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Abstract

Recent advancements in omnimodal learning001
have significantly improved understanding and002
generation across images, text, and speech, yet003
these developments remain predominantly con-004
fined to proprietary models. The lack of high-005
quality omnimodal datasets and the challenges006
of real-time emotional speech synthesis have007
notably hindered progress in open-source re-008
search. To address these limitations, we intro-009
duce OpenOmni, a two-stage training frame-010
work that integrates omnimodal alignment and011
speech generation to develop a state-of-the-art012
omnimodal large language model. In the align-013
ment phase, a pre-trained speech model un-014
dergoes further training on text-image tasks,015
enabling (near) zero-shot generalization from016
vision to speech, outperforming models trained017
on tri-modal datasets. In the speech genera-018
tion phase, a lightweight decoder is trained on019
speech tasks with direct preference optimiza-020
tion, enabling real-time emotional speech syn-021
thesis with high fidelity. Experiments show022
that OpenOmni surpasses state-of-the-art mod-023
els across omnimodal, vision-language, and024
speech-language benchmarks. It achieves a025
4-point absolute improvement on OmniBench026
over the leading open-source model VITA, de-027
spite using 5× fewer training samples and a028
smaller model size (7B vs. 7×8B). Addition-029
ally, OpenOmni achieves real-time speech gen-030
eration with <1s latency at non-autoregressive031
mode, reducing inference time by 5× compared032
to autoregressive methods, and improves emo-033
tion classification accuracy by 7.7% 1.034

1 Introduction035

The success of large language models036

(LLMs)(Touvron et al., 2023; Bai et al., 2023a; Tao037

et al., 2024) has driven rapid advancements in mul-038

timodal large language models (MLLMs)(Liu et al.,039

2024b,a; Luo et al., 2024a; Zhang et al., 2023a;040

1Code, dataset, and demo are available at https://
anonymous.4open.science/r/OpenOmni-1544.

A Cute Dog Speech-TextImage-Text

Alignment

Generalization

Fast Omni-Modal Alignment

Alignment

loOmni Language Model

A cute dog… I think…

Can you tell…

Yes, the dog…

simultaneous generation for both text and speech!

You are right…

Speech Encoder Image Encoder
Speech Decoder Word Embedding

Figure 1: Overview of the motivation and architecture
of OpenOmni. For simplicity, our core architecture is
presented without the connectors between modules.

Fang et al., 2024), particularly in vision-language 041

models (VLMs)(Liu et al., 2024b,a; Bai et al., 042

2023b; Luo et al., 2024a) and speech-language 043

models (SLMs)(Chu et al., 2023; Fang et al., 044

2024). These innovations mark a paradigm shift 045

in machine understanding and human-computer 046

interaction, fueling interest in omnimodal large 047

language models (OLLMs)—models that integrate 048

vision, language, and speech into a unified system. 049

The emergence of GPT-4o underscores the poten- 050

tial of holistic multimodal AI, yet open-source 051

alternatives remain significantly behind. 052

Despite their promise, existing open-source 053

OLLMs (Zhan et al., 2024; Sun et al., 2024; Fu 054

et al., 2024; Chen et al., 2024a) face three fun- 055

damental challenges, limiting their performance 056

in real-world applications. First, training fully 057

end-to-end OLLMs requires high-quality tri-modal 058

datasets (text, images, and speech), which are 059

scarce, expensive, and difficult to curate at scale. 060
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Most open-source models rely on true tri-modal061

corpora and ignore pairwise datasets (e.g., text-062

image or text-speech), resulting in suboptimal063

cross-modal alignment and weaker generalization.064

Without effective zero-shot alignment strategies,065

these models struggle to transfer learned represen-066

tations across modalities, reducing their robustness067

in real-world multimodal tasks.068

Second, existing models predominantly rely on069

autoregressive (AR) architectures, which generate070

outputs sequentially, introducing high inference071

latency that hinders real-time multimodal inter-072

action. Speech generation, in particular, is slow,073

as most models integrate external text-to-speech074

(TTS) modules (Du et al.), resulting in latency075

overhead and preventing end-to-end optimization.076

Achieving low-latency multimodal synthesis is es-077

sential for applications such as conversational AI,078

assistive technologies, and real-time interactive079

agents, where response time directly affects us-080

ability.081

Finally, emotionally expressive speech is critical082

for natural and engaging human-computer interac-083

tions, yet current OLLMs fail to generate emotion-084

ally consistent responses. Most models lack self-085

awareness, producing flat, robotic speech that does086

not modulate prosody, tone, or sentiment based087

on conversational context. Without direct pref-088

erence optimization (DPO) for emotional speech,089

existing models struggle to align speech intona-090

tion with user emotions, leading to inauthentic and091

disconnected interactions. These challenges sig-092

nificantly constrain the real-world applicability of093

open-source OLLMs, leaving commercial models094

far ahead in omnimodal reasoning, real-time inter-095

action, and expressive speech synthesis.096

To bridge this gap, we propose OpenOmni, a097

fully open-source two-stage training framework098

that enables efficient omnimodal learning while099

addressing the key limitations of existing models.100

As illustrated in fig. 1, OpenOmni introduces a101

progressive alignment strategy that enables cross-102

modal generalization from vision-language tasks103

to speech-language tasks, eliminating the need104

for expensive tri-modal datasets and computing105

resources. It further incorporates a lightweight,106

end-to-end speech decoder that facilitates parallel107

text and speech generation, drastically reducing108

inference latency compared to autoregressive mod-109

els. Moreover, by leveraging direct preference opti-110

mization (DPO), our model generates emotionally111

coherent, context-aware speech without requiring112

additional control modules or handcrafted prompts. 113

Extensive experiments confirm that OpenOmni 114

achieves state-of-the-art performance in omn- 115

imodal alignment, real-time speech synthesis, 116

and emotional speech generation. Compared to 117

VITA(Fu et al., 2024), the leading fully open- 118

source OLLM, which employs a 7×8B language 119

model trained on 5M samples, OpenOmni attains 120

superior results with a smaller model size (7B 121

vs. 7×8B) and three times fewer training sam- 122

ples (1.6M vs. 5M) while outperforming VITA 123

by four absolute points on the OmniBench bench- 124

mark(Li et al., 2024b). Additionally, OpenOmni 125

reduces speech generation latency by 5×, achieving 126

real-time inference (<1s) and improving emotion 127

classification accuracy by 7.7%. 128

Our main contributions can be summarized as 129

follows: (1) High-Quality Speech Datasets: We 130

construct O2S-300K and EO2S-9K, comprising 131

8000 hours of bilingual text-synthesized speech, 132

enabling efficient speech generation and emo- 133

tional preference learning. (2) Effective Zero- 134

Shot Omnimodal Alignment: We introduce a 135

scalable, model-agnostic framework that enables 136

low-resource, rapid omnimodal alignment using 137

language as a pivot, followed by speech genera- 138

tion and emotional preference training. This ap- 139

proach allows the rapid development of an ad- 140

vanced all-modal assistant akin to GPT-4o. (3) 141

End-to-End Omnimodal LLM: We train an om- 142

nimodal language model with integrated text, im- 143

age, and speech understanding progressively. After 144

speech generation training and emotional prefer- 145

ence optimization, OpenOmni naturally generates 146

real-time emotional speech. 147

2 Related Work 148

2.1 Vision Language Models 149

The rapid progress of Vision-Language Models 150

(VLMs) has been driven by the success of Large 151

Language Models (LLMs) and the increasing avail- 152

ability of diverse image-text instruction data(Liu 153

et al., 2024b; Luo et al., 2024b; Hu et al., 2023) 154

sourced from the internet. LLaVA(Liu et al., 155

2024b) and MiniGPT-4(Zhu et al., 2023) demon- 156

strate strong cross-task generalization by integrat- 157

ing visual encoders with large language models 158

(LLMs) through lightweight connector modules 159

trained on instruction datasets. To further enhance 160

visual perception, LLaVA-NeXT(Liu et al., 2024a) 161

employs dynamic resolution techniques, improv- 162
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Figure 2: Progressive Training process of OpenOmni. To enable zero-shot omnimodal learning and real-time
emotional speech generation, OpenOmni undergoes a progressive three-stage training process: (1) Speech-Text
Generation: A speech encoder extracts continuous speech and text features for alignment learning, equipping the
large language model with speech understanding capabilities. (2) Image-Text Generation: An image encoder
extracts continuous image and text features, facilitating alignment learning that enhances OpenOmni’s image
comprehension and instruction-following abilities. This process also establishes implicit omnimodal alignment,
enabling omni-understanding. (3) Speech Generation: A lightweight speech decoder is trained using high-quality
synthesized speech dialogue data, with a focus on direct preference optimization for emotional speech. This final
stage allows OpenOmni to generate real-time, self-aware emotional speech. A text-guided module (TGM) is utilized
to accelerate the training convergence.
ing adaptability to images of varying sizes and163

complexities. Expanding beyond conventional ap-164

proaches, DreamLLM(Dong et al., 2023) explores165

interleaved generation, enabling the simultaneous166

production of images and text within a shared mul-167

timodal context. Meanwhile, DEEM(Luo et al.,168

2024a) enhances model robustness by employing169

diffusion models to extract visual features, replac-170

ing traditional visual encoders and simplifying the171

overall architecture. These innovations collectively172

contribute to advancing vision-language reasoning173

in multimodal systems.174

2.2 Speech Language Models175

Recent advancements in Speech-Language Mod-176

els (SLMs) have significantly improved human-177

computer interactions by enabling direct speech178

processing without relying on intermediate text179

transcription. SpeechGPT(Zhang et al., 2023a)180

and LLaMA-Omni(Fang et al., 2024) eliminate the181

need for explicit text-based transcriptions, reducing182

latency in multimodal content generation. For full-183

duplex dialogue systems, Moshi(Défossez et al.)184

and OmniFlatten(Zhang et al., 2024a) introduce185

mechanisms for handling simultaneous speech and186

text streams, adeptly managing challenges such187

as overlapping speech and interruptions(Lin et al.,188

2022). Meanwhile, Freeze-Omni(Wang et al.,189

2024) introduces an innovative training approach190

that preserves the core capabilities of the origi-191

nal LLM, allowing low-latency speech-to-speech192

dialogue without requiring modifications to the193

pre-trained architecture. Focusing on emotional 194

speech synthesis, Emo-DPO (Gao et al., 2024) ap- 195

plies direct preference optimization (DPO) to gen- 196

erate expressive and controllable emotional speech, 197

addressing the emotional coherence gap in exist- 198

ing speech-language models. These developments 199

mark a significant shift towards more natural, real- 200

time speech interactions in multimodal AI systems. 201

2.3 Omni-modal Language Models 202

As multimodal research advances, models are in- 203

creasingly shifting towards unified frameworks 204

that seamlessly integrate diverse input and output 205

modalities. By tokenizing different data types into 206

a shared representation, models like AnyGPT(Zhan 207

et al., 2024) and Unified-IO 2(Lu et al., 2024) 208

achieve seamless cross-modal task adaptability, 209

allowing them to process audio, text, and im- 210

ages without significant architectural modifications. 211

More recently, Mini-Omni2(Xie and Wu, 2024) ex- 212

tends multimodal capabilities by integrating visual 213

and auditory encoders, enabling real-time multi- 214

modal responses while incorporating mechanisms 215

for detecting and interpreting semantic interrup- 216

tions. Meanwhile, video-SALMONN(Sun et al., 217

2024) enhances video understanding by incorpo- 218

rating fine-grained temporal modeling, improving 219

the model’s ability to interpret speech and actions 220

within videos. To enhance human-computer in- 221

teraction, VITA(Fu et al., 2024) introduces du- 222

plex communication schemes, enabling fluid and 223

intuitive exchanges between users and AI mod- 224
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els. EMOVA(Chen et al., 2024a) further extends225

the expressive capabilities of multimodal systems226

by integrating controllable emotional speech syn-227

thesis, providing more natural and engaging user228

interactions. Building upon these advancements,229

OpenOmni introduces a novel approach for near230

zero-shot omnimodal alignment across language,231

vision, and speech, incorporating self-aware emo-232

tional speech synthesis to enhance expressiveness233

and realism. By optimizing for speed, data effi-234

ciency, and generalization, OpenOmni achieves235

state-of-the-art performance in omnimodal tasks,236

surpassing previous models in real-time speech gen-237

eration, multimodal alignment, and emotion-aware238

synthesis.239

3 Method240

In this section, we first formulate the omnimodal241

learning problem and provide an overview of the242

training procedure of OpenOmni, as shown in fig. 2.243

We then describe the specific training procedures244

for omnimodal alignment and real-time speech gen-245

eration.246

3.1 Problem Formulation and Overview247

Omnimodal learning aims to model the relation-248

ships between images (xV ), speech (xS), and text249

(y). The image-to-text generation task, which250

involves generating textual descriptions for in-251

put images encoded by an image encoder EV ,252

is modeled as learning the conditional distribu-253

tion pθ(y|EV (xV )), parameterized by θ. Similarly,254

the speech-to-text generation task, which gener-255

ates relevant text responses given input speech en-256

coded by a speech encoder ES , is formulated as257

learning pϕ(y|ES(xS)), parameterized by ϕ. Fi-258

nally, the omnimodal-to-speech generation task,259

which synthesizes speech responses based on input260

text, speech, and images, is represented as learn-261

ing pγ(x
S |DLLM (y, ES(xS), EV (xV ))), parame-262

terized by γ, where DLLM represents the Large263

Language Model.264

In standard omnimodal learning settings, train-265

ing typically relies on image-text-speech pairs266

Do = {(xVi , xSi , yi)}Ki=1 (Fu et al., 2024; Li et al.,267

2024a). However, high-quality image-text-speech268

datasets are scarce. To mitigate this limitation, we269

introduce text as a pivot, leveraging large-scale270

image-text datasets Di2t = {(xVi , yi)}Mi=1 (Liu271

et al., 2024b; Luo et al., 2024b) and text-speech272

datasets Ds2t = {(xSi , yi)}Ni=1 (Panayotov et al.,273

2015; Zhang et al., 2022), where M ≫ K and 274

N ≫ K. Inspired by human learning mechanisms, 275

where individuals naturally align visual concepts 276

with speech across languages, OpenOmni transfers 277

visual concepts learned from text-image tasks to 278

speech understanding. 279

OpenOmni decomposes the omnimodal align- 280

ment process into two consecutive stages: text- 281

speech alignment and image-text alignment. 282

The text-speech alignment stage establishes cross- 283

modal alignment between speech xS and lan- 284

guage y. This is achieved by training a speech 285

LLM on text-speech pairs Ds2t with the objective 286

pϕ(y|ES(xS)), denoted as fϕ. This ensures that the 287

hidden representations of semantically similar text- 288

speech pairs are close, i.e., fϕ(y) ≈ fϕ(x
S). In 289

the image-text alignment stage, OpenOmni utilizes 290

large-scale image-text datasets Di2t to optimize the 291

image-to-text objective pθ(y|EV (xV )). The follow- 292

ing sections describe the training process for omn- 293

imodal alignment and real-time speech genera- 294

tion. Notably, OpenOmni is architecture-agnostic, 295

allowing flexible integration with existing state-of- 296

the-art model architectures and training strategies. 297

3.2 Speech-to-text Generation 298

In speech-to-text generation, we incorporate a 299

speech encoder ES to extract audio features from 300

input speech xS . These audio features ES(xS) are 301

then replaced with corresponding text yS as in- 302

put into the LLM. Following recent work to train 303

speech conversation models (Fang et al., 2024; Chu 304

et al., 2023; Zhang et al., 2023a), we pre-train 305

OpenOmni on a large scale of text-speech pairs 306

using the language modeling objective: 307

Ls2t(pϕ,Ds2t) = −
N∑
i=1

log pϕ(yi|ES(xSi )). (1) 308

3.3 Image-to-text Generation 309

In image-to-text generation, we incorporate an im- 310

age encoder module EV to provide visual feature 311

EV (xV ). These visual features are then concate- 312

nated with the text embedding as input into the 313

speech LLM. Following recent work to train image- 314

text conversation models (Liu et al., 2024b; Luo 315

et al., 2024b), OpenOmni’s training process for 316

image-to-text generation consists of two sub-stages: 317

Image-Text Pretraining and Image-Text Instruction 318

Tuning. 319

Image-Text Pretraining In this sub-stage, we 320

pre-train the visual module to align it with LLM on 321
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a large scale of image-text pairs using the language322

modeling objective:323

Li2t(pθ,Di2t) = −
M∑
i=1

log pθ(yi|EV (xVi )). (2)324

Here, we fix the parameters of LLM to prevent325

short texts in the image-text pairs from influencing326

the general capabilities.327

Image-Text Instruction Tuning To enhance328

models’ capabilities in following human instruc-329

tions, we conduct instruction tuning on elaborately330

curated multimodal instruction tuning datasets built331

by blending the existing image-text instruction tun-332

ing datasets. We denote this image-text instruc-333

tion tuning datasets as DI
i2t = {xVj , yq,j , ya,j}Lj=1,334

where yq is the instructions and ya is the response.335

Both the visual module and speech LLM are fine-336

tuned by maximizing the probability of the re-337

sponse:338

LI
i2t(pθ,DI

i2t) = −
L∑

j=1

log pθ(ya,j |EV (xV
j ),DLLM (yq,j)).

(3)339

Interestingly, we observe a quasi-zero-shot340

transfer capability in OpenOmni within this sce-341

nario. When instruction tuning is performed ex-342

clusively on the image-text dataset, the model343

demonstrates the ability to respond accurately344

to an image xV and either a text-based ques-345

tion yq or an instruction provided in speech346

xSq . However, its responses are predominantly in347

text. This behavior can be attributed to the in-348

herent similarity between the hidden representa-349

tions of textual and spoken instructions learned350

by the LLM, i.e., DLLM (yq) ≈ DLLM (ES(xSq )).351

Consequently, the model satisfies the follow-352

ing approximation:pθ(ya|EV (xV ),DLLM (yq)) ≈353

pθ(ya|EV (xV ),DLLM (ES(xSq ))). OpenOmni com-354

pletes the progressive omnimodal alignment, en-355

abling the LLM to achieve a comprehensive under-356

standing across image, text, and speech modalities.357

3.4 Speech Generation358

In speech generation, we incorporate a Speech359

Decoder DS to generate speech based on the360

output of the LLM DLLM . The speech gener-361

ation training process in OpenOmni consists of362

two sub-stages: Real-time Speech Pretraining and363

Emotional Speech Direct Preference Optimization364

(DPO).365

Add & Normalize

FFN1 FFN4FFN3FFN2

Gate

Up Sample

Self-Attention

FFN
x N

label blank output

A cute dog

loOmni Language Model

Speech Decoder

match

Image Encoder Speech Encoder

TGM

Figure 3: Structure of speech decoder. The speech
decoder consists of a mixture of expert module and mul-
tiple transformer layers, achieving end-to-end speech
unit learning through connectionist temporal classifica-
tion (CTC) loss.

Real-time Speech Generation To equip 366

OpenOmni with real-time speech generation for 367

enhancing interactive experiences, we adopt a 368

streaming speech decoder, which supports supports 369

both autoregressive (AR) and non-autoregressive 370

(NAR) speech decoding mode. We curate a 371

dataset, termed OpenOmni-300K, consisting 372

of 300K single-round image-text instructions 373

from MMEvol (Luo et al., 2024b) and UltraChat 374

with corresponding speech responses for training 375

the speech decoder. We denote this dataset as 376

DI
o2s = {xVj , yq,j , ya,j , xSa,j}Lj=1, where yq repre- 377

sents the instruction, ya is the textual response, 378

and xSa is the speech response. 379

To process the speech response xSa , we fol- 380

low (Zhang et al., 2023a; Fang et al., 2024) to dis- 381

cretize speech into discrete units. Specifically, we 382

use the pre-trained speech tokenizer (Zhang et al., 383

2023a) to extract continuous speech representations 384

and then convert these representations into a single 385

unit, resulting in the final discrete unit sequence 386

xUa = {xUa,i}Li=1, xUa,i ∈ {0, 1, ...,K−1}, where 387

K is the speech vocabulary size, and L is the length 388

of the discrete unit sequence. The discrete units 389

can then be converted back into a waveform using 390

an additional unit-based vocoder V (Polyak et al., 391

2021), trained on English and Chinese datasets. 392

As shown in fig. 3, we integrate a streaming 393

NAR Speech Decoder DS after the LLM to simul- 394

taneously generate speech and text responses. The 395

NAR Speech Decoder consists of a mixture of ex- 396

pert (MOE) layer and a tiny standard decoder-only 397

language model. The MOE layer stabilizes training 398

and accelerates convergence—without this layer, 399

the speech decoder fails to train effectively. Simi- 400

lar to (Ma et al., 2024; Zhang et al., 2024b; Fang 401
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et al., 2024), the NAR speech decoder takes the402

output hidden states from the LLM as input and403

generates the discrete unit sequence corresponding404

to the speech response in real-time.405

Given that the output hidden states of the text406

response ya are denoted as DLLM (xV , yq) =407

[h1, ...,hN ]. We first pass these hidden states408

through the text-guided module (TGM) to obtain409

the transformed hidden state C = [c1, ..., cN ].410

Next, C is fed into the speech decoder layers,411

yielding the final hidden state sequence O =412

[o1, ...,oM ]. We use connectionist temporal clas-413

sification (CTC) (Graves et al., 2006) to align O414

with the discrete unit sequence xUa = {xUa,i}Li=1.415

During training, CTC marginalizes over all possi-416

ble alignments as follows:417

Lctc(pγ ,DI
o2s) = − log pγ(x

U
a |O) =

− log
∑

A∈β−1(xU
a )

pγ(A|O) = − log
∑

A∈β−1(xU
a )

M∏
i=1

pγ(x
U
a,i|O),

(4)418

where β−1(xUa ) denotes all possible alignments419

of length M that collapse to xUa . During inference,420

the best alignment is selected as:421

A∗ = argmax
A

P (A|O), (5)422

and the corresponding discrete unit sequence423

β(A∗) is fed into the vocoder to synthesize the424

waveform.425

Self-aware Emotional Speech Generation To426

enable OpenOmni to generate self-aware, emotion-427

ally coherent, and expressive speech based on con-428

textual history without additional control modules,429

we introduce the CTC Direct Preference Opti-430

mization (DPO) algorithm. This method enhances431

smooth and natural dialogue interactions. The DPO432

approach leverages an analytical reward function433

r(x, y), expressed as:434

r(x, y) = β log
π∗(y|x)
πref(y|x)

+ β logZ(x), (6)435

where β is a constant and Z(x) is the partition436

function. Using this observation, we directly opti-437

mize the policy model based on human feedback438

preference pairs (yw, yl):439

Ldpo = −E(x,yw,yl)

[
log σ(r(x, yw)− r(x, yl))

]
= −E(x,yw,yl)

[
log σ(β log

π∗(yw|x)
πref(yw|x)

− β log
π∗(yl|x)
πref(yl|x)

)
]
,

(7)440

where the reference model πref(y|x) is the pre- 441

trained model from the real-time speech generation 442

stage and remains fixed during DPO training. Only 443

the policy model π∗(y|x) is updated. Compared 444

to traditional reinforcement learning with human 445

feedback (RLHF), DPO is simpler, more efficient, 446

and more stable for aligning OpenOmni with self- 447

aware emotional speech generation. 448

Following the Plutchik Model of Emotions (6sec- 449

onds.org, 2022), we construct a multi-turn dia- 450

logue preference dataset incorporating nine dis- 451

tinct emotions. Each preference pair consists of 452

an emotionally congruent speech response unit se- 453

quence yw = xUa,w, which aligns with the conversa- 454

tional history, and an emotionally neutral sequence 455

yl = xUa,l, which is inconsistent with the context. 456

The policy model π(y|x) during training is opti- 457

mized as: 458

log π(y|x) = log
∑

A∈β−1(xU
a )

M∏
i=1

pγ(x
U
a,i|O). (8) 459

After training, OpenOmni is capable of gener- 460

ating real-time, emotionally expressive multi-turn 461

dialogues. 462

4 Experiments 463

4.1 Implementation Details 464

In this subsection, we introduce the model and data 465

construction, and more details about the data and 466

training strategy can be found in appendix D. 467

Omnimodal Alignment Data During the speech- 468

to-text generation phase, in addition to WeNet- 469

Speech (Zhang et al., 2022), LibriSpeech (Panay- 470

otov et al., 2015), and AIShell-4 (Fu et al., 2021), 471

we use portions of shorter responses from O2S- 472

300K, totaling 8000 hours of data, for bilingual 473

speech-text alignment training. For image-text 474

alignment, we train OpenOmni on the LLaVA- 475

Pretrain-595K (Liu et al., 2024b) for image-text 476

alignment. In the image-text instruction tuning 477

stage, we fine-tune OpenOmni on the compact high- 478

quality dataset MMEvol (Luo et al., 2024b) for 479

efficient optimization. 480

Real-time Speech Generation Data To support 481

real-time speech generation, we curate a dataset 482

of 300K instructions from MMEvol (Luo et al., 483

2024b) and UltraChat (Ding et al., 2023) that 484

included long responses for training the speech 485

decoder. Specifically, we decompose multi-turn 486
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Method Action & Story Plot Identification Contextual & Identity & Text & Count & OverallActivity Description Inference & Description Environmental Relationship Symbols Quantity

AnyGPT (7B) (Zhan et al., 2024) 5.98 8.70 7.59 4.74 5.67 12.50 8.00 20.00 7.01
Video-SALMONN (13B) (Sun et al., 2024) 28.69 25.65 24.47 23.22 29.08 21.83 52.00 26.63 26.53
UnifiedIO2-Large (1.1B) (Lu et al., 2024) 28.29 22.17 32.49 30.81 28.37 21.83 16.00 13.33 27.76
UnifiedIO2-XLarge (3.2B) (Lu et al., 2024) 30.28 26.52 30.38 31.75 28.37 18.75 28.00 26.63 29.16
UnifiedIO2-XXLarge (6.8B) (Lu et al., 2024) 27.49 23.04 28.69 25.59 26.95 12.50 12.00 46.67 25.92
VITA (7x8B) (Fu et al., 2024) 33.47 34.35 27.00 36.02 43.97 31.25 24.00 6.67 33.45

OpenOmni (7B) 36.65 45.65 32.91 44.08 48.23 34.38 24.00 33.33 37.40

Table 1: Overall omni-understanding results on OmniBench. We present a performance comparison of omni-
understanding across various fully open-source Omnimodal Large Language Models (OLLMs) on OmniBench.
Notably, compared to the state-of-the-art OLLM, VITA (Fu et al., 2024), which was trained on tri-modal data,
OpenOmni achieves comparable performance while utilizing significantly less training data and a smaller model
size.

dialogues into single-turn question-answer pairs,487

rank the responses based on their length, and se-488

lect 100K question-answer pairs with relatively489

long responses. To support bilingual output in490

Chinese and English, we translate 50K question-491

answer pairs into their corresponding Chinese ver-492

sions using GPT-4o-mini API, and then convert493

the answers into the corresponding speech using494

CosyVoice (Du et al.). We employ the same method495

for text-conditioned speech synthesis on 200k ran-496

domly selected data from UltraChat. As a result,497

we obtain 8000 hours of high-quality bilingual498

speech generation data O2S-300K.499

Self-aware Emotional Speech Generation Data500

Based on the Plutchik Model of Emotions (6sec-501

onds.org, 2022), which categorizes emotions into502

eight distinct types, we curate a multi-turn speech503

preference dataset, EO2S-9K, for self-awareness504

emotion evaluation. Specifically, we randomly505

select 200K samples from MMEvol and employ506

Qwen2-72B (Bai et al., 2023a) to categorize re-507

sponses into nine predefined emotions per round.508

From this, we extract 1K bilingual dialogues la-509

beled with emotion categories, reserving an addi-510

tional 100 samples as an emotional test set for eval-511

uating self-aware speech generation. Since certain512

emotions, such as anger and sadness, are underrep-513

resented in the MMEvol dataset, we augment the514

dataset using the GPT-4o-mini API to ensure suf-515

ficient data for these categories. The final dataset516

maintains an equal representation of Chinese and517

English samples. To further enhance emotional518

preference training, we use CosyVoice to gener-519

ate unconditional speech as negative samples and520

emotion-conditioned speech as positive samples,521

constructing preference pairs for training direct522

preference optimization in emotional speech gener-523

ation.524

Model We design the architecture following525

LLaVA Series (Liu et al., 2024b,a; Luo et al.,526

2024b), where the omnimodal large language 527

model consists of four key components: an LLM 528

(Qwen2.5-7B-Instruct (Bai et al., 2023a)) for next 529

token prediction, an image encoder (CLIP-ViT- 530

L (Radford et al., 2021)) for extracting visual fea- 531

tures, a speech encoder (Whisper-large-v3 (Rad- 532

ford et al., 2023)) for extracting audio features 533

and a streaming speech decoder (Qwen2.5-0.5B- 534

Instruct (Bai et al., 2023a)) for generating vivid 535

speech in real-time. Moreover, an image-text pro- 536

jector and a speech-text projector are adopted to 537

align the visual-text modalities and the speech- 538

text modalities, respectively. A mixture of expert 539

modules and text-guided modules is designed to 540

align the omnimodal embedding and speech de- 541

coder efficiently and stably. For the autoregressive 542

mode, we use the Speech Tokenizer from GLM4- 543

Voice (Zeng et al., 2024) with a vocabulary size of 544

16K, which results in better speech quality. For non- 545

autoregressive models, we use the CosVoice (Du 546

et al.) Speech Tokenizer with a smaller vocabulary 547

size of 6K, facilitating faster convergence during 548

CTC training. 549

4.2 Omni-Language Evaluation 550

OmniBench (Li et al., 2024b) is a pioneering bench- 551

mark designed to evaluate omnimodal large lan- 552

guage models (OLLMs) by assessing their ability 553

to integrate and interpret simultaneous inputs from 554

images, audio, and text. This evaluation frame- 555

work consists of 1,142 question-answer pairs cate- 556

gorized into tasks that focus on cognitive and rea- 557

soning abilities, posing significant challenges in en- 558

tity recognition, causal inference, and abstract con- 559

cept comprehension. We compare OpenOmni with 560

other OLLMs on OmniBench, with results summa- 561

rized in table 1. Notably, our model achieves ex- 562

cellent zero-shot omnimodal alignment using only 563

two training phases: speech-text alignment and 564

image-text alignment. Compared to the fully open- 565

source state-of-the-art OLLM, VITA (Fu et al., 566

7



Model Lang Angry & Disgusted Fearful Happy Neutral Other Sad Surprised Overall

OpenOmni ZH 89.7 54.8 33.3 92.3 51.6 60.2 23.7 57.9
w/ DPO ZH 96.6 78.4 37.7 97.1 62.8 90.7 29.8 70.4

OpenOmni EN 89.2 68.7 57.5 91.9 48.0 75.6 7.5 62.6
w/ DPO EN 91.3 70.4 60.6 94.6 49.6 77.3 13.9 65.4

Table 2: Overall self-aware emotional speech generation results on the bilingual EO2S-9K test set. Using the
emotional speech direct preference optimization algorithm, OpenOmni demonstrates consistent improvements in
emotional speech generation for both Chinese and English. The average accuracy of bilingual emotional speech
generation increases by 7.7 % (from 60.2% to 67.9%), with particularly notable gains in categories such as Angry,
Fearful, and Sad.

Model
AIShell-2(ZH-CER) Librispeech(EN-WER)

Dev Test Test_clean Test_other

S2T T2S S2T T2S S2T T2S S2T T2S

Speech LLM
SpeechT5 (Ao et al., 2021) - - - - 2.4 - 5.8 -
SALMONN (Tang et al., 2023) - - - - 2.1 - 4.9 -
Mini-Omni (Xie and Wu, 2024) - - - - 4.7 - 9.4 -
Freeze-Omni (Wang et al., 2024) - - - - 3.2 - 7.7 -
Qwen2-Audio (Chu et al., 2023) 3.1 - 3.3 - 2.0 - 4.5 -

Omnimodal LLM
AnyGPT (Zhan et al., 2024) - - - - 8.5 - - -
VITA (Fu et al., 2024) - - - - 8.1 - 18.4 -
EMOVA (Chen et al., 2024a) 10.3 7.9 - - 4.0 3.4 - -
VITA 1.5 (Fu et al., 2024) - - - - 3.4 - 7.5 -
OpenOmni 6.8 7.3 6.9 13.1 3.1 2.6 4.1 5.6

Table 3: Comparison with state-of-the-art methods on
speech-language benchmarks. We mark the best perfor-
mance bold.

2024), OpenOmni achieves superior overall results567

on OmniBench (37.40 vs. 33.45) despite using sig-568

nificantly fewer training parameters (7B vs. 8×7B)569

and less image-text training data (1.6M vs. 5M).570

Furthermore, by leveraging language as a pivot, our571

approach completes omnimodal alignment implic-572

itly, demonstrating enhanced scalability in scenar-573

ios with limited tri-modal data.574

4.3 Speech-Language Evaluation575

To evaluate OpenOmni ’s speech understanding576

and generation capabilities, we measure word er-577

ror rate (WER) on the AIshell-2 (Fu et al., 2021)578

and Librispeech (Panayotov et al., 2015) bench-579

marks for two tasks: speech-to-text recognition580

(S2T) and text-to-speech generation (T2S). For581

T2S evaluation, we use Whisper-large-V3 to tran-582

scribe OpenOmni ’s synthesized speech and com-583

pute WER against ground-truth text labels. As584

shown in table 3, OpenOmni achieves the best per-585

formance on both S2T and T2S tasks for bilin-586

gual (Chinese and English) data, outperforming587

other omnimodal models. This result indicates588

that OpenOmni not only comprehends speech ef-589

fectively but also generates fluent, high-quality au-590

dio while maintaining strong alignment between591

speech and language modalities in both languages.592

Additionally, compared to VITA (Fu et al., 2024),593

which relies on separate text-to-speech (TTS) mod-594

els, and EMOVA (Chen et al., 2024a), which 595

uses an autoregressive (AR) structure, OpenOmni 596

demonstrates significantly faster speech generation 597

via two mode support. Owing to its end-to-end, 598

lightweight, non-autoregressive (NAR) decoding 599

mode support, OpenOmni can generate up to 30 600

seconds of speech with less than one second of 601

latency, achieving real-time speech generation at 602

over five times the speed of autoregressive models. 603

4.4 Emotional Speech Synthesis Evaluation 604

To assess the effectiveness of direct preference 605

learning in emotional speech generation, we evalu- 606

ate OpenOmni ’s self-aware emotional speech syn- 607

thesis on the EO2S-9K test set. Specifically, we 608

use Emotion2Vec (Ma et al., 2023) to classify the 609

emotions in the generated speech and measure ac- 610

curacy against ground-truth labels. As shown in 611

table 2, direct preference optimization for emo- 612

tional speech effectively enhances OpenOmni ’s 613

ability to generate emotionally expressive speech. 614

This improvement is particularly evident in bilin- 615

gual, multi-turn emotional speech generation tasks, 616

demonstrating the model’s ability to produce natu- 617

ral, contextually aware speech with accurate emo- 618

tional intonation. Additional experiments can be 619

found in appendix B. 620

5 Conclusion 621

In this paper, we introduced OpenOmni, a novel 622

end-to-end omnimodal model that leverages lan- 623

guage as a pivot to achieve tri-modal zero-shot 624

alignment, addressing the challenge of limited tri- 625

modal data. By integrating a lightweight streaming 626

speech decoder with direct preference optimization 627

for emotional speech, OpenOmni enabled real-time, 628

self-aware, high-quality speech interactions. Our 629

extensive evaluations demonstrated that OpenOmni 630

achieves state-of-the-art performance on tri-modal 631

benchmarks while using significantly fewer train- 632

ing parameters and less training data than previous 633

models. 634
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6 Limitations635

Although OpenOmni demonstrates strong perfor-636

mance under low-resource conditions, the impact637

of training on a larger volume of high-quality tri-638

modal data remains an open question. Addition-639

ally, while the mixture of experts (MoE) module640

effectively mitigates conflicts in CTC training, it641

remains more challenging to optimize compared642

to autoregressive generation methods. Striking a643

balance between efficiency and stability in non-644

autoregressive speech generation remains an im-645

portant direction for future research. To further im-646

prove omnimodal interactions, we plan to enhance647

OpenOmni ’s ability to generate multi-character648

speech responses, improving conversational depth649

and expressiveness. We also plan to explore rein-650

forcement learning techniques for refining multi-651

modal alignment beyond current supervised learn-652

ing approaches. As omnimodal AI continues to653

evolve, we believe OpenOmni represents a step to-654

ward more natural and immersive human-computer655

interactions.656
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A Data Construction974

We provide details of the data construction for mul-975

tiple training stages below:976

• OpenOmni-1-1: In addition to datasets977

WeNetSpeech, LibriSpeech, and AIShell-978

4, we randomly select 80k image-text in-979

struction data with shorter responses from980

MMEvol (Luo et al., 2024b). We translate981

40k of this data into Chinese using Qwen72B982

and synthesize the responses into speech data983

with CosVoice. This results in 1600 hours of984

OpenOmni-1-1 data for speech-text alignment985

pretraining.986

• OpenOmni-2-1: For rapid image-text align-987

ment pretraining, we use the llava pretrain988

dataset, following previous work (Liu et al.,989

2024b,a; Luo et al., 2024b; Liu et al., 2024c).990

• OpenOmni-2-2: To achieve efficient image-991

text instruction tuning, we employ MMEvol992

data. Since we later train the speech decoder993

by freezing the LLM mode, we include O2S-994

300K to stabilize the training of the speech995

decoder, resulting in a combined dataset of996

1.7M for OpenOmni-2-2.997

• OpenOmni-3-1: To better utilize computa-998

tional resources, we select 300k data with long999

response instructions from MMEvol and Ul-1000

traChat. This includes 100k image-text in-1001

struction data, 100k single-round dialogue,1002

and 100k multi-round dialogue. We synthe-1003

size the corresponding speech using CosVoice,1004

resulting in 8000 hours of O2S-300K.1005

• OpenOmni-3-2: We curate 9k emotion pref-1006

erence data and generate emotional speech1007

preference pairs using CosVoice’s conditional1008

control. This is used for Direct Emotion Pref-1009

erence Optimization.1010

B Additional Experiments1011

B.1 Vision-Language Evaluation1012

To comprehensively assess the effectiveness of1013

OpenOmni in aligning visual-text modalities, we1014

compare its performance against previous vision-1015

language models (VLLMs) across eight represen-1016

tative benchmarks: MMBench-EN (Liu et al.,1017

2023), MMBench-CN (Liu et al., 2023), MM-1018

Star (Chen et al., 2024b), RealWorldQA (x.ai,1019

2024), MMMU (Yue et al., 2024), MathVista (Lu 1020

et al., 2023), AI2D (Kembhavi et al., 2016), 1021

and HallusionBench (Guan et al., 2023). To 1022

ensure reproducibility and maintain consistency 1023

across all models and benchmarks, we employ 1024

VLMEvalKit (Duan et al., 2024) for zero-shot eval- 1025

uation. As shown in table 4, OpenOmni achieves 1026

superior results compared to the fully open-source 1027

state-of-the-art OLLM, VITA (Fu et al., 2024), de- 1028

spite being trained on significantly less data. No- 1029

tably, our model outperforms VITA with gains of 1030

7.0% on MMBench-Chinese and 11.3% on Hallu- 1031

sionBench. We can also observe that the use of 1032

additional speech modals can further enhance the 1033

vision-language capabilities of the model. Further- 1034

more, compared to other fully open-source visual- 1035

language models, OpenOmni maintains compet- 1036

itive performance despite reduced training data, 1037

demonstrating the effectiveness of our image-text 1038

alignment strategy. 1039

B.2 Additional Omni-Language Evaluation 1040

In addition to OmniBench, we conduct experiments 1041

on the AV-Odyssey Bench (Gong et al., 2024), 1042

which involves the four modalities: audio, text, 1043

image, and video. For video, we test by averag- 1044

ing 8 sampled frames into a single image. The 1045

experimental results are shown in the table 6 below. 1046

Compared to other OLLMs, OpenOmni achieves 1047

the best average performance using only bi-modal 1048

speech-text and image-text data. With 7B model 1049

parameters and no audio or video training, it out- 1050

performs VITA by 4.4 points, demonstrating the 1051

effectiveness and efficiency of OpenOmni. 1052
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Figure 4: Ablation study of text-guided module (TGM).
In order to explore the effect of TGM on speech genera-
tion under the two modes, we plot the change of training
loss under the same setting. TGM can significantly im-
prove the convergence speed of training and improve
the effect of speech generation of the speech decoder.
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Model w/ Audio IO PT IT MMStar MMB MMBCN HallBench MathVistaM MMMUV AI2D RWQA

Proprietary Models
GPT-4o ✓ – – - 83.4 82.1 55.0 63.8 69.1 - 75.4
GPT-4o-mini ✓ – – - - - 46.1 52.4 60.0 - 67.1

Weight Open-Source
MiniCPM-V2.5 (8B) (Yao et al., 2024) ✗ 570M 9.1M 51.3 76.7 73.3 42.5 54.3 45.8 - 63.5
Qwen2-VL-Chat (7B) (Bai et al., 2023b) ✗ 1.4B - 60.7 86.4 81.9 50.6 58.2 52.7 - 69.7
Baichuan-Omni (7B) (Li et al., 2024a) ✓ – 8M - 76.2 74.9 47.8 51.9 47.3 - 62.6
EMOVA (8B) (Chen et al., 2024a) ✓ 7.4M 4.4M - 82.8 - - 61.1 - 82.8 64.3

Fully Open-Source
Cambrain-I (8B) (Tong et al., 2024) ✗ 2.5M 7M 50.7 - - 34.3 47.0 41.8 73.1 64.2
MMEvol (7B) (Luo et al., 2024b) ✗ 0.6M 1.5M 51.6 74.6 74.3 42.9 52.4 45.1 74.7 63.9
VITA (8x7B) (Fu et al., 2024) ✓ – 5M - 74.7 71.4 39.7 44.9 45.3 74.3 59.0
OpenOmni (7B) ✓ 0.6M 1.7M 52.3 76.2 76.4 44.2 52.7 46.7 74.8 64.3

Table 4: Comparison with state-of-the-art methods on visual-language benchmarks, including an indication of
audio input/output support. The best performance among fully open-source models is highlighted in bold. Results
demonstrate that integrating audio input and output further enhances the model’s visual-language capabilities.

Layers Experts Wenetspeech(ZH) Librispeech(EN)

Test_Net Test_Meeting Test_clean Test_other

2 1 113.6 129.7 87.8 96.5
2 2 16.7 22.3 10.7 14.6
2 4 8.5 8.4 4.2 4.7
4 4 7.3 7.9 3.8 4.3
6 4 6.4 6.7 4.1 4.5

Table 5: Ablation study on the number of layers and
experts in the speech decoder. Increasing experts in
the mixture of experts module stabilizes CTC loss dur-
ing training and enhances speech generation capacity.
Deeper transformer layers improve English and Chinese
speech generation, with greater benefits for Chinese.

C Additional Ablation Study1053

In order to explore the effect of TGM on speech1054

generation in two modes, we plot the change of1055

training loss under the same setting. As shown1056

in fig. 4, we can observe that TGM can signifi-1057

cantly improve the convergence speed of training1058

and the performance of model speech generation,1059

which verifies the effectiveness of our model de-1060

sign, whether it is (next token prediction) NTP loss1061

under stable AR mode or CTC loss under unstable1062

NAR mode.1063

To explore the impact of the number of lay-1064

ers in the NAR speech decoder and the mix-1065

ture of experts module on Chinese and English1066

speech generation, we conduct ablation experi-1067

ments on WeNetSpeech (Zhang et al., 2022) and1068

LibriSpeech (Panayotov et al., 2015). As illustrated1069

in table 5, the instability and fragility associated1070

with training using the CTC loss function present1071

significant challenges. When simply employing1072

a single feed-forward network (i.e., experts = 1),1073

it becomes increasingly difficult to reconcile the1074

conflicting training dynamics inherent in mixed- 1075

language scenarios, particularly when dealing with 1076

varying response lengths. As a result, training the 1077

speech decoder under these conditions proves to be 1078

quite challenging. Our findings demonstrate that 1079

incrementally increasing the number of experts sig- 1080

nificantly enhances the model’s performance in 1081

bilingual speech generation, thereby underscoring 1082

the effectiveness of our mixture of experts module 1083

design. However, we observe inconsistent prefer- 1084

ences regarding the optimal number of layers in the 1085

speech decoder for generating speech in Chinese 1086

and English. Specifically, while four layers yield 1087

the best results for English generation, six layers 1088

are more suitable for generating Chinese speech. 1089

D Additional Implementation Details 1090

OpenOmni is trained in five sequential sub-stages: 1091

speech-to-text generation, image-text pretraining, 1092

image-text instruction tuning, real-time speech gen- 1093

eration, and self-aware emotional speech genera- 1094

tion. Further details on these training stages are 1095

provided in table 7. 1096

As shown in fig. 5, we provide more details of 1097

the speech decoder design and training here. For 1098

speech decoder, OpenOmni supports both autore- 1099

gressive (AR) and non-autoregressive (NAR) meth- 1100

ods. Specifically, the AR mode has better genera- 1101

tion quality but a slower generation speed, while 1102

the NAR mode can achieve real-time speech gen- 1103

eration but the generation quality is slightly worse. 1104

At the same time, in order to train the speech gener- 1105

ator more efficiently, we also design a text-guided 1106

feature fusion module, so that the conditional fea- 1107

tures used for speech generation have more accu- 1108

rate alignment semantics, which can improve the 1109
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Method Timbre Tone Melody Space Time Hall Intricacy Overall

OneLLM (7B) (Han et al., 2024) 25.0 25.5 21.5 37.5 29.3 25.5 38.4 27.4
PandaGPT (7B) (Su et al., 2023) 23.5 23.2 27.6 45.0 23.8 28.0 23.9 26.7
Video-LLaMA (7B) (Zhang et al., 2023b) 25.5 22.3 24.4 30.0 26.2 25.0 30.7 26.1
Video-LLaMA2(7B) (Cheng et al., 2024) 24.1 25.5 26.4 30.0 27.2 33.0 34.5 26.8
AnyGPT (7B) (Zhan et al., 2024) 24.6 25.0 26.4 27.5 29.2 29.0 25.7 26.1
NexTGPT (7B) (Wu et al., 2023) 23.3 20.9 27.8 30.0 28.8 28.5 23.6 25.5
VITA (7x8B) (Fu et al., 2024) 24.1 26.4 27.8 22.5 26.3 31.0 36.8 26.4

OpenOmni (7B) 23.9 27.7 25.9 60.0 25.2 29.5 37.6 32.8

Table 6: Overall omni-understanding results on AV-Odyssey Bench. We conduct a performance comparison of omni-
understanding among various fully open-source Omnimodal Large Language Models (OLLMs) on AV-Odyssey
Bench. Compared to the state-of-the-art OLLM, VITA (Fu et al., 2024), which was trained on tri-modal data,
OpenOmni achieves comparable advanced performance using significantly less training data and smaller model size.
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Figure 5: Overview of Text-Guided Module and Speech Decoder Mode. (left) Text-guided module fuse the hidden
state and response textual feature via cross-attention, accelerating convergence speed of training without dropping
the speed of speech decoding and context emotion perception. (right) OpenOmni supports both autoregressive
(AR) and non-autoregressive speech (NAR) generation. The NAR mode uses CTC loss modeling and a 6K speech
vocabulary size to enable real-time parallel speech decoding generation. The AR mode uses NTP loss modeling and
a speech vocabulary size of 16K to support streaming decoding and higher-quality speech generation. In order to
make the training of speech generator more stable and easy, we design a text-guided output feature fusion method to
ensure the correctness of semantic alignment in speech generation modeling.

Hyperparameter I II III IV V

batch size 256 128 128 32 32
lr 1e−3 1e−3 5e−5 5e−4 5e−4

warmup ratio 0.3 0.3 0.3 0.3 0.3
epoch 1 1 1 3 3
freeze LLM ✔ ✔ ✘ ✔ ✔

optimizer AdamW AdamW AdamW AdamW AdamW
cost 40 GPU·H 80 GPU·H 500 GPU·H 36 GPU·H 8 GPU·H
dataset 1-1 2-1 2-2 3-1 3-2
loss Ls2t Li2t LI

i2t Lctc Ldpo

Table 7: The detailed training setup for OpenOmni and
the hyper-parameters across the training stage. All ex-
periments are conducted in 8xA100 setting.

generation quality and training efficiency of the1110

speech decoder.1111

Non-autoregressive mode: In the non-1112

autoregressive mode, the conditional features1113

generated by OLLM are fed into the speech1114

decoder by a layer of MOE and then upsampled1115

to obtain the predicted speech output, and finally 1116

the end-to-end optimization is carried out by CTC 1117

loss modeling of the speech output. Due to the 1118

instability of CTC loss training, the smaller the 1119

size of the speech vocabulary, the easier it is to be 1120

successfully trained, but the generation quality of 1121

the corresponding speech will be affected by the 1122

smaller vocabulary. 1123

Autoregressive mode: The autoregressive mode 1124

projects the conditional features generated by 1125

OLLM into the speech space through a layer of 1126

linear layer and feeds them into the speech decoder 1127

to obtain the speech prediction output, and finally 1128

optimizes the speech output end-to-end by model- 1129

ing the NTP loss. Due to the stability of NTP loss 1130

training, the quality of speech generation will be 1131
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higher than that of non-autoregressive generation,1132

but the speed of speech generation will be reduced1133

by autoregressive decoding.1134

Both AR and NAR modes depend on the qual-1135

ity of the speech generation conditional features1136

generated by OLLM. Although OpenOmni will let1137

the OLLM fit the text answer corresponding to the1138

speech through multiple rounds of training in ad-1139

vance, there will still be OLLM output decoded into1140

the wrong text answer. In this case, the erroneous1141

generated condition features will be incorrectly1142

aligned with the speech during the training process,1143

which will ultimately reduce the performance of the1144

speech decoder. In order to ensure the efficiency1145

of training, OpenOmni fuse the speech generation1146

condition features output by OLLM with the corre-1147

sponding text features with correct semantics, and1148

then feed them into the speech decoder for speech1149

generation modeling training. Through the feature1150

fusion module of text prior, OpenOmni avoids the1151

misalignment of speech and corresponding text and1152

ultimately makes the speech decoder training more1153

stable and, at the same time, has more efficient and1154

accurate speech generation quality.1155
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English Prompts used in Text-to-Speech (T2S) and Speech-to-Text (S2T) tasks.

S2T (ASR)
Please translate the user’s spoken input into corresponding text, word by word.
T2S
Echo game: Repeat this sentence back to me exactly as I said it!
Mirror challenge: Reflect my words right back at me!
Parrot mode: Can you mimic what I just said?
Copycat test: Let’s see how well you can replicate my sentence!
Playback time: Rewind and repeat my last sentence.
Echo chamber: Say back to me what I just mentioned.
Simulate my speech: Can you say exactly what I just did?
Mimicry game: Echo my words precisely!
Repeat relay: Send my sentence back to me unchanged.
Reflection exercise: Reiterate my last statement word for word.

1156

English emotional preference data case.

Emotion: Neutral
user: "Please engage in a conversation with me."
assistant: "Of course, please go ahead with your question." [A calm and collected woman,
speaking in a steady and neutral tone.]
user: "I was wondering how you manage to stay so composed all the time."
assistant: "It’s something that comes with practice and mindfulness. I focus on observing my
surroundings and maintaining a balanced perspective." [A composed woman, speaking in a
measured and tranquil tone.]
user: "That sounds quite challenging. Do you ever feel overwhelmed?"
assistant: "There are moments when things can be overwhelming, but I remind myself to breathe
and take one step at a time." [A calm woman, delivering her words in an even and serene manner.]
user: "Do you have any techniques to stay calm under pressure?"
assistant: "Yes, I practice meditation and deep breathing exercises. It helps to center my thoughts
and maintain clarity." [A composed woman, speaking with a steady and soothing tone.]
user: "I see. Do you think anyone can learn to be as calm as you?"
assistant: "Absolutely. It requires patience and consistent practice, but anyone can develop the
ability to remain calm and composed." [A neutral-toned woman, expressing herself in a clear
and composed manner.]
user: "What advice would you give to someone starting on this path?
assistant: "Begin with small steps. Start by observing your thoughts and emotions without
judgment. Practice mindfulness and breathing exercises daily." [A composed woman, offering
her advice in a gentle and calm tone.]
user: "Thank you for your advice. It has been very insightful."
assistant: "You’re welcome. I’m glad I could help. Remember, the journey to calmness is
gradual, but rewarding." [A tranquil woman, speaking in a reassuring and composed tone.]

1157

17


	Introduction
	Related Work
	Vision Language Models
	Speech Language Models
	Omni-modal Language Models

	Method
	Problem Formulation and Overview
	Speech-to-text Generation
	Image-to-text Generation
	Speech Generation

	Experiments
	Implementation Details
	Omni-Language Evaluation
	Speech-Language Evaluation
	Emotional Speech Synthesis Evaluation

	Conclusion
	Limitations
	Data Construction
	Additional Experiments
	Vision-Language Evaluation
	Additional Omni-Language Evaluation

	Additional Ablation Study
	Additional Implementation Details

