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ABSTRACT

The vulnerability of deep neural networks to adversarial examples poses signifi-
cant challenges to their reliable deployment. Among empirical defenses, adver-
sarial training and robust distillation remain the most effective. In this paper, we
identify a property originally studied in the context of model intellectual prop-
erty protection, i.e., probability sparsity induced by nasty training, and reveal its
potential to enhance adversarial robustness in an interpretable manner. We first
analyze how nasty training drives models toward sparse probability distributions
and qualitatively explore the spatial metric preferences introduced by such spar-
sity. Building on these insights, we propose nasty adversarial training (NAT), a
simple yet effective adversarial training framework that incorporates probability
sparsity as a regularization mechanism to strengthen robustness. Both theoretical
analysis and extensive experiments demonstrate the effectiveness of NAT, showing
that probability sparsity not only improves adversarial resilience but also provides
interpretability to the robustness gains.

1 INTRODUCTION

Despite their success in a wide range of computer vision tasks, deep neural networks (DNNs) re-
main highly vulnerable to adversarial attacks, raising serious challenges to their reliability and se-
cure deployment. By introducing carefully crafted perturbations to input, adversaries can easily
mislead models into producing incorrect predictions. As these perturbations are often imperceptible
or barely noticeable to the human eye, such vulnerabilities pose significant risks in safety-critical
applications such as autonomous driving, where manipulated traffic signs may cause catastrophic
accidents (Eykholt et al., 2018).

Adversarial defense aims to preserve robustness under such attacks. Although early defense meth-
ods (Xie et al., 2019a; Liao et al., 2018; Papernot et al., 2016; Xie et al., 2017a) reported promising
robustness, they were later shown to rely on “obfuscated gradients” (Athalye et al., 2018) and proved
ineffective against adaptive adversaries. Currently, the most reliable empirical defenses are adver-
sarial training (AT) (Madry et al., 2017; Jia et al., 2022a; Zhou & Hua, 2024; Zhang et al., 2024a;
Yu-Hang et al., 2025) and robustness distillation (RD) (Zhu et al., 2021; Zi et al., 2021; Goldblum
et al., 2020; Zhou et al.). AT improves robustness by dynamically generating adversarial exam-
ples during training, while RD extends this paradigm with improved inference efficiency, making it
suitable for deployment on resources-constrained platforms such as edge devices.

Although AT has many variants, few studies have explored robustness attribution from the perspec-
tive of the model’s output probability distribution. Nasty training (NT) (Ma et al., 2021), which
regularizes models using a nasty adversary, provides an intriguing perspective by suggesting that
probability sparsity may also contribute to adversarial robustness. The original goal of NT is to train
a teacher model resistant to imitation by a student model. Subsequent work by Ma et al. (2022)
theoretically linked this effect to probability sparsity, showing that sparse probability distributions
can hinder distillation. However, NT does not explicitly address adversarial robustness and largely
overlooks the potential impact of probability sparsity in this context. We argue that probability
sparsity reflects greater inter-class separation in the output logits, offering a spatial-metric interpre-
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tation of robustness. Employing this insight could unlock additional potential in adversarial training.
Additional detailed related work is provided in the appendix.
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Figure 1: Framework of the proposed NAT. NAT en-
hances the target model’s training by introducing an
auxiliary adversary model in addition to the primary
training loss. Probability sparsity regularization (i.e.,
probabilistic rectification) is achieved by maximizing
the divergence between the output distributions of the
target model and the adversary model.

In this paper, we first investigate the under-
lying cause of sparse probability outputs
in NT, attributing it to high-order power
optimization. We then qualitatively ana-
lyze the spatial metric properties induced
by these sparse probability distributions,
including enhanced class separability and
larger attack tolerance in the classification
layer. Motivated on these insights, we
propose nasty adversarial training (NAT),
a simple yet efficient adversarial defense
that utilizes probability sparsity as a reg-
ularization mechanism to enhance adver-
sarial robustness. NAT introduces an aux-
iliary adversary model that applies nasty
regularization alongside the primary train-
ing objective. The target model achieves
probability sparsity by maximizing the di-
vergence between its outputs and those
of the adversary model, while simulta-
neously learning discriminative ability by
minimizing divergence with the ground

truth. Experimental experiments demonstrate that NAT achieves state-of-the-art adversarial robust-
ness with minimal overhead. Our main contributions are summarized as follows:

(1) We analyze the attribution of probability sparsity in NT and reveal its spatial metric benefits,
providing interpretable insights into adversarial robustness.

(2) We propose NAT, a novel adversarial defense that integrates NT as an effective AT regularizer.

(3) We empirically validate that NAT achieves state-of-the-art adversarial robustness with low com-
putational overhead. Ablation studies and discussions further highlight its effectiveness.

2 METHODOLOGY

2.1 PRELIMINARY

Nasty Training (NT). The original objective of NT is to train a target teacher model fθt that resists
distillation by a student model fθs , where θt and θs represent their respective model parameters.
In standard knowledge distillation, the student model is trained to approximate the outputs of the
teacher model. This process can be formalized as:

min
θS

ÿ

pxi,yiqPX

ατ2
sKL

´

στs

´

pfθT pxiq

¯

, στs

´

pfθS pxiq

¯¯

` p1 ´ αqXE
´

σ
´

pfθS pxiq

¯

, yi
¯

,

(1)

where KLp¨q and XEp¨q denote the KL-divergence and cross-entropy loss, respectively. The hyper-
parameter α balances the trade-off between distillation and classification objectives. στsp¨q denotes
the “softmax temperature” function (Ma et al., 2021), which reduces to the standard softmax σp¨q

when τs “ 1. Here, τs and τa are softmax temperatures, X is the target distribution, and p represents
the output probabilities.

In NT, to prevent the teacher model from being distilled by the student model, an auxiliary adver-
sary model fθa , which is a vanilla-trained counterpart of the target model in the original setting,
is introduced. This adversary model enables the target teacher model to learn task-relevant knowl-
edge and maximize its output discrepancy from the adversary model. This training objective can be
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formalized as:
min
θt

ÿ

pxi,yiqPX

XE
´

σ
´

pfθt pxiq

¯

, yi
¯

´ ωaKL
´

στa

´

pfθt pxiq

¯

, στa

`

pfθa pxiq
˘

¯

,

(2)

where ωa is a hyper-parameter that balances the target cross-entropy loss and the nasty loss. Intu-
itively, the adversary model fθa acts as a surrogate for the student model fθs . Instead of allowing
the student to distill knowledge by aligning with the teacher, NT reduces the similarity between the
teacher and the surrogate adversary’s outputs. Subsequently, Ma et al. (2022) further provided a
theoretical analysis, showing that the sparsity of the teacher’s output probabilities is the key factor
that prevents successful distillation.

Adversarial Attack. The objective of adversarial attacks is to identify an optimal perturbation δx
that causes a well-trained target model fθt to make incorrect predictions on the perturbed input,
thereby maximizing the model’s loss on the true label. This can be formalized as:

argmax
δx

Lpfθtpx ` δxq, yq, s.t. ||δx||p ď ε, (3)

where ε denotes the perturbation budget, L represents the target loss, typically the cross-entropy
loss.

Adversarial training. In AT, adversarial examples are dynamically generated during training process
and incorporated into the learning process. Through a min-max optimization framework, the model
learns to gain adversarial robustness against internal maximization (i.e., adversarial attacks). This
process can be formalized as:

min
θ

Epx,yq„X

„

max
||δx||pďε

Lpx ` δx, y; θq

ȷ

. (4)

2.2 NASTY ADVERSARIAL TRAINING

We propose NAT, which incorporates probabilistic sparsity into AT through nasty regularization.
Intuitively, NAT extends standard AT by introducing an auxiliary adversary model for the target
model, with both models jointly optimized under adversarial training. The overall training objective
is defined as:

min
θt

ÿ

pxi,yiqPXYX1

XE
´

σ
´

pfθt pxiq

¯

, yi
¯

´ ωaKL
´

στa

´

pfθt pxiq

¯

, στa

`

pfθa pxiq
˘

¯

s.t. X 1
“

"

x1

ˇ

ˇ

ˇ

ˇ

argmax
x1

XE
´

σ
´

pfθt pxiq

¯

, yi
¯

,@x P X

*

,

(5)

where X 1 denotes the set of adversarial examples corresponding to the original input distribution.
Following the original NT setup, we use a vanilla-trained counterpart of the target teacher as the
adversary model. This configuration allows the target model to learn sparse output probability dis-
tributions while simultaneously improving adversarial robustness. In the next section, we analyze
the origin of sparsity in NT and qualitatively explain how probabilistic sparsity contributes to ro-
bustness by shaping spatial relationships in the output space.

3 IN-DEPTH ANALYSIS

In this section, we present two key analyses to explain how NAT induces probabilistic sparsity and
strengthens robustness: (1) the origin of probabilistic sparsity in NT, and (2) its influence on the
model robustness from the perspective of spatial structure.

3.1 ATTRIBUTION OF PROBABILITY SPARSITY

Previous work (Ma et al., 2022) primarily focused on the effect of probability sparsity on knowledge
distillation, but did not investigate why NT induces such sparsity. In this paper, we further explore
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the origin of probability sparsity in NT by performing a Taylor expansion of the adversary regular-
ization term. Specifically, beyond the primary classification objective (i.e., cross-entropy loss), we
reformulate the adversary regularization term in NT as follows:

LNasty “ ´
1

N

N
ÿ

i“1

C
ÿ

c“1

qti,c ¨ log

ˆ

qti,c
qai,c

˙

“ ´
1

N

N
ÿ

i“1

C
ÿ

c“1

„

qti,c ¨ log
`

qti,c
˘

´ qti,c ¨ log
`

qai,c
˘

ȷ

.

(6)

where N denotes the number of samples and C the number of categories. qti,c and qai,c are the output
logits of the target model and adversary model for the ith example and cth category, respectively.
Our analysis focuses on the second term, since the first term is independent of the adversary model
and therefore does not capture its effect. Let ∆q

i,c “ qai,c ´ qti,c, we expand logpqai,cq around qti,c
using a Taylor series:

log
`

qai,c
˘

“ log
`

qti,c
˘

`
1

qti,c
∆q

i,c ´
1

2
`

qti,c
˘2 p∆q

i,cq
2

` ¨ ¨ ¨ `
p´1q

pK`1q

Kpqti,cq
p∆q

i,cq
K

(7)

Following the assumption of Ma et al. (2022), we let qai,c “ qti,c ` ∆q
i,c, where ∆q

i,c denotes the
gap between qai,c and qti,c. Each of qai,c, qti,c, and ∆q

i,c can be regarded as functions of the input
xi,c, i.e., qai,cpxi,cq, qti,cpxi,cq, and ∆q

i,cpxi,cq. Although ∆q
i,cpxi,cq is abstract and difficult to express

explicitly, it induces an implicit functional dependence between the cross-entropy loss and qai,c, since
both qai,c and qti,c are functions of the input xi,c. As a result, the cross-entropy can be rewritten as
Lpxi,c, q

a
i,c ´∆q

i,cq, enabling a Taylor expansion. Based on this formulation, the regularization term
can be approximated as:

LNasty «
1

N

N
ÿ

i“1

C
ÿ

c“1

pqai,c ´ qti,cq ´
1

2N

N
ÿ

i“1

C
ÿ

c“1

pqai,c ´ qti,cq
2

qti,c

`
1

3N

N
ÿ

i“1

C
ÿ

c“1

pqai,c ´ qti,cq
3

pqti,cq2
` ¨ ¨ ¨

`
p´1q

K`1

KN

N
ÿ

i“1

C
ÿ

c“1

pqai,c ´ qti,cq
K

pqti,cqK´1
.

(8)

The Taylor expansion of the nasty loss provides an intuitive explanation of the mechanism underly-
ing NAT. Beyond the primary cross-entropy loss, NT introduces a higher-order regularization term.
The first-order term, 1

N

řN
i“1

řC
c“1pqai,c ´ qti,cq, can be ignored since the probability outputs of both

models sum to a constant value of 1. The second-order term, 1
2N

řN
i“1

řC
c“1

pqai,c´qti,cq
2

qti,c
, encour-

ages the target model to maximize its output discrepancy with the adversary, especially on non-target
classes where the target assigns lower probabilities. Since these smaller probabilities appear in the
denominator, they induce larger regularization weights, thereby amplifying the effect of the loss on
non-target classes. Although higher-order odd terms may introduce effects opposite to the desired
behavior, they are typically suppressed by the preceding even terms, whose coefficients dominate.

In standard settings, the adversary model adopts the same architecture as the target model and typ-
ically produces a “single peak + uniform distribution” prediction pattern (Ma et al., 2022). This
behavior arises from the use of one-hot labels in the cross-entropy loss, where the ground truth dis-
tribution is characterized by “single peak + uniform zero”. The training behavior induced by NT
can thus be summarized as follows: the cross-entropy loss drives the model to concentrate probabil-
ity mass on the target class, while the nasty regularization term discourages it from replicating the
adversary’s uniform distribution across non-target classes. As a result, the target model redistributes
the probability mass previously spread uniformly across all non-target classes onto a small subset of
classes that are closer to the target (i.e., more compressible), ultimately leading to a sparse output
probability distribution.
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Our later experiments further show that the non-target class probabilities tend to be compressed onto
semantically related classes (e.g., cat and dog), indicating that the model captures more generaliz-
able semantics. In practice, even if the adversary’s output deviates from the “single peak + uniform
distribution” assumption, the differentiation-driven interaction between the adversary model and the
target model still enforces a sparse probability distribution in the target model. However, the result-
ing peaks of the target model may not align with the adversary’s multi-peak outputs, reflecting a
different allocation of probability mass.

3.2 BENEFITS ON SPATIAL METRIC RELATIONSHIPS

The sparsity of output probabilities and the spatial metric behavior show obvious logical connection.
Specifically, probability sparsity indicates that the model strongly favors the target class by assigning
it substantially larger logits, while assigning much smaller logits to non-target classes. Let i and j
denote the target class and a non-target class, respectively, with pwi, biq and pwj , bjq representing
the weights and bias of their corresponding linear classifiers. For a model exhibiting probability
sparsity, we have:

wix ` bi " wjx ` bj . (9)
Here, " rather than ą is used to emphasize the existence of a sufficiently large margin in a nasty-
trained model, due to the saturation regions of activation functions such as Sigmoid and Softmax.
This property relates to two key spatial metrics: (1) the distance from data points to the decision
boundary, and (2) the minimum distance between classification boundaries. Both are measured by
the magnitude of the output logits. Therefore, Equation 9 implies that robust models exhibit larger
margins to the decision boundary and greater separation between hyperplanes, thereby achieving
improved adversarial robustness. For clarity, we formalize the computation of these two distances
in high-dimensional space.

Distance from Data Points to the Decision Boundary. To compute the distance from a data point to
the decision boundary, we model the linear classification layer as a hyperplane in high-dimensional
space. The distance from a data point xi to the decision boundary of class c is then given by the
standard point-to-hyperplane distance formula:

Ddata to bound “
|wc ¨ xi ` bc|

||wc||2
. (10)

Analysis. Intuitively, larger logits indicate greater distances from the decision boundary. Although
this distance depends on the norm of the classification layer’s weights (||wc||2), weight magnitudes
are typically constrained by L2 regularization and thus vary within a limited range. Compared to the
substantial shifts in logits caused by the saturation behavior of the Softmax function, variations in
the model parameters are of much smaller magnitude. As a result, greater probability sparsity yields
substantially larger distances between data points and their corresponding classification boundaries.
In the experiment section, we empirically validate this hypothesis by quantifying the average dis-
tance of all samples within each class to the ten decision boundaries.

Minimum Distance Between Classification Boundaries. Furthermore, for the same data point
xi, the larger logit gap observed in the nasty-trained model can be attributed to greater discrepancy
between classification parameters, defined as:

Dweight l2 “ ||wj ´ wi||2. (11)

This increased weight discrepancy leads to larger inter-class distances in the classification layer.
Specifically, the linear layer of deep model can be regarded as set of high-dimensional vectors.
Although the exact distances between such vectors cannot be directly computed,the shortest dis-
tance between the corresponding class decision boundaries can be approximated using projection
geometry. Specifically, the classification weight vectors for different categories can be treated as
non-intersecting lines, and their shortest distance can be calculated as follows:

(1) Calculate the difference between the weight vectors: γ “ wj ´ wi.

(2) Normalize the weight vectors to obtain unit directions: di “ wi

||wi||2
, dj “

wj

||wj ||2
.

(3) Estimate the shortest distance between the classification directions of classes i and j as:

Di,j
shortest “ ||γ ´ pγ ¨ diq ¨ di||2, (12)

5
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where γ ¨ di is the scalar projection of γ onto the direction di, and pγ ¨ diq ¨ di is the corresponding
projection vector.

Thus, the shortest distance between two classifier boundaries (e.g., i and j) can be expressed as:

Di,j
shortest “ ||wi ´ wj ´ p

pwj ´ wiq

||di||22
¨ diq||2. (13)

Analysis. Intuitively, larger inter-class weight gaps yield greater shortest distances between classi-
fication boundaries, making it more difficult for data points to shift between classes. As a result,
adversaries must apply larger perturbations (i.e., higher attack budget) to induce a misclassifica-
tion. To empirically validate this theoretical insight, we will later conduct a qualitative analysis in
the experiments section, examining the relationship between inter-class weight differences and the
distances between different classification boundaries.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Attacks Details. Following common defense evaluation settings (Zhang et al., 2024b; Yue et al.,
2024; Yin et al., 2024; Li et al., 2024; Zi et al., 2021; Zhou & Hua, 2024; Zhou et al.), we evaluate
NAT against several widely used adversarial attacks: PGD with 10, 20, 50, and 100 steps (Madry
et al., 2017), CW (Carlini & Wagner, 2017), and AutoAttack (Croce & Hein, 2020). For CIFAR10
and CIFAR100, the L8 norm attack budget is set to ϵ “ 8{255, with perturbation step size η1 “

2{255 and iterations K “ 10. For ImageNet100, we set ϵ “ 0.03 and η1 “ 2{255.

Training Details. Following Ma et al. (2021; 2022), we choose a normally trained adversary model
with the same architecture as the target model. The nasty regularization coefficient ωa is set to
0.006, which is empirically validated as optimal in our ablation study. For the target model, we use
SGD optimizer with momentum 0.9 and weight decay 5 ˆ 10´4. Training is conducted for 300
epochs with an initial learning rate of 0.1, decayed by a factor of 10 at epochs 160 and 240. Batch
sizes are 512 for CIFAR datasets and 128 for ImageNet. All experiments are performed on NVIDIA
GeForce RTX 4090 GPUs using PyTorch 1.12.1. The adversary model is set as the vanilla-trained
counterpart of the target model under the basic setting, and we will discuss the model selection
later. Furthermore, to ensure fair comparison with recent defenses that leverage diffusion-based
adversarial data augmentation, we adopt the same augmentation strategy as in Wang et al. (2023),
demonstrating the superiority of our NAT framework under identical conditions.

Datasets and Backbones. We evaluate NAT on two standard benchmark datasets, CIFAR-10 and
CIFAR-100, which are widely used for adversarial robustness evaluation (Zhang et al., 2024b; Yue
et al., 2024; Yin et al., 2024; Li et al., 2024; Zi et al., 2021; Zhou & Hua, 2024). To further validate
its scalability, we also test NAT on a higher-resolution dataset, ImageNet100.

‚ CIFAR10 & CIFAR100. For both datasets, we employ ResNet-18 (He et al., 2016) and Wide-
ResNet-34-10, which are commonly employed in adversarial defense evaluations.

‚ ImageNet100. For ImageNet100, we use ViT-Small (Alexey, 2020) as the backbone.

Our experimental comparisons primarily benchmark NAT against AGAIN (Jia et al., 2022a) and
LAS-AT (Yin et al., 2023), which currently achieves the state-of-the-art performance (Zhang et al.,
2024b; Yue et al., 2024; Yin et al., 2024; Li et al., 2024; Zi et al., 2021). All reported results
correspond to the best outcomes over three independent runs.

4.2 MAIN RESULTS

We report the results for CIFAR10 and CIFAR100 on WRN-34-10 in Table 1, and on ResNet-18 in
Table 2. The mean and standard deviation are reported in parentheses (mean˘std). For compara-
tive methods, the ResNet-18 results are taken from Yin et al. (2023), while the WRN-34-10 results
are taken from Jia et al. (2022a). NAT is further evaluated on ImageNet100 (as presented in Ap-
pendix B), along with black-box attack settings (as presented in Appendix C). Results consistently
show that NAT provides superior adversarial robustness, regardless of whether the backbone is a

6
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Table 1: Test accuracy and robustness on CIFAR-10 and CIFAR-100 using Wide-ResNet-34-10.
CIFAR10 CIFAR100

Clean PGD-10 PGD-20 PGD-50 C&W AA Avg. Clean PGD-10 PGD-20 PGD-50 C&W AA Avg.

PGD-AT 85.17 56.07 55.08 54.88 53.91 51.67 59.46 60.89 32.19 31.69 31.45 30.1 27.86 35.69
TRADES 85.72 56.75 56.10 55.90 53.87 53.40 60.28 58.61 29.20 28.66 28.56 27.05 25.94 33.00

SAT 87.97 50.31 49.86 48.79 48.65 47.48 55.51 62.82 28.1 27.17 26.76 27.32 24.57 32.79
AWP 85.57 58.92 58.13 57.92 56.03 53.90 61.74 60.38 34.13 33.86 33.65 31.12 28.86 37.0

LBGAT 88.22 56.25 54.66 54.30 54.29 52.23 59.99 60.64 35.13 34.75 34.62 30.65 29.33 37.52
LAS-AWP 87.74 61.39 60.16 59.79 58.22 55.52 58.80 64.89 37.11 36.36 36.13 33.92 30.77 39.86

NAT (best)
89.15
(89.10
˘0.13)

63.69
(63.43
˘0.21)

62.34
(62.24
˘0.17)

62.05
(61.77
˘0.25)

65.10
(64.89
˘0.30)

52.95
(52.48
˘0.41)

65.88
62.87
(62.72
˘0.19)

36.79
(36.43
˘0.29)

36.36
(35.90
˘0.48)

36.22
(35.52
˘0.61)

32.79
(32.32
˘0.52)

30.85
(30.13
˘0.71)

39.22

NAT (last)
87.33
(87.15
˘0.14)

65.01
(64.86
˘0.21)

63.66
(63.42
˘0.16)

63.03
(62.79
˘0.27)

63.40
(63.04
˘0.29)

50.23
(49.87
˘0.45)

65.44
61.18
(61.02
˘0.14)

35.12
(34.89
˘0.30)

35.68
(35.20
˘0.43)

35.51
(34.97
˘0.58)

30.61
(30.01
˘0.54)

29.14
(28.45
˘0.70)

37.88

Table 2: Test accuracy and robustness on CIFAR-10 and CIFAR-100 dataset using ResNet-18.
CIFAR10 CIFAR100

Clean PGD-10 PGD-20 PGD-50 PGD-100 C&W AA Avg. Clean PGD-10 PGD-20 PGD-50 PGD-100 C&W AA Avg.

PGD-AT 84.25 46.88 46.56 44.85 44.76 45.75 41.69 50.67 62.34 21.24 21.38 21.05 21.01 22.15 19.76 26.99
MART 81.61 52.38 51.28 50.93 50.80 47.77 46.09 54.40 55.14 28.52 28.08 27.79 27.91 25.65 24.04 31.01

TRADES 83.64 52.05 50.67 50.38 50.20 49.68 48.41 55.00 58.18 28.71 28.25 28.10 27.99 24.22 24.03 31.35
FAT 87.32 45.80 43.53 43.11 42.98 43.50 40.76 49.57 61.61 19.33 18.35 18.08 17.98 19.31 17.38 24.57

LBGAT 85.73 53.12 52.05 51.78 51.68 50.63 49.04 56.29 56.78 32.84 32.21 32.11 32.07 27.46 26.39 34.26
CAS 86.24 51.38 51.49 51.77 51.04 53.66 46.69 56.03 64.04 31.66 31.55 31.26 31.02 34.82 24.40 35.53
AWP 79.45 55.04 54.47 54.36 54.30 51.17 49.40 56.88 54.00 31.78 31.49 31.44 31.74 28.20 26.19 33.54

LAS-AT 82.39 54.74 53.70 53.70 53.72 51.96 49.94 57.16 58.38 32.32 31.89 31.82 31.77 28.48 26.84 34.5
AGAIN-AWP 86.52 59.99 59.35 59.11 58.85 61.19 51.89 62.41 64.51 35.58 35.44 35.39 35.08 40.02 28.69 39.24

NAT (best)
90.86 (
90.77

˘0.15)

62.37 (
62.12

˘0.22)

60.94 (
60.81

˘0.27)

60.19 (
59.91

˘0.19)

59.91 (
59.72

˘0.32)

62.54 (
62.24

˘0.34)

50.18
(50.00
˘0.46)

63.85
64.02
(63.77
˘0.22)

36.82
(36.69
˘0.22)

36.63
(36.39
˘0.33)

36.44
(36.27
˘0.41)

35.16
(34.84
˘0.56)

37.98
(37.77
˘0.51)

28.82
(28.54
˘0.73)

39.26

NAT (last)
90.28
(90.07
˘0.18)

61.86
(61.72
˘0.22)

60.00
(59.72
˘0.21)

59.44
(59.26
˘0.36)

58.89
(58.57
˘0.29)

61.67
(61.46
˘0.41)

48.96
(48.65
˘0.51)

63.01
61.80
(61.63
˘0.23)

34.55
(34.30
˘0.33)

34.43
(34.29
˘0.41)

34.19
(33.92
˘0.39)

34.07
(33.91
˘0.57)

36.71
(36.42
˘0.48)

27.17
(26.97
˘0.68)

37.56

convolutional neural network or a ViT, and whether the dataset is low-resolution (CIFAR) or high-
resolution (ImageNet). In the Appendix D, we further supplement the discussion on the effectiveness
and superiority of NAT against adaptive attacks. Additionally, results of NAT with EDM-based data-
augmentation are provide in the Appendix E. These results demonstrate that NAT is compatible with
EDM-based augmentation, and can further exploit its potential to achieve even stronger robustness,
compared with other defenses under the same augmentation conditions. Also, Figure 3 demonstrates
the significant probability sparsity of Nasty VT & AT compared to Normal VT & AT.

4.3 ABLATION STUDY

We perform ablation studies from multiple perspectives to evaluate the convenience, efficiency, and
effectiveness of NAT. All ablation experiments are conducted on CIFAR-10.
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Figure 2: Ablation study of λ on CIFAR10
dataset.

Selection of the Hyper-Parameter λ. In the
original NT, the default value of λ is set to 0.08.
However, this choice may not be optimal un-
der adversarial training. To investigate its ef-
fect, we vary λ in the range [0, 0.12] with a
step size of 0.02 and report the results in Fig-
ure 2. The results indicate that for both the
best and last models, accuracy and robustness
first increase and then decrease, reaching the
peak performance at λ “ 0.06. Importantly,
across all tested values, introducing nasty regu-
larization consistently improves robustness, as
shown from the markedly poorer performance
observed at λ “ 0.

Impact of Adversary Model Structure. In the
original setup, the adversary model is configured as the naturally trained counterpart of the target
model. We further investigate the effect of varying adversary model architectures on NAT in Ap-
pendix F. Overall, we find that adversary models with different structures consistently contribute to
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Figure 3: Verification of sparsity of model output probability.

0 1 2 3 4 5 6 7 8 9
Class Index

0

1

2

3

4

5

6

7

8

9

C
la

ss
 In

de
x

0.001.851.941.921.911.911.841.891.911.87

1.920.001.921.931.881.931.851.891.911.87

1.921.840.001.931.911.931.861.891.901.85

1.901.841.930.001.911.941.861.881.891.86

1.911.831.941.930.001.941.851.901.901.85

1.891.851.931.941.910.001.851.901.891.86

1.901.851.941.941.911.930.001.881.911.86

1.911.851.931.931.921.941.840.001.891.87

1.921.861.931.921.911.921.851.880.001.87

1.921.861.921.931.891.931.851.891.910.00

(a) Normal VT

0 1 2 3 4 5 6 7 8 9
Class Index

C
la

ss
 In

de
x

0.001.901.991.982.001.961.931.941.991.95

2.000.001.981.981.981.981.951.941.991.96

2.001.890.001.992.011.991.951.941.971.93

1.981.891.990.002.002.001.951.941.961.93

1.991.881.991.990.001.991.951.951.971.93

1.961.891.992.002.000.001.951.951.961.94

1.981.902.002.002.011.990.001.921.981.94

1.991.891.991.992.011.991.930.001.971.95

2.001.911.981.981.991.971.941.930.001.96

2.001.911.971.981.981.981.941.951.990.00

(b) Normal AT

0 1 2 3 4 5 6 7 8 9
Class Index

C
la

ss
 In

de
x

0.003.613.653.043.753.073.623.672.173.57

3.610.003.502.963.723.043.703.783.631.91

3.633.480.003.323.853.393.723.743.613.42

3.323.243.650.003.851.963.733.793.273.20

3.543.513.653.320.003.393.693.803.563.50

3.293.263.651.923.850.003.733.793.253.19

3.533.613.653.323.813.390.003.653.583.54

3.523.623.603.323.853.383.580.003.513.58

2.173.623.632.983.763.033.673.660.003.58

3.611.933.482.963.753.013.673.793.630.00

(c) Nasty VT

0 1 2 3 4 5 6 7 8 9
Class Index

C
la

ss
 In

de
x

0.004.314.413.904.374.084.234.433.844.31

4.460.004.253.824.274.044.324.423.803.96

4.474.170.004.024.434.254.364.483.844.14

4.344.114.410.004.424.124.294.493.774.14

4.414.164.414.010.004.274.354.503.774.14

4.264.084.383.874.420.004.364.513.734.08

4.354.284.413.964.424.280.004.453.784.14

4.394.234.384.004.424.274.300.003.774.28

4.374.184.313.864.254.064.194.330.004.16

4.473.964.243.864.264.044.184.473.790.00

(d) Nasty AT

Figure 4: Symmetric matrix of the shortest distance among each boundary.

robustness improvements, offering flexible options for NAT. Please refer to Appendix F for detailed
discussion.

Impact of Adversary Model State. We analyze the impact of different adversary model parameter
states on NAT in Appendix G, including random initialization, vanilla training, adversarial training,
and SAM regularization. Overall, while all parameter states contribute to robustness improvements,
some do not exhibit the characteristic “single peak + uniform distribution” probability pattern. De-
tailed discussions are provided in Appendix G.

4.4 VERIFICATION OF SPATIAL METRIC RELATIONSHIPS.

We quantitatively validate the conclusions presented in the in-depth analysis section, including (1)
the increased distances from data points to classification boundaries, (2) the enlarged inter-class
weight gaps, and (3) the greater shortest distances between classification hyperplanes. All quantifi-
cation results are achieved on the test set.

Distance from Data Point to Classification Boundary. We measure the distance of all samples
from class 0 to each classification boundaries, as shown in Figure 5. To better illustrate the metric
relationship between data points and classification boundaries, we remove the absolute value oper-
ation in Equation 10. Intuitively, the correctly classified target class should exhibit a larger positive
distance, whereas non-target classes should yield smaller or even negative distances. The robust
model indeed shows greater distances to the decision boundaries compared to standard models.
Moreover, the robust model tends to assign positive logits (i.e., positive distances) to semantically
related classes (e.g., dog and cat), while dissimilar categories (e.g., automobile and ship) consistently
yield negative distances. This behavior indicates that NAT does not simply overfit the training data
but tends to capture invariant semantic structures shared across similar categories while preserving
higher inter-class separability.

Inter-Class Gap in the Weights of the Classification Layer. We use the L2 norm to quantify the
magnitude of inter-class weight differences, ignoring directional effects. As shown in Figure 6, the
results indicate that the nasty model produces substantially larger inter-class weight separations in
the classification layer compared to the normal model.

Shortest Distance Among Linear Layers. Following the in-depth analysis, we compute the short-
est inter-class distances in the classification layers of both natural and robust models under normal
and nasty settings. As shown in the symmetric matrices of Figure 4, NAT consistently exhibits
substantially larger shortest inter-class distances compared to standard models.

These findings validate our hypothesis regarding the spatial metric preference: adversaries must
expend a larger attack budget to force misclassification, thereby enhancing robustness. In addition,
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Figure 5: Average distance of class 0 samples in CIFAR10 dataset to all classification boundaries.
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Figure 6: Symmetric matrix of L2 distances between classification layer weights.
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Figure 7: UMAP visualization of feature distributions for Vanilla Trained model (VT), Adversarial
Trained model(AT) and Nasty Adversarial Trained model (NAT).

a visualization of feature distributions using UMAP, provided in Figure 7, further confirms NAT’s
spatial preference, characterized by larger inter-class separation and smaller intra-class compactness.

5 FURTHER DISCUSSION

We further examine two additional questions: (a) Does employing an ensemble model as the adver-
sary model provide further gains for NAT? (b) Can NAT be extended to robustness distillation, and
if so, does it achieve similar improvements or hinder the student model’s learning process as in the
nasty training? Our findings suggest that while the ensemble adversary model provides marginal
improvements, it is not necessary. Moreover, NAT can provide a degree of undistillable protection
for robust teachers, though further investigation is needed to strengthen this property. We also com-
pare NAT against explicit regularizers such as entropy regularization and logits norm regularization,
highlighting its irreplaceability. In addition, we provide a brief discussion of NAT’s training cost,
showing that it introduces only minimal overhead. Finally, we outline the limitations of NAT. More
detailed analyses of these issues are presented in Appendix H,I, J, K, M.
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6 CONCLUSION

In this paper, we propose nasty adversarial training (NAT), a simple yet effective regularizer for ad-
versarial training that leverages the probabilistic sparsity prior. We first provide a theoretical analysis
of how NAT induces probabilistic sparsity and examine its role in enhancing robustness from a met-
ric perspective. Extensive experiments demonstrate that NAT achieves state-of-the-art adversarial
robustness. Additional analyses further highlight its simplicity, efficiency, and irreplaceability.
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APPENDIX

A RELATED WORKS

A.1 ADVERSARIAL ATTACKS

Adversarial attacks aim to introduce imperceptible perturbations to input data, causing a well-trained
model to produce incorrect predictions. Depending on the amount of information accessible to
the attacker, adversarial attacks are generally categorized into white-box and black-box settings.
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In white-box attacks, the attackers has fully access to the target model. Common methods in-
clude gradient-based approaches (Goodfellow et al., 2014; Dong et al., 2018; Madry et al., 2017),
classifier-based methods (Moosavi-Dezfooli et al., 2016), and optimization-based techniques (Car-
lini & Wagner, 2017). In contrast, black-box attacks assume limited prior knowledge of the target
model and are typically classified into score-based (Chen et al., 2017), decision-based (Brendel et al.,
2017), and transfer-based attacks (Xie et al., 2019b; Zou et al., 2020). Among them, transfer-based
attacks involve training a surrogate model to simulate the target model’s behavior and are widely
used to evaluate the black-box adversarial robustness of DNNs.

A.2 ADVERSARIAL DEFENSES

Adversarial defenses aim to improve a model’s accuracy on adversarial examples. AT (Goodfellow
et al., 2014; Zhang et al., 2019; Dong et al., 2018; Madry et al., 2017; Jia et al., 2022a; Wang et al.,
2019) is widely regarded as one of the most effective defense. RD (Goldblum et al., 2020; Zhu et al.,
2021; Zi et al., 2021) is later proposed to transfer robustness from a large, robust model to a smaller,
more efficient student model. Recently, AT are further explored, such as fairness issue (Zhang et al.,
2024b), attention maps (Yin et al., 2023), and learnable strategies (Jia et al., 2022a). Data-free ad-
versarial defense (Wang et al., 2024; Zhou et al.; Lee et al., 2024) are explored to achieve adversarial
robustness in scenarios with limited data. Additionally, internal maximization methods like fast ad-
versarial training (FAT) (Jia et al., 2022b; Huang et al., 2023) have been developed to enhance the
efficiency of AT without significantly sacrificing robustness. In this paper, we focus on AT and pro-
pose a simple yet effective regularization strategy from the perspective of output probability sparsity,
which achieves state-of-the-art adversarial robustness with little additional computational overhead.

B RESULTS ON IMAGENET-100

In this section, we report the robustness performance of NAT on ImageNet100. Due to the lack
of direct comparisons, we primarily compare NAT with natural models and adversarial training
models. The experimental results are shown in Table 4. Under the same experimental setup, com-
pared to smaller datasets like CIFAR10, NAT demonstrates significant robustness increments on
ImageNet100.

C RESULTS ON BLACK-BOX ATTACKS

In this section, we provide a simple evaluation of NAT’s adversarial robustness against black-box
attacks based on CIFAR10. We mainly follow the black-box attack settings in RSLAD, which test
both the transfer attack and query-based attack. For transfer attack, we generate the adversarial
examples by PGD-20 and CW on an adversarially pre-trained surrogate ResNet-50. The maximum
perturbation is also set to 8/255. For query-based attack, we use the strong Square attack. The
experimental results are shown in Table 5. The results in the table include both adversarial training
methods and robustness distillation methods. To maintain consistency, we performed NAT training
on MobileNetV2 for evaluation. It can be observed that our proposed NAT significantly outperforms
the provided mainstream adversarial training methods and robustness distillation methods in black-
box attacks, showing its superiority.

D EVALUATION ON THE ADAPTIVE ATTACKS

In this section, we discuss the effectiveness of NAT against adaptive attacks. This discussion is
based on the assumption that the attacker is fully aware of the defender’s NAT defense paradigm
and, consequently, uses the objective loss function of NAT as the target function for their attacks.
The objective function of an adaptive attacker can be formalized as:

arg max
}δ}pďϵ

“

XE
`

σ
`

pfθt px ` δq
˘

, y
˘

´ ωaKL
`

στa

`

pfθt px ` δq
˘

, στa

`

pfθa px ` δq
˘˘‰

(14)

Such attack strategy is constructed using the PGD framework, with its hyperparameters remaining
consistent with those specified in the main body of the paper. We similarly evaluate the effective-
ness of NAT on both ResNet-18 and WideResNet-34-10 architectures, utilizing the CIFAR-10 and
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Table 3: The results of several advanced adversarial defense using the EDM-based data augmenta-
tion.

Dataset Architecture Method Generated Batch Epoch† Clean AA

CIFAR-10
(l8, ϵ “ 8{255)

WRN-34-20 (Rice et al., 2020) ✗ 128 200 85.34 53.42
WRN-34-10 (Zhang et al., 2020a) ✗ 128 120 84.52 53.51
WRN-34-20 (Pang et al., 2020) ✗ 128 110 86.43 54.39
WRN-34-10 (Wu et al., 2020) ✗ 128 200 85.36 56.17
WRN-70-16 (Gowal et al., 2020) ✗ 512 200 85.29 57.14
WRN-34-10 (Sehwag et al., 2021) 10M 128 200 87.00 60.60

WRN-28-10

(Rebuffi et al., 2021) 1M 1024 800 87.33 60.73
(Pang et al., 2022) 1M 512 400 88.10 61.51

(Gowal et al., 2021) 100M 1024 2000 87.50 63.38

(Wang et al., 2023)

1M 512 400 91.12 63.35
1M 1024 800 91.43 63.96

50M 2048 1600 92.27 67.17
20M 2048 2400 92.44 67.31

WRN-70-16

(Pang et al., 2022) 1M 512 400 88.57 63.74
(Rebuffi et al., 2021) 1M 1024 800 88.54 64.20
(Gowal et al., 2021) 100M 1024 2000 88.74 66.11

(Wang et al., 2023)
1M 512 400 91.98 65.54
5M 512 800 92.58 67.92

50M 1024 2000 93.25 70.69
WRN-34-10 (Wu et al., 2020) ✗ 128 200 60.38 28.86
WRN-70-16 (Gowal et al., 2020) ✗ 512 200 60.86 30.03
WRN-34-10 (Sehwag et al., 2021) 1M 128 200 65.90 31.20

WRN-34-10 () ✗ 128 200 0 0
AutoAug 128 200 0 0

WRN-34-10 Ours
✗ 512 300 89.15 52.95

1M 1024 600 90.44 55,41
5M 1024 600 91.01 57.24

CIFAR-100
(l8, ϵ “ 8{255)

WRN-28-10

(Pang et al., 2022) 1M 512 400 62.08 31.40
(Rebuffi et al., 2021) 1M 1024 800 62.41 32.06

(Wang et al., 2023) 1M 512 400 68.06 35.65
50M 2048 1600 72.58 38.83

WRN-70-16

(Pang et al., 2022) 1M 512 400 63.99 33.65
(Rebuffi et al., 2021) 1M 1024 800 63.56 34.64

(Wang et al., 2023) 1M 512 400 70.21 38.69
50M 1024 2000 75.22 42.67

WRN-34-10 () ✗ 128 200 0 0
AutoAug 128 200 0 0

WRN-34-10 Ours
✗ 512 300 62.87 30.85

1M 1024 800 64.74 33.08
5M 1024 800 66.63 36.71

Table 4: Test accuracy and robustness of the ImageNet-100 dataset on ViT-small.
Clean PGD-10 PGD-20 PGD-50 PGD-100 C&W AA Ave.

Vanilla Training 96.23 8.23 6.54 4.58 4.14 7.97 1.68 18.48
PGD-AT 95.69 64.44 62.32 39.80 39.71 41.64 37.12 54.38

NAT (best) 94.92 67.07 66.84 43.22 44.16 49.82 45.44 58.78
NAT (last) 94.87 64.77 66.37 42.13 45.07 48.53 44.40 58.01

CIFAR100 datasets, and compare its performance against both Vanilla Training and PGD-AT. The
experimental results are summarized in Table 6. NAT consistently demonstrates effective robustness
against adaptive attacks, significantly outperforming PGD-AT. This robust performance underscores
the reliability of NAT’s defensive capabilities. In essence, unlike early defenses that rely on random-
ization, NAT remains fundamentally rooted in the adversarial training paradigm, which inherently
avoids the pitfalls associated with ”obfuscated gradients”.
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Table 5: Black-box robustness on CIFAR10.

Methods ResNet-18 MobileNetV2
PGDS CW Square PGDS CW Square

SAT 60.84 60.52 54.27 60.46 59.83 53.94
ARD 63.49 63.05 56.89 62.13 61.85 55.60
IAD 62.78 62.26 56.62 61.57 61.25 55.45

Trades 62.20 61.75 55.13 60.90 60.23 53.46
RSLAD 64.11 63.84 57.90 63.30 63.20 56.70
LAS-AT 66.42 65.41 60.21 66.14 65.42 58.87

NAT 67.19 66.77 60.23 67.82 66.49 59.21

Table 6: Evaluation on the adaptive attacks.

Backbones Defenses CIFAR10 CIFAR100
APGD-10 APGD-20 APGD-50 APGD-100 Ave. APGD-10 APGD-20 APGD-50 APGD-100 Ave.

WRN3410
VT 12.17 9.88 9.02 8.88 9.98 2.91 2.68 2.63 2.51 2.68

AT-PGD 57.57 54.52 53.36 53.14 54.64 28.21 28.00 27.95 27.80 27.99
NAT 61.48 59.02 58.27 58.11 59.22 33.14 32.41 32.01 31.77 32.33

ResNet18
VT 10.37 9.17 8.77 8.71 9.25 4.47 4.09 3.95 3.90 4.10

AT-PGD 53.77 52.07 51.60 51.48 52.23 27.33 26.83 26.67 26.65 26.87
NAT 61.00 58.25 58.11 57.75 58.77 33.62 32.72 32.14 32.01 32.62

E COMBINING NAT WITH EDM-BASED DATA AUGMENTATION

In this section, we provide the experimental results of NAT using EDM-based data augmenta-
tion (Wang et al., 2023), with comparisons to state-of-the-art (SOTA) adversarial defenses under
the same data augmentation strategy. The results are shown in Table 3. According to the conclusion
of Wang et al. (2023), under conditions of large-scale data augmentation, a larger batch size and
more training epochs can significantly improve model performance (Wang et al., 2023). Still, with
identical data augmentation conditions (i.e., generated data number, batch size, and epoch number),
NAT can achieve optimal adversarial robustness performance. This demonstrates the inherent supe-
riority of NAT, confirms its compatibility with such augmentation, and reveals how they mutually
explore each other’s potential for enhancing adversarial robustness.

Table 7: The impact of different adversary model architecture. The target backbone is WRN-34-10.
Clean PGD-10 PGD-20 PGD-50 PGD-100 C&W AA Ave.

Adversary
Model

Structure

WRN-34-10 89.15 63.69 62.34 62.05 62.01 65.10 52.95 65.32
DN121 87.95 66.00 64.39 63.62 63.42 65.46 48.47 65.61
RN18 88.09 66.73 64.88 64.09 63.00 67.36 48.43 66.08
RN50 88.12 68.04 66.71 66.15 65.08 67.47 46.67 66.89

Ensemble Models 88.94 69.12 67.34 67.19 66.37 67.84 46.00 67.64
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Figure 8: For the NAT with different adversary model structures, the output probability of “cat”
class.
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Table 8: The impact of different adversary model parameter state. The target backbone is WRN-34-
10.

Clean PGD-10 PGD-20 PGD-50 C&W AA Ave.

Para.
State

VT 89.15 63.69 62.34 62.05 65.10 52.95 65.88
SAM 84.44 67.63 63.71 63.39 65.01 47.69 65.31
AT 85.90 67.66 65.96 64.92 63.83 53.42 66.94

Nasty 82.94 68.16 64.14 64.02 63.04 49.53 65.30

Table 9: Training time statistics for one epoch.
CIFAR10 CIFAR100

ResNet-18 WRN-34-10 ResNet-18 WRN-34-10

Vanilla Training « 15.3 s « 90 .2s « 15.7s « 101.3s
Adversarial Training « 108.6s « 1047.2 s « 110.9s « 1197.2s

MID (Zhang et al., 2024a) « 2530±10s - « 3460±20s -
NAT « 129.8 s « 1165.8 s « 127.3s « 1328.2s

Table 10: The impact of NT to robustness distillation.
Clean PGD-10 PGD-20 PGD-50 PGD-100 C&W AA Ave.

RSLAD From AT Teacher 89.23 50.57 50.19 50.09 48.86 47.15 45.77 54.55
From NAT Teacher 87.97 47.50 47.24 47.20 47.15 48.86 42.64 52.65

ARD From AT Teacher 79.43 38.84 38.21 39.93 39.87 36.61 34.12 43.85
From NAT Teacher 77.67 37.66 37.52 37.46 37.45 38.78 30.43 42.42

IAD From AT Teacher 74.72 42.01 41.91 41.89 41.82 44.41 37.55 46.33
From NAT Teacher 74.29 41.64 41.61 41.58 41.48 43.39 36.25 45.74

Table 11: Comparing NAT with explicit regularizers.
Methods Clean PGD10 PGD20 PGD50 PGD-100 C&W AA Avg.

VT 95.03 11.72 10.52 10.13 10.09 11.42 7.81 22.38
NT 94.37 16.57 14.65 13.38 12.92 13.04 8.84 24.82
AT 84.25 46.88 46.56 44.85 44.76 45.75 41.69 50.67
AT+LASSO 88.06 41.45 39.77 39.08 38.78 40.18 30.54 45.40
AT+EMR 90.4 55.63 54.67 54.32 54.22 53.04 47.77 58.57
AT+NNR 92.13 53.83 52.59 52.1 51.97 52.04 46.53 57.31
AT+mixup 82.5 47.66 46.88 46.57 46.55 48.49 38.07 50.95
NAT 90.86 62.37 60.94 60.19 59.91 62.54 50.18 63.85

F IMPACT OF ADVERSARY MODEL STRUCTURE

In the original setup of NT, the adversary model is configured as a vanilla-trained model with the
same structure as the target model. Here, we discuss the impact of adversary models with different
structures on the robustness increments. We select WRN-34-10 as the backbone of the target model
for ablation analysis and use DenseNet-121, ResNet-18, and ResNet-50 as the backbones of the
adversary model, in order to analyze the effects of different structures and different capacities. For
ease of comparison, we also report results for the adversary model that is isomorphic to the target
model. The experimental results, as shown in Table 7, indicate that various structures of adversary
models, whether isomorphic or heterogeneous, can provide a stable robustness increment to the tar-
get model. Moreover, adversary models with larger capacities seem to demonstrate better robustness
increments for the target model. For instance, ResNet50, serving as the nasty model, can provide
better robustness increments compared to ResNet-18 to the target model.
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G IMPACT OF ADVERSARY MODEL STATE

In the original setup, the adversary model is configured as a natural model with the same structure
as the target model. Here, we discuss the impact of different model parameter states on robustness
improvement, which includes random initialization, vanilla training, adversarial training, SAM reg-
ularization, and Nasty model. The experimental results are shown in Table 8, demonstrating that
different model parameters can all provide robustness improvements for NAT.

An interesting question is that the nasty model no longer shows the “single peak + uniform distri-
bution” probability distribution, yet still provides robustness improvement. We speculate that the
output probabilities of the nasty model exhibit “a few peaks & uniform zero distribution”, thus
allowing the target model to achieve a sparse probability distribution by moving away from the uni-
form zero distribution. However, the non-target class peaks of the target model might have different
labels compared to the non-target class peaks when using a regular model as the adversary.

We validated this hypothesis in Figure 8. For the “cat” class, when a normal model is used as the
adversary model, the suboptimal peaks are “dog” and “horse.” When the nasty model is used as the
adversary model, the suboptimal peak concentrates on “dog”. Similarly, suboptimal peak variations
also appear when SAM models and Robust models are used as adversary models. However, All
the setups can achieve a sparse probability distribution and robustness improvement on the target
model. Such results confirm our hypothesis: different adversary models may lead the model to learn
different suboptimal classes, but they consistently cause the target model to learn a sparse probability
distribution. The discussion above may also partially explains why feeding the adversary model with
both natural examples and adversarial examples can provide a significant adversarial robustness
improvement for the target model, even though the outputs of the adversary model on adversarial
examples may not satisfy the “single peak” assumption.

H ANALYSIS OF TIME COSTS

In this subsection, we briefly discuss the computational cost of NAT. In recent studies on adver-
sarial robustness, MID (Zhang et al., 2024a) provides an intuitive quantification of computational
time cost by measuring the time required to train one epoch. Following the setup in MID, we also
present a simple quantification of the computational time cost, as shown in Table 9. Intuitively, NAT
introduces only limited additional computation compared to standard adversarial training, primarily
attributed to the inference time of the adversary model. We further demonstrate that the architec-
tural design of the adversary model has negligible impact on the target model. It is worth mentioning
that the time cost reported in Table 9 does not include the time cost of performing Vanilla Training
(VT) on the adversary model. This omission is primarily based on the following considerations:
(a) The structure and training settings of the adversary model are flexible and can generally bring
performance gains to the model (as shown in Table 7 and Table 8). (b) Compared to adversarial
training, the time cost of vanilla training is negligible. In cases where the target model and the ad-
versary model share the same architecture, the time cost reported for ”vanilla training” in the first
row can serve as a reference for the VT time cost of the adversary model. In conclusion, we argue
that the extra computational cost of NAT remains controllable and acceptable compared to standard
adversarial training.

I DOES ENSEMBLE ADVERSARY MODEL HELP?

In machine learning, a natural approach to model enhancement is ensemble learning. In this section,
we discuss the robustness performance of NAT when the adversary model is an ensemble model.
Specifically, we choose ResNet-18, DenseNet121, and VGG11 to form the ensemble model. We use
the same ensemble method as A, guiding the nasty regularization with the mean of the logits output
by the three models. The experimental results are shown in the last line of Table 7.

Compared to the standard setup, the ensemble model shows a slight incremental advantage. This is
an expected result, as models of any structure tend to exhibit a “single peak + uniform distribution”
probability output preference. Averaging the logits of different models further smooths the uniform
distribution. We have analyzed that moving away from this uniform distribution can bring robustness
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improvements to NAT. However, given the significantly increased computational cost, this slight
increment may suggest that an ensemble adversary model is not necessary.

J TRANSFER NAT TO ROBUSTNESS DISTILLATION

In this section, we discuss an open question: Can NAT be transferred to robust distillation to achieve
incremental improvements? Or does it, like a regular nasty model, prevent the robust model from
being distilled by student models?

As we mentioned, the original purpose of NT is to make the nasty model difficult for student models
to learn simply. However, whether this property can be transferred to NAT is still unclear. If this
property is transferable, NAT could also serve as a method to protect the copyright of robust models,
preventing robust teachers from being distilled into student models without authorization. We briefly
discuss this issue in this section.

Specifically, we use WRN-34-10 trained with standard AT and NAT as the robust teacher models,
and randomly initialized ResNet-18 as the student model. We apply RSLAD, ARD, and IAD as
robustness distillation methods to perform robustness distillation on the student model. The exper-
imental results are shown in Table 10. As a teacher model, although the NAT teacher shows better
robustness performance than the AT teacher, its student model’s robustness performance is relatively
poor. This indicates that NAT has a certain tendency to avoid being learned, which can also serve as
a method to protect the intellectual property of robust teachers. However, this protective effect is still
far from the ideal of an unlearnable teacher, as the student model still acquires a considerable level
of robustness performance. There remains significant space for research in the intellectual property
protection of adversarial robust models.

K COMPARING NAT WITH EXPLICIT REGULARIZERS

NAT can be considered as integrating probability sparsity regularization into AT. In this section, we
explain the differences between NAT and several other explicit regularization methods, as well as
the advantages of NAT.

To begin with, we need to clarify the distinction between the proposed probability sparsity and
model sparsity. From the conceptual perspective, model sparsity generally refers to the sparsity of
model parameters, which reduces the redundancy of the model, while probability sparsity means that
the probabilities of irrelevant categories, calculated based on the model’s output logits, approach
zero. From the effect perspective, model sparsity aims to decrease model complexity and reduce
redundant features, thereby enhancing generalization. The effect of probability sparsity is more
intuitive: it induces the target model to output probabilities only for the target category or similar
categories, while reducing confidence in irrelevant categories. This allows the model to learn more
generalized and semantically coherent feature representations and classification preferences. Thus,
there is an essential difference between the two. A common regularization method for model sparsity
is LASSO regularization, which can be combined with adversarial training and formalized as:

L “ LAT ` λLASSO ¨
ÿ

wPθ

|w| (15)

where λLASSO is set as 0.0001. We compare the experimental results of NAT and Lasso regularization
in Table 11, where NAT still shows better results. This proves that LASSO regularization cannot
achieve the probability sparsity that NAT can provide, making it difficult to attain similar robustness
increments.

Furthermore, in order to demonstrate the irreplaceability of NAT, we explain the differences between
NAT and directly constraining the probability outputs. One intuitively potential method to achieve
probability sparsity is to directly add explicit regularization at the output end, such as minimizing
the output entropy:

L “ LAT ` λEMR ¨

N
ÿ

i“1

pi log pi (16)
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Table 12: Evaluate NAT on person Re-Identification.
Datasets Defense Clean FNA SMA IFGSM

8/255-16 10/255-16 8/255-16 10/255-16 8/255-16 10/255-16

Market
None 78.49/92.01 0.20/0.17 0.18/0.14 0.27/0.26 0.20/0.11 1.25/1.95 1.09/1.66
AMD 69.69/88.24 8.57/18.14 4.37/9.41 22.85/35.69 15.21/23.37 17.97/34.65 11.74/23.34

AMD&NAT 68.92/88.25 12.64/25.42 8.66/15.43 26.14/38.05 22.07/27.42 22.33/36.79 13.90/28.93

Table 13: Evaluate NAT on object detection.
Attacks Clean losscls lossloc DAG RAP

Standard 72.1 1.5 0.0 0.3 0.6
MTD 47.2 28.2 30.7 26.7 43.5

MTD&NAT 48.4 30.7 31.3 27.8 44.7

which we call entropy minimization regularization(EMR) later. Also, one can regularize negative of
the L2 norm of the output values as:

L “ LAT ´ λNNR ¨

g

f

f

e

C
ÿ

i“1

p2i (17)

which we call negative norm regularization(NNR) later.

Intuitively, both EMR and NNR induce the model to output sharp probability distributions and
achieve optimal solutions when the model outputs one-hot probabilities. Although they also achieve
probability sparsity in form, this sparsity is suboptimal. The overly rigid one-hot constraint re-
sembles overfitting. EMR and NNR amplify the cross-entropy loss’s ”winner takes all” preference,
causing the model to be overly confident in the current training data and label, which results in a loss
of generalization capability. At the same time, the strict constraints may amplify the impact of noise.
In contrast, NAT does not explicitly require the model to output very rigid one-hot labels; instead,
it induces the model to allocate certain probability outputs for similar classes (e.g., cats and dogs)
and output smaller probabilities for less related categories (e.g., cats and airplanes) in a adaptive
manner, thus learning robust features that generalize across categories. To validate this perspective,
we compare NAT with the performance of these two regularizers, and the experimental results are
shown in Table 11 where λEMR “ 0.001 and λNNR “ 0.001. Although EMR and NNR can bring
certain increments to AT, NAT still demonstrates optimal results, proving that it cannot be simply
replaced by methods that constrain output probabilities.

Furthermore, one may think about not constraining the model to learn one-hot output tendencies
but rather allowing the model’s output to approach a soft label. However, obtaining such soft la-
bels is costly, especially when the desired suboptimal classes are similar to the target class. Such
soft labels require extensive manual identification of which classes are ”similar classes”. Robust-
ness distillation (Goldblum et al., 2020; Zhu et al., 2021; Zi et al., 2021) uses soft labels from the
teacher’s output to guide the student model. However, the reliability of the soft labels depends on
the robustness of the teacher model. Reliable regularization is still needed to guide the training of
the teacher model. An alternative regularization to obtain soft label is to use mixup (Zhang et al.,
2017; 2020b) to generate augmented samples and soft labels. Compared to the adaptive allocation
capability of NAT, mixup soft labels is manually set and do not guarantee that suboptimal classes
are always categories similar to the target class. We also report the experimental results in Table 11,
where the ratio of mixup is set to [0.7, 0.3] and randomly sampled in the current batch. Compared
to mixup, NAT still demonstrates superiority.

Finally, we need to point out that although probability sparsity helps with adversarial robustness,
directly applying sparsity regularization to vanilla training (which is actually the original nasty
training (Ma et al., 2021)) does not achieve sufficient and reliable adversarial robustness. This is
because such models can only learn sparse probabilistic outputs but still cannot acquire robust rep-
resentations. The role of probability sparsity is to further guide the semantic interpretability and
generalization of robust knowledge based on the model’s learning of that robust knowledge. Results
of NT in Table 11 validate the above viewpoint.
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L PERFORMANCE ON NON-CLASSIFICATION TASKS

We further argue that NAT, through the orthogonalization of linear layers, can introduce a degree
of feature space separation in the target model, and such property is transferable to other tasks.
To further discuss the effectiveness of NAT for non-classification tasks, we consider two tasks dis-
tinct from pure classification: (1) Person Re-identification (classification + metric learning), and (2)
Object detection (classification + regression).

First, for the person re-identification task, we adopt the common setup combining the cross-entropy
loss and the triplet loss. We investigate commonly used adversarial metric attacks in ReID, including
FNA Bouniot et al. (2020), SMA Bouniot et al. (2020), and IFGSM (e.g., AMA Bai et al. (2020)).
The experimental results are shown in Table 12. The effectiveness of NAT for metric models trained
with cross-entropy loss is foreseeable. As stated in the theoretical analysis, we argue that the prob-
abilistic sparsity of NAT primarily stems from the high-order power constraint on the output logits,
which can subsequently regularize the metric relationships in the feature space. Therefore, NAT can
also bring performance gains to metric learning tasks.

Secondly, for the object detection task, we adopt the setup from Dong et al. (2022); Zhang & Wang
(2019) and reproduce the results of Table 2 in Zhang & Wang (2019) on the PASCAL VOC dataset,
based on which we further provide a preliminary validation of the efficacy of combining NAT with
Multi-task Domain (MTD) training (since method in [3] is based on generative reconstruction, which
is not conducive to the integration and fair comparison with NAT). As defined in [4], the MTD setup
here refers to the defender performing min-max adversarial training by leveraging both the classifi-
cation loss and the localization loss during training. We follow the standard NAT configuration in
this experiment, applying the adversary model and NAT procedure only to the classification loss.
The attack methods employed include classification-loss-only attack (losscls), localization-loss-only
attack (lossloc), DAG Xie et al. (2017b), and RAP Li et al. (2018). The experimental results are
shown in Table 13, which demonstrate that NAT not only brings robustness increments to the ad-
versarial training framework based on the classification loss, but also generalizes to enhance the
framework utilizing the localization loss. This outcome provides preliminary evidence that NAT can
contribute to the adversarial robustness of object detection task.

In summary, we argue that NAT can stably bring robustness increments to adversarial training for
non-classification tasks.

M LIMITATIONS

NAT can be regarded as a general improvement to commonly used adversarial, with its main contri-
butions stemming from simple yet effective modifications to adversarial training and the exploration
of robust sparsity attribution. The limitations of this work primarily lie in the evaluation and com-
parison on larger datasets (e.g., the full ImageNet-1k). On one hand, this is due to the massive
computational complexity involved, and on the other hand, because the primary evaluation proto-
cols within the adversarial robustness community have predominantly focused on datasets such as
CIFAR, while benchmarks for ImageNet-1k remain relatively underdeveloped and establishing such
a benchmark may be a huge task. Furthermore, extending our method to other downstream tasks
could represent an interesting direction for future exploration. We leave these explorations for future
work.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are used sparingly and only to assist with proofreading and improving the linguistic fluency
of a few sections of this paper (such as Related Work, Experiments, and Appendix), i.e., to aid or
polish writing. All scientific contributions and core idea are the work of the authors. This assistance
poses no issues of scientific ethics or misconduct.
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