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Abstract

Modern language models represent probability
distributions over character strings as distribu-
tions over (shorter) token strings derived via a
deterministic tokenizer, such as byte-pair encod-
ing. While this approach is highly effective at
scaling up language models to large corpora, its
current incarnations have a concerning property:
the model assigns nonzero probability mass to an
exponential number of noncanonical token encod-
ings of each character string–—these are token
strings that decode to valid character strings but
are impossible under the deterministic tokenizer
(i.e., they will never be seen in any training corpus,
no matter how large). This misallocation is both
erroneous, as noncanonical strings never appear
in training data, and wasteful, diverting proba-
bility mass away from plausible outputs. These
are avoidable mistakes! In this work, we propose
methods to enforce canonicality in token-level
language models, ensuring that only canonical to-
ken strings are assigned positive probability. We
present two approaches: (1) canonicality by con-
ditioning, leveraging test-time inference strategies
without additional training, and (2) canonicality
by construction, a model parameterization that
guarantees canonical outputs but requires training.
We demonstrate that fixing canonicality mistakes
improves the likelihood of held-out data for sev-
eral models and corpora.

github.com/genlm/canonical-icml-2025

1. Introduction
Modern language models are probability distributions over
character strings (denoted Σ∗) that are parameterized as
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Figure 1. The figure shows the canonical and noncanonical encod-
ings of the string Hello,␣world. The diagram shows the top-8
token encodings of the string according to their probability (de-
scending top to bottom), as there are hundreds of them for this
short string. Note that the canonical token encoding is the most
likely one (i.e., it is at the top), which is reassuring as it is the most
representative of the training data.

distributions over a different space of token strings (de-
noted ∆∗). In the case of the prevalent byte-pair encoding
(BPE; Gage, 1994), each token may be regarded as a multi-
character (or multi-byte) chunk of a UTF-8-encoded string.
Such a language model is trained by encoding its training
data into token strings, which has the benefit of compressing
the large corpus. The BPE encoding is a pair of functions:
an encoding function τ : Σ∗ → ∆∗ that maps a given input
character string σ to its canonical encoding δ = τ(σ), and a
decoding function κ : ∆∗ → Σ∗ that maps any token string
δ back to a character string σ = κ(δ). The result of training
on a corpus of token strings is a language model p∆ that gen-
erates a token string δ and decodes it to a character string σ.

We define the set of canonical token strings D ⊆ ∆∗ as
those that appear as the canonical encoding of at least one
character string, i.e., D def= {τ(σ) | σ ∈ Σ∗}. These are
the only strings that are possible in the tokenized training
data of p∆. The set of noncanonical token strings is, thus,
∆∗ ∖D. Even though p∆ has never—and will never—see
a noncanonical token string in its training data, it will still
place nonzero probability mass on them due to model archi-
tecture and training limitations. Fig. 1 shows an example
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of a string with its canonical encoding and its exponentially
many noncanonical encodings.

Fixing canonicality mistakes. Removing noncanonical
strings from the support of the estimated distribution p∆
can improve the likelihood of the correct token strings. We
describe two families of methods for doing so

• Canonicality by conditioning: We explore efficient test-
time inference methods for conditionally generating text
that satisfies the canonicality constraint without retraining.

• Canonicality by construction: We explore methods that
impose canonicality constraints directly in the language
model’s parameterized architecture and give a method to
fine-tune its parameters.

In addition to these novel methods, this paper presents the
following contributions:

• We prove that our methods can only improve the fit to the
true distribution over tokens.

• We show empirically that fixing canonicality mistakes
using our methods improves the likelihood of held-out
data for several models and corpora.

• As a side effect of pursuing the goal of generating only
canonical token strings, we discovered an efficient, in-
cremental canonicality test for BPE (see App. B) that is
significantly simpler than prior work (e.g., Berglund et al.,
2024; Cognetta & Okazaki, 2024), as it does not require
automata theory to understand or implement.

2. Preliminaries
2.1. Strings

An alphabet is a non-empty, finite set of symbols (e.g.,
bytes, characters, or tokens) from which we can build strings.
A string is a finite-length sequence of symbols from a given
alphabet. Let Γ be an alphabet. Let Γ∗ denote the set of all
strings over Γ. We use |γ| to denote the length of the string
and ε to denote the string of zero length. Let γ′·γ′′ denote
the concatenation of γ′ and γ′′. We write γ<n

def= γ1···γn−1

to access the first n− 1 symbols of the string γ. Let γ ⪯ γ′

denote that γ is a prefix of γ′, and γ′ ⪰ γ denote that γ′

is has γ as a prefix. The set of bigrams of a given string
BIGRAMS(γ1···γN ) def= {γnγn+1 | 1 ≤ n < N}.

2.2. Information-Theoretic Quantities

For completeness, we include definitions of the following
common information-theoretic quantities, which are mea-
sured in bits. Let log be the logarithm function in base 2
throughout this paper. Let p and q be probability distribu-
tions over a countable domain X .

• Entropy: H(p) def= −
∑

x∈X p(x) log p(x)

• Cross-entropy: H(p, q) def= −
∑

x∈X p(x) log q(x)

• KL divergence: KL(p∥q) =
∑

x∈X p(x) log p(x)
q(x)

These quantities are related via KL(p∥q) = H(p, q)−H(p),
and H(p) = H(p, p). Lastly, we follow the information-
theoretic convention that 0 log 0 def= 0 in these definitions.

2.3. Language Models

A language model pΓ is a probability distribution over a set
of strings Γ∗. Thus, we can define a string-valued random
variable Y ∼ pΓ with this distribution. Moreover, we can
compute the conditional probabilities of different events
pertaining to the random variable Y , as we normally do
in probability theory. However, since Y is string-valued,
the comparisons and transformations applied to it must be
string-friendly. We define the prefix probability:

−→pΓ(γ) def= Pr
Y∼pΓ

[Y ⪰ γ] =
∑

γ′∈Γ∗

1{γ′ ⪰ γ} pΓ(γ′) (1a)

and the conditional prefix probability:

−→pΓ(γ′ | γ) def= Pr
Y∼pΓ

[Y ⪰ γ·γ′ |Y ⪰ γ] =
−→pΓ(γ·γ′)
−→pΓ(γ)

(1b)

−→pΓ(EOS | γ) def=
pΓ(γ)
−→pΓ(γ)

(1c)

We can use conditional prefix probability to factorize the
probability pΓ(γ) of a string γ = γ1···γT as the conditional
probability of each of its symbols γ1, ..., γT , followed by an
end-of-string event EOS:1

pΓ(γ) =
−→pΓ(EOS | γ)

|γ|∏
t=1

−→pΓ(γt | γ<t) (1d)

Note that each conditional prefix distribution −→pΓ(· | γ<t) is
a probability distribution over Γ ∪ {EOS}. Many language
models are defined via the product in Eq. (1d) where
each single-symbol conditional prefix probability comes
from a parametric model trained by predicting the next
token given the previous context. Examples of this include
transformers (Vaswani et al., 2017), RNNs (e.g., Mikolov
et al., 2010; Sundermeyer et al., 2015), and n-gram models
(e.g., Shannon, 1948).

2.4. Tokenized Language Models

An (exact, deterministic) tokenization model (Gastaldi
et al., 2025) is a tuple (Σ,∆, τ , κ) where Σ is an alphabet of
characters (or bytes), ∆ is an alphabet of tokens, τ : Σ∗ →
∆∗ is an encoding function, κ : ∆∗ → Σ∗ is a decoding
function, and κ(τ(σ)) = σ for all σ ∈ Σ∗.2

1Here, EOS is an event, not a symbol; thus, it may never appear in
any well-formed string.

2Note that for κ and τ to form a bijection between Σ∗ and ∆∗, we
would additionally require τ(κ(δ)) = δ for all δ ∈ ∆∗.

2



Language Models over Canonical Byte-Pair Encodings

A tokenized language model is a language model pΣ
over character strings Σ∗ that is parameterized by a token-
level language model p∆ over ∆∗ and a decoding function
κ : ∆∗ → Σ∗. The tokenized language model defines the
following probability distribution over Σ∗:

pΣ(σ)
def=

∑
δ∈∆∗

1{σ = κ(δ)} p∆(δ) (2)

Notice that τ is conspicuously absent from this expression,
as it is only part of the estimation process, which we char-
acterize below. In §4, we consider alternatives to Eq. (2)
that exploit prior knowledge of τ to force the probability of
noncanonical token strings to be zero.3

Estimating a tokenized language model. Let p⋆Σ be some
probability distribution over Σ∗ we wish to estimate. As
is standard in statistical estimation, we take a large sample
σ(1), ... ,σ(M) i.i.d.∼ p⋆Σ. Next, we encode each strings of
characters into strings of tokens, giving us a corpus of token
strings: δ(m) = τ(σ(m)) for 1 ≤ m ≤ M . Let p⋆∆ denote
the distribution of these token strings:

p⋆∆(δ)
def=

∑
σ∈Σ∗

1{τ(σ) = δ}p⋆Σ(σ) (3)

Next, we estimate a token-level language model p∆ to fit
the strings δ(1), ... , δ(M). After estimation, we have a dis-
tribution p∆ over strings of tokens rather than strings of
characters. Thus, to generate a string of characters, we first
generate a token string δ ∼ p∆, and decode it (via κ(δ))
to get a character string. This process is why the tokenized
language model’s character strings are distributed accord-
ing to Eq. (2).4 Tokenization is used in practice because
working with (short) token strings is easier than (long) char-
acter strings. The most commonly used tokenization scheme
for modern language models is byte-pair encoding (BPE;
Sennrich et al., 2016; Gage, 1994), which is a simple and
effective algorithm for shortening text (Zouhar et al., 2023).

2.5. Byte-Pair Encoding

Byte-pair encoding (BPE; Gage, 1994; Sennrich et al.,
2016) is a commonly used tokenization scheme.5 Intuitively,

3Vieira et al. (2024) give algorithms for working with tokenized
language models at the character (or byte) level, including algo-
rithms for computing conditional probabilities.

4Gastaldi et al. (2025) characterizes the conditions required for
tokenized language models to estimate p⋆Σ consistently.

5BPE is the most prevalent tokenization strategy in modern
language models; it is used by OpenAI’s GPT-2 (Radford et al.,
2019), GPT-3 (Brown et al., 2020), GPT-3.5 (OpenAI, 2022),
and GPT-4 (OpenAI, 2024a), GPT-4o (OpenAI, 2024b); Meta’s
Llama 1 (Touvron et al., 2023a), Llama 2 (Touvron et al., 2023b),
and Llama 3 (Llama Team, 2024); Mistral’s 7B (Mistral AI,
2023), Au (Mistral AI, 2024a), and Nemo (Mistral AI, 2024b);
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Figure 2. Short examples of canonical and noncanonical token
strings from GPT2’s tokenizer. Because the canonicalization op-
eration φ is idempotent, each example in the second column is
canonical. These examples were chosen to highlight some of
BPE’s unintuitive preferences, e.g., BPE is not a longest-match
tokenizer, and canonicalization can increase the string’s length.

the encoding function of BPE works as follows: each char-
acter of an input string σ1 ··· σN is initially mapped to an
individual token, then pairs of tokens are iteratively merged
into bigger tokens according to a list of merge rulesM. We
refer the reader to App. B for a formal definition of BPE.

2.6. Canonicality

To facilitate discussion, we start by introducing some termi-
nology. The set of canonical strings:

D def= {τ(σ) | σ ∈ Σ∗} (4a)

The set of noncanonical strings D def= ∆∗ \ D, and the set
of canonical prefixes:

−→
D def= {δ ∈ ∆∗ : δ ⪯ δ′, δ′ ∈ D} (4b)

We say that δ is canonical if δ ∈ D. We say δ is a canonical
prefix if δ ∈

−→
D . We define the canonicalization function

φ : ∆∗ → D as φ(δ) def= τ(κ(δ)). Note that D = {φ(δ) |
δ ∈ ∆∗}. We say that our language model p∆ is canonical
if δ /∈ D =⇒ p∆(δ) = 0, i.e.,

∑
δ∈D p∆(δ) = 1.

Membership tests. We can test membership in D via the
round-trip test: δ ∈ D ⇐⇒ φ(δ) = δ. We note, however,
that testing membership in

−→
D for general tokenizers is less

GPT-NeoX (Black et al., 2022); EleutherAI’s Pythia (Biderman
et al., 2023); Anthropic’s Claude (Anthropic, 2023a) and Claude
2 (Anthropic, 2023b); Google’s Gemma (Gemma Team, 2024);
and AI2’s OLMo 1 (Groeneveld et al., 2024) and OLMo 2 (Team
OLMo, 2025).
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straightforward.6

Membership tests for BPE. App. B provides efficient
algorithms for membership in these sets for BPE. Lemma 3
shows that for BPE D=

−→
D , i.e., the round-trip test is a cor-

rect membership test for
−→
D . We also provide a very efficient

incremental algorithm for performing these membership
tests that exploits the properties of the BPE encoding proce-
dure. Fig. 2 shows examples of canonicalized BPE strings.

3. Canonicality by Conditioning
Recall (Eq. (2)) that a tokenized language model defines a
language model pΣ(σ) over Σ∗. However, it is common
practice to evaluate the probability of a character string
σ ∈ Σ∗ using the following sub-distribution over Σ∗ during
both likelihood-based training and evaluation:

p′Σ(σ)
def= p∆(τ(σ)) (5)

The problem with p′Σ is that
∑

σ∈Σ∗ p′Σ(σ) can be < 1,
making it is an improper probability distribution over Σ∗.

Unfortunately, every token string—canonical or not—is
assigned a nonzero probability under a softmax-normalized
model; thus, modern language models allocate (typically
small) probability to each and every noncanonical string.
The leakage of mass to noncanonical strings is compounded
by the fact that D is an exponentially sparse subset of ∆∗.7

Our first approach to this problem defines a language model
g that is the result of probabilistic conditioning on the event
that the generated token string is in D.

Definition 1. The globally canonicalized language models
gΣ and g are defined as the following probability distribu-
tions over Σ∗ and ∆∗, respectively:

gΣ(σ)
def= g(τ(σ)) (6a)

g(δ) def= Pr
Y∼p∆

[Y = δ |Y ∈ D] (6b)

=
PrY∼p∆ [Y = δ, Y ∈ D]

PrY∼p∆ [Y ∈ D]
(6c)

=
1

Z
p∆(δ)1{δ ∈ D} (6d)

where Z is the canonicality rate:

Z def= Pr
Y ∈p∆

[Y ∈ D] (6e)

6When the tokenization function τ is implemented as a finite-state
transducer, we may derive an efficient finite-state automaton that
describes the prefix language of its outputs.

7More precisely, as a function of a length limit N , the fraction of
canonical strings in the universal of token strings |{δ∈D : |δ|≤N}|

|{δ∈∆∗ : |δ|≤N}|
decreases exponentially quickly. This is evident as each character
string has one canonical encoding, and exponentially many
noncanonical encodings as a function of its length.

Note that gΣ(σ) = 1
Z p∆(τ(σ)), meaning that we may inter-

pret the globally canonicalized model as renormalizing p′Σ.
We note that the effect of conditioning the language model
to generate only canonical token strings may dramatically
change the conditional prefix distributions of the distribu-
tion. We will discuss the details of how to approximately
and exactly generate samples from g.

3.1. Theoretical Guarantees for Conditioning

Why do we condition? The conditional distribution g
lets us preserve what matters: the relative probabilities of
canonical strings, ensuring that we eliminate the wasteful
mass allocated to noncanonical strings without distorting
the existing mass on canonical strings.8

The following proposition shows that test-time conditioning
improves our estimate g of the true distribution p⋆∆.
Proposition 1. Assuming that the true distribution over
tokens p⋆∆ is canonical, the globally canonicalized model g
guarantees the following reduction in KL divergence:

KL(p⋆∆ ∥ p∆)−KL(p⋆∆ ∥ g) = − logZ︸ ︷︷ ︸
≥0

(7)

Proof: See App. D.

We may interpret Proposition 1 as saying that, no matter how
good or how bad of a model the original language model
p∆ is with respect to the true distribution p⋆∆, we can expect
a reduction in the KL divergence equal to − logZ, bringing
it closer to p⋆∆. This reduction is large if Z is small, i.e., the
token strings generated in p∆ are unlikely to be canonical,
modest if Z ≈ 1, and zero if Z = 1. In other words, the
change in KL quantifies the value of having the constraint
as prior knowledge.

3.2. Algorithms for Approximate Conditioning

3.2.1. EXACT ALGORITHMS

The simplest exact conditioning algorithm for sampling
from g is rejection sampling:

1 def rejection_sampling():
2 while True:
3 δ ∼ p∆
4 if δ ∈ D: return δ

However, the rejection sampling algorithm can be inefficient
if Z is small, as its expected running time per sample is
O(1/Z). When Z ≈ 1, this is pretty fast. However, when it
is smaller, it can be unusably slow.

8More formally, the conditional distribution is the unique distribu-
tion q over D that maintains the relative probabilities of any pair
δ, δ′ ∈ D—that is, p∆(δ′), q(δ) = p∆(δ), q(δ′). The only way
to achieve this is to set q(δ) = η, p∆(δ) for all δ ∈ D, where
normalization fixes η = 1/Z. Thus, q = g is the unique way to
preserve relative probability subject to the canonicality constraint.
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Another correct sampling algorithm is ancestral sampling:

5 def ancestral_sampling():
6 δ ← ε
7 while True:
8 δ′ ∼ −→g (· | δ)
9 if δ′ = EOS: return δ

10 δ ← δ·δ′

Here, each step of the algorithm samples a token (or EOS)
from the globally canonicalized model’s conditional prefix
distribution. Unfortunately, computing −→g exactly is in-
tractable as it requires summing over infinitely many future
strings. Thus, −→g must be approximated.9 In §3.2.2, we
will provide a cheap, local approximation and, in §3.2.3, we
will devise a strategy for improving the short-sightedness
of the local approximation by using more computation.

3.2.2. A LOCALLY CANONICALIZED APPROXIMATION

Our locally canonicalized model ℓ is a distribution over
∆∗ that approximates ancestral_sampling for sampling
from g by using the following local approximation

−→
ℓ to the

global prefix probability −→g .
Definition 2. The locally canonicalized model ℓ is a
language model over ∆∗, which assigns probability zero
to noncanonical strings. The probability of a token string
under ℓ is defined auto-regressively as

ℓ(δ) def=
−→
ℓ (EOS | δ)

|δ|∏
t=1

−→
ℓ (δt | δ<t) (9a)

where its next-token conditional distributions are defined as

−→
ℓ (EOS | δ) def=

−→p∆(EOS | δ)1{δ ∈ D}
−→
ℓ (δ)

(9b)

−→
ℓ (δ′ | δ) def=

−→p∆(δ′ | δ)1{δ·δ′ ∈
−→
D}

−→
ℓ (δ)

(9c)

where
−→
ℓ (δ) normalizes the distribution over ∆ ∪ {EOS}

that lead to a prefix-canonical extension of the string:
−→
ℓ (δ) def= 1{δ ∈ D}−→p∆(EOS | δ) (9d)

+
∑
δ′∈∆

−→p∆(δ′ | δ)1{δ·δ′ ∈
−→
D}

This distribution is practical for the following reasons:

1. It is efficient: The canonicality checks are cheap to com-
pute (App. B), and there is very little additional overhead
over sampling from the base conditional distribution.

9We also mention more sophisticated approximations, such as
learning (Zhao et al., 2024), adaptive upper bounds (Park et al.,
2025), and sequential Monte Carlo steering (Lew et al., 2023;
Loula et al., 2025). We do not explore these more sophisticated
strategies, as the local approximation works surprisingly well.

2. It has the correct support: The local distribution can only
place positive probability on canonical strings; it elimi-
nates noncanonical strings by masking out any token δ′

that would render the extended string δ·δ′ noncanonical.
3. It often gives a reasonable approximation to the condi-

tional global distribution: We expect this to be a good
approximation when

−→
ℓ (δ) ≈ 1, which we may expect

in practice as noncanonical strings tend to be assigned
tiny probabilities, making the sum in Eq. (9d) close to 1.

Unfortunately, the locally canonicalized model ℓ gives a
warped approximation to g, as Proposition 2 shows:
Proposition 2.

ℓ(δ) = p∆(δ)1{δ ∈ D}

[ |δ|+1∏
t=1

−→
ℓ (δ<t)︸ ︷︷ ︸

def
=wℓ(δ)

]−1

(10a)

Thus,

wℓ(δ) =
p∆(δ)

ℓ(δ)
1{δ ∈ D} (10b)

Proof: See App. D.

We call wℓ(δ) the weight of the locally canonicalized sam-
ple (in relation to p⋆∆). We note that the weight describes
the change in relative probability of the canonical token
strings δ ∈ D. We call this unwanted change warping.
There is no warping in the globally canonicalized case, as
the relative probability is unchanged. In §3.2.3, we describe
methods that can unwarp the local distribution at the cost of
additional computation.

Despite the warping, the local distribution ℓ comes with the
following reassuring theoretical property, guaranteeing that
it helps estimate the true distribution p⋆∆.
Proposition 3. Assuming that the true distribution over
tokens p⋆∆ is canonical, the locally canonicalized model ℓ
guarantees the following reduction in KL divergence:

KL(p⋆∆ ∥ p∆)−KL(p⋆∆ ∥ ℓ) = − E
δ∼p⋆

∆

[logwℓ(δ)]︸ ︷︷ ︸
≥0

(11)

Proof: See App. D.

Proposition 3 confirms the intuitive notion that local canoni-
calization cannot make the language model worse.10

3.2.3. SAMPLING-BASED INFERENCE

Unfortunately, sampling from g is hard because we cannot
efficiently compute the conditional prefix probability −→g
10Proposition 3 may be generalized to any distribution q. Specif-

ically, KL(p⋆∆ ∥ p∆) − KL(p⋆∆ ∥ q) = −Eδ∼p⋆∆

[
log p∆(δ)

q(δ)

]
.

However, it may not necessarily be a reduction, as it is for ℓ,
if the q distorts the distribution too much.
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(and rejection sampling is slow when Z is small). In this
section, we show how to use the local approximation in
conjunction with sampling-based inference to improve the
fidelity to g at the cost of increased computation. These
methods use the local distributions as a proposal distribution
to produce candidates that will be properly weighted and
resampled in a manner so that they maintain a principled
approximation to the global distribution g. Therefore, in
expectation and in the limit, these methods produce exact
samples; thus, they do not warp the distribution.

The warping in the locally canonicalized method can
occur because the sampling algorithm approximated the
conditional prefix probability canonicality, meaning that
we may sample a string of tokens that looks good initially,
but we end up stuck with a bad string prefix because
we overestimated the conditional prefix probability. In
contrast, rejection sampling restarts the sample once
noncanonicality is detected, whereas the local method
ignores noncanonical tokens and forces the current string
to complete. We can fix the bias in the local approximation
by exploiting our knowledge of wℓ(δ) for each sample
δ ∼ ℓ. More specifically, wℓ(δ) is proportional to the
over- or under-representation rate of δ in samples from ℓ
with respect to the target distribution g. Therefore, we can
correctly account for this in expectation by weighting each
sample by its wℓ factor. This is the principle behind the
importance sampling methods we describe below.11

Proposition 4.

Z = E
δ∼ℓ

[wℓ(δ)] = E
δ∼ℓ

[
p∆(δ)1{δ ∈ D}

ℓ(δ)

]
(12)

Proof: See App. D.

Thus, we can apply importance sampling to obtain an
unbiased estimate Ẑ of Z given δ(1), ... , δ(M) i.i.d.∼ ℓ:

Ẑ def=
1

M

M∑
m=1

wℓ(δ
(m)) (13)

We may also estimate the global distribution g as follows:

ĝ(δ) def=
1

M ·Ẑ

M∑
m=1

wℓ(δ
(m))1{δ=δ(m)} (14)

Note that the quotient with Ẑ leads to statistical bias; how-
ever, that bias vanishes as M grows larger. If desired, we
may also use ĝ for drawing approximate samples using a
method known as importance resampling. This method
produces approximate samples from g by sampling δ ∼ ĝ,

11For a rigorous treatment of the technical conditions required for
importance resampling and estimation to converge, we refer the
reader to Chatterjee & Diaconis (2017).

which has a support set with size at most M . Thus, impor-
tance sampling and resampling give us a parameter M that
improves the approximation as we make it larger.12

4. Canonicality by Construction
The method we present in this section augments the out-
put layer of the transformer architecture with canonicality
constraints. Thus, it requires additional training and test-
time computation. Fortunately, this additional computation,
at least in the case of BPE, is minimal thanks to efficient
algorithms for checking canonicality (see App. B).

Suppose we have a base architecture, i.e., a parametric
family of language models {pθ}θ∈RD that is parameterized
by a real-valued vector of parameters θ ∈ RD. We assume
log pθ(δ) is continuously differentiable with respect to θ for
all δ ∈ ∆∗, and that each pθ is a valid language model over
∆∗. For example, {pθ}θ∈RD can be a parametric family of
transformers or recurrent neural networks.13 Let −→pθ denote
the conditional prefix probability of one such model.

Definition 3. Our canonicalized architecture is a paramet-
ric family of language models {ℓθ}θ∈RD that is built on
top of a base architecture {pθ}θ∈RD . We define each ℓθ in
terms of pθ in the following manner:

ℓθ(δ)
def=
−→
ℓθ(EOS | δ)

|δ|∏
t=1

−→
ℓθ(δt | δ<t) (15a)

where each
−→
ℓθ(· | δ<t) is defined as one of the following

distributions over ∆ ∪ {EOS}:

−→
ℓθ(δ

′ | δ) def=
−→pθ(δ′ | δ)1{δ·δ′ ∈

−→
D}

−→
ℓθ(δ)

(15b)

−→
ℓθ(EOS | δ) def=

−→pθ(EOS | δ)1{δ ∈ D}
−→
ℓθ(δ)

(15c)

and
−→
ℓθ(δ) ensures normalization:

−→
ℓθ(δ)

def= −→pθ(EOS | δ)1{δ ∈ D} (15d)

+
∑
δ′′

−→pθ(δ′′ | δ)1{δ·δ′′ ∈
−→
D}

Much like the locally canonicalized model (Def. 2), non-
canonical strings are forced to have probability zero using
canonicality checks in the definition of its conditional prefix
probabilities Eq. (15b) and (15c).
12We note that for these estimates to converge to their correct

values, we require p∆(δ)1{δ ∈ D} > 0 =⇒ ℓ(δ) > 0 for
all δ ∈ ∆∗. This is ensured when our prefix canonicality test
1{δ ∈

−→
D} is exact. More generally, it is safe to allow for false

positives but not false negatives.
13Our experiments use transformer-based language models.
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Why train? Suppose the original model p∆ is equal to
some pθ in our family; let θ(0) denote its parameters.
Clearly, if we set θ = θ(0), the model ℓθ is no different
from ℓ. The reason we optimize θ beyond θ(0) is that
the training objective for θ(0) pressured the parameters to
model canonicality, but now that pressure is gone because
the canonicalized architecture (Def. 3) enforces that con-
straint for all θ. Thus, the parameters that were previously
used to model canonicality preferences can be repurposed
to model any other textual phenomena in the training data.

Training pθ. Given a training corpus σ(1), ... ,σ(M) i.i.d.∼
p⋆Σ of character strings, let δ(1), ... , δ(M) be their corre-
sponding (canonical) tokenizations. We define L(p), the
log-loss (average negative log-likelihood) of the training
corpus under a language model p:

L(p) def= − 1

M

M∑
m=1

log p(δ(m)) (16)

Log-loss is a reasonable (and common) training objective,
as minimizing L(ℓθ) also minimizes KL(p⋆∆∥ℓθ) in the
limit of infinite data (with perfect optimization). However,
training a large language model with L from scratch is
prohibitively costly. Instead, we fine-tune an existing (non-
canonical) large language model.

We use the following fine-tuning objective, which strikes
a balance between fitting the log-loss objective while main-
taining some fidelity to the original language model p∆:

Fλ(θ)
def= (1− λ) · L(ℓθ) + λ ·KL(ℓθ∥p∆) (17)

Here, we use the KL divergence between ℓθ and the original
unconstrained model distribution p∆ as a regularizer (e.g.,
Christiano et al., 2017; Stiennon et al., 2020; Ziegler et al.,
2020; Korbak et al., 2022). The regularization parameter
0 ≤ λ ≤ 1 is used to trade fidelity to the original model
(higher) against fidelity to the fine-tuning data (lower).

Optimization. Our optimization algorithm is based on
stochastic gradient descent. To optimize Fλ(θ), on each
step, we randomly choose with probability λ which of the
two terms to perform a gradient step on.

1. For the log-loss updates, we sample a minibatch of ex-
amples from the fine-tuning corpus and use the sample
average of that minibatch’s gradient as an efficient ap-
proximation to the gradient over the entire corpus.

2. We estimate the gradient of the KL regularization term
using Amini et al.’s (2025) Rao–Blackwellized method
using samples from the current ℓθ.

Experiments initialize ℓθ with the same parameters as p∆.

5. Experiments
This section evaluates our proposed methods—canonicality
by constraints (global and local; §3) and canonicality by
conditioning (§4)—by measuring their impact on real
datasets and language models. This evaluation complements
the theoretical guarantees of Proposition 1 and Proposition 3,
by quantifying the log-loss (L; Eq. (16)) on held-out data.

5.1. Setup

Datasets. We experiment on the following two datasets:

• Penn Treebank (PTB, Marcus et al., 1993) (test split;
3761 strings, 82k words, 439k characters)

• WikiText (Merity et al., 2017) (test split; 4358 strings,
234k words and 1286k characters)

Models. We experiment with the following models:

• GPT-2 models (Radford et al., 2019) of increasing size
(small, medium, and large)

• Llama models (Llama Team, 2024) of increasing size
(3.2-1B, 3.2-3B, and 3.1-8B).

Pre-tokenization. Our efficient bigram-based canonical-
ity test 1{δ·δ′ ∈

−→
D} (App. B) makes the simplifying as-

sumption that the tokenizer τ is only based on BPE. How-
ever, in practice, systems use an additional pre-tokenization
step that breaks text into chunks called pre-tokens (e.g.,
based on spaces and punctuation). Most pre-tokenizers are
based on hand-crafted regular expressions; the GPT-2 and
Llama models each use a distinct pre-tokenization regular
expressions. Since these models make use pre-tokenization,
our incremental test occasionally makes some mistakes. Par-
ticularly, concerning are instances of false negatives, i.e.,
we rule out a bigram as noncanonical when it is in fact
canonical. False negatives are problematic for estimation
(Footnote 12). These errors are caused by the interaction of
the pre-tokenizer and the tokenizer.14 To work around these
rare exceptions, we determined a (small) set of overrides for
our canonicality test by identifying the bigrams where we
have made a false negative judgment on a corpus of canon-

14For example, under the GPT-2 tokenizer, the token bigram
\n
198 ·

\n
198 may or may not be canonical, depending on the con-

text. For instance, in the following example, it is canonical:

τ(Hi,\n\nI) =
Hi

17250 ·
,
11 ·

\n
198 ·

\n
198 ·

I
40

because the pre-tokenizer creates separate pretokens for each
newline, preventing BPE from merging them. However, in the
next example, it is not canonical:

τ(Hi,\n\n) =
Hi

17250 ·
,
11 ·

\n\n
628

because the pre-tokenizer does not create separate pretokens for
the newlines, allowing BPE to merge them.
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ical strings. We note that this workaround occasionally
introduces false positives.15

5.2. Canonicality by Conditioning

Methology. Fig. 3 reports the log-loss of the local ℓ and
global g methods on each dataset ({p(m)

∆ }Mm=1) as well as
p∆, which serves as our baseline. Below are the details of
how we estimated the log-loss of each method.

• Baseline: The log-loss for the baseline method is

L(p∆) = −
1

M

M∑
m=1

log p∆(δ
(m)) (18a)

• Global: The log-loss for the global method is

L(g) = L(p∆) + logZ ≈ L(p∆) + log Ẑ (18b)

where Ẑ is computed by Eq. (13) using 2000 samples
from ℓ. Note that log Ẑ ≤ 0; thus, the global method can
only improve the log-loss, L(g) ≤ L(p∆).16

• Local: The log-loss for the local method is

L(ℓ) = L(p∆) +
1

M

M∑
m=1

logwℓ(δ
(m))︸ ︷︷ ︸

def
=Ŵ

(18c)

Note that 1
M

∑M
m=1 logwℓ(δ

(m)) ≤ 0; thus, the local
method can only improve the log-loss, L(ℓ) ≤ L(p∆).

Relationship to theory. Proposition 1 shows that the re-
duction in KL divergence is equal to − logZ, which is
equal to the difference in log-loss L(p∆)− L(g). Proposi-
tion 3 shows that the reduction in KL divergence is equal
to −Eδ∼p⋆

∆
[logwℓ(δ)], which is equal to the difference in

log-loss L(p∆)− L(ℓ) (in expectation).

Observations.

• For the global method, the change in the log-loss is inde-
pendent of the dataset because log Ẑ is independent of the
dataset. However, for the local method, it is dependent
because Ŵ is dependent on the dataset.

• Statistical significance:
– For the global method, the log-loss reduction is positive

and constant for every string; therefore, it is trivially sta-
tistically significantly better than the baseline method
according to the paired-permutation test (i.e., p = 0).

15A complete solution to the pre-tokenization challenges would
build a transducer that accurately models the pre-tokenizer,
which we then compose with a transducer implementing BPE
(see App. B.4). We leave this investigation for future work.

16In the case of the GPT-2 models, we restricted strings to have
length ≤ 1024, as these models tend to ramble. We analyze this
choice further in Fig. 4.

Model Baseline Local Global

PT
B G

PT
-2 small 201.0 200.7 199.1

medium 195.1 194.5 193.1
large 189.4 188.9 188.2

L
la

m
a 1B 171.2 171.1 169.7

3B 165.0 165.0 164.2
8B 161.5 161.5 160.1

W
ik

iT
ex

t

G
PT

-2 small 369.2 367.0 367.3
medium 334.1 333.2 332.2

large 320.8 319.1 319.6

L
la

m
a 1B 286.7 284.4 285.2

3B 264.6 262.0 263.7
8B 248.2 245.8 246.8

Figure 3. Log-loss (L; bits/string) for the baseline (p∆), local (ℓ),
and global (g) methods across two datasets and models. Bold-
ing indicates that the number is the best in its row. See text for
discussion of statistical significance.

– For the local method, the log-loss reduction is positive
for all strings, but the amount varies across strings;
nonetheless, it is trivially statistically significantly bet-
ter than the baseline method according to the paired-
permutation test (i.e., p = 0).

• Local vs. global: On the PTB dataset, we found that the
global method is significantly better than the local method
for all models. However, on the WikiText dataset, the
local model is better in all cases except GPT-2-medium.

Takeways. On principle (§3.1), we maintain that the
global method (based on conditioning) is the correct
solution, as it is the only distribution that preserves the
relative probabilities for canonical strings. Additionally,
our experiments support the local method as a practical
approximation to the global distribution, which we expected
to be the case because the probability allocated to each
noncanonical token is generally quite small, meaning that
the warping is not large; see discussion Item 3 in §3.2.2).
Interestingly, on some datasets (e.g., WikiText), the warping
induced by the local method with respect to the global
distribution can be advantageous, i.e., its reduction in
log-loss with respect to the WikiText distribution is larger
than that of the global method.

Log-canonicality rate vs. length. We found that the GPT-
2 models generate very long strings, so we investigated
the tradeoffs in the log-canonicality rate for truncating the
lengths of the strings generated by each model. Fig. 4 shows
the effect of length on the log-canonicality rate estimate
log Ẑ, using 2000 samples taken from ℓ. We see that for the
Llama methods, the log-canonicality rate stabilizes after 256
tokens, but for the GPT-2 models, it continues decreasing.
Thus, for practical reasons, our experiments with GPT-2
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128 256 512 1024
maximum string length

2

1

lo
gZ

GPT-2S
LLaMa1B

GPT-2M
LLaMa3B

GPT-2L
LLaMa8B

Figure 4. Log-canonicality rate vs. (tokenized) length, including
95% confidence intervals, for each model.

will be based on a limit length of 1024, but bear in mind
that this means that the actual log-canonicality rate is likely
to be much smaller, meaning the reduction in log-loss for
GPT-2 is larger than Fig. 3 indicates.

Supplementary error analysis. App. E analyzes the most
frequent canonicality errors made by each model.

5.3. Canonicality by Construction

Methodology. We fine-tuned two language models, GPT-
2S and GPT-2M,17 on the PTB train set and a subset of the
WikiText train set with 50K strings and 4.2M words. We
consider fine-tuning the canonicalized architecture (ℓθ) and
the original architecture (pθ′) using the training criterion
Fλ for λ ∈ {0.001, 0.01, 0.1, 0.2}.18 As a baseline, we
consider the original model p∆ and the locally constrained
model ℓ, as these models serve as initialization for fine
tuning. Fig. 5 reports the log-loss L (bits/string) on the
held-out datasets for each method mentioned above.

Observations.

• In all cases (i.e., models, datasets, and methods), we ob-
serve a large improvement in log-loss from fine-tuning.
The reduction in log-loss is larger in the case of PTB.

• Provided that λ is small enough, we see a consistent reduc-
tion in log-loss when comparing ℓθ and pθ′ . However, the
difference between ℓθ and pθ′ is comparatively smaller
than we saw in Fig. 3.

• Generally, a the smaller values of λ work best, indicating

17Unfortunately, we are unable to fine-tune larger models due to
computational constraints. However, the models used here serve
as a proof of concept.

18Each model is trained for 3 epochs using the AdamW optimizer
(Loshchilov & Hutter, 2019) with a learning rate of 5e−5 and
linear learning rate decay. For efficiency, we use bfloat16 to
represent the model parameters. We use a minibatch of size 8 for
estimating the gradient of each term of the Fλ objective.

D
at

a
M

od
el

M
et

ho
d

N/A .001 .01 .1 .2

PT
B S p 201.4 143.7 143.7 143.6 146.8

ℓ 200.7 143.6 143.6 143.6 146.8

M
p 195.0 128.6 128.9 128.6 132.1

ℓ 194.5 128.3 128.7 128.4 132.0

W
ik

iT
ex

t
S p 369.2 331.7 331.7 331.7 335.7

ℓ 367.0 331.7 331.7 331.7 335.6

M
p 334.1 293.9 294.0 293.9 298.7

ℓ 333.2 293.7 293.8 293.8 298.8

Figure 5. Log-loss (bits/string) of fine-tuned models on held-out
portions of WikiText and PTB. The column labeled N/A reports the
log-loss of the baselines p∆ and ℓ. The other columns correspond
to the value of the regularization parameter λ used in the fine-
tuning loss. The rows labeled p are the original architecture and ℓ
canonicalize architecture.

that reguarlization towards the original model should not
be done too strongly.

Takeaways. Unsurprisingly, fine-tuning for the specific
dataset is useful regardless of whether we use the original or
canonicalized architecture. Fine-tuning with the canonical-
ized architecture performs slightly better, but improvements
appear to be small. It is possible that training the canon-
icalized architecture from scratch on a huge dataset would
yield better results than our proof-of-concept experiment.

Conclusion
We have demonstrated that enforcing canonicality in token-
level language models eliminates systemic probability mass
misallocation, leading to improved likelihoods on held-out
data across multiple models and corpora. Our proposed
methods—canonicality by conditioning and canonicality by
construction—provide practical solutions that either refine
inference or modify the model architecture to ensure only
canonical token strings are assigned positive probability. In
addition to the empirical benefits, our theoretical results
establish that correcting these mistakes strictly improves
model fit. Moreover, our discovery of an efficient incremen-
tal test for BPE canonicality simplifies prior approaches,
making it more accessible for practical deployment. These
findings underscore the importance of aligning token-based
probability models with their training distributions, thereby
paving the way for more accurate language modeling.
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Impact Statement
Potential benefits. By introducing methods to enforce
canonicality, we improve a given model’s fidelity to the
underlying distribution that generated the text. These con-
tributions have broad implications for the reliability of lan-
guage models, particularly in applications where precise
probability estimates are crucial. By eliminating avoidable
modeling errors, we advance the goal of more reliable and
robust language models.

Potential harms. Constraining tokenization may inad-
vertently reduce robustness to rare, noisy, or adversarial
inputs by ruling out alternative tokenizations of the same
character string. While the canonicality constraint does not
remove any character strings from the language, it does
restrict the model to assign nonzero probability only to a
single canonical tokenization of each string. This may dis-
proportionately affect rare or unconventional spellings, as
their probability mass may be less sharply concentrated on
a single tokenization. Future work should provide a deeper
analysis of whether or not canonicality enforcement helps
or hurts in these settings to ensure fair and robust language
model behavior across diverse linguistic contexts.
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A. Limitations and Future Work
Future experimental work. A limitation of our experimental design is that we only evaluate our approach’s ability to
estimate probabilities. We do not have any experiments evaluating any qualitative difference in the sample quality from the
canonicalized methods.

Models overregularize. Language models often place a higher probability on a noncanonical encoding of the string than
the canonical one. Here is an interesting example from WikiText corpus (Merity et al., 2017):

11 xs = """\n\n = Robert Boulter = \n\n\n\n\n Robert Boulter is an English film , \
12 television and theatre actor . He had a guest @-@ starring role on the television \
13 series The Bill in 2000 . """.encode("utf-8")

In the case of GPT-2, the conditional probability of the canonical tokenization is only 2.7%, and it is ranked 4th in the
(partially enumerated) set of encodings of this string:
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UTF-8 Encoding. The very first step in representing text is the choice of string encoding. UTF-8 is an encoding that maps
strings of characters into bytes, which is used to store almost every webpage on the internet. The scheme uses a variable-
width encoding of each Unicode character that uses between 1 and 4 bytes, with more common Unicode characters requiring
fewer bytes. The UTF-8 encoding imposes additional validity constraints on token strings. In future work, we may extend
our work on BPE encoding validity one step further to ensure that the byte string that the BPE string decodes is a valid UTF-8
string. For better or worse, UTF-8 decoding errors are typically suppressed, e.g., by the Huggingface transformers library.

Implementation note. Byte-pair encoding (as the name suggests) typically takes bytes as inputs. Note that popular
interfaces like huggingface try to make things easier for users by hiding the UTF-8 encoding step that maps strings to bytes
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from users by exposing only a string interface. We require finer-grained control to implement the round-trip test correctly;
we must avoid encoding and decoding from the text’s encoding (e.g., UTF-8). Therefore, we use a custom implementation
of byte-pair encoding. Note that the transformers library does not provide methods to work directly with byte strings.

" ".encode("utf-8") = b'\xf0\x9f\xa4\x97' is the encoding of the hugging face emoji .

However, if we try to decode the following prefix of the byte string b'\xf0\x9f\xa4'.decode("utf-8"), we get an
error as it is an invalid UTF-8 string. Note that if we use b'\xf0\x9f\xa4'.decode("utf-8", errors="ignore") or
b'\xf0\x9f\xa4'.decode("utf-8", "replace") the errors may go unnoticed. Many packages (e.g., transformers
and tiktoken) suppress these errors.

Other tokenization models. We limited our experiments to BPE, as it is by far the most commonly used tokenization
model (Footnote 5). However, many other tokenizers exist, such as longest-match tokenization (used by WordPiece) and
other finite-state transduction-based tokenizers. These other tokenizers can plug directly into our framework as long as they
provide efficient membership tests for

−→
D . In the case of finite-state-transduction methods (which include longest-match

tokenizers), the membership is a straightforward operation on the automaton. We note that D ̸=
−→
D , in general—and, it

specifically does not hold for longest-match tokenizers.

More sophisticated inference algorithms. Future work may wish to explore sequential importance resampling (SIR)
methods or other sequential Monte Carlo methods (SMC), which have shown great promise as methods for constrained
generation from language models (e.g., Lew et al., 2023; Zhao et al., 2024). Sequential importance resampling, for example,
provides the computational benefit of not waiting until a complete string is sampled from the local model to resample. It
works by evolving many string prefixes in parallel. Now, when any given string is “stuck” in a low-probability region, it can
be probabilistically replaced by another string in the collection. Many SMC algorithms, including SIR, are GPU-friendly.

Distillation. Another interesting direction to explore related to fine-tuning is the distillation of the (approximately) globally
canonicalized model g. We could do that by minimizing KL(g∥ℓθ) using stochastic gradient descent.

Precision vs. recall. It can be challenging to correctly capture all of the constraints that the inputs must satisfy. In this
paper, we explored the canonicality constraints that BPE models have. We provided efficient methods for testing canonicality,
and we needed to validate those against reference canonicality procedures (as a kind of regression test). It may be impossible
to capture every nuance of a particular implementation perfectly. And, in some cases, there are even “bugs” or “undesirable”
behaviors that the reference implementations have. For example, the pre-tokenization system used by GPT-2 was designed
to split the possessive marker (‘s) from a phrase like OpenAI‘s␣system→ OpenAI|‘s|␣system; however, the rule has the
following behavior which is likely not intensional OpenAI␣Inc.‘s␣system→ OpenAI|␣Inc|.‘|s|␣system, as it fails to split
the possessive correctly because the regular expression used by the pre-tokenizer prioritizes .‘ over ‘s in this example. More
generally, reasoning about a complicated software system using formal models will always present a challenge between
fidelity and analytical tractability.

Evaluation on downstream tasks. Our study deliberately centers on a task-agnostic metric—KL divergence. We proved
that our canonicalization methods are guaranteed to improve this metric (Propositions 1 and 3) and we quantified the effect
empirically (§5). However, many language-model applications are judged with task-specific metrics that may be misaligned
with KL divergence. Thus, an improvement in KL divergence does not guarantee an improvement in the task-specific metrics.
Assessing how canonicalization influences concrete reasoning tasks—under each task’s own evaluation metric—remains an
important direction for future work.
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B. Efficient Membership Tests for BPE
This section gives a formal definition of byte-pair encoding (BPE) and novel algorithms for the following membership tests
pertaining to it:

• the canonical set D (see Theorem 1)
• the canonical prefix set

−→
D (see Lemma 3)

• an incremental membership test for single-token extensions, i.e., δ·δ′ ∈
−→
D given that δ ∈

−→
D (see Proposition 5)

Our key insight is that a token string is canonical if and only if all of its constituent bigrams are canonical; see Theorem 1.
Thus, our membership test runs in time linear in the length of the string—we iterate over all bigrams in the strings and check
their canonicality; we call this the bigram test. Moreover, our test is simple to implement, unlike similar tests given in prior
work (e.g., Berglund et al., 2024; Cognetta & Okazaki, 2024). A consequence of Theorem 1 is that D =

−→
D (see Lemma 3),

which means that membership in the set of canonical prefixes reduces to membership in the canonical set.19

B.1. Byte-Pair Encoding

Byte-pair encoding (BPE; Gage, 1994; Sennrich et al., 2016) is currently the most commonly used tokenization method, as
it has been used in most recent state-of-the-art language models.20 We formalize BPE as follows.

Definition 4. Byte-pair encoding is a pair (Σ,M) that defines a tokenization model (Σ,∆, τ , κ). We describe the
assumptions on (Σ,M) and the construction of (Σ,∆, τ , κ) below:

• Σ is a base alphabet of characters (or bytes)
• M =

[
⟨σ′

(1),σ
′′
(1)⟩, ... , ⟨σ

′
(M),σ

′′
(M)⟩

]
is the merge list where σ′

(m), σ
′′
(m) ∈ Σ+ for m = 1, ... ,M .

• We define the subword alphabet S def= Σ ∪ {σ′·σ′′ | ⟨σ′,σ′′⟩ ∈ M}.
• We define the token alphabet ∆ such that for each δ ∈ ∆, there is a unique object (e.g., an identifier) for each distinct

element of the subword alphabet S. The reason for this technical detail is to avoid confusion between the concatenation of
subwords and the concatenation of tokens.

• We define the base encoder τ : S→ ∆ and base decoder κ : ∆→ S as bijective maps between the subword alphabet S
and a set of base tokens ∆ ⊆ ∆.

• We define the decoder κ : ∆∗ → Σ∗ to be the pointwise extension of the base decoder: κ(δ1 ··· δN ) def= κ(δ1) ··· κ(δN ).
• We define the encoder τ : Σ∗ → ∆∗ in the pseudocode, which is a deterministic string rewriting process based on applying

a sequence of merge rules to the current string of tokens until no more merges are available.21,22

14 def τ(σ1 ··· σN):
15 δ ← τ(σ1) ··· τ(σN )
16 while True:
17 δ′ ← rewrite(δ)
18 if δ′ = δ: return δ
19 δ ← δ′

20 def rewrite(δ1 ··· δN):
21 for ⟨σ′,σ′′⟩ in M
22 for n in [1, ... , N−1]:
23 if ⟨κ(δn), κ(δn+1)⟩ = ⟨σ′,σ′′⟩:
24 return δ1 ··· δn−1 τ(σ

′ · σ′′) δn+2 ··· δN
25 return δ1 ··· δN

Note that the merge rules are applied in a specific deterministic order to any given string; thus, there is a unique way to
derive the output tokenization from the input string.

19We note that, in principle, the bigram canonicality tests can all be precomputed and cached for maximal efficiency. However, we found
that to be impractical for models with large token vocabularies. In App. B.3, we provide a very efficient method that can test bigram
canonicality.

20See Footnote 5.
21We note that τ can be implemented much more efficiently using a careful choice of data structure (see, e.g., Zouhar et al., 2023).
22We note that Berglund et al. (2024) refers to this incarnation of BPE as the SentencePiece BPE algorithm.
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B.2. Simple and Efficient Membership Tests

Definition 5. We define the set of canonical bigrams as

B def= {δ·δ′ | δ, δ′ ∈ ∆, φ(δ·δ′) = δ·δ′} . (19)

where φ is the canonicalization function (§2.6).

Definition 6. We define the set of bigram-canonical strings B as strings composed of only canonical bigrams:

B def= {δ ∈ ∆∗ : BIGRAMS(δ) ⊆ B}. (20)

In general, it is possible for a token in the token vocabulary not to be canonical. Such tokens can always be removed from
the token vocabulary without changing the result of the BPE tokenizer. We assume, for simplicity, that the token vocabulary
contains no such tokens.

Assumption 1. For all δ ∈ ∆, φ(δ) = δ.

Definition 7. We define the truncated canonicalization function φT as follows:

26 def φT (δ):
27 σ1 ··· σN ← κ(δ) # decode token string
28 δ(0) ← τ(σ1) ··· τ(σN ) # initialize with base tokens
29 for t = 0, ... , (T − 1):
30 δ(t+1) ← rewrite(δ(t))
31 if δ(t+1) = δ(t): return δ(t)

32 return δ(T )

Remark 1. It is straightforward to verify that φ = φ∞, as it is equivalent to code for τ(κ(·)) where we have added
the option of truncating the number of iterations performed in τ ’s fixpoint iteration loop. Setting T = ∞, disables the
truncation; thus, φ = φ∞.
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Lemma 1 (Canonicalization process synchronization). Suppose that abc ∈ D or both ab, bc ∈ D. Suppose further that b
is nonempty. Then, there exists a sequence {(at, bt, ct, dt, et)}∞t=1 such that the following equations hold for all t ≥ 0:

Pt
def=


φt(abc) = φat(a)φbt(b)φct(c)

φdt
(ab) = φat

(a)φbt(b)

φet(bc) = φbt(b)φct(c)

(21)

Proof. We will prove Lemma 1 by induction on t, and by explicitly constructing the sequence {(at, bt, ct, dt, et)}∞t=1.

Let T denote the number of distinct iterations of φ(abc).

Base case (P0). In this case, it is straightforward to verify that (a0, b0, c0, d0, e0) = (0, 0, 0, 0, 0) satisfies P0 because each
canonicalization call returns precisely the base tokenization of its argument. Thus, P0 holds.

Induction step. Suppose P0, ..., Pj hold. We seek to show that Pj+1 holds.

Since Pj holds, there must exist (at, bt, ct, dt, et) satisfying the equations in Pt. To prove that Pt+1 holds, we will construct
(at+1, bt+1, ct+1, dt+1, et+1) such that the equations in Pt+1.

We first observe that at time t, φt(abc) = a(t)b(t)c(t) where

• a(t) is the tokenization at step t of the substring over the characters in a in the canonicalization process for abc
• b(t) is the tokenization at step t of the substring over the characters in b in the canonicalization process for abc
• c(t) is the tokenization at step t of the substring over the characters in c in the canonicalization process for abc

The only way for this observation to be false is for a merge to straddle the boundary between a(t) and b(t) or b(t) and c(t),
which is impossible because of our premise that abc ∈ D or both ab, bc ∈ D. More specifically, if there ever were a merge
between a(t) and b(t) then ab and abc could not be canonical, as the final tokenization would not respect the boundary
between a and b. Similarly, if there ever were a merge between b(t) and c(t), then by analogous reasoning, bc and abc
could not be canonical.

We now turn to case analysis:

1. Suppose t < T , then the (t+1)th step of φ(abc) applies to the highest-priority23 bigram of a(t)b(t)c(t). Consider the
following subcases characterizing the possible positions for this merge:
(a) The merge is in a(t).

Then, (at+1, bt+1, ct+1, dt+1, et+1) = (at + 1, bt, ct, dt + 1, et) satisfies Pt+1 because
• It must also be the highest-priority merge in a(t), which is step at+1 of φ(a).
• It must also be the highest-priority merge in a(t)b(t), which is step dt+1 of φ(ab).
• The other canonicalization processes are unaffected, so they copy their position on this step.

(b) The merge is in b(t).
Then, (at+1, bt+1, ct+1, dt+1, et+1) = (at, bt + 1, ct, dt + 1, et + 1) satisfies Pt+1 because
• It must also be the highest-priority merge in b(t), which is step bt+1 of φ(b).
• It must also be the highest-priority merge in a(t)b(t), which is step dt+1 of φ(ab).
• It must also be the highest-priority merge in b(t)c(t), which is step et+1 of φ(bc).
• The other canonicalization processes are unaffected, so they copy their position on this step.

(c) The merge is in c(t).
Then, (at+1, bt+1, ct+1, dt+1, et+1) = (at, bt, ct + 1, dt, et + 1) satisfies Pt+1 because
• It must also be the highest-priority merge in c(t), which is step ct+1 of φ(c).
• It must also be the highest-priority merge in b(t)c(t), which is step et+1 of φ(bc).
• The other canonicalization processes are unaffected, so they copy their position on this step.

2. Suppose t ≥ T . No merges exist.
Then, (at+1, bt+1, ct+1, dt+1, et+1) = (at, bt, ct, dt, et) satisfies Pt+1 because φt(abc) = φT (abc) = a(t)b(t)c(t) =
a(T )b(T )c(T ), by definition of T , which implies that no further changes are possible and all processes must copy their
position on this step, and continue to do so forever.

Therefore, Pt holds for all t ≥ 0 by the principle of induction. ■

23I.e., the bigram with the lexicographically lowest pair of (position in the merge list, position in the current token string). Note that there
can be no ties under this ordering.
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Example 1. This example seeks to illustrate Lemma 1. Consider the following three token strings from the GPT-2 tokenizer:

a =
re
260 ·

-
12 b =

token
30001 c =

ized
1143

For these tokens, we have κ(abc) = re-tokenized. Our worked example will focus on only the first equation in Pt (repeated
below for convenience), as the other two equations behave very similarly:

φt(abc) = φat(a)φbt(b)φct(c)

Before moving forward with the example, we note that each token during the canonicalization process will be rendered as a
tree because it is a convenient representation for showing which merges were done to build each of them.24 For example,
our inputs a, b, and c are represented by the following trees:

a =
r e -

b =

t o k e n

c =

i z e d

Each row in the table below corresponds to a time step t, and the content of each column is the status of the canonicalization
process at that time. We mark cells that are copied from the cell immediately above them with a dash (—).

t φt(abc) φat(a) φbt(b) φct(c)

0 r e - t o k e n i z e d r e - t o k e n i z e d

1 r e - t o k e n i z e d r e - — —

2 r e - t o k e n i z e d — t o k e n —

3 r e - t o k e n i z e d — — i z e d

4 r e - t o k e n i z e d — t o k e n —

5 r e - t o k e n i z e d — — i z e d

6 r e - t o k e n i z e d — — i z e d

7 r e - t o k e n i z e d — t o k e n —

8 r e - t o k e n i z e d — t o k e n —

We see that at every step t, the equation φt(abc) = φat
(a)φbt(b)φct(c) is satisfied for an appropriate choice of (at, bt, ct).

Specifically, we count the number of non-copy actions in each row. In the example, for t = 8, we have (at, bt, ct) = (1, 4, 3).
This example also allows us to see the case analysis used in the proof for the location of the merge in action.

24We give a more formal presentation of these trees in App. B.3.
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Lemma 2 (Interlocking Canonicalization).

∀a ∈ ∆∗, b ∈ ∆+, c ∈ ∆∗ : abc ∈ D ⇐⇒ ab ∈ D ∧ bc ∈ D (22)

Proof. Fix a ∈ ∆∗, b ∈ ∆+, and c ∈ ∆∗ arbitrarily.

We will consider the direction of the bi-implication separately.

Case (=⇒). Suppose that abc ∈ D. Then, Lemma 1 gives us a sequence {(at, bt, ct, dt, et)}∞t=1 such that the following
equations hold for all t ≥ 0.

Pt
def=


φt(abc) = φal

(a)φbt(b)φct(c)

φdt(ab) = φat(a)φbt(b)

φet(bc) = φbt(b)φct(c)

(23a)

Now, consider (aT , bT , ct, dT , eT ), which gives
φT (abc) = φaT

(a)φbT (b)φcT (c)

φdT
(ab) = φaT

(a)φbT (b)

φeT (bc) = φbT (b)φcT (c)

(23b)

which implies the following because, at time T , each of the canonicalization processes has reached its respective fixpoint:
φ(abc) = φ(a)φ(b)φ(c)

φ(ab) = φ(a)φ(b)

φ(bc) = φ(b)φ(c)

(23c)

which implies the following because each call to φ must return the canonicalization of its respective argument:
φ(abc) = abc

φ(ab) = ab

φ(bc) = bc

(23d)

Therefore, ab and bc are also canonical.

Case (⇐=). Suppose ab, bc ∈ D. Then, following an identical argument as the =⇒-case, we can see that abc ∈ D.

Thus, the bi-implication holds; thus, Lemma 2 holds. ■
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Theorem 1 establishes that a BPE token string is canonical if and only if all of its bigrams are canonical.25

Theorem 1. D = B.

Proof. We seek to prove, for all δ ∈ ∆∗, that δ ∈ D ⇐⇒ δ ∈ B. We do this using induction on prefixes of δ and Lemma 2.

Choose δ = δ1 ··· δN ∈ ∆∗ ∈ ∆∗ arbitrarily. Let the induction hypothesis P (i) be that δ≤i ∈ D ⇐⇒ δ≤i ∈ B.

Base cases. We first prove P (0) and, if |δ| ≥ 1, P (1).

• Case P (0). To prove P (0), we seek to show that δ≤0 = ε ∈ D ⇐⇒ δ≤0 = ε ∈ B. Both sides of the bi-implication are
always true: ε ∈ D because φ(ε) = τ(κ(ε)) = τ(ε) = ε; and ε ∈ B because it contains no bigrams, hence it is vacuously
true. Therefore, P (0) is true.

• Case P (1). To prove that P (1) is true for cases where |δ| ≥ 1, we seek to show that δ≤1 = δ1 ∈ D ⇐⇒ δ≤1 = δ1 ∈ B.
Again, both sides of the bi-implication are always true. By Assumption 1, we know that δ1 ∈ D is true. Since δ1 has no
bigrams, δ1 ∈ B is vacuously true. Therefore, P (1) is true.

Induction step. Assume P (i), that δ≤i ∈ D ⇐⇒ δ≤i ∈ B, where i ≥ 2. We seek to prove P (i+ 1), that δ≤i+1 ∈ D ⇐⇒
δ≤i+1 ∈ B. We prove each direction of the bi-implication separately.

• Forward. We seek to prove δ≤i+1 ∈ D =⇒ δ≤i+1 ∈ B. Assume δ≤i+1 = δ≤i−1δiδi+1 ∈ D. By Lemma 2, we know
that δ≤i−1δi ∈ D and δiδi+1 ∈ D. Since δ≤i−1δi ∈ D, by P (i), we know that δ≤i−1δi ∈ B. Since δ≤i−1δi ∈ B and
δiδi+1 ∈ D, all of the bigrams in δ≤i−1δiδi+1 = δ≤i+1 are canonical, so δ≤i+1 ∈ B.

• Backward. We seek to prove δ≤i+1 ∈ B =⇒ δ≤i+1 ∈ D. Assume δ≤i+1 = δ≤i−1δiδi+1 ∈ B. Then δ≤i−1δi ∈ B,
because it contains only a subset of the bigrams in δ≤i−1δiδi+1. Then, by P (i), we know that δ≤i−1δi ∈ D. From
δ≤i−1δiδi+1 ∈ B and Def. 6, we know that δiδi+1 ∈ D. Since δ≤i−1δi ∈ D and δiδi+1 ∈ D, by Lemma 2, we know
that δ≤i−1δiδi+1 = δ≤i+1 ∈ D.

By induction, we know P (N) is true, so δ ∈ D ⇐⇒ δ ∈ B, and the proof is complete. ■

25Note that if a string with length less than or equal to one has no bigrams; thus, the property is trivially satisfied, i.e., all length-zero and
length-one token strings are canonical. The latter is thanks to Assumption 1.
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Lemma 3. For BPE,26 the set of canonical strings is prefix closed, i.e., D =
−→
D .

Proof. We prove D ⊆
−→
D and

−→
D ⊆ D.

• Part 1 (D ⊆
−→
D ). Obvious by definition of

−→
D .

• Part 2 (
−→
D ⊆ D).

1. Suppose δ ∈
−→
D

2. =⇒ by definition of
−→
D , there is a δ′ ∈ D such that δ ⪯ δ′

3. =⇒ by Theorem 1, the bigrams of δ′ are all canonical
4. =⇒ since δ ⪯ δ′, its bigrams are a subset of those of δ′, so they are also all canonical
5. =⇒ since the bigrams of δ are all canonical, by Theorem 1, δ ∈ D

Therefore,
−→
D = D. ■

26More generally, Lemma 3 holds for any tokenization model with a bigram-based canonicality test (i.e., δ ∈ D ⇐⇒ BIGRAMS(δ) ⊆ B.
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B.3. An Even Faster Bigram Test

BPE derivations. Our canonicality test involves the inspection of the merge structure within a tokenization of a string. For
that purpose, we define the derivation of a given string γ(σ) as a string of trees t1 ··· tN where each tn (for n = 1, ... , N ) is
a binary tree. For our purposes, a (binary) tree is a recursive data type composed of either a pair of trees or a base token.
The pseudocode below shows how τ can be augmented to produce these derivation trees for a given string:

33 def γ(σ1 ··· σN ):
34 t← τ(σ1) ··· τ(σN )
35 while True:
36 t′ ← step_derivation(t)
37 if t′ = t: return t
38 t← t′

39 def step_derivation(t1 ··· tN):
40 for ⟨σ′,σ′′⟩ ∈ M:
41 for n ∈ [1, ... N − 1]:
42 if ⟨κ(tn), κ(tn+1)⟩ = ⟨σ′,σ′′⟩:
43 return t1 ··· tn−1⟨tn, tn+1⟩ tn+2 ··· tN
44 return t1 ··· tN

Note that γ(·) is an adaptation of τ . The difference is that τ has been replaced with a function that creates trees instead of
replacing them with tokens. We have also extended κ to return the subword denoted by the derivation.

For each token δ ∈ ∆, we associate with it a unique canonical derivation γ(δ). However, we note that when |γ(δ)| > 1, it
means that the token δ does not canonically tokenize to itself. Assumption 1 ensures |γ(δ)| = 1 for all δ ∈ ∆.

Additional notation. For notational convenience, we define the following:

• For any ℓ∈Σ ∪ Σ+×Σ+, letM[ℓ] denote the following:
– If ℓ ∈ Σ, return its position in some fixed, arbitrary ordering of Σ.
– If ℓ ∈ Σ+×Σ+, return the rank position of the merge ℓ in the merge list plus |Σ| (as an offset), and∞ if ℓ is not inM.

• We extendM[t] to trees t as follows.
– For a tree in t ∈ ∆:M[t] def=M[κ(t)].
– For a tree of the form t = ⟨s, s′⟩:M[t] def=M[⟨κ(s), κ(s′)⟩].

• We define the following ordering relations on merge rules and subtrees: We define ℓ < r ⇐⇒M[ℓ] <M[r]. We define
ℓ > r, ℓ ≤ r, and ℓ ≥ r analogously.

• Given a token δ ∈ ∆, we define the left spine S(γ(δ)) of γ(δ) to be the ordered set containing the root node and its left
descendants27 (ordered from root to leaf); and, we define the right spineR(γ(δ)) analogously (for right descendants).

• In a given tree, we define π as the function that returns the parent node for any of its subtrees.

Intuition. At a high level, we say that a token δ′′ conflicts with a bigram δ·δ′ if and only if δ′′ applies with an earlier rank
over any overlapping span of the same character string. More formally, we say that δ′′ (nontrivially) overlaps with δ and δ′

if and only if

κ(δ) = σ1 ··· σn (24a)
κ(δ′) = σn+1 ··· σN (24b)

κ(δ·δ′) = σ1 ··· σn·σn+1 ··· σN (24c)
κ(δ′′) = σi ··· σj where 1 ≤ i ≤ n < j ≤ N (24d)

However, for δ′′ to conflict with δ·δ′, it would need to include a merge over the span σi ··· σj that blocks at least one merge
in δ and δ′ from occurring in φ(δ·δ′).

φ



γ(δ)
γ(δ′)

σ1 ··· σi···σnσn+1··· σj ··· σN


=

s
s′

γ(δ)
γ(δ′′) γ(δ′)

σ1 ··· σi···σnσn+1··· σj ··· σN

27We say that a node p is a left descendant of a node q if p is the left child of q or a left descendant of the left child of q. We define the
right descendants of p in an analogous manner.
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In the diagram above, the derivation for the bigram δ·δ′ is denoted by the juxtaposition of two triangles, one for each token’s
derivation tree. We have denoted the canonical derivation as a trapezoid, as it is generally the union of multiple triangles;
there may be 1, 2, or more tokens in the canonicalized bigram φ(δ·δ′).28 In orange, we have drawn a third triangle for the
conflicting token δ′′. We note that γ(δ′′) must intersect γ(δ) at a node s along its right-spineR(γ(δ)), and it must intersect
γ(δ′) at a node s′ along its left-spine S(γ(δ′)). In the diagram, the s and s′ represent the subtrees at respective points of the
intersection with the hypothetical conflicting tree. The orange arc from s to s′ is used to show that any two nodes along the
left and right edges could, in principle, be a conflicting tree. Crucially, however, the rank of the merge pair must precede the
competing merge pairs present in the existing tokens δ and δ′. We make this more precise below.

Definition 8. A token δ′′ conflicts with the bigram δ·δ′ if and only if γ(δ′′) is a subtree of γ(φ(δ·δ′)) (which may be a string
of trees) but not a subtree of either γ(δ) or γ(δ′).

We can find a conflicting token by exploiting the structure of the tokenization algorithm.

Definition 9. Let δ′′ be a token such that γ(δ′′) = ⟨s, s′⟩ for some s ∈ R(γ(δ)) and s′ ∈ S(γ(δ′)). We say that δ′′ is a
minimal conflict for the bigram δ·δ′ if and only if π(s) > ⟨s, s′⟩ ≤ π(s′).

The reason why δ′′ identified by Def. 9 is minimal is that its definition identifies the earliest possible deviation, i.e., the
earliest merge rule that could apply on their shared string σ1 ··· σN that was not in the existing merges in δ and δ′. Note
that the asymmetry < versus ≤ is precisely what breaks ties between equal rank merges in favor of the left-most match, as
prescribed in the procedure for τ that was provided in Def. 4.

Below is an algorithm for finding the minimal conflicting tree between δ and δ′, if one exists.

45 def find_conflict(δ, δ′):
46 t ← γ(δ)
47 L←∞
48 while True:
49 t′ ← γ(δ′)
50 R←∞
51 while True:
52 if L >M[⟨t, t′⟩] ≤ R: return ⟨t, t′⟩ # conflict
53 if κ(t′) ∈ ∆: break # t′ is a leaf
54 R←M[t′]
55 ⟨t′, _⟩ ← t′ # descend the left spine
56 if t ∈ ∆: break # t is a leaf
57 L←M[t]
58 ⟨_, t⟩ ← t # descend the right spine
59 return None

The find_conflict algorithm finds the minimal conflict between a pair of tokens δ and δ′ (if one exists). We note that a
useful consequence of Assumption 1 is that we do not need to check subtrees that exist off of the spines for conflicts, making
our procedure more efficient than computing the canonicalized string from scratch, e.g., by running τ on the decoded string
κ(δ·δ′). Instead, our algorithm searches for a minimal conflicting tree: either it stops once it has found such a tree, or it
has exhausted the limited options for such a tree. Finding the minimal conflict (if it exists) is also faster than computing
the entire canonical tokenization φ(δ·δ′), as it only requires finding the first difference rather than completely building the
canonicalized bigram.29

Definition 10. We define Φ ⊆ ∆×∆ as the following relation on pairs of tokens:

Φ(δ, δ′) def= (find_conflict(δ, δ′) = None) (25)

28Please refer back to Fig. 2 for examples.
29We note that the find_conflict algorithm can be efficiently vectorized so that it computes the complete vector of valid next tokens

very efficiently. We will provide a PyTorch implementation in our public code release (upon publication).
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The proposition below establishes that Φ provides a correct membership test for the set of canonical bigrams B.
Proposition 5. Φ(δ, δ′)⇐⇒ δ·δ′ ∈ B
Proof. Observe that (Φ(δ, δ′)⇐⇒ δ·δ′ ∈ B) ≡ (¬Φ(δ, δ′) =⇒ δ·δ′ /∈ B) ∧ (¬Φ(δ, δ′)⇐= δ·δ′ /∈ B). We will prove the
proposition by proving each conjunct separately.

Part 1 (¬Φ(δ, δ′) =⇒ δ·δ′ /∈ B).

1. Suppose ¬Φ(δ, δ′). Then, there exists a conflicting pair ⟨s, s′⟩ = find_conflict(δ, δ′), i.e., ⟨s, s′⟩ satisfies π(s) >
⟨s, s′⟩ ≤ π(s′). Below is a schematic representation of such a conflict:

γ(δ)

µ1

π(s)

µℓ s

···

···

γ(δ′)

π(s′)

s′ µ′
r

µ′
1

···

···

conflict
> ⟨s, s′⟩ ≤

2. Thus, the conflicting merge ⟨s, s′⟩ would have been preferred by τ if it were run on the character string κ(δ·δ′):

µ1

···
µℓ

⟨s, s′⟩

s′s

µ′
r

···
µ′
1

the conflicting merge blocks both of the merges below because π(s) = ⟨µℓ, s⟩ > ⟨s, s′⟩ and π(s′) = ⟨s′, µ′
r⟩ ≥ ⟨s, s′⟩:30

µ1

···

π(s)

sµℓ

π(s′)

µ′
rs′ ···

µ′
1

3. The existence of this intermediate step means that it is impossible for δ·δ′ to be a canonical bigram; thus, δ·δ′ /∈ B.

Part 2 (¬Φ(δ, δ′)⇐= δ·δ′ /∈ B).

1. Suppose δ·δ′ /∈ B. Then, φ(δ·δ′) ̸= δ·δ′, by definition.
2. Then, there must exist a conflicting merge ⟨s, s′⟩ as a subtree in φ(δ·δ′) that blocks δ·δ′ from being built. Now, because

both δ and δ′ are canonical in isolation (Assumption 1), the conflict ⟨s, s′⟩must straddle the boundary between the δ and δ′:

s
s′

γ(δ)
⟨s, s′⟩ γ(δ′)

This implies that s must be a subtree along the right edge of δ and s′ must be a subtree along the left edge of δ′, as
those are precisely the only ways that the straddling merge can occur under our circumstances. Lastly, for ⟨s, s′⟩ to
block δ and δ′, it would need to satisfy π(s) > ⟨s, s′⟩ ≤ π(s′).

3. This characterization is equivalent to ¬Φ(δ, δ′).

■

30Note that ⟨s, s′⟩ < π(s) enforces the left-most merge preference in BPE’s encoding procedure τ , i.e., in the event of a tie between
overlapping merges of the same rank, the left-most merge is taken.
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B.4. Connections to Canonicality Algorithms

Definition 11. We can describe the set of canonical tokenizations with the following finite-state automaton:

• states = ∆
• alphabet = ∆

• transitions = {δ δ′−→ δ′ | δ·δ′ ∈ B}
• initial = ∆
• accepting = ∆

Note that we never construct the automaton.

Generality. Our method works under a broader set of assumptions than Berglund et al. (2024); Lindmark (2024), as they
require the merge list to be proper. This condition is, in fact, restrictive: the Llama tokenizer (used in our experiments) is
not proper, but the GPT-2 tokenizer is proper.

Practicality. The automaton has V nodes and≤ V 2 edges where V = |∆|. In practice, the machine is very close to having
V 2 edges (even after DFA minimization!) because the transitions do not rule out many tokens. This means that the explicit
machine is enormous. For example, GPT2 has 50K states and nearly 2,500,000,000 edges, making it way too large to build.
Storing the edges that are absent is significantly more efficient. On the other hand, our version never builds the machine, so the
memory complexity is not a problem. It is also possible to use a more sophisticated automata representation that allows for
failure transitions; we refer the reader to Cognetta & Okazaki (2024); Lindmark (2024) for further discussion of the technique.
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C. Supporting Proofs and Lemmata
Proposition 6. Suppose that the tokenization model (τ , κ,Σ,∆) is exact, then

∀δ ∈ ∆∗ : δ ∈ D ⇐⇒ φ(δ) = δ (26)

Proof. Fix an arbitrary δ ∈ ∆∗. We consider each direction separately:

• Part 1 (δ ∈ D =⇒ φ(δ) = δ):
1. Suppose δ ∈ D
2. =⇒ ∃σ ∈ Σ∗ : δ = τ(σ) by definition of D
3. =⇒ κ(τ(σ)) = σ by exactness assumption
4. =⇒ τ(κ(τ(σ))) = τ(σ) because τ is a function
5. =⇒ τ(κ(δ)) = δ substitute τ(σ) 7→ δ
6. =⇒ φ(δ) = δ by definition of φ
7. Thus, this direction holds.

• Part 2 (δ ∈ D ⇐= φ(δ) = δ):
1. Suppose φ(δ) = δ
2. =⇒ δ = τ(κ(δ))
3. =⇒ ∃σ ∈ Σ∗ : δ = τ(σ); specifically, σ = τ(δ)
4. =⇒ δ ∈ D by definition of D
5. Thus, this direction holds.

Since each directions have been proven, the proposition holds. ■

Corollary 1.

D = {φ(δ) | δ ∈ ∆∗} (27)

Proposition 7. Let (τ , κ) be exact. Then, (τ , κ) is a bijection between (Σ∗,D).
Proof. The bijection follows directly from the following:

• Exactness means ∀σ ∈ Σ∗ : κ(τ(σ)) = σ.
• Proposition 6 ensures that ∀δ ∈ D : τ(κ(δ)) = δ.

Thus, we have a bijection, and the proposition holds. ■

Proposition 8. For an exact tokenization model (Σ,∆, τ , κ), the canonicalization operator is idempotent, i.e.,

φ(δ) = δ′ =⇒ φ(δ′) = δ′ for all δ, δ′ ∈ ∆∗ (28)

Proof. The proposition is equivalent to φ(φ(δ)) = φ(δ) for all δ ∈ ∆∗.

Fix δ, δ′ ∈ ∆∗ arbitrarily.

1. Suppose φ(δ) = δ′

2. =⇒ τ(κ(δ)) = δ′ by definition of φ
3. =⇒ τ(κ(τ(κ(δ)))) = τ(κ(δ′)) because τ and κ are functions
4. =⇒ τ(�κ(�τ(κ(δ)))) = τ(κ(δ′)) by exactness
5. =⇒ τ(κ(δ)) = τ(κ(δ′))
6. =⇒ τ(κ(δ)) = τ(κ(φ(δ))) substitution δ′ 7→ φ(δ)
7. =⇒ φ(δ) = φ(φ(δ)) by definition of φ

■
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D. Proofs for Section 4 (Canonicality by Conditioning)
Proposition 1. Assuming that the true distribution over tokens p⋆∆ is canonical, the globally canonicalized model g
guarantees the following reduction in KL divergence:

KL(p⋆∆ ∥ p∆)−KL(p⋆∆ ∥ g) = − logZ︸ ︷︷ ︸
≥0

(7)

Proof.

KL(p⋆∆ ∥ g) =
∑
δ∈∆∗

p⋆∆(δ) log
p⋆∆(δ)

g(δ)
(29a)

= −H(p⋆∆)−
∑
δ∈∆∗

p⋆∆(δ) log
p∆(δ)1{δ ∈ D}

Z
(29b)

= −H(p⋆∆)−
∑
δ∈∆∗

p⋆∆(δ) log p∆(δ)−
������������:0∑
δ∈∆∗

p⋆∆(δ) log1{δ ∈ D}+
∑
δ∈∆∗

p⋆∆(δ) logZ (29c)

= −H(p⋆∆)−
∑
δ∈∆∗

p⋆∆(δ) log p∆(δ) + logZ (29d)

= KL(p⋆∆ ∥ p∆) + logZ (29e)

Now, the proposition follows by basic algebra. ■

Proposition 2.

ℓ(δ) = p∆(δ)1{δ ∈ D}

[ |δ|+1∏
t=1

−→
ℓ (δ<t)︸ ︷︷ ︸

def
=wℓ(δ)

]−1

(10a)

Thus,

wℓ(δ) =
p∆(δ)

ℓ(δ)
1{δ ∈ D} (10b)

Proof.

ℓ(δ) =
−→
ℓ (EOS | δ)

|δ|∏
t=1

−→
ℓ (δt | δ<t) (30a)

=
p∆(EOS | δ)1{δ ∈ D}

−→
ℓ (δ)

|δ|∏
t=1

p∆(δt | δ<t)1{δ<t·δt ∈
−→
D}

−→
ℓ (δ<t)

(30b)

=

p∆(EOS | δ)
|δ|∏
t=1

p∆(δt | δ<t)

1{δ ∈ D} |δ|∏
t=1

1{δ<t·δt ∈
−→
D}

|δ|+1∏
t=1

−→
ℓ (δ<t)

−1

(30c)

= p∆(δ)1{δ ∈ D}

[ |δ|+1∏
t=1

−→
ℓ (δ<t)

]−1

(30d)

■

Proposition 3. Assuming that the true distribution over tokens p⋆∆ is canonical, the locally canonicalized model ℓ guarantees
the following reduction in KL divergence:

KL(p⋆∆ ∥ p∆)−KL(p⋆∆ ∥ ℓ) = − E
δ∼p⋆

∆

[logwℓ(δ)]︸ ︷︷ ︸
≥0

(11)
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Proof.

KL(p⋆∆ ∥ ℓ) =
∑
δ∈∆∗

p⋆∆(δ) log
p⋆∆(δ)

ℓ(δ)
(31a)

= −H(p⋆∆)−
∑
δ∈∆∗

p⋆∆(δ) log ℓ(δ) (31b)

= −H(p⋆∆)−
∑
δ∈∆∗

p⋆∆(δ) log
p∆(δ)1{δ ∈ D}

wℓ(δ)︸ ︷︷ ︸
by Proposition 2

(31c)

= −H(p⋆∆)−
∑
δ∈∆∗

p⋆∆(δ) log p∆(δ)−
������������: 0 by assumption∑
δ∈∆∗

p⋆∆(δ) log1{δ ∈ D}+
∑
δ∈∆∗

p⋆∆(δ) logwℓ(δ) (31d)

= KL(p⋆∆ ∥ p∆) + E
δ∼p⋆

∆

[logwℓ(δ)] (31e)

Now, the proposition follows by algebra. ■

Proposition 4.

Z = E
δ∼ℓ

[wℓ(δ)] = E
δ∼ℓ

[
p∆(δ)1{δ ∈ D}

ℓ(δ)

]
(12)

Proof.

Z =
∑
δ∈∆∗

p∆(δ)1{δ ∈ D} (32a)

=
∑
δ∈D

p∆(δ) (32b)

=
∑
δ∈D

ℓ(δ)
p∆(δ)

ℓ(δ)
(32c)

=
∑
δ∈D

ℓ(δ)
p∆(δ)

p∆(δ)wℓ(δ)−1
(32d)

=
∑
δ∈D

ℓ(δ)wℓ(δ) (32e)

= E
δ∼ℓ

[wℓ(δ)] (32f)

■
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E. Frequently Generated Noncanonical Bigrams
Because BPE canonicality is determined entirely by bigram constraints (App. B), a natural question is: Which of those
constraints does a language model violate most often? To find out, we catalogue the model’s most frequently produced
noncanonical bigrams in hopes of revealing some specific aspects of BPE canonicality that it struggles to model.

The bigram frequency is defined as

µ(α·β) def= E
δ∼p∆

 ∑
δ·δ′∈BIGRAMS(δ)

1{δ·δ′ = α·β}

 = E
δ∼p∆

|δ|−1∑
t=1

1{δt·δt+1 = α·β}

 (33)

We must estimate µ because computing µ exactly is infeasible. We do so by sampling: Given a sample δ(1), ... , δ(M) i.i.d.∼ p∆,
the following is an (unbiased) Monte Carlo estimator:

µ̃(α·β) def=
1

M

M∑
m=1

|δ(m)|−1∑
t=1

1{δ(m)
t ·δ(m)

t+1 = α·β} (34)

However, we found that using the following (unbiased) Rao–Blackwellized Monte Carlo estimator provided better
coverage for noncanonical bigrams, as they are individually rare:

µ̂(α·β) def=
1

M

M∑
m=1

|δ(m)|−1∑
t=1

∑
δ′∈∆

1{δ(m)
t ·δ′ = α·β}−→p∆(δ′ | δ(m)

<t+1) (35)

The Rao–Blackwellized estimator uses the exact conditional expectation over the token at step t+ 1 rather than the single
sample token δ

(m)
t+1, providing a significant variance reduction with little effect on the running time.

Experiment. Tab. 1 and 2 show the noncanonical bigrams (i.e., α·β /∈ B) that we have estimated (for each model) to be
the most frequent via µ̃ with M = 2000 samples.

Observations and takeaways. Inspecting the tables, we see that a large portion of the frequently generated noncanonical

bigrams are frequent substrings that have been tokenized incorrectly, for example, ␣normal
3487 ·

ized
1143 corresponds to a frequent

substring ␣normalized which—all things equal—should be tokenized as ␣normalized
39279 . However, there does not appear to be a

clear pattern for why these models struggle with these specific bigrams over others; further investigation is needed.

29



Language Models over Canonical Byte-Pair Encodings

GPT-2 Small
Bigram Freq.
ri
380 ·

eros
27498 3.86e-3

␣NG
39058 ·

PF
42668 1.99e-3

Be
3856 ·

ech
3055 1.94e-3

t
83 ·

kB
38841 1.66e-3

\\
59 ·

\\\\
6852 1.59e-3

␣Red
2297 ·

uce
7234 1.56e-3

D
35 ·

ub
549 1.35e-3

python
29412 ·

y
88 1.21e-3

␣sp
599 ·

t
83 1.20e-3

␣inspect
10104 ·

or
273 9.64e-4

EM
3620 ·

P
47 9.56e-4

EF
25425 ·

OR
1581 9.34e-4

II
3978 ·

T
51 7.36e-4

␣normal
3487 ·

ized
1143 5.78e-4

␣Gen
5215 ·

ocide
16207 5.34e-4

␣V
569 ·

og
519 4.70e-4

␣wrong
2642 ·

ful
913 4.46e-4

ab
397 ·

us
385 3.56e-4

␣An
1052 ·

nie
11952 3.46e-4

␣provision
8287 · al282 2.82e-4

GPT-2 Medium
Bigram Freq.
␣

220 ·
\xc2\xa0
1849 4.58e-3

neck
27235 ·

er
263 2.36e-3

h
71 ·

ands
1746 2.33e-3

Che
7376 ·

w
86 1.73e-3

,
11 ·

,
11 8.73e-4

US
2937 ·

A
32 8.10e-4

go
2188 ·

ers
364 7.68e-4

st
301 ·

rush
37357 6.81e-4

␣coll
2927 ·

ide
485 5.91e-4

␣Black
2619 ·

hawks
27221 5.82e-4

unt
2797 ·

r
81 4.52e-4

med
1150 ·

iated
12931 4.31e-4

␣ce
2906 ·

iling
4386 4.01e-4

og
519 ·

ging
2667 3.75e-4

D
35 ·

un
403 3.11e-4

␣Bur
5481 ·

st
301 2.41e-4

oxin
39366 ·

emia
22859 2.39e-4

Che
7376 ·

wan
8149 2.27e-4

qt
39568 ·

x
87 2.27e-4

Che
7376 ·

wich
11451 2.26e-4

GPT-2 Large
Bigram Freq.
␣

220 ·
\xc2\xa0
1849 4.67e-3

sson
16528 ·

i
72 2.81e-3

␣SA
14719 ·

E
36 1.96e-3

␣Bul
8510 ·

g
70 1.71e-3

)
8 ·

\xe2\x80\x94
960 1.36e-3

␣Ans
28038 ·

ys
893 1.18e-3

upp
7211 ·

ing
278 6.24e-4

,
11 ·

,
11 5.93e-4

␣J
449 ·

udd
4185 5.32e-4

␣polite
23507 ·

ly
306 4.84e-4

ing
278 ·

o
78 4.08e-4

stan
14192 ·

bul
15065 3.97e-4

===
18604 ·

-
12 3.97e-4

␣cancel
14241 ·

ed
276 3.92e-4

␣Congress
3162 ·man805 3.44e-4
␣ESP
9428 ·

N
45 3.43e-4

ski
20545 ·

pped
1496 2.88e-4

␣eat
4483 ·

en
268 2.62e-4

␣repair
9185 ·

ing
278 2.51e-4

m
76 ·

ology
1435 2.29e-4

Table 1. Most frequently generated noncanonical bigrams generated by GPT-2 models.
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Llama 3.2-1B
Bigram Freq.

\xc2\xa0\xc2\xa0
9421 ·

\xc23\xa0
4194 5.15e-3

\xc2\xa0
4194 ·

\xc2\xa0
4194 3.06e-3

\t
197 ·

\t
197 2.04e-3

.c
522 ·

rt
3423 6.67e-4

UE
2279 ·

ST
790 6.33e-4

␣UP
12250 ·

LOAD
13285 2.60e-4

cole
56745 ·

an
276 2.47e-4

␣Ind
2314 ·

i
72 2.10e-4

␣UP
12250 ·

DATE
7242 2.03e-4

F
37 ·

ERIC
37016 2.03e-4

vol
12821 ·

ved
2111 2.03e-4

cole
56745 ·

ans
598 2.00e-4

F
37 ·

ERICA
96390 1.93e-4

arm
2227 ·

ae
6043 1.60e-4

F
37 ·

ORIA
90118 1.53e-4

␣SER
14311 ·

IES
5482 1.43e-4

M
44 ·

OST
4327 1.20e-4

␣beg
2197 ·

ins
1354 1.13e-4

-
12 ·

Serve
61521 9.67e-5

IR
2871 ·

ON
715 9.33e-5

Llama 3.2-3B
Bigram Freq.

\xe3\x80\x80
23249 ·

\xe3\x80\x80
23249 6.41e-3

\xc2\xa0
107958 ·

\xc2\xa0
4194 4.64e-3

+
10 ·

y
88 1.86e-3

ende
11178 ·

w
86 1.60e-3

␣(((
11861 ·

sqrt
27986 1.54e-3

␣ro
938 ·

bert
9339 1.07e-3

\xc2\xa0
107958 ·

␣
220 9.16e-4

\xc2\xa0
4194 ·

\xc2\xa0
4194 5.75e-4

set
751 ·

t
83 5.50e-4

\xc2\xa0
17529 ·

␣
220 3.52e-4

nam
12682 ·

en
268 3.49e-4

+
10 ·

x
87 2.32e-4

\xc2\xa0
17529 ·

\xc2\xa0
4194 2.29e-4

,M
28112 ·

ovie
6461 1.62e-4

ip
575 ·

les
645 1.11e-4

␣ReSharper
53255 · ed291 1.07e-4
atty
23758 ·

t
83 1.07e-4

␣_
721 ·

collections
52237 1.03e-4

ip
575 ·

ple
698 1.01e-4

␣G
480 ·

hana
84203 1.01e-4

Llama 3.1-8B
Bigram Freq.

\xe3\x80\x80
23249 ·

\xe3\x80\x80
23249 9.60e-3

␣Rivers
41416 ·

ide
3633 3.46e-3

␣anthrop
41416 ·

ony
3633 1.13e-3

ol
337 ·

ta
2629 6.92e-4

␣NI
42601 ·

K
42 4.55e-4

\xc2\xa0
4194 ·

\xc2\xa0
4194 4.22e-4

\xc2\xa0
4194 ·

␣
220 3.27e-4

KA
27542 ·

YA
87582 3.05e-4

KA
27542 ·

YY
10266 2.70e-4

␣membr
31819 ·

anes
14997 2.67e-4

␣Pro
1322 ·

phet
22718 2.25e-4

And
3112 ·

y
88 1.67e-4

og
540 ·

ens
729 1.37e-4

\xd0\xb2\xd0\xb0\xd0\xbd
104471 ·

\xd1\x96
27385 1.29e-4

␣Sou
9424 ·

ls
4835 1.29e-4

␣anthrop
41416 ·

a
64 1.11e-4

GE
11010 ·

l
75 1.03e-4

␣I
358 ·

van
16023 9.89e-5

␣diff
3722 ·

usion
7713 9.33e-5

ACC
30542 ·

ORD
4373 9.01e-5

Table 2. Most frequently generated noncanonical bigrams generated by Llama models.
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