem B.6. Firstly, since Xj is a set of finite-precision decimals, for any j ∈ [d], and σ2 = (2π)−1, it follows
that C ′

σ ≤ 0. The remainder of this proof follows a structure similar to that of the proof for discrete WFL (Sugiyama
& Uchida, 2025). By assumption, there exist true deterministic functions g∗j : X × {0, 1}d → Xj for any j ∈ [d], and
(g∗1 , . . . , g

∗
d) ∈ G. Therefore, when gS = (gS,1, . . . , gS,d) is obtained by the methods that achieve consistency (Mohri et al.,

2018), the following holds:

n → ∞, Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j(gS,j)]

]
→ 0, ∀j ∈ [d]. (E.107)

By assumption, there exists a true deterministic function f∗ : X → Y for label prediction, and f∗ ∈ F . Hence, the
following holds:

Rl(fF ) = 0. (E.108)

Thus, if R∗
n(F) and Rg

n(F) are monotonically decreasing with respect to n and converge to 0, the error bound established
in Theorem B.5 converges to 0 as n → ∞.

E.6. Proof of Theorem B.8

Using Lemma E.1, we first prove the following Theorem E.2. Theorem E.2 holds for any missing mechanism.

Theorem E.2. Let qg be the PDF of N (gmis(m)(xobs(m)), σ
2I|mis(m)|×|mis(m)|). Let S and S represent ordinary and

weak datasets with n samples, respectively. For any measurable g ∈ G, l bounded by Ul < ∞ and δ ∈ (0, 1), the following
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inequality holds with probability at least 1− δ:

Rl,f (g
(r)

f,S
)−Rl(f)

≤ 2

(
R∗

n(G̃j(rj , Sj)) + Ul

√
log(1/δ)

2n

)

+ 2

{
2πUl

(
Rl(f)

+ Ul

(
π

2

(
max

gj∈Gj(rj ,Sj)

∣∣∣∣∣Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j

(
g
(rj)

S,j

)]
− Ep̂(m)

[ ∑
j∈mis(M)

R̂
(M)
MSE,j

(
g
(rj)

S,j

)]∣∣∣∣∣
+
∑
j∈[d]

rj

)) 1
2
)

×
(

max
gj∈Gj(rj ,Sj)

∣∣∣∣∣Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j

(
g
(rj)

S,j

)]
− Ep̂(m)

[ ∑
j∈mis(M)

R̂
(M)
MSE,j

(
g
(rj)

S,j

)]∣∣∣∣∣
+
∑
j∈[d]

rj

)) 1
2
)} 1

2

.

(E.109)

Here, G̃j(rj , Sj) := {(xo,xw
j ) 7→ lMSE(gj(x

o), xw
j ) : gj ∈ Gj(rj , Sj)}, ∀j ∈ [Fw], C ′

σ =

Ep∗(x,y,m)[p∗(Xmis(M)|Xobs(M), Y,M)] + Ep∗(m)[
1
2 log(2π)

|mis(M)|σ2|mis(M)|].

Proof of Theorem E.2. The LHS of Eq. (E.109) can be rewritten as:

Rl,f (g
(r)

f,S
)−Rl(f) = Rl,f (g

(r)

f,S
)− R̂l,f (g

(r)

f,S
)

(a1)

+ R̂l,f (g
(r)

f,S
)−Rl,f (g

(r)

S
)

(a2)

+Rl,f (g
(r)

S
)−Rl(f)

(a3)

. (E.110)

The terms (a1) and (a2) in Eq. (E.110) can be upper-bounded as follows:

(a1) ≤ max
g∈G(r,S)

|Rl,f (g)− R̂l,f (g)|, (E.111)

(a2) ≤ R̂l,f (g
(r)

S
)−Rl,f (g

(r)

S
) ≤ max

g∈G(r,S)
|Rl,f (g)− R̂l,f (g)|. (E.112)

The term (a3) in Eq. (E.110) can be upper-bounded using Lemma E.1 as follows:

(a3) ≤ |Rl,f (g
(r)

S
)−Rl(f)|

≤
{
2
√
Rl(f) +

(
2Ul

(
C ′

σ +
1

2σ2
Ep∗(m)

[ ∑
j∈mis(M)

R
(M)
MSE,j

(
g
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]
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}

×
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MSE,j
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S,j

)])} 1
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.

(E.113)
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By definition, the following holds:

Ep∗(m)

[ ∑
j∈mis(M)
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(M)
MSE,j
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)]

= Ep∗(m)

[ ∑
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(
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[ ∑
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(E.114)

Thus, the term (a3) in Eq. (E.110) can be further upper-bounded as:

(a3) ≤
{
2
√
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(E.115)
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Applying the above results to Eq. (E.110), we have:

Rl,f (g
(r)

f,S
)−Rl(f)

≤ 2 max
g∈G(r,S)

|Rl,f (g)− R̂l,f (g)|

+
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Using the uniform law of large numbers (Mohri et al., 2018), for any δ ∈ (0, 1), the following inequality holds with
probability at least 1− δ:

max
g∈G(r,S)

|Rl,f (g)− R̂l,f (g)| ≤ 2R∗
n(G̃l,f (r, S)) + Ul

√
log(2/δ)

2n
. (E.117)

Hence, for any δ ∈ (0, 1), Eq. (E.109) holds with probability at least 1− δ:
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(E.118)

By adding the MCAR constraint to Theorem E.2, we prove Theorem B.8 as follows:
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Proof of Theorem B.8. First, we have:∣∣∣∣∣Ep∗(m)
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[ ∑
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Here, we define G̃j(rj , Sj) := {(x,m) 7→ lMSE(xj , gj(x̄,m)) : gj ∈ Gj(rj , Sj)}. Under the MCAR assumption,
Theorem 11.3 of (Mohri et al., 2018) implies that for any j ∈ [d] and any δ ∈ (0, 1), the following holds with probability at
least 1− δ/(d+ 1):∣∣∣∣∣Ep∗(m)

[
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. (E.120)

Thus, for any δ ∈ (0, 1), Eq. (B.32) holds with probability at least 1− δ:
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E.7. Proof of Theorem B.9

Proof of Theorem B.9. Firstly, since Xj is a set of finite-precision decimals, for any j ∈ [d], and σ2 = (2π)−1, it follows
that C ′

σ ≤ 0. The remainder of this proof follows a structure similar to that of the proof for discrete WFL (Sugiyama &
Uchida, 2025). From assumption, there exist true deterministic functions g∗j : X × {0, 1}d → Xj for any j ∈ [d], and
(g∗1 , . . . , g

∗
d) ∈ G. In this case, for any r and S, it holds that g∗ ∈ G(r, S). Hence, the following holds:

R
(m)
MSE,j

(
gG(r,S),j

)
= 0, ∀j ∈ [d],∀m ∈ {0, 1}d. (E.122)

For any j ∈ [d], define Gj(rj , Sj) as the set of hypotheses that satisfy the following two conditions: (i) each element is a
solution obtained by methods that are guaranteed to achieve consistency (Mohri et al., 2018), and (ii) its empirical risk is at
most rj . As n increases and rj → 0, the theoretical guarantees of these learning methods for gj imply the following:

R
(m)
MSE,j(gj) → 0, ∀gj ∈ Gj(rj , Sj), ∀j ∈ [d],∀m ∈ {0, 1}d. (E.123)

Additionally, by assumption, there exists a true deterministic function f∗ : X → Y for label prediction, and f∗ ∈ F .
Therefore, the following holds:

Rl(fF ) = 0. (E.124)
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Thus, under the conditions of Theorem B.6, the following holds for fg,S obtained through LAC-dWFL’s step (ii):

n → ∞, Rl,g(fg,S) → 0. (E.125)

Furthermore, using Theorem B.1 with C ′
σ ≤ 0 and σ2 = (2π)−1, and additionally letting rj → 0 as n increases for any

j ∈ [d], the following holds:

n → ∞, Rl(fg,S) → 0, ∀g ∈ G(r, S). (E.126)

Since l is Ll-Lipschitz continuous and fg,S is Lf -Lipschitz continuous, the following holds (Shalev-Shwartz & Ben-David,
2014):

R∗
n(G̃l,f (r,S)) ≤ LlLfR

∗
n(G(r,S)). (E.127)

Consequently, if R∗
n(G(r,S)) and R∗

n(Gj(rj , Sj)) for any j ∈ [d] are monotonically decreasing with respect to n and
converge to 0, the error bound established in Theorem B.8 converges to 0 as n → ∞.

F. Detail Information of Experiments
F.1. Details of Datasets

For real-world datasets, we utilize four datasets from OpenML (Vanschoren et al., 2013): hls4ml lhc jets hlf (Pierini et al.,
2020), electricity (Harries et al., 2014), mv (Luis, 2014), and Run or walk information (Viktor, 2017). We refer to them
as Jets, Electricity, Mv, and Run-or-Walk, respectively. Table F.1 summarizes these datasets. All binary features were
constrained to take values of either 0 or 1. One-hot encoding was applied to all categorical features, and all continuous
features were scaled to ensure their values fall within the range [0, 1].

Table F.1. Outline of datasets. binary, categorical, and numerical represent the number of features of each type, respectively.
dataset Jets Electricity Mv Run-or-Walk

data size 830000 45312 40768 88588
binary 0 0 2 0

categorical 0 0 1 0
numerical 8 7 7 6

target binary binary binary binary

F.2. Details of Experimental setup

The experimental settings, except for the dataset, were almost identical to those used in the discrete WFL experi-
ments (Sugiyama & Uchida, 2025). The differences lie in the settings for σ2 and Ep∗(x,y)[log p∗(X

w|Xo, Y )]. In
this experiment, σ2 was set to (2π)−1. For continuous features, all were assumed to be finite-precision decimals, and
Ep∗(x,y)[log p∗(X

w|Xo, Y )] ≤ 0 was assumed. Consequently, the bound was computed by setting Cσ = 0.

All other settings follow those in the discrete WFL experiment (Sugiyama & Uchida, 2025), as follows. The feature
estimation models g and the label prediction model f were represented as two-layer perceptrons with hidden layers of width
500, using ReLU as the activation function. All models were trained using Adam (Kingma & Ba, 2014) and the following
hyperparameters: learning rate of 0.0005, batch size of 512, 100 epochs, and a weight decay of 0.0002. Logistic loss is
employed for training f .

We summarize the method used to calculate the error bound presented in Theorem 4.3 for this experiment. First, the
numerical values related to the error bound were set as δ = 0.0001, Rl(fF ) = 0, and Ul = 2.0. Rl(fF ) = 0 was set under
the assumption that F is sufficiently complex. In this experiment, the predicted label is determined by the label corresponding
to the largest output value of f . Since scaling the outputs of f does not affect the results, it was assumed that the maximum
value of each element in f ’s output is 1, and Ul was set to 2.0. The logistic loss l, used in this experiment, is 1-Lipschitz
continuous. Therefore, it follows that R∗

n(F̃l) = R∗
n(F) and Rg

n(F̃l) = Rg
n(F) (Lemma 26.9 in (Shalev-Shwartz &

Ben-David, 2014)).
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Similar to the experiment in discrete WFL (Sugiyama & Uchida, 2025), R∗
n(F) and Rg

n(F) were calculated using the upper
bound on the Rademacher complexity of a multilayer perceptron derived by Neyshabur et al. (Theorem 1 in (Neyshabur
et al., 2015)). For the parameters in this bound, we set µ = 1 and p = q = 2. The parameter µ represents the upper bound
on the lp-norm of all parameters in the model, and p specifies the type of lp-norm. Since all parameters of f can be scaled
without affecting the inference results for predicting a single label, µ was set to 1.

G. Additional Experiments
In Section 5, we experimentally validated our theoretical results under the setting where all WFs are continuous variables
that may contain missing values. In this setting, since the exact values of WFs are not always missing, some instances have
observed exact values for certain WFs. In contrast, this section investigates scenarios in which all WFs for all instances are
observed either with substantial noise or as intervals that contain the exact values.

Figure G.3 illustrates the relationship between the generalization error of fg,S and the number of training samples n, for
several g with varying levels of estimation error. Figure G.4 compares these generalization errors with the theoretical error
bound presented in Theorem 4.3. Consistent with the results in Section 5, these findings confirm that our derived error
bound effectively captures the relationship between the estimation error of g and the rate at which the generalization error of
fg,S decreases as n increases.
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Figure G.3. The relationship between Rl,g(fg,S) and the training data size n for various MSEs of g. This figure shows the cases in
which all WFs for all instances are observed either with substantial noise or as intervals that contain the exact values.
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Figure G.4. A comparison between Rl,g(fg,S) for various MSEs of g and the error bound derived in Theorem 4.3.
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H. Limitation
In this paper, we provided a unified theoretical analysis of continuous WFL, in parallel with the discrete WFL framework
proposed by (Sugiyama & Uchida, 2025). At the same time, our analysis inherits several limitations similar to those in the
discrete WFL setting (Sugiyama & Uchida, 2025).

The first limitation is that the derived error bounds do not take into account the feature importance of each WF with respect
to the downstream prediction task. Extending the theoretical framework to incorporate feature importance remains an
important direction for future research. The second limitation is that our analysis does not cover joint learning approaches
where f and g are represented by a single model, nor does it handle settings in which the estimated outputs for some WFs
are used as input features for estimating other WFs. Such more complex formulations are often important in practical
applications, and developing methods and theoretical guarantees for them is a promising avenue for future work. It is
considered that the theoretical results presented in this paper provide a solid foundation for addressing both of these future
directions.
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