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Abstract

Recent advancements in omnimodal learning
have significantly improved understanding and
generation across images, text, and speech, yet
these developments remain predominantly con-
fined to proprietary models. The lack of high-
quality omnimodal datasets and the challenges
of real-time emotional speech synthesis have
notably hindered progress in open-source re-
search. To address these limitations, we intro-
duce OpenOmni, a two-stage training frame-
work that integrates omnimodal alignment and
speech generation to develop a state-of-the-art
omnimodal large language model. In the align-
ment phase, a pre-trained speech model un-
dergoes further training on text-image tasks,
enabling (near) zero-shot generalization from
vision to speech, outperforming models trained
on tri-modal datasets. In the speech genera-
tion phase, a lightweight decoder is trained on
speech tasks with direct preference optimiza-
tion, enabling real-time emotional speech syn-
thesis with high fidelity. Experiments show
that OpenOmni surpasses state-of-the-art mod-
els across omnimodal, vision-language, and
speech-language benchmarks. It achieves a
4-point absolute improvement on OmniBench
over the leading open-source model VITA, de-
spite using 5x fewer training samples and a
smaller model size (7B vs. 7x8B). Addition-
ally, OpenOmni achieves real-time speech gen-
eration with <1s latency at non-autoregressive
mode, reducing inference time by 5x compared
to autoregressive methods, and improves emo-
tion classification accuracy by 7.7% .

1 Introduction

The success of large language models
(LLMs)(Touvron et al., 2023; Bai et al., 2023a; Tao
et al., 2024) has driven rapid advancements in mul-
timodal large language models (MLLMs)(Liu et al.,
2024b,a; Luo et al., 2024a; Zhang et al., 2023a;

'Code, dataset, and demo are available at https://
anonymous . 4open.science/r/OpenOmni-1544.
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Figure 1: Overview of the motivation and architecture
of OpenOmni. For simplicity, our core architecture is
presented without the connectors between modules.

Fang et al., 2024), particularly in vision-language
models (VLMs)(Liu et al., 2024b,a; Bai et al.,
2023b; Luo et al., 2024a) and speech-language
models (SLMs)(Chu et al., 2023; Fang et al.,
2024). These innovations mark a paradigm shift
in machine understanding and human-computer
interaction, fueling interest in omnimodal large
language models (OLLMs)—models that integrate
vision, language, and speech into a unified system.
The emergence of GPT-40 underscores the poten-
tial of holistic multimodal Al, yet open-source
alternatives remain significantly behind.

Despite their promise, existing open-source
OLLMSs (Zhan et al., 2024; Sun et al., 2024; Fu
et al., 2024; Chen et al., 2024a) face three fun-
damental challenges, limiting their performance
in real-world applications. First, training fully
end-to-end OLLMs requires high-quality tri-modal
datasets (text, images, and speech), which are
scarce, expensive, and difficult to curate at scale.


https://anonymous.4open.science/r/OpenOmni-1544
https://anonymous.4open.science/r/OpenOmni-1544

Most open-source models rely on true tri-modal
corpora and ignore pairwise datasets (e.g., text-
image or text-speech), resulting in suboptimal
cross-modal alignment and weaker generalization.
Without effective zero-shot alignment strategies,
these models struggle to transfer learned represen-
tations across modalities, reducing their robustness
in real-world multimodal tasks.

Second, existing models predominantly rely on
autoregressive (AR) architectures, which generate
outputs sequentially, introducing high inference
latency that hinders real-time multimodal inter-
action. Speech generation, in particular, is slow,
as most models integrate external text-to-speech
(TTS) modules (Du et al.), resulting in latency
overhead and preventing end-to-end optimization.
Achieving low-latency multimodal synthesis is es-
sential for applications such as conversational Al,
assistive technologies, and real-time interactive
agents, where response time directly affects us-
ability.

Finally, emotionally expressive speech is critical
for natural and engaging human-computer interac-
tions, yet current OLLMs fail to generate emotion-
ally consistent responses. Most models lack self-
awareness, producing flat, robotic speech that does
not modulate prosody, tone, or sentiment based
on conversational context. Without direct pref-
erence optimization (DPO) for emotional speech,
existing models struggle to align speech intona-
tion with user emotions, leading to inauthentic and
disconnected interactions. These challenges sig-
nificantly constrain the real-world applicability of
open-source OLLMs, leaving commercial models
far ahead in omnimodal reasoning, real-time inter-
action, and expressive speech synthesis.

To bridge this gap, we propose OpenOmni, a
fully open-source two-stage training framework
that enables efficient omnimodal learning while
addressing the key limitations of existing models.
As illustrated in fig. 1, OpenOmni introduces a
progressive alignment strategy that enables cross-
modal generalization from vision-language tasks
to speech-language tasks, eliminating the need
for expensive tri-modal datasets and computing
resources. It further incorporates a lightweight,
end-to-end speech decoder that facilitates parallel
text and speech generation, drastically reducing
inference latency compared to autoregressive mod-
els. Moreover, by leveraging direct preference opti-
mization (DPO), our model generates emotionally
coherent, context-aware speech without requiring

additional control modules or handcrafted prompts.

Extensive experiments confirm that OpenOmni
achieves state-of-the-art performance in omn-
imodal alignment, real-time speech synthesis,
and emotional speech generation. Compared to
VITA(Fu et al., 2024), the leading fully open-
source OLLM, which employs a 7x8B language
model trained on 5M samples, OpenOmni attains
superior results with a smaller model size (7B
vs. 7x8B) and three times fewer training sam-
ples (1.6M vs. 5M) while outperforming VITA
by four absolute points on the OmniBench bench-
mark(Li et al., 2024b). Additionally, OpenOmni
reduces speech generation latency by 5x, achieving
real-time inference (<1s) and improving emotion
classification accuracy by 7.7%.

Our main contributions can be summarized as
follows: (1) High-Quality Speech Datasets: We
construct O2S-300K and EO2S-9K, comprising
8000 hours of bilingual text-synthesized speech,
enabling efficient speech generation and emo-
tional preference learning. (2) Effective Zero-
Shot Omnimodal Alignment: We introduce a
scalable, model-agnostic framework that enables
low-resource, rapid omnimodal alignment using
language as a pivot, followed by speech genera-
tion and emotional preference training. This ap-
proach allows the rapid development of an ad-
vanced all-modal assistant akin to GPT-40. (3)
End-to-End Omnimodal LLM: We train an om-
nimodal language model with integrated text, im-
age, and speech understanding progressively. After
speech generation training and emotional prefer-
ence optimization, OpenOmni naturally generates
real-time emotional speech.

2 Related Work

2.1 Vision Language Models

The rapid progress of Vision-Language Models
(VLMs) has been driven by the success of Large
Language Models (LLMs) and the increasing avail-
ability of diverse image-text instruction data(Liu
et al., 2024b; Luo et al., 2024b; Hu et al., 2023)
sourced from the internet. LLaVA(Liu et al.,
2024b) and MiniGPT-4(Zhu et al., 2023) demon-
strate strong cross-task generalization by integrat-
ing visual encoders with large language models
(LLMs) through lightweight connector modules
trained on instruction datasets. To further enhance
visual perception, LLaVA-NeXT(Liu et al., 2024a)
employs dynamic resolution techniques, improv-
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Figure 2: Progressive Training process of OpenOmni. To enable zero-shot omnimodal learning and real-time
emotional speech generation, OpenOmni undergoes a progressive three-stage training process: (1) Speech-Text
Generation: A speech encoder extracts continuous speech and text features for alignment learning, equipping the
large language model with speech understanding capabilities. (2) Image-Text Generation: An image encoder
extracts continuous image and text features, facilitating alignment learning that enhances OpenOmni’s image
comprehension and instruction-following abilities. This process also establishes implicit omnimodal alignment,
enabling omni-understanding. (3) Speech Generation: A lightweight speech decoder is trained using high-quality
synthesized speech dialogue data, with a focus on direct preference optimization for emotional speech. This final
stage allows OpenOmni to generate real-time, self-aware emotional speech. A text-guided module (TGM) is utilized

to accelerate the training convergence.

ing adaptability to images of varying sizes and
complexities. Expanding beyond conventional ap-
proaches, DreamLLM(Dong et al., 2023) explores
interleaved generation, enabling the simultaneous
production of images and text within a shared mul-
timodal context. Meanwhile, DEEM(Luo et al.,
2024a) enhances model robustness by employing
diffusion models to extract visual features, replac-
ing traditional visual encoders and simplifying the
overall architecture. These innovations collectively
contribute to advancing vision-language reasoning
in multimodal systems.

2.2 Speech Language Models

Recent advancements in Speech-Language Mod-
els (SLMs) have significantly improved human-
computer interactions by enabling direct speech
processing without relying on intermediate text
transcription. SpeechGPT(Zhang et al., 2023a)
and LLaMA-Omni(Fang et al., 2024) eliminate the
need for explicit text-based transcriptions, reducing
latency in multimodal content generation. For full-
duplex dialogue systems, Moshi(Défossez et al.)
and OmniFlatten(Zhang et al., 2024a) introduce
mechanisms for handling simultaneous speech and
text streams, adeptly managing challenges such
as overlapping speech and interruptions(Lin et al.,
2022). Meanwhile, Freeze-Omni(Wang et al.,
2024) introduces an innovative training approach
that preserves the core capabilities of the origi-
nal LLM, allowing low-latency speech-to-speech
dialogue without requiring modifications to the

pre-trained architecture. Focusing on emotional
speech synthesis, Emo-DPO (Gao et al., 2024) ap-
plies direct preference optimization (DPO) to gen-
erate expressive and controllable emotional speech,
addressing the emotional coherence gap in exist-
ing speech-language models. These developments
mark a significant shift towards more natural, real-
time speech interactions in multimodal Al systems.

2.3 Omni-modal Language Models

As multimodal research advances, models are in-
creasingly shifting towards unified frameworks
that seamlessly integrate diverse input and output
modalities. By tokenizing different data types into
a shared representation, models like AnyGPT(Zhan
et al., 2024) and Unified-IO 2(Lu et al., 2024)
achieve seamless cross-modal task adaptability,
allowing them to process audio, text, and im-
ages without significant architectural modifications.
More recently, Mini-Omni2(Xie and Wu, 2024) ex-
tends multimodal capabilities by integrating visual
and auditory encoders, enabling real-time multi-
modal responses while incorporating mechanisms
for detecting and interpreting semantic interrup-
tions. Meanwhile, video-SALMONN(Sun et al.,
2024) enhances video understanding by incorpo-
rating fine-grained temporal modeling, improving
the model’s ability to interpret speech and actions
within videos. To enhance human-computer in-
teraction, VITA(Fu et al., 2024) introduces du-
plex communication schemes, enabling fluid and
intuitive exchanges between users and Al mod-



els. EMOVA(Chen et al., 2024a) further extends
the expressive capabilities of multimodal systems
by integrating controllable emotional speech syn-
thesis, providing more natural and engaging user
interactions. Building upon these advancements,
OpenOmni introduces a novel approach for near
zero-shot omnimodal alignment across language,
vision, and speech, incorporating self-aware emo-
tional speech synthesis to enhance expressiveness
and realism. By optimizing for speed, data effi-
ciency, and generalization, OpenOmni achieves
state-of-the-art performance in omnimodal tasks,
surpassing previous models in real-time speech gen-
eration, multimodal alignment, and emotion-aware
synthesis.

3 Method

In this section, we first formulate the omnimodal
learning problem and provide an overview of the
training procedure of OpenOmni, as shown in fig. 2.
We then describe the specific training procedures
for omnimodal alignment and real-time speech gen-
eration.

3.1 Problem Formulation and Overview

Omnimodal learning aims to model the relation-
ships between images (x"), speech (), and text
(y). The image-to-text generation task, which
involves generating textual descriptions for in-
put images encoded by an image encoder &y,
is modeled as learning the conditional distribu-
tion py (y|Ey (xY)), parameterized by 6. Similarly,
the speech-to-text generation task, which gener-
ates relevant text responses given input speech en-
coded by a speech encoder Eg, is formulated as
learning py(y|Es(z®)), parameterized by ¢. Fi-
nally, the omnimodal-to-speech generation task,
which synthesizes speech responses based on input
text, speech, and images, is represented as learn-
ing p(z°|Drra(y, Es(2°), Ev(2"))), parame-
terized by vy, where Dy s represents the Large
Language Model.

In standard omnimodal learning settings, train-
ing typically relies on image-text-speech pairs
D, = {(z¥, 27, y:)}}£| (Fuetal, 2024; Liet al.,
2024a). However, high-quality image-text-speech
datasets are scarce. To mitigate this limitation, we
introduce text as a pivot, leveraging large-scale
image-text datasets D;o; = {(xy, yi)}f‘il (Liu
et al., 2024b; Luo et al., 2024b) and text-speech
datasets Dgyop = {(mf , yl)}f\il (Panayotov et al.,

2015; Zhang et al., 2022), where M > K and
N > K. Inspired by human learning mechanisms,
where individuals naturally align visual concepts
with speech across languages, OpenOmni transfers
visual concepts learned from text-image tasks to
speech understanding.

OpenOmni decomposes the omnimodal align-
ment process into two consecutive stages: text-
speech alignment and image-text alignment.
The text-speech alignment stage establishes cross-
modal alignment between speech z° and lan-
guage y. This is achieved by training a speech
LLM on text-speech pairs Dgo; with the objective
ps(y|Es(z®)), denoted as f,,. This ensures that the
hidden representations of semantically similar text-
speech pairs are close, i.e., f4(y) ~ fs(z°). In
the image-text alignment stage, OpenOmni utilizes
large-scale image-text datasets D;o; to optimize the
image-to-text objective pg(y|Ey (x")). The follow-
ing sections describe the training process for omn-
imodal alignment and real-time speech genera-
tion. Notably, OpenOmni is architecture-agnostic,
allowing flexible integration with existing state-of-
the-art model architectures and training strategies.

3.2 Speech-to-text Generation

In speech-to-text generation, we incorporate a
speech encoder Eg to extract audio features from
input speech ¥, These audio features £ (z°) are
then replaced with corresponding text 3° as in-
put into the LLM. Following recent work to train
speech conversation models (Fang et al., 2024; Chu
et al., 2023; Zhang et al., 2023a), we pre-train
OpenOmni on a large scale of text-speech pairs
using the language modeling objective:

N
Ls21(pg, Dsat) = — Zlogm)(yilfs(xf)). M
i=1

3.3 Image-to-text Generation

In image-to-text generation, we incorporate an im-
age encoder module &y to provide visual feature
Ev(z"). These visual features are then concate-
nated with the text embedding as input into the
speech LLM. Following recent work to train image-
text conversation models (Liu et al., 2024b; Luo
et al., 2024b), OpenOmni’s training process for
image-to-text generation consists of two sub-stages:
Image-Text Pretraining and Image-Text Instruction
Tuning.

Image-Text Pretraining In this sub-stage, we
pre-train the visual module to align it with LLM on



a large scale of image-text pairs using the language
modeling objective:

M

Lioi(po, Dizt) = — Y _log po(uilEv (] )). (2)
i=1

Here, we fix the parameters of LLM to prevent
short texts in the image-text pairs from influencing
the general capabilities.

Image-Text Instruction Tuning To enhance
models’ capabilities in following human instruc-
tions, we conduct instruction tuning on elaborately
curated multimodal instruction tuning datasets built
by blending the existing image-text instruction tun-
ing datasets. We denote this image-text instruc-
tion tuning datasets as DL, = {xy, Yq.5+ Ya,j }]Lzl,
where y, is the instructions and y, is the response.
Both the visual module and speech LLM are fine-
tuned by maximizing the probability of the re-
sponse:

L
L (po, Dia) = — Y 1080 (Ya,;|Ev (] ), Drra(ya,s))-

j=1
(3

Interestingly, we observe a quasi-zero-shot
transfer capability in OpenOmni within this sce-
nario. When instruction tuning is performed ex-
clusively on the image-text dataset, the model
demonstrates the ability to respond accurately
to an image x" and either a text-based ques-
tion y, or an instruction provided in speech
xg . However, its responses are predominantly in
text. This behavior can be attributed to the in-
herent similarity between the hidden representa-
tions of textual and spoken instructions learned
by the LLM, i.e., DLLM(yq) ~ DLLM(gS(ng))
Consequently, the model satisfies the follow-
ing approximation:pg (va|Ev ("), Do (vg)) ~
po(ya|Ev(2V), DLLM(SS(:ng))). OpenOmni com-
pletes the progressive omnimodal alignment, en-
abling the LLM to achieve a comprehensive under-
standing across image, text, and speech modalities.

3.4 Speech Generation

In speech generation, we incorporate a Speech
Decoder Dg to generate speech based on the
output of the LLM Drrys. The speech gener-
ation training process in OpenOmni consists of
two sub-stages: Real-time Speech Pretraining and
Emotional Speech Direct Preference Optimization
(DPO).
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Figure 3: Structure of speech decoder. The speech
decoder consists of a mixture of expert module and mul-
tiple transformer layers, achieving end-to-end speech
unit learning through connectionist temporal classifica-
tion (CTC) loss.

Real-time Speech Generation To equip
OpenOmni with real-time speech generation for
enhancing interactive experiences, we adopt a
streaming speech decoder, which supports supports
both autoregressive (AR) and non-autoregressive
(NAR) speech decoding mode. We curate a
dataset, termed OpenOmni-300K, consisting
of 300K single-round image-text instructions
from MMEvol (Luo et al., 2024b) and UltraChat
with corresponding speech responses for training
the speech decoder. We denote this dataset as
DL, = {m}/,yq,j,yw,wij le, where y, repre-
sents the instruction, ¥, is the textual response,
and xas is the speech response.

To process the speech response xf, we fol-

low (Zhang et al., 2023a; Fang et al., 2024) to dis-
cretize speech into discrete units. Specifically, we
use the pre-trained speech tokenizer (Zhang et al.,
2023a) to extract continuous speech representations
and then convert these representations into a single
unit, resulting in the final discrete unit sequence
rU = {acgZ L :caUZ €{0,1,..., K — 1}, where
K is the speech vocabulary size, and L is the length
of the discrete unit sequence. The discrete units
can then be converted back into a waveform using
an additional unit-based vocoder V (Polyak et al.,
2021), trained on English and Chinese datasets.

As shown in fig. 3, we integrate a streaming
NAR Speech Decoder Dg after the LLM to simul-
taneously generate speech and text responses. The
NAR Speech Decoder consists of a mixture of ex-
pert (MOE) layer and a tiny standard decoder-only
language model. The MOE layer stabilizes training
and accelerates convergence—without this layer,
the speech decoder fails to train effectively. Simi-
lar to (Ma et al., 2024; Zhang et al., 2024b; Fang



et al., 2024), the NAR speech decoder takes the
output hidden states from the LLM as input and
generates the discrete unit sequence corresponding
to the speech response in real-time.

Given that the output hidden states of the text
response ¥, are denoted as Drrar(z", Yq) =
[hy,....,hy]. We first pass these hidden states
through the text-guided module (TGM) to obtain
the transformed hidden state C = [cq,...,cN].
Next, C is fed into the speech decoder layers,
yielding the final hidden state sequence O =
[01, ..., 0)7]. We use connectionist temporal clas-
sification (CTC) (Graves et al., 2006) to align O
with the discrete unit sequence 27 = {2V }L .
During training, CTC marginalizes over all 7possi—
ble alignments as follows:

Lctc(p77D£25) = 1ng,y(175‘0) =

M
—log Z py(A]O) = —log Z Hpﬂ,(:l:gi|0),

Aep—1(zl) AeB~1(2¥)i=1
“)

where 371 (z¥) denotes all possible alignments
of length M that collapse to z¥. During inference,
the best alignment is selected as:

A* = arg max P(A]|O), 3

and the corresponding discrete unit sequence
B(A*) is fed into the vocoder to synthesize the
waveform.

Self-aware Emotional Speech Generation To
enable OpenOmni to generate self-aware, emotion-
ally coherent, and expressive speech based on con-
textual history without additional control modules,
we introduce the CTC Direct Preference Opti-
mization (DPO) algorithm. This method enhances
smooth and natural dialogue interactions. The DPO
approach leverages an analytical reward function
r(z,y), expressed as:

_ e (y|z)
T(‘T7 y) - 6 log ﬂ—ref(ykv) + /BIOg Z("B)ﬂ (6)

where 3 is a constant and Z(x) is the partition
function. Using this observation, we directly opti-
mize the policy model based on human feedback
preference pairs (Y, y1):

Laipo = ~E(zy, g [log o (r(2, y0) — (2, m))]
()
7T'l'ef(yw |I)

e (yilz)
Tty

(N

= ~E(y, ) [log o(Blog

where the reference model me(y|x) is the pre-
trained model from the real-time speech generation
stage and remains fixed during DPO training. Only
the policy model 7, (y|z) is updated. Compared
to traditional reinforcement learning with human
feedback (RLHF), DPO is simpler, more efficient,
and more stable for aligning OpenOmni with self-
aware emotional speech generation.

Following the Plutchik Model of Emotions (6sec-
onds.org, 2022), we construct a multi-turn dia-
logue preference dataset incorporating nine dis-
tinct emotions. Each preference pair consists of
an emotionally congruent speech response unit se-
quence Yy, = l‘gw, which aligns with the conversa-
tional history, and an emotionally neutral sequence
Yy = azgl, which is inconsistent with the context.
The polfcy model 7(y|x) during training is opti-
mized as:

M
logm(ylz) =log > [[ps(zdil0).  ®)

A€p—1(xY)i=1

After training, OpenOmni is capable of gener-
ating real-time, emotionally expressive multi-turn
dialogues.

4 Experiments

4.1 Implementation Details

In this subsection, we introduce the model and data
construction, and more details about the data and
training strategy can be found in appendix D.

Omnimodal Alignment Data During the speech-
to-text generation phase, in addition to WeNet-
Speech (Zhang et al., 2022), LibriSpeech (Panay-
otov et al., 2015), and AIShell-4 (Fu et al., 2021),
we use portions of shorter responses from O2S-
300K, totaling 8000 hours of data, for bilingual
speech-text alignment training. For image-text
alignment, we train OpenOmni on the LLaVA-
Pretrain-595K (Liu et al., 2024b) for image-text
alignment. In the image-text instruction tuning
stage, we fine-tune OpenOmni on the compact high-
quality dataset MMEvol (Luo et al., 2024b) for
efficient optimization.

Real-time Speech Generation Data To support
real-time speech generation, we curate a dataset
of 300K instructions from MMEvol (Luo et al.,
2024b) and UltraChat (Ding et al., 2023) that
included long responses for training the speech
decoder. Specifically, we decompose multi-turn



Method Action & Story Plot Identification Contextual & Identity & Text& Count & Overall
Activity Description Inference & Description Environmental Relationship Symbols Quantity

AnyGPT (7B) (Zhan et al., 2024) 5.98 8.70 7.59 4.74 5.67 12.50 8.00 20.00 7.01
Video-SALMONN (13B) (Sun et al., 2024) 28.69 25.65 24.47 23.22 29.08 21.83 52.00 26.63 26.53
UnifiedIO2-Large (1.1B) (Lu et al., 2024) 28.29 22.17 32.49 30.81 28.37 21.83 16.00 13.33 27.76
UnifiedIO2-XLarge (3.2B) (Lu et al., 2024) 30.28 26.52 30.38 31.75 28.37 18.75 28.00 26.63 29.16
Unifiedl02-XXLarge (6.8B) (Luetal., 2024)| 27.49 23.04 28.69 25.59 26.95 12.50 12.00 46.67 25.92
VITA (7x8B) (Fu et al., 2024) 33.47 34.35 27.00 36.02 43.97 31.25 24.00 6.67 3345
OpenOmni (7B) | 36.65 45.65 3291 44.08 48.23 34.38 24.00 33.33 37.40

Table 1: Overall omni-understanding results on OmniBench. We present a performance comparison of omni-
understanding across various fully open-source Omnimodal Large Language Models (OLLMs) on OmniBench.
Notably, compared to the state-of-the-art OLLM, VITA (Fu et al., 2024), which was trained on tri-modal data,
OpenOmni achieves comparable performance while utilizing significantly less training data and a smaller model

size.

dialogues into single-turn question-answer pairs,
rank the responses based on their length, and se-
lect 100K question-answer pairs with relatively
long responses. To support bilingual output in
Chinese and English, we translate 50K question-
answer pairs into their corresponding Chinese ver-
sions using GPT-40-mini API, and then convert
the answers into the corresponding speech using
CosyVoice (Du et al.). We employ the same method
for text-conditioned speech synthesis on 200k ran-
domly selected data from UltraChat. As a result,
we obtain 8000 hours of high-quality bilingual
speech generation data 02S-300K.

Self-aware Emotional Speech Generation Data
Based on the Plutchik Model of Emotions (6sec-
onds.org, 2022), which categorizes emotions into
eight distinct types, we curate a multi-turn speech
preference dataset, EO2S-9K, for self-awareness
emotion evaluation. Specifically, we randomly
select 200K samples from MMEvol and employ
Qwen2-72B (Bai et al., 2023a) to categorize re-
sponses into nine predefined emotions per round.
From this, we extract 1K bilingual dialogues la-
beled with emotion categories, reserving an addi-
tional 100 samples as an emotional test set for eval-
uating self-aware speech generation. Since certain
emotions, such as anger and sadness, are underrep-
resented in the MMEvol dataset, we augment the
dataset using the GPT-40-mini API to ensure suf-
ficient data for these categories. The final dataset
maintains an equal representation of Chinese and
English samples. To further enhance emotional
preference training, we use Cosy Voice to gener-
ate unconditional speech as negative samples and
emotion-conditioned speech as positive samples,
constructing preference pairs for training direct
preference optimization in emotional speech gener-
ation.

Model We design the architecture following
LLaVA Series (Liu et al., 2024b,a; Luo et al.,

2024b), where the omnimodal large language
model consists of four key components: an LLM
(Qwen2.5-7B-Instruct (Bai et al., 2023a)) for next
token prediction, an image encoder (CLIP-ViT-
L (Radford et al., 2021)) for extracting visual fea-
tures, a speech encoder (Whisper-large-v3 (Rad-
ford et al., 2023)) for extracting audio features
and a streaming speech decoder (Qwen2.5-0.5B-
Instruct (Bai et al., 2023a)) for generating vivid
speech in real-time. Moreover, an image-text pro-
jector and a speech-text projector are adopted to
align the visual-text modalities and the speech-
text modalities, respectively. A mixture of expert
modules and text-guided modules is designed to
align the omnimodal embedding and speech de-
coder efficiently and stably. For the autoregressive
mode, we use the Speech Tokenizer from GLM4-
Voice (Zeng et al., 2024) with a vocabulary size of
16K, which results in better speech quality. For non-
autoregressive models, we use the CosVoice (Du
et al.) Speech Tokenizer with a smaller vocabulary
size of 6K, facilitating faster convergence during
CTC training.

4.2 Omni-Language Evaluation

OmniBench (Li et al., 2024b) is a pioneering bench-
mark designed to evaluate omnimodal large lan-
guage models (OLLMs) by assessing their ability
to integrate and interpret simultaneous inputs from
images, audio, and text. This evaluation frame-
work consists of 1,142 question-answer pairs cate-
gorized into tasks that focus on cognitive and rea-
soning abilities, posing significant challenges in en-
tity recognition, causal inference, and abstract con-
cept comprehension. We compare OpenOmni with
other OLLMSs on OmniBench, with results summa-
rized in table 1. Notably, our model achieves ex-
cellent zero-shot omnimodal alignment using only
two training phases: speech-text alignment and
image-text alignment. Compared to the fully open-
source state-of-the-art OLLM, VITA (Fu et al.,



Model Lang \ Angry & Disgusted Fearful Happy  Neutral Other Sad Surprised Overall

OpenOmni  ZH 89.7 54.8 333 92.3 51.6 60.2 23.7 579
w/ DPO ZH 96.6 78.4 37.7 97.1 62.8 90.7 29.8 70.4

OpenOmni  EN 89.2 68.7 57.5 91.9 48.0 75.6 7.5 62.6
w/ DPO EN 91.3 70.4 60.6 94.6 49.6 773 13.9 65.4

Table 2: Overall self-aware emotional speech generation results on the bilingual EO2S-9K test set. Using the
emotional speech direct preference optimization algorithm, OpenOmni demonstrates consistent improvements in
emotional speech generation for both Chinese and English. The average accuracy of bilingual emotional speech
generation increases by 7.7 % (from 60.2% to 67.9%), with particularly notable gains in categories such as Angry,

Fearful, and Sad.

AlShell-2(ZH-CER) Librispeech(EN-WER)

Model

Dev Test Test_clean Test_other

S2T T2S S2T T2S S2T T2S S2T T2S

Speech LLM

SpeechT5 (Ao et al., 2021) - - - - 2.4 - 5.8
SALMONN (Tang et al., 2023) - - - - 2.1 - 4.9
Mini-Omni (Xie and Wu, 2024) - - - - 4.7 - 9.4
Freeze-Omni (Wang et al., 2024) - - - - 3.2 - 7.7
Qwen2-Audio (Chu et al., 2023) 3.1 - 33 - 2.0 - 4.5
Omnimodal LLM

AnyGPT (Zhan et al., 2024) - - - - 8.5 - -

VITA (Fu et al., 2024) - - - - 8.1 - 18.4
EMOVA (Chen et al., 2024a) 103 79 - - 40 34 -

VITA 1.5 (Fuetal., 2024) - - - 34 - 7.5 -
OpenOmni 68 73 69 131 31 26 41 56

Table 3: Comparison with state-of-the-art methods on
speech-language benchmarks. We mark the best perfor-
mance bold.

2024), OpenOmni achieves superior overall results
on OmniBench (37.40 vs. 33.45) despite using sig-
nificantly fewer training parameters (7B vs. 8x7B)
and less image-text training data (1.6M vs. 5M).
Furthermore, by leveraging language as a pivot, our
approach completes omnimodal alignment implic-
itly, demonstrating enhanced scalability in scenar-
ios with limited tri-modal data.

4.3 Speech-Language Evaluation

To evaluate OpenOmni ’s speech understanding
and generation capabilities, we measure word er-
ror rate (WER) on the Alshell-2 (Fu et al., 2021)
and Librispeech (Panayotov et al., 2015) bench-
marks for two tasks: speech-to-text recognition
(S2T) and text-to-speech generation (T2S). For
T2S evaluation, we use Whisper-large-V3 to tran-
scribe OpenOmni ’s synthesized speech and com-
pute WER against ground-truth text labels. As
shown in table 3, OpenOmni achieves the best per-
formance on both S2T and T2S tasks for bilin-
gual (Chinese and English) data, outperforming
other omnimodal models. This result indicates
that OpenOmni not only comprehends speech ef-
fectively but also generates fluent, high-quality au-
dio while maintaining strong alignment between
speech and language modalities in both languages.
Additionally, compared to VITA (Fu et al., 2024),
which relies on separate text-to-speech (TTS) mod-

els, and EMOVA (Chen et al., 2024a), which
uses an autoregressive (AR) structure, OpenOmni
demonstrates significantly faster speech generation
via two mode support. Owing to its end-to-end,
lightweight, non-autoregressive (NAR) decoding
mode support, OpenOmni can generate up to 30
seconds of speech with less than one second of
latency, achieving real-time speech generation at
over five times the speed of autoregressive models.

4.4 Emotional Speech Synthesis Evaluation

To assess the effectiveness of direct preference
learning in emotional speech generation, we evalu-
ate OpenOmni ’s self-aware emotional speech syn-
thesis on the EO2S-9K test set. Specifically, we
use Emotion2Vec (Ma et al., 2023) to classify the
emotions in the generated speech and measure ac-
curacy against ground-truth labels. As shown in
table 2, direct preference optimization for emo-
tional speech effectively enhances OpenOmni ’s
ability to generate emotionally expressive speech.
This improvement is particularly evident in bilin-
gual, multi-turn emotional speech generation tasks,
demonstrating the model’s ability to produce natu-
ral, contextually aware speech with accurate emo-
tional intonation. Additional experiments can be
found in appendix B.

5 Conclusion

In this paper, we introduced OpenOmni, a novel
end-to-end omnimodal model that leverages lan-
guage as a pivot to achieve tri-modal zero-shot
alignment, addressing the challenge of limited tri-
modal data. By integrating a lightweight streaming
speech decoder with direct preference optimization
for emotional speech, OpenOmni enabled real-time,
self-aware, high-quality speech interactions. Our
extensive evaluations demonstrated that OpenOmni
achieves state-of-the-art performance on tri-modal
benchmarks while using significantly fewer train-
ing parameters and less training data than previous
models.



6 Limitations

Although OpenOmni demonstrates strong perfor-
mance under low-resource conditions, the impact
of training on a larger volume of high-quality tri-
modal data remains an open question. Addition-
ally, while the mixture of experts (MoE) module
effectively mitigates conflicts in CTC training, it
remains more challenging to optimize compared
to autoregressive generation methods. Striking a
balance between efficiency and stability in non-
autoregressive speech generation remains an im-
portant direction for future research. To further im-
prove omnimodal interactions, we plan to enhance
OpenOmni ’s ability to generate multi-character
speech responses, improving conversational depth
and expressiveness. We also plan to explore rein-
forcement learning techniques for refining multi-
modal alignment beyond current supervised learn-
ing approaches. As omnimodal Al continues to
evolve, we believe OpenOmni represents a step to-
ward more natural and immersive human-computer
interactions.
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A Data Construction

We provide details of the data construction for mul-
tiple training stages below:

¢ OpenOmni-1-1: In addition to datasets
WeNetSpeech, LibriSpeech, and AlIShell-
4, we randomly select 80k image-text in-
struction data with shorter responses from
MMEvol (Luo et al., 2024b). We translate
40k of this data into Chinese using Qwen72B
and synthesize the responses into speech data
with CosVoice. This results in 1600 hours of
OpenOmni-1-1 data for speech-text alignment
pretraining.

OpenOmni-2-1: For rapid image-text align-
ment pretraining, we use the llava pretrain
dataset, following previous work (Liu et al.,
2024b,a; Luo et al., 2024b; Liu et al., 2024c¢).

OpenOmni-2-2: To achieve efficient image-
text instruction tuning, we employ MMEvol
data. Since we later train the speech decoder
by freezing the LLM mode, we include O2S-
300K to stabilize the training of the speech
decoder, resulting in a combined dataset of
1.7M for OpenOmni-2-2.

OpenOmni-3-1: To better utilize computa-
tional resources, we select 300k data with long
response instructions from MMEvol and Ul-
traChat. This includes 100k image-text in-
struction data, 100k single-round dialogue,
and 100k multi-round dialogue. We synthe-
size the corresponding speech using CosVoice,
resulting in 8000 hours of O2S-300K.

OpenOmni-3-2: We curate 9k emotion pref-
erence data and generate emotional speech
preference pairs using CosVoice’s conditional
control. This is used for Direct Emotion Pref-
erence Optimization.

B Additional Experiments

B.1 Vision-Language Evaluation

To comprehensively assess the effectiveness of
OpenOmni in aligning visual-text modalities, we
compare its performance against previous vision-
language models (VLLMs) across eight represen-
tative benchmarks: MMBench-EN (Liu et al.,
2023), MMBench-CN (Liu et al., 2023), MM-
Star (Chen et al., 2024b), RealWorldQA (x.ai,
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2024), MMMU (Yue et al., 2024), MathVista (Lu
et al.,, 2023), AI2D (Kembhavi et al., 2016),
and HallusionBench (Guan et al., 2023). To
ensure reproducibility and maintain consistency
across all models and benchmarks, we employ
VLMEvalKit (Duan et al., 2024) for zero-shot eval-
uation. As shown in table 4, OpenOmni achieves
superior results compared to the fully open-source
state-of-the-art OLLM, VITA (Fu et al., 2024), de-
spite being trained on significantly less data. No-
tably, our model outperforms VITA with gains of
7.0% on MMBench-Chinese and 11.3% on Hallu-
sionBench. We can also observe that the use of
additional speech modals can further enhance the
vision-language capabilities of the model. Further-
more, compared to other fully open-source visual-
language models, OpenOmni maintains compet-
itive performance despite reduced training data,
demonstrating the effectiveness of our image-text
alignment strategy.

B.2 Additional Omni-Language Evaluation

In addition to OmniBench, we conduct experiments
on the AV-Odyssey Bench (Gong et al., 2024),
which involves the four modalities: audio, text,
image, and video. For video, we test by averag-
ing 8 sampled frames into a single image. The
experimental results are shown in the table 6 below.
Compared to other OLLMs, OpenOmni achieves
the best average performance using only bi-modal
speech-text and image-text data. With 7B model
parameters and no audio or video training, it out-
performs VITA by 4.4 points, demonstrating the
effectiveness and efficiency of OpenOmni.

Smoothed Loss vs Step (Outliers Replaced)

Files
—— AR Mode w/o TGM
AR Mode w/ TGM

—— NAR Mode w/o TGM
—— NAR Mode w/ TGM

750 1000

Step

Figure 4: Ablation study of text-guided module (TGM).
In order to explore the effect of TGM on speech genera-
tion under the two modes, we plot the change of training
loss under the same setting. TGM can significantly im-
prove the convergence speed of training and improve

the effect of speech generation of the speech decoder.



Model \ w/ Audio 10 \ PT IT | MMStar MMB MMBCY HallBench MathVista¥ MMMUY AI2D RWQA
Proprietary Models

GPT-40 v - - - 83.4 82.1 55.0 63.8 69.1 - 75.4
GPT-40-mini v - - - - - 46.1 524 60.0 - 67.1
Weight Open-Source

MiniCPM-V2.5 (8B) (Yao et al., 2024) X 570M  9.1M 51.3 76.7 733 42.5 54.3 45.8 - 63.5
Qwen2-VL-Chat (7B) (Bai et al., 2023b) X 1.4B - 60.7 86.4 81.9 50.6 58.2 52.7 - 69.7
Baichuan-Omni (7B) (Li et al., 2024a) v - SM - 76.2 74.9 47.8 51.9 47.3 - 62.6
EMOVA (8B) (Chen et al., 2024a) v 74M  4.4M - 82.8 - - 61.1 - 828 643
Fully Open-Source

Cambrain-I (8B) (Tong et al., 2024) X 2.5M M 50.7 - - 34.3 47.0 41.8 73.1 64.2
MMEvol (7B) (Luo et al., 2024b) X 0.6M 1.5M 51.6 74.6 74.3 429 52.4 45.1 747 639
VITA (8x7B) (Fu et al., 2024) v - M - 74.7 71.4 39.7 449 453 743 59.0
OpenOmni (7B) v 0.6M 1.7M 52.3 76.2 76.4 44.2 52.7 46.7 748 64.3

Table 4: Comparison with state-of-the-art methods on visual-language benchmarks, including an indication of
audio input/output support. The best performance among fully open-source models is highlighted in bold. Results
demonstrate that integrating audio input and output further enhances the model’s visual-language capabilities.

Layers Exper ts Wenetspeech(ZH) Librispeech(EN)
Test_Net Test_Meeting Test_clean Test_other

2 1 113.6 129.7 87.8 96.5

2 2 16.7 22.3 10.7 14.6

2 4 8.5 8.4 42 4.7

4 4 7.3 7.9 3.8 4.3

6 4 6.4 6.7 4.1 4.5

Table 5: Ablation study on the number of layers and
experts in the speech decoder. Increasing experts in
the mixture of experts module stabilizes CTC loss dur-
ing training and enhances speech generation capacity.
Deeper transformer layers improve English and Chinese
speech generation, with greater benefits for Chinese.

C Additional Ablation Study

In order to explore the effect of TGM on speech
generation in two modes, we plot the change of
training loss under the same setting. As shown
in fig. 4, we can observe that TGM can signifi-
cantly improve the convergence speed of training
and the performance of model speech generation,
which verifies the effectiveness of our model de-
sign, whether it is (next token prediction) NTP loss
under stable AR mode or CTC loss under unstable
NAR mode.

To explore the impact of the number of lay-
ers in the NAR speech decoder and the mix-
ture of experts module on Chinese and English
speech generation, we conduct ablation experi-
ments on WeNetSpeech (Zhang et al., 2022) and
LibriSpeech (Panayotov et al., 2015). As illustrated
in table 5, the instability and fragility associated
with training using the CTC loss function present
significant challenges. When simply employing
a single feed-forward network (i.e., experts = 1),
it becomes increasingly difficult to reconcile the
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conflicting training dynamics inherent in mixed-
language scenarios, particularly when dealing with
varying response lengths. As a result, training the
speech decoder under these conditions proves to be
quite challenging. Our findings demonstrate that
incrementally increasing the number of experts sig-
nificantly enhances the model’s performance in
bilingual speech generation, thereby underscoring
the effectiveness of our mixture of experts module
design. However, we observe inconsistent prefer-
ences regarding the optimal number of layers in the
speech decoder for generating speech in Chinese
and English. Specifically, while four layers yield
the best results for English generation, six layers
are more suitable for generating Chinese speech.

D Additional Implementation Details

OpenOmni is trained in five sequential sub-stages:
speech-to-text generation, image-text pretraining,
image-text instruction tuning, real-time speech gen-
eration, and self-aware emotional speech genera-
tion. Further details on these training stages are
provided in table 7.

As shown in fig. 5, we provide more details of
the speech decoder design and training here. For
speech decoder, OpenOmni supports both autore-
gressive (AR) and non-autoregressive (NAR) meth-
ods. Specifically, the AR mode has better genera-
tion quality but a slower generation speed, while
the NAR mode can achieve real-time speech gen-
eration but the generation quality is slightly worse.
At the same time, in order to train the speech gener-
ator more efficiently, we also design a text-guided
feature fusion module, so that the conditional fea-
tures used for speech generation have more accu-
rate alignment semantics, which can improve the



Method \ Timbre Tone Melody Space Time Hall Intricacy Overall
OneLLM (7B) (Han et al., 2024) 25.0 25.5 21.5 37.5 293 255 38.4 274
PandaGPT (7B) (Su et al., 2023) 23.5 23.2 27.6 45.0 23.8  28.0 23.9 26.7
Video-LLaMA (7B) (Zhang et al., 2023b) 25.5 223 24.4 30.0 262 250 30.7 26.1
Video-LLaMA2(7B) (Cheng et al., 2024) 24.1 25.5 26.4 30.0 272 33.0 34.5 26.8
AnyGPT (7B) (Zhan et al., 2024) 24.6 25.0 26.4 27.5 29.2  29.0 25.7 26.1
NexTGPT (7B) (Wu et al., 2023) 23.3 20.9 27.8 30.0 28.8 285 23.6 25.5
VITA (7x8B) (Fu et al., 2024) 24.1 26.4 27.8 22.5 263  31.0 36.8 26.4
OpenOmni (7B) \ 23.9 27.7 25.9 60.0 252 295 37.6 32.8

Table 6: Overall omni-understanding results on AV-Odyssey Bench. We conduct a performance comparison of omni-
understanding among various fully open-source Omnimodal Large Language Models (OLLMs) on AV-Odyssey
Bench. Compared to the state-of-the-art OLLM, VITA (Fu et al., 2024), which was trained on tri-modal data,
OpenOmni achieves comparable advanced performance using significantly less training data and smaller model size.
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Figure 5: Overview of Text-Guided Module and Speech Decoder Mode. (left) Text-guided module fuse the hidden
state and response textual feature via cross-attention, accelerating convergence speed of training without dropping
the speed of speech decoding and context emotion perception. (right) OpenOmni supports both autoregressive
(AR) and non-autoregressive speech (NAR) generation. The NAR mode uses CTC loss modeling and a 6K speech
vocabulary size to enable real-time parallel speech decoding generation. The AR mode uses NTP loss modeling and
a speech vocabulary size of 16K to support streaming decoding and higher-quality speech generation. In order to
make the training of speech generator more stable and easy, we design a text-guided output feature fusion method to
ensure the correctness of semantic alignment in speech generation modeling.

Hyperparameter I I I v v
batch size 256 128 128 32 32

Ir le™3 le™? 5e0 5e4 5e4
warmup ratio 0.3 0.3 0.3 0.3 0.3
epoch 1 1 1 3 3
freeze LLM v v x v 4
optimizer AdamW AdamW AdamW AdamW  AdamW
cost 40GPU-H 80GPU-H 500GPU-H 36GPU-H 8GPU-H
dataset 1-1 2-1 2-2 3-1 32
loss Lot Liot ch, Lete Lipo

Table 7: The detailed training setup for OpenOmni and
the hyper-parameters across the training stage. All ex-
periments are conducted in 8xA100 setting.

generation quality and training efficiency of the
speech decoder.

Non-autoregressive mode: In the non-
autoregressive mode, the conditional features
generated by OLLM are fed into the speech
decoder by a layer of MOE and then upsampled
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to obtain the predicted speech output, and finally
the end-to-end optimization is carried out by CTC
loss modeling of the speech output. Due to the
instability of CTC loss training, the smaller the
size of the speech vocabulary, the easier it is to be
successfully trained, but the generation quality of
the corresponding speech will be affected by the
smaller vocabulary.

Autoregressive mode: The autoregressive mode
projects the conditional features generated by
OLLM into the speech space through a layer of
linear layer and feeds them into the speech decoder
to obtain the speech prediction output, and finally
optimizes the speech output end-to-end by model-
ing the NTP loss. Due to the stability of NTP loss
training, the quality of speech generation will be



higher than that of non-autoregressive generation,
but the speed of speech generation will be reduced
by autoregressive decoding.

Both AR and NAR modes depend on the qual-
ity of the speech generation conditional features
generated by OLLM. Although OpenOmni will let
the OLLM fit the text answer corresponding to the
speech through multiple rounds of training in ad-
vance, there will still be OLLM output decoded into
the wrong text answer. In this case, the erroneous
generated condition features will be incorrectly
aligned with the speech during the training process,
which will ultimately reduce the performance of the
speech decoder. In order to ensure the efficiency
of training, OpenOmni fuse the speech generation
condition features output by OLLM with the corre-
sponding text features with correct semantics, and
then feed them into the speech decoder for speech
generation modeling training. Through the feature
fusion module of text prior, OpenOmni avoids the
misalignment of speech and corresponding text and
ultimately makes the speech decoder training more
stable and, at the same time, has more efficient and
accurate speech generation quality.
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English Prompts used in Text-to-Speech (T2S) and Speech-to-Text (S2T) tasks.

S2T (ASR)

Please translate the user’s spoken input into corresponding text, word by word.
T2S

Echo game: Repeat this sentence back to me exactly as I said it!
Mirror challenge: Reflect my words right back at me!

Parrot mode: Can you mimic what I just said?

Copycat test: Let’s see how well you can replicate my sentence!
Playback time: Rewind and repeat my last sentence.

Echo chamber: Say back to me what I just mentioned.

Simulate my speech: Can you say exactly what I just did?
Mimicry game: Echo my words precisely!

Repeat relay: Send my sentence back to me unchanged.
Reflection exercise: Reiterate my last statement word for word.

English emotional preference data case.

Emotion: Neutral

user: "Please engage in a conversation with me."

assistant: "Of course, please go ahead with your question." [A calm and collected woman,
speaking in a steady and neutral tone.]

user: "I was wondering how you manage to stay so composed all the time."

assistant: "It’s something that comes with practice and mindfulness. I focus on observing my
surroundings and maintaining a balanced perspective." [A composed woman, speaking in a
measured and tranquil tone. ]

user: "That sounds quite challenging. Do you ever feel overwhelmed?"

assistant: "There are moments when things can be overwhelming, but I remind myself to breathe
and take one step at a time." [A calm woman, delivering her words in an even and serene manner. ]
user: "Do you have any techniques to stay calm under pressure?"

assistant: "Yes, I practice meditation and deep breathing exercises. It helps to center my thoughts
and maintain clarity." [A composed woman, speaking with a steady and soothing tone.]

user: "I see. Do you think anyone can learn to be as calm as you?"

assistant: "Absolutely. It requires patience and consistent practice, but anyone can develop the
ability to remain calm and composed." [A neutral-toned woman, expressing herself in a clear
and composed manner.]

user: "What advice would you give to someone starting on this path?

assistant: "Begin with small steps. Start by observing your thoughts and emotions without
judgment. Practice mindfulness and breathing exercises daily." [A composed woman, offering
her advice in a gentle and calm tone.]

user: "Thank you for your advice. It has been very insightful."

assistant: "You're welcome. I’'m glad I could help. Remember, the journey to calmness is
gradual, but rewarding." [A tranquil woman, speaking in a reassuring and composed tone.]
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