

000 001 002 003 004 005 006 007 008 009 010 011 012 NASTY ADVERSARIAL TRAINING: A PROBABILITY SPARSITY PERSPECTIVE FOR ROBUSTNESS ENHANCE- MENT

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 The vulnerability of deep neural networks to adversarial examples poses significant
014 challenges to their reliable deployment. Among empirical defenses, adversarial
015 training and robust distillation remain the most effective. In this paper, we
016 identify a property originally studied in the context of model intellectual prop-
017 erty protection, i.e., probability sparsity induced by nasty training, and reveal its
018 potential to enhance adversarial robustness in an interpretable manner. We first
019 analyze how nasty training drives models toward sparse probability distributions
020 and qualitatively explore the spatial metric preferences introduced by such spar-
021 sity. Building on these insights, we propose nasty adversarial training (NAT), a
022 simple yet effective adversarial training framework that incorporates probability
023 sparsity as a regularization mechanism to strengthen robustness. Both theoretical
024 analysis and extensive experiments demonstrate the effectiveness of NAT, showing
025 that probability sparsity not only improves adversarial resilience but also provides
026 interpretability to the robustness gains.

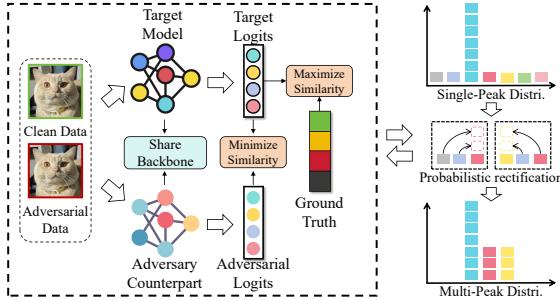
028 1 INTRODUCTION

030 Despite their success in a wide range of computer vision tasks, deep neural networks (DNNs) re-
031 main highly vulnerable to adversarial attacks, raising serious challenges to their reliability and se-
032 cure deployment. By introducing carefully crafted perturbations to input, adversaries can easily
033 mislead models into producing incorrect predictions. As these perturbations are often imperceptible
034 or barely noticeable to the human eye, such vulnerabilities pose significant risks in safety-critical
035 applications such as autonomous driving, where manipulated traffic signs may cause catastrophic
036 accidents (Eykholt et al., 2018).

037 Adversarial defense aims to preserve robustness under such attacks. Although early defense meth-
038 ods (Xie et al., 2019a; Liao et al., 2018; Papernot et al., 2016; Xie et al., 2017a) reported promising
039 robustness, they were later shown to rely on “obfuscated gradients” (Athalye et al., 2018) and proved
040 ineffective against adaptive adversaries. Currently, the most reliable empirical defenses are ad-
041 versarial training (AT) (Madry et al., 2017; Jia et al., 2022a; Zhou & Hua, 2024; Zhang et al., 2024a;
042 Yu-Hang et al., 2025) and robustness distillation (RD) (Zhu et al., 2021; Zi et al., 2021; Goldblum
043 et al., 2020; Zhou et al.). AT improves robustness by dynamically generating adversarial exam-
044 ples during training, while RD extends this paradigm with improved inference efficiency, making it
045 suitable for deployment on resources-constrained platforms such as edge devices.

046 Although AT has many variants, few studies have explored robustness attribution from the perspec-
047 tive of the model’s output probability distribution. Nasty training (NT) (Ma et al., 2021), which
048 regularizes models using a nasty adversary, provides an intriguing perspective by suggesting that
049 probability sparsity may also contribute to adversarial robustness. The original goal of NT is to train
050 a teacher model resistant to imitation by a student model. Subsequent work by Ma et al. (2022)
051 theoretically linked this effect to probability sparsity, showing that sparse probability distributions
052 can hinder distillation. However, NT does not explicitly address adversarial robustness and largely
053 overlooks the potential impact of probability sparsity in this context. We argue that probability
sparsity reflects greater inter-class separation in the output logits, offering a spatial-metric interpre-

054 tation of robustness. Employing this insight could unlock additional potential in adversarial training.
 055 Additional detailed related work is provided in the appendix.
 056



069 Figure 1: Framework of the proposed NAT. NAT enhances the target model’s training by introducing an
 070 auxiliary adversary model in addition to the primary
 071 training loss. Probability sparsity regularization (i.e.,
 072 probabilistic rectification) is achieved by maximizing
 073 the divergence between the output distributions of the
 074 target model and the adversary model.
 075

076 077 078 Figure 1: Framework of the proposed NAT. NAT achieves state-of-the-art adversarial robustness with minimal overhead. Our main contributions are summarized as follows:

079 080 (1) We analyze the attribution of probability sparsity in NT and reveal its spatial metric benefits,
 081 082 providing interpretable insights into adversarial robustness.
 083 084 (2) We propose NAT, a novel adversarial defense that integrates NT as an effective AT regularizer.
 085 086 (3) We empirically validate that NAT achieves state-of-the-art adversarial robustness with low computational overhead. Ablation studies and discussions further highlight its effectiveness.

2 METHODOLOGY

2.1 PRELIMINARY

091 **Nasty Training (NT).** The original objective of NT is to train a target teacher model f_{θ_t} that resists
 092 distillation by a student model f_{θ_s} , where θ_t and θ_s represent their respective model parameters.
 093 In standard knowledge distillation, the student model is trained to approximate the outputs of the
 094 teacher model. This process can be formalized as:

$$\min_{\theta_S} \sum_{(x_i, y_i) \in \mathcal{X}} \alpha \tau_s^2 \text{KL} \left(\sigma_{\tau_s} \left(p_{f_{\theta_T}} (x_i) \right), \sigma_{\tau_s} \left(p_{f_{\theta_S}} (x_i) \right) \right) + (1 - \alpha) \text{XE} \left(\sigma \left(p_{f_{\theta_S}} (x_i) \right), y_i \right), \quad (1)$$

100 where $\text{KL}(\cdot)$ and $\text{XE}(\cdot)$ denote the KL-divergence and cross-entropy loss, respectively. The hyper-
 101 parameter α balances the trade-off between distillation and classification objectives. $\sigma_{\tau_s}(\cdot)$ denotes
 102 the “softmax temperature” function (Ma et al., 2021), which reduces to the standard softmax $\sigma(\cdot)$
 103 when $\tau_s = 1$. Here, τ_s and τ_a are softmax temperatures, \mathcal{X} is the target distribution, and p represents
 104 the output probabilities.

105 In NT, to prevent the teacher model from being distilled by the student model, an auxiliary adver-
 106 sary model f_{θ_a} , which is a vanilla-trained counterpart of the target model in the original setting,
 107 is introduced. This adversary model enables the target teacher model to learn task-relevant knowl-
 108 edge and maximize its output discrepancy from the adversary model. This training objective can be

In this paper, we first investigate the underlying cause of sparse probability outputs in NT, attributing it to high-order power optimization. We then qualitatively analyze the spatial metric properties induced by these sparse probability distributions, including enhanced class separability and larger attack tolerance in the classification layer. Motivated on these insights, we propose nasty adversarial training (NAT), a simple yet efficient adversarial defense that utilizes probability sparsity as a regularization mechanism to enhance adversarial robustness. NAT introduces an auxiliary adversary model that applies nasty regularization alongside the primary training objective. The target model achieves probability sparsity by maximizing the divergence between its outputs and those of the adversary model, while simultaneously learning discriminative ability by minimizing divergence with the ground truth.

108 formalized as:

$$\begin{aligned} \min_{\theta_t} \sum_{(x_i, y_i) \in \mathcal{X}} & \text{XE} \left(\sigma \left(p_{f_{\theta_t}} (x_i) \right), y_i \right) \\ & - \omega_a \text{KL} \left(\sigma_{\tau_a} \left(p_{f_{\theta_t}} (x_i) \right), \sigma_{\tau_a} \left(p_{f_{\theta_a}} (x_i) \right) \right), \end{aligned} \quad (2)$$

113 where ω_a is a hyper-parameter that balances the target cross-entropy loss and the nasty loss. Intu-
 114 itively, the adversary model f_{θ_a} acts as a surrogate for the student model f_{θ_s} . Instead of allowing
 115 the student to distill knowledge by aligning with the teacher, NT reduces the similarity between the
 116 teacher and the surrogate adversary’s outputs. Subsequently, Ma et al. (2022) further provided a
 117 theoretical analysis, showing that the sparsity of the teacher’s output probabilities is the key factor
 118 that prevents successful distillation.

119 **Adversarial Attack.** The objective of adversarial attacks is to identify an optimal perturbation δ_x
 120 that causes a well-trained target model f_{θ_t} to make incorrect predictions on the perturbed input,
 121 thereby maximizing the model’s loss on the true label. This can be formalized as:

$$\arg \max_{\delta_x} \mathcal{L}(f_{\theta_t}(x + \delta_x), y), \text{ s.t. } \|\delta_x\|_p \leq \varepsilon, \quad (3)$$

124 where ε denotes the perturbation budget, \mathcal{L} represents the target loss, typically the cross-entropy
 125 loss.

127 *Adversarial training.* In AT, adversarial examples are dynamically generated during training process
 128 and incorporated into the learning process. Through a min-max optimization framework, the model
 129 learns to gain adversarial robustness against internal maximization (i.e., adversarial attacks). This
 130 process can be formalized as:

$$\min_{\theta} \mathbb{E}_{(x, y) \sim \mathcal{X}} \left[\max_{\|\delta x\|_p \leq \varepsilon} \mathcal{L}(x + \delta x, y; \theta) \right]. \quad (4)$$

134 2.2 NASTY ADVERSARIAL TRAINING

136 We propose NAT, which incorporates probabilistic sparsity into AT through nasty regularization.
 137 Intuitively, NAT extends standard AT by introducing an auxiliary adversary model for the target
 138 model, with both models jointly optimized under adversarial training. The overall training objective
 139 is defined as:

$$\begin{aligned} \min_{\theta_t} \sum_{(x_i, y_i) \in X \cup X'} & \text{XE} \left(\sigma \left(p_{f_{\theta_t}} (x_i) \right), y_i \right) \\ & - \omega_a \text{KL} \left(\sigma_{\tau_a} \left(p_{f_{\theta_t}} (x_i) \right), \sigma_{\tau_a} \left(p_{f_{\theta_a}} (x_i) \right) \right) \\ \text{s.t. } X' = & \left\{ x' \left| \arg \max_{x'} \text{XE} \left(\sigma \left(p_{f_{\theta_t}} (x_i) \right), y_i \right), \forall x \in X \right. \right\}, \end{aligned} \quad (5)$$

146 where X' denotes the set of adversarial examples corresponding to the original input distribution.
 147 Following the original NT setup, we use a vanilla-trained counterpart of the target teacher as the
 148 adversary model. This configuration allows the target model to learn sparse output probability
 149 distributions while simultaneously improving adversarial robustness. In the next section, we analyze
 150 the origin of sparsity in NT and qualitatively explain how probabilistic sparsity contributes to ro-
 151 bustness by shaping spatial relationships in the output space.

152 3 IN-DEPTH ANALYSIS

155 In this section, we present two key analyses to explain how NAT induces probabilistic sparsity and
 156 strengthens robustness: (1) the origin of probabilistic sparsity in NT, and (2) its influence on the
 157 model robustness from the perspective of spatial structure.

159 3.1 ATTRIBUTION OF PROBABILITY SPARSITY

161 Previous work (Ma et al., 2022) primarily focused on the effect of probability sparsity on knowledge
 162 distillation, but did not investigate why NT induces such sparsity. In this paper, we further explore

162 the origin of probability sparsity in NT by performing a Taylor expansion of the adversary regularization term. Specifically, beyond the primary classification objective (i.e., cross-entropy loss), we
 163 reformulate the adversary regularization term in NT as follows:
 164

$$\begin{aligned} 166 \quad \mathcal{L}_{\text{Nasty}} &= -\frac{1}{N} \sum_{i=1}^N \sum_{c=1}^C q_{i,c}^t \cdot \log \left(\frac{q_{i,c}^t}{q_{i,c}^a} \right) \\ 167 \\ 168 \quad &= -\frac{1}{N} \sum_{i=1}^N \sum_{c=1}^C \left[q_{i,c}^t \cdot \log (q_{i,c}^t) - q_{i,c}^t \cdot \log (q_{i,c}^a) \right]. \end{aligned} \quad (6)$$

171 where N denotes the number of samples and C the number of categories. $q_{i,c}^t$ and $q_{i,c}^a$ are the output
 172 logits of the target model and adversary model for the i_{th} example and c_{th} category, respectively.
 173 Our analysis focuses on the second term, since the first term is independent of the adversary model
 174 and therefore does not capture its effect. Let $\Delta_{i,c}^q = q_{i,c}^a - q_{i,c}^t$, we expand $\log(q_{i,c}^a)$ around $q_{i,c}^t$
 175 using a Taylor series:

$$\begin{aligned} 176 \quad \log (q_{i,c}^a) &= \log (q_{i,c}^t) + \frac{1}{q_{i,c}^t} \Delta_{i,c}^q - \frac{1}{2 (q_{i,c}^t)^2} (\Delta_{i,c}^q)^2 \\ 177 \\ 178 \quad &+ \cdots + \frac{(-1)^{(K+1)}}{K (q_{i,c}^t)^K} (\Delta_{i,c}^q)^K \end{aligned} \quad (7)$$

181 Following the assumption of Ma et al. (2022), we let $q_{i,c}^a = q_{i,c}^t + \Delta_{i,c}^q$, where $\Delta_{i,c}^q$ denotes the
 182 gap between $q_{i,c}^a$ and $q_{i,c}^t$. Each of $q_{i,c}^a$, $q_{i,c}^t$, and $\Delta_{i,c}^q$ can be regarded as functions of the input
 183 $x_{i,c}$, i.e., $q_{i,c}^a(x_{i,c})$, $q_{i,c}^t(x_{i,c})$, and $\Delta_{i,c}^q(x_{i,c})$. Although $\Delta_{i,c}^q(x_{i,c})$ is abstract and difficult to express
 184 explicitly, it induces an implicit functional dependence between the cross-entropy loss and $q_{i,c}^a$, since
 185 both $q_{i,c}^a$ and $q_{i,c}^t$ are functions of the input $x_{i,c}$. As a result, the cross-entropy can be rewritten as
 186 $L(x_{i,c}, q_{i,c}^a - \Delta_{i,c}^q)$, enabling a Taylor expansion. Based on this formulation, the regularization term
 187 can be approximated as:
 188

$$\begin{aligned} 189 \quad \mathcal{L}_{\text{Nasty}} &\approx \frac{1}{N} \sum_{i=1}^N \sum_{c=1}^C (q_{i,c}^a - q_{i,c}^t) - \frac{1}{2N} \sum_{i=1}^N \sum_{c=1}^C \frac{(q_{i,c}^a - q_{i,c}^t)^2}{q_{i,c}^t} \\ 190 \\ 191 \quad &+ \frac{1}{3N} \sum_{i=1}^N \sum_{c=1}^C \frac{(q_{i,c}^a - q_{i,c}^t)^3}{(q_{i,c}^t)^2} + \cdots \\ 192 \\ 193 \quad &+ \frac{(-1)^{K+1}}{KN} \sum_{i=1}^N \sum_{c=1}^C \frac{(q_{i,c}^a - q_{i,c}^t)^K}{(q_{i,c}^t)^{K-1}}. \end{aligned} \quad (8)$$

197 The Taylor expansion of the nasty loss provides an intuitive explanation of the mechanism underlying
 198 NAT. Beyond the primary cross-entropy loss, NT introduces a higher-order regularization term.
 199 The first-order term, $\frac{1}{N} \sum_{i=1}^N \sum_{c=1}^C (q_{i,c}^a - q_{i,c}^t)$, can be ignored since the probability outputs of both
 200 models sum to a constant value of 1. The second-order term, $\frac{1}{2N} \sum_{i=1}^N \sum_{c=1}^C \frac{(q_{i,c}^a - q_{i,c}^t)^2}{q_{i,c}^t}$, encour-
 201 ages the target model to maximize its output discrepancy with the adversary, especially on non-target
 202 classes where the target assigns lower probabilities. Since these smaller probabilities appear in the
 203 denominator, they induce larger regularization weights, thereby amplifying the effect of the loss on
 204 non-target classes. Although higher-order odd terms may introduce effects opposite to the desired
 205 behavior, they are typically suppressed by the preceding even terms, whose coefficients dominate.
 206

207 In standard settings, the adversary model adopts the same architecture as the target model and typ-
 208 ically produces a “single peak + uniform distribution” prediction pattern (Ma et al., 2022). This
 209 behavior arises from the use of one-hot labels in the cross-entropy loss, where the ground truth dis-
 210 tribution is characterized by “single peak + uniform zero”. The training behavior induced by NT
 211 can thus be summarized as follows: the cross-entropy loss drives the model to concentrate prob-
 212 ability mass on the target class, while the nasty regularization term discourages it from replicating the
 213 adversary’s uniform distribution across non-target classes. As a result, the target model redistributes
 214 the probability mass previously spread uniformly across all non-target classes onto a small subset of
 215 classes that are closer to the target (i.e., more compressible), ultimately leading to a sparse output
 probability distribution.

216 Our later experiments further show that the non-target class probabilities tend to be compressed onto
 217 semantically related classes (e.g., *cat* and *dog*), indicating that the model captures more generaliz-
 218 able semantics. In practice, even if the adversary’s output deviates from the “single peak + uniform
 219 distribution” assumption, the differentiation-driven interaction between the adversary model and the
 220 target model still enforces a sparse probability distribution in the target model. However, the result-
 221 ing peaks of the target model may not align with the adversary’s multi-peak outputs, reflecting a
 222 different allocation of probability mass.

224 3.2 BENEFITS ON SPATIAL METRIC RELATIONSHIPS

226 The sparsity of output probabilities and the spatial metric behavior show obvious logical connection.
 227 Specifically, probability sparsity indicates that the model strongly favors the target class by assigning
 228 it substantially larger logits, while assigning much smaller logits to non-target classes. Let i and j
 229 denote the target class and a non-target class, respectively, with (w_i, b_i) and (w_j, b_j) representing
 230 the weights and bias of their corresponding linear classifiers. For a model exhibiting probability
 231 sparsity, we have:

$$w_i x + b_i \gg w_j x + b_j. \quad (9)$$

232 Here, \gg rather than $>$ is used to emphasize the existence of a sufficiently large margin in a nasty-
 233 trained model, due to the saturation regions of activation functions such as *Sigmoid* and *Softmax*.
 234 This property relates to two key spatial metrics: (1) the distance from data points to the decision
 235 boundary, and (2) the minimum distance between classification boundaries. Both are measured by
 236 the magnitude of the output logits. Therefore, Equation 9 implies that robust models exhibit larger
 237 margins to the decision boundary and greater separation between hyperplanes, thereby achieving
 238 improved adversarial robustness. For clarity, we formalize the computation of these two distances
 239 in high-dimensional space.

240 **Distance from Data Points to the Decision Boundary.** To compute the distance from a data point to
 241 the decision boundary, we model the linear classification layer as a hyperplane in high-dimensional
 242 space. The distance from a data point x_i to the decision boundary of class c is then given by the
 243 standard point-to-hyperplane distance formula:

$$\mathcal{D}_{\text{data_to_bound}} = \frac{|w_c \cdot x_i + b_c|}{\|w_c\|_2}. \quad (10)$$

244 *Analysis.* Intuitively, larger logits indicate greater distances from the decision boundary. Although
 245 this distance depends on the norm of the classification layer’s weights ($\|w_c\|_2$), weight magnitudes
 246 are typically constrained by L2 regularization and thus vary within a limited range. Compared to the
 247 substantial shifts in logits caused by the saturation behavior of the *Softmax* function, variations in
 248 the model parameters are of much smaller magnitude. As a result, greater probability sparsity yields
 249 substantially larger distances between data points and their corresponding classification boundaries.
 250 In the experiment section, we empirically validate this hypothesis by quantifying the average dis-
 251 tance of all samples within each class to the ten decision boundaries.

252 **Minimum Distance Between Classification Boundaries.** Furthermore, for the same data point
 253 x_i , the larger logit gap observed in the nasty-trained model can be attributed to greater discrepancy
 254 between classification parameters, defined as:

$$\mathcal{D}_{\text{weight_l2}} = \|w_j - w_i\|_2. \quad (11)$$

255 This increased weight discrepancy leads to larger inter-class distances in the classification layer.
 256 Specifically, the linear layer of deep model can be regarded as set of high-dimensional vectors.
 257 Although the exact distances between such vectors cannot be directly computed, the shortest dis-
 258 tance between the corresponding class decision boundaries can be approximated using projection
 259 geometry. Specifically, the classification weight vectors for different categories can be treated as
 260 non-intersecting lines, and their shortest distance can be calculated as follows:

261 (1) Calculate the difference between the weight vectors: $\gamma = w_j - w_i$.

262 (2) Normalize the weight vectors to obtain unit directions: $d_i = \frac{w_i}{\|w_i\|_2}$, $d_j = \frac{w_j}{\|w_j\|_2}$.

263 (3) Estimate the shortest distance between the classification directions of classes i and j as:

$$\mathcal{D}_{\text{shortest}}^{i,j} = \|\gamma - (\gamma \cdot d_i) \cdot d_i\|_2, \quad (12)$$

270 where $\gamma \cdot d_i$ is the scalar projection of γ onto the direction d_i , and $(\gamma \cdot d_i) \cdot d_i$ is the corresponding
 271 projection vector.

272 Thus, the shortest distance between two classifier boundaries (e.g., i and j) can be expressed as:

$$275 \quad \mathcal{D}_{\text{shortest}}^{i,j} = \left\| w_i - w_j - \left(\frac{(w_j - w_i)}{\|d_i\|_2^2} \cdot d_i \right) \right\|_2. \quad (13)$$

277 *Analysis.* Intuitively, larger inter-class weight gaps yield greater shortest distances between classi-
 278 fication boundaries, making it more difficult for data points to shift between classes. As a result,
 279 adversaries must apply larger perturbations (i.e., higher attack budget) to induce a misclassifica-
 280 tion. To empirically validate this theoretical insight, we will later conduct a qualitative analysis in
 281 the experiments section, examining the relationship between inter-class weight differences and the
 282 distances between different classification boundaries.

284 4 EXPERIMENTS

286 4.1 EXPERIMENT SETUP

288 **Attacks Details.** Following common defense evaluation settings (Zhang et al., 2024b; Yue et al.,
 289 2024; Yin et al., 2024; Li et al., 2024; Zi et al., 2021; Zhou & Hua, 2024; Zhou et al.), we evaluate
 290 NAT against several widely used adversarial attacks: PGD with 10, 20, 50, and 100 steps (Madry
 291 et al., 2017), CW (Carlini & Wagner, 2017), and AutoAttack (Croce & Hein, 2020). For CIFAR10
 292 and CIFAR100, the L_∞ norm attack budget is set to $\epsilon = 8/255$, with perturbation step size $\eta_1 =$
 293 $2/255$ and iterations $K = 10$. For ImageNet100, we set $\epsilon = 0.03$ and $\eta_1 = 2/255$.

294 **Training Details.** Following Ma et al. (2021; 2022), we choose a normally trained adversary model
 295 with the same architecture as the target model. The nasty regularization coefficient ω_a is set to
 296 0.006, which is empirically validated as optimal in our ablation study. For the target model, we use
 297 SGD optimizer with momentum 0.9 and weight decay 5×10^{-4} . Training is conducted for 300
 298 epochs with an initial learning rate of 0.1, decayed by a factor of 10 at epochs 160 and 240. Batch
 299 sizes are 512 for CIFAR datasets and 128 for ImageNet. All experiments are performed on NVIDIA
 300 GeForce RTX 4090 GPUs using PyTorch 1.12.1. The adversary model is set as the vanilla-trained
 301 counterpart of the target model under the basic setting, and we will discuss the model selection
 302 later. Furthermore, to ensure fair comparison with recent defenses that leverage diffusion-based
 303 adversarial data augmentation, we adopt the same augmentation strategy as in Wang et al. (2023),
 304 demonstrating the superiority of our NAT framework under identical conditions.

305 **Datasets and Backbones.** We evaluate NAT on two standard benchmark datasets, CIFAR-10 and
 306 CIFAR-100, which are widely used for adversarial robustness evaluation (Zhang et al., 2024b; Yue
 307 et al., 2024; Yin et al., 2024; Li et al., 2024; Zi et al., 2021; Zhou & Hua, 2024). To further validate
 308 its scalability, we also test NAT on a higher-resolution dataset, ImageNet100.

- 309 • **CIFAR10 & CIFAR100.** For both datasets, we employ ResNet-18 (He et al., 2016) and Wide-
 310 ResNet-34-10, which are commonly employed in adversarial defense evaluations.
- 311 • **ImageNet100.** For ImageNet100, we use ViT-Small (Alexey, 2020) as the backbone.

313 Our experimental comparisons primarily benchmark NAT against AGAIN (Jia et al., 2022a) and
 314 LAS-AT (Yin et al., 2023), which currently achieves the state-of-the-art performance (Zhang et al.,
 315 2024b; Yue et al., 2024; Yin et al., 2024; Li et al., 2024; Zi et al., 2021). All reported results
 316 correspond to the best outcomes over three independent runs.

317 4.2 MAIN RESULTS

319 We report the results for CIFAR10 and CIFAR100 on WRN-34-10 in Table 1, and on ResNet-18 in
 320 Table 2. The mean and standard deviation are reported in parentheses (mean \pm std). For compara-
 321 tive methods, the ResNet-18 results are taken from Yin et al. (2023), while the WRN-34-10 results
 322 are taken from Jia et al. (2022a). NAT is further evaluated on ImageNet100 (as presented in Ap-
 323 pendix B), along with black-box attack settings (as presented in Appendix C). Results consistently
 324 show that NAT provides superior adversarial robustness, regardless of whether the backbone is a

324

325 Table 1: Test accuracy and robustness on CIFAR-10 and CIFAR-100 using Wide-ResNet-34-10.

	CIFAR10							CIFAR100						
	Clean	PGD-10	PGD-20	PGD-50	C&W	AA	Avg.	Clean	PGD-10	PGD-20	PGD-50	C&W	AA	Avg.
PGD-AT	85.17	56.07	55.08	54.88	53.91	51.67	59.46	60.89	32.19	31.69	31.45	30.1	27.86	35.69
TRADES	85.72	56.75	56.10	55.90	53.87	53.40	60.28	58.61	29.20	28.66	28.56	27.05	25.94	33.00
SAT	87.97	50.31	49.86	48.79	48.65	47.48	55.51	62.82	28.1	27.17	26.76	27.32	24.57	32.79
AWP	85.57	58.92	58.13	57.92	56.03	53.90	61.74	60.38	34.13	33.86	33.65	31.12	28.86	37.0
LBGAT	88.22	56.25	54.66	54.30	54.29	52.23	59.99	60.64	35.13	34.75	34.62	30.65	29.33	37.52
LAS-AWP	87.74	61.39	60.16	59.79	58.22	55.52	58.80	64.89	37.11	36.36	36.13	33.92	30.77	39.86
NAT (best)	89.15	63.69	62.34	62.05	65.10	52.95		62.87	36.79	36.36	36.22	32.79	30.85	
	(89.10)	(63.43)	(62.24)	(61.77)	(64.89)	(52.48)	65.88	(62.72)	(36.43)	(35.90)	(35.52)	(32.32)	(30.13)	39.22
	(± 0.13)	(± 0.21)	(± 0.17)	(± 0.25)	(± 0.30)	(± 0.41)		(± 0.19)	(± 0.29)	(± 0.48)	(± 0.61)	(± 0.52)	(± 0.71)	
NAT (last)	87.33	65.01	63.66	63.03	63.40	50.23		61.18	35.12	35.68	35.51	30.61	29.14	
	(87.15)	(64.86)	(63.42)	(62.79)	(63.04)	(49.87)	65.44	(61.02)	(34.89)	(35.20)	(34.97)	(30.01)	(28.45)	37.88
	(± 0.14)	(± 0.21)	(± 0.16)	(± 0.27)	(± 0.29)	(± 0.45)		(± 0.14)	(± 0.30)	(± 0.43)	(± 0.58)	(± 0.54)	(± 0.70)	

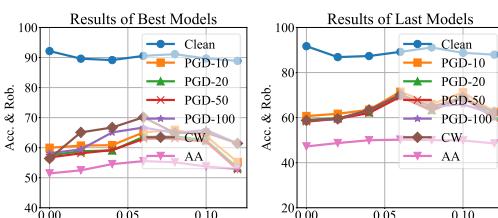
336 Table 2: Test accuracy and robustness on CIFAR-10 and CIFAR-100 dataset using ResNet-18.

	CIFAR10							CIFAR100								
	Clean	PGD-10	PGD-20	PGD-50	PGD-100	C&W	AA	Avg.	Clean	PGD-10	PGD-20	PGD-50	PGD-100	C&W	AA	Avg.
PGD-AT	84.25	46.88	46.56	44.85	44.76	45.75	41.69	50.67	62.34	21.24	21.38	21.05	21.01	22.15	19.76	26.99
MART	81.61	52.38	51.28	50.93	50.80	47.77	46.09	54.40	55.14	28.52	28.08	27.79	27.91	25.65	24.04	31.01
TRADES	83.64	52.05	50.67	50.38	50.20	49.68	48.41	55.00	58.18	28.71	28.25	28.10	27.99	24.22	24.03	31.35
FAT	87.32	45.80	43.53	43.11	42.98	43.50	40.76	49.57	61.61	19.33	18.35	18.08	17.98	19.31	17.38	24.57
LBGAT	85.73	53.12	52.05	51.78	51.68	50.63	49.04	56.29	56.78	32.84	32.21	32.11	32.07	27.46	26.39	34.26
CAS	86.24	51.38	51.49	51.77	51.04	53.66	46.69	56.03	64.04	31.66	31.55	31.26	31.02	34.82	24.40	35.53
AWP	79.45	55.04	54.47	54.36	54.30	51.17	49.40	56.88	54.00	31.78	31.49	31.44	31.74	28.20	26.19	33.54
LAS-AT	82.39	54.74	53.70	53.70	53.72	51.96	49.94	57.16	58.38	32.32	31.89	31.82	31.77	28.48	26.84	34.5
AGAIN-AWP	86.52	59.99	59.35	59.11	58.85	61.19	51.89	62.41	64.51	35.58	35.44	35.39	35.08	40.02	28.69	39.24
NAT (best)	90.86	62.37	60.94	60.19	59.91	62.54	50.18		64.02	36.82	36.63	36.44	35.16	37.98	28.82	
	(90.77)	(62.12)	(60.81)	(59.91)	(59.72)	(62.24)	(50.00)	63.85	(63.77)	(36.69)	(36.39)	(36.27)	(34.84)	(37.77)	(28.54)	39.26
	(± 0.15)	(± 0.22)	(± 0.27)	(± 0.19)	(± 0.32)	(± 0.34)	(± 0.46)		(± 0.22)	(± 0.32)	(± 0.33)	(± 0.41)	(± 0.56)	(± 0.51)	(± 0.73)	
NAT (last)	90.28	61.86	60.00	59.44	58.89	61.67	48.96		61.80	34.55	34.43	34.19	34.07	36.71	27.17	
	(90.07)	(61.72)	(59.72)	(59.26)	(58.57)	(61.46)	(48.65)	(63.01)	(61.63)	(34.30)	(34.29)	(33.92)	(33.91)	(36.42)	(26.97)	(37.56)
	(± 0.18)	(± 0.22)	(± 0.21)	(± 0.36)	(± 0.29)	(± 0.41)	(± 0.51)		(± 0.23)	(± 0.33)	(± 0.41)	(± 0.57)	(± 0.48)	(± 0.68)		

350 convolutional neural network or a ViT, and whether the dataset is low-resolution (CIFAR) or high-
351 resolution (ImageNet). In the Appendix D, we further supplement the discussion on the effectiveness
352 and superiority of NAT against adaptive attacks. Additionally, results of NAT with EDM-based data-
353 augmentation are provide in the Appendix E. These results demonstrate that NAT is compatible with
354 EDM-based augmentation, and can further exploit its potential to achieve even stronger robustness,
355 compared with other defenses under the same augmentation conditions. Also, Figure 3 demonstrates
356 the significant probability sparsity of Nasty VT & AT compared to Normal VT & AT.

357 4.3 ABLATION STUDY

359 We perform ablation studies from multiple perspectives to evaluate the convenience, efficiency, and
360 effectiveness of NAT. All ablation experiments are conducted on CIFAR-10.



372 Figure 2: Ablation study of λ on CIFAR10 dataset.
373

374 **Selection of the Hyper-Parameter λ .** In the
375 original NT, the default value of λ is set to 0.08.
376 However, this choice may not be optimal under
377 adversarial training. To investigate its effect,
378 we vary λ in the range [0, 0.12] with a
379 step size of 0.02 and report the results in Figure 2.
380 The results indicate that for both the best and last models, accuracy and robustness
381 first increase and then decrease, reaching the
382 peak performance at $\lambda = 0.06$. Importantly,
383 across all tested values, introducing nasty regu-
384 larization consistently improves robustness, as
385 shown from the markedly poorer performance
386 observed at $\lambda = 0$.

387 **Impact of Adversary Model Structure.** In the
388 original setup, the adversary model is configured as the naturally trained counterpart of the target
389 model. We further investigate the effect of varying adversary model architectures on NAT in
390 Appendix F. Overall, we find that adversary models with different structures consistently contribute to

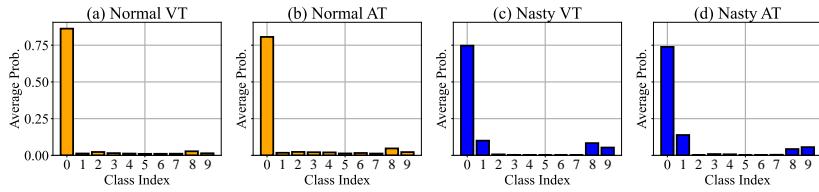


Figure 3: Verification of sparsity of model output probability.

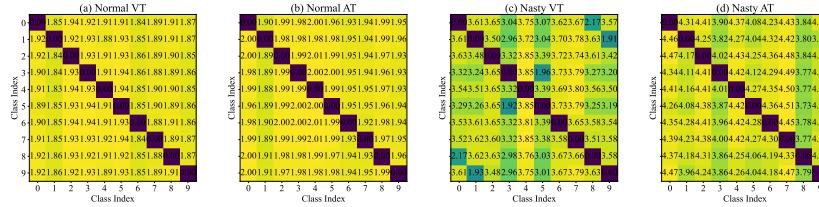


Figure 4: Symmetric matrix of the shortest distance among each boundary.

robustness improvements, offering flexible options for NAT. Please refer to Appendix F for detailed discussion.

Impact of Adversary Model State. We analyze the impact of different adversary model parameter states on NAT in Appendix G, including random initialization, vanilla training, adversarial training, and SAM regularization. Overall, while all parameter states contribute to robustness improvements, some do not exhibit the characteristic “single peak + uniform distribution” probability pattern. Detailed discussions are provided in Appendix G.

4.4 VERIFICATION OF SPATIAL METRIC RELATIONSHIPS.

We quantitatively validate the conclusions presented in the in-depth analysis section, including (1) the increased distances from data points to classification boundaries, (2) the enlarged inter-class weight gaps, and (3) the greater shortest distances between classification hyperplanes. All quantification results are achieved on the test set.

Distance from Data Point to Classification Boundary. We measure the distance of all samples from class **0** to each classification boundaries, as shown in Figure 5. To better illustrate the metric relationship between data points and classification boundaries, we remove the absolute value operation in Equation 10. Intuitively, the correctly classified target class should exhibit a larger positive distance, whereas non-target classes should yield smaller or even negative distances. The robust model indeed shows greater distances to the decision boundaries compared to standard models. Moreover, the robust model tends to assign positive logits (i.e., positive distances) to semantically related classes (e.g., *dog* and *cat*), while dissimilar categories (e.g., *automobile* and *ship*) consistently yield negative distances. This behavior indicates that NAT does not simply overfit the training data but tends to capture invariant semantic structures shared across similar categories while preserving higher inter-class separability.

Inter-Class Gap in the Weights of the Classification Layer. We use the L2 norm to quantify the magnitude of inter-class weight differences, ignoring directional effects. As shown in Figure 6, the results indicate that the nasty model produces substantially larger inter-class weight separations in the classification layer compared to the normal model.

Shortest Distance Among Linear Layers. Following the in-depth analysis, we compute the shortest inter-class distances in the classification layers of both natural and robust models under normal and nasty settings. As shown in the symmetric matrices of Figure 4, NAT consistently exhibits substantially larger shortest inter-class distances compared to standard models.

These findings validate our hypothesis regarding the spatial metric preference: adversaries must expend a larger attack budget to force misclassification, thereby enhancing robustness. In addition,

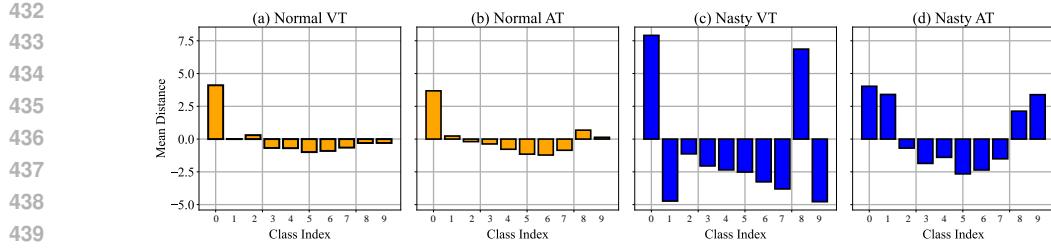


Figure 5: Average distance of class 0 samples in CIFAR10 dataset to all classification boundaries.

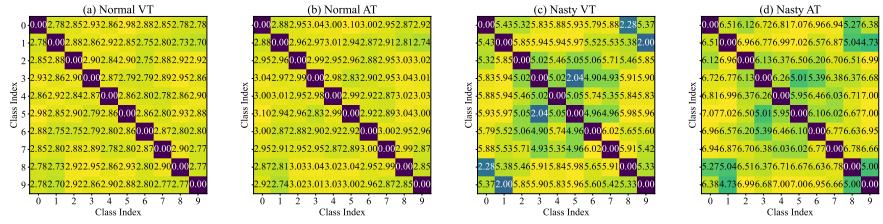


Figure 6: Symmetric matrix of L2 distances between classification layer weights.

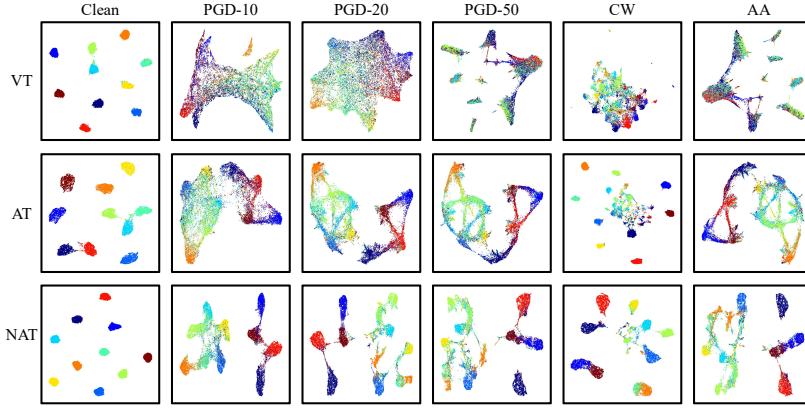


Figure 7: UMAP visualization of feature distributions for Vanilla Trained model (VT), Adversarial Trained model(AT) and Nasty Adversarial Trained model (NAT).

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
1009

486

6 CONCLUSION

488 In this paper, we propose nasty adversarial training (NAT), a simple yet effective regularizer for ad-
 489 versarial training that leverages the probabilistic sparsity prior. We first provide a theoretical analysis
 490 of how NAT induces probabilistic sparsity and examine its role in enhancing robustness from a met-
 491 ric perspective. Extensive experiments demonstrate that NAT achieves state-of-the-art adversarial
 492 robustness. Additional analyses further highlight its simplicity, efficiency, and irreplaceability.

494

ETHICS STATEMENT

496 Our research on NAT addresses an open problem in AI using public datasets. We declare no potential
 497 conflicts of interest, and the work raises no issues related to bias, fairness, privacy, security, or legal
 498 compliance. The study, which is purely methodological and requires no IRB approval, is conducted
 499 with the sole intention of improving model robustness against adversarial attacks and presents no
 500 malicious ethical threats.

502

REPRODUCIBILITY STATEMENT

504 To ensure the reproducibility of our findings, key experimental parameters are detailed in the "Ex-
 505 periment Setup" section. An anonymized code submission is provided for review. Full code and
 506 models will be made publicly available after the paper is accepted.

508

REFERENCES

510 Dosovitskiy Alexey. An image is worth 16x16 words: Transformers for image recognition at scale.
 511 *arXiv preprint arXiv: 2010.11929*, 2020.

513 Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of se-
 514 curity: Circumventing defenses to adversarial examples. In *International conference on machine*
 515 *learning*, pp. 274–283. PMLR, 2018.

516 Song Bai, Yingwei Li, Yuyin Zhou, Qizhu Li, and Philip HS Torr. Adversarial metric attack and
 517 defense for person re-identification. *IEEE Transactions on Pattern Analysis and Machine Intelli-*
 518 *gence*, 43(6):2119–2126, 2020.

520 Quentin Bouniot, Romaric Audigier, and Angelique Loesch. Vulnerability of person re-
 521 identification models to metric adversarial attacks. In *Proceedings of the IEEE/CVF conference*
 522 *on computer vision and pattern recognition workshops*, pp. 794–795, 2020.

523 Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable
 524 attacks against black-box machine learning models. *arXiv preprint arXiv:1712.04248*, 2017.

526 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *2017*
 527 *ieee symposium on security and privacy (sp)*, pp. 39–57. Ieee, 2017.

528 Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
 529 mization based black-box attacks to deep neural networks without training substitute models. In
 530 *Proceedings of the 10th ACM workshop on artificial intelligence and security*, pp. 15–26, 2017.

532 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
 533 of diverse parameter-free attacks. In *International conference on machine learning*, pp. 2206–
 534 2216. PMLR, 2020.

535 Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boost-
 536 ing adversarial attacks with momentum. In *Proceedings of the IEEE conference on computer*
 537 *vision and pattern recognition*, pp. 9185–9193, 2018.

539 Ziyi Dong, Pengxu Wei, and Liang Lin. Adversarially-aware robust object detector. In *European*
 540 *Conference on Computer Vision*, pp. 297–313. Springer, 2022.

540 Kevin Eykholt, Ivan Evtimov, Earlene Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul
 541 Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on deep learning
 542 visual classification. In *Proceedings of the IEEE conference on computer vision and pattern*
 543 *recognition*, pp. 1625–1634, 2018.

544

545 Micah Goldblum, Liam Fowl, Soheil Feizi, and Tom Goldstein. Adversarially robust distillation. In
 546 *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 3996–4003, 2020.

547

548 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 549 examples. *arXiv preprint arXiv:1412.6572*, 2014.

550

551 Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Uncovering
 552 the limits of adversarial training against norm-bounded adversarial examples. *arXiv preprint*
 553 *arXiv:2010.03593*, 2020.

554

555 Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, and
 556 Timothy A Mann. Improving robustness using generated data. *Advances in neural information*
 557 *processing systems*, 34:4218–4233, 2021.

558

559 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 560 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 561 770–778, 2016.

562

563 Zhichao Huang, Yanbo Fan, Chen Liu, Weizhong Zhang, Yong Zhang, Mathieu Salzmann, Sabine
 564 Süssstrunk, and Jue Wang. Fast adversarial training with adaptive step size. *IEEE Transactions on*
 565 *Image Processing*, 2023.

566

567 Xiaojun Jia, Yong Zhang, Baoyuan Wu, Ke Ma, Jue Wang, and Xiaochun Cao. Las-at: adversarial
 568 training with learnable attack strategy. In *Proceedings of the IEEE/CVF Conference on Computer*
 569 *Vision and Pattern Recognition*, pp. 13398–13408, 2022a.

570

571 Xiaojun Jia, Yong Zhang, Baoyuan Wu, Jue Wang, and Xiaochun Cao. Boosting fast adversarial
 572 training with learnable adversarial initialization. *IEEE Transactions on Image Processing*, 31:
 573 4417–4430, 2022b.

574

575 Hyeyoon Lee, Kanghyun Choi, Dain Kwon, Sunjong Park, Mayoore Selvarasa Jaiswal, Noseong
 576 Park, Jonghyun Choi, and Jinho Lee. Datafresheild: Defending adversarial attacks without
 577 training data. *arXiv preprint arXiv:2406.15635*, 2024.

578

579 Yuezun Li, Daniel Tian, Ming-Ching Chang, Xiao Bian, and Siwei Lyu. Robust adversarial pertur-
 580 bation on deep proposal-based models. *arXiv preprint arXiv:1809.05962*, 2018.

581

582 Zhuorong Li, Daiwei Yu, Lina Wei, Canghong Jin, Yun Zhang, and Sixian Chan. Soften to defend:
 583 Towards adversarial robustness via self-guided label refinement. In *Proceedings of the IEEE/CVF*
 584 *Conference on Computer Vision and Pattern Recognition*, pp. 24776–24785, 2024.

585

586 Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and Jun Zhu. Defense against
 587 adversarial attacks using high-level representation guided denoiser. In *Proceedings of the IEEE*
 588 *conference on computer vision and pattern recognition*, pp. 1778–1787, 2018.

589

590 Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, and Zhangyang Wang. Undis-
 591 tillable: Making a nasty teacher that cannot teach students. *arXiv preprint arXiv:2105.07381*,
 592 2021.

593

594 Haoyu Ma, Yifan Huang, Hao Tang, Chenyu You, Deying Kong, and Xiaohui Xie. Sparse logits
 595 suffice to fail knowledge distillation. In *ICLR 2022 Workshop on PAIR {\textasciicircum} 2Struct: Privacy, Accountability, Interpretability, Robustness, Reasoning on Structured Data*, 2022.

596

597 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 598 Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*,
 599 2017.

594 Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
 595 accurate method to fool deep neural networks. In *Proceedings of the IEEE conference on com-*
 596 *puter vision and pattern recognition*, pp. 2574–2582, 2016.

597

598 Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun Zhu. Bag of tricks for adversarial
 599 training. *arXiv preprint arXiv:2010.00467*, 2020.

600 Tianyu Pang, Min Lin, Xiao Yang, Jun Zhu, and Shuicheng Yan. Robustness and accuracy could be
 601 reconcilable by (proper) definition. In *International conference on machine learning*, pp. 17258–
 602 17277. PMLR, 2022.

603

604 Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a
 605 defense to adversarial perturbations against deep neural networks. In *2016 IEEE symposium on*
 606 *security and privacy (SP)*, pp. 582–597. IEEE, 2016.

607 Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A Calian, Florian Stimberg, Olivia Wiles, and Tim-
 608 othy Mann. Fixing data augmentation to improve adversarial robustness. *arXiv preprint*
 609 *arXiv:2103.01946*, 2021.

610

611 Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In
 612 *International conference on machine learning*, pp. 8093–8104. PMLR, 2020.

613

614 Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina, Sihui Dai, Chong Xiang, Mung Chiang, and
 615 Prateek Mittal. Robust learning meets generative models: Can proxy distributions improve ad-
 616 versarial robustness? *arXiv preprint arXiv:2104.09425*, 2021.

617

618 Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
 619 adversarial robustness requires revisiting misclassified examples. In *International conference on*
 620 *learning representations*, 2019.

621

622 Yuzheng Wang, Zhaoyu Chen, Dingkang Yang, Pinxue Guo, Kaixun Jiang, Wenqiang Zhang, and
 623 Lizhe Qi. Out of thin air: Exploring data-free adversarial robustness distillation. In *Proceedings*
 624 *of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 5776–5784, 2024.

625

626 Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion
 627 models further improve adversarial training. In *International conference on machine learning*,
 628 pp. 36246–36263. PMLR, 2023.

629

630 Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust gener-
 631 alization. *Advances in neural information processing systems*, 33:2958–2969, 2020.

632

633 Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating adversarial
 634 effects through randomization. *arXiv preprint arXiv:1711.01991*, 2017a.

635

636 Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan Yuille. Adversarial
 637 examples for semantic segmentation and object detection. In *Proceedings of the IEEE interna-*
 638 *tional conference on computer vision*, pp. 1369–1378, 2017b.

639

640 Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming He. Feature denoising
 641 for improving adversarial robustness. In *Proceedings of the IEEE/CVF conference on computer*
 642 *vision and pattern recognition*, pp. 501–509, 2019a.

643

644 Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L Yuille.
 645 Improving transferability of adversarial examples with input diversity. In *Proceedings of the*
 646 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 2730–2739, 2019b.

647

648 Shenglin Yin, Kelu Yao, Sheng Shi, Yangzhou Du, and Zhen Xiao. Again: Adversarial training
 649 with attribution span enlargement and hybrid feature fusion. In *Proceedings of the IEEE/CVF*
 650 *Conference on Computer Vision and Pattern Recognition*, pp. 20544–20553, 2023.

651

652 Shenglin Yin, Zhen Xiao, Mingxuan Song, and Jieyi Long. Adversarial distillation based on slack
 653 matching and attribution region alignment. In *Proceedings of the IEEE/CVF Conference on Com-*
 654 *puter Vision and Pattern Recognition*, pp. 24605–24614, 2024.

648 Wang Yu-Hang, Junkang Guo, Aolei Liu, Kaihao Wang, Zaitong Wu, Zhenyu Liu, Wenfei Yin, and
 649 Jian Liu. Taet: Two-stage adversarial equalization training on long-tailed distributions. In *Pro-
 650 ceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15476–15485, 2025.
 651

652 Xinli Yue, Ningping Mou, Qian Wang, and Lingchen Zhao. Revisiting adversarial training under
 653 long-tailed distributions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 654 Pattern Recognition*, pp. 24492–24501, 2024.

655 Haichao Zhang and Jianyu Wang. Towards adversarially robust object detection. In *Proceedings of
 656 the IEEE/CVF International Conference on Computer Vision*, pp. 421–430, 2019.
 657

658 Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
 659 Theoretically principled trade-off between robustness and accuracy. In *International conference
 660 on machine learning*, pp. 7472–7482. PMLR, 2019.

661 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
 662 risk minimization. *arXiv preprint arXiv:1710.09412*, 2017.
 663

664 Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan Kankanhalli.
 665 Attacks which do not kill training make adversarial learning stronger. In *International
 666 conference on machine learning*, pp. 11278–11287. PMLR, 2020a.

667 Lei Zhang, Yuhang Zhou, Yi Yang, and Xinbo Gao. Meta invariance defense towards generalizable
 668 robustness to unknown adversarial attacks. *IEEE Transactions on Pattern Analysis and Machine
 669 Intelligence*, 2024a.

670 Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, and James Zou. How does mixup
 671 help with robustness and generalization? *arXiv preprint arXiv:2010.04819*, 2020b.
 672

673 Yanghao Zhang, Tianle Zhang, Ronghui Mu, Xiaowei Huang, and Wenjie Ruan. Towards fairness-
 674 aware adversarial learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 675 Pattern Recognition*, pp. 24746–24755, 2024b.

676 Yuhang Zhou and Zhongyun Hua. Defense without forgetting: Continual adversarial defense with
 677 anisotropic & isotropic pseudo replay. In *Proceedings of the IEEE/CVF Conference on Computer
 678 Vision and Pattern Recognition*, pp. 24263–24272, 2024.
 679

680 Yuhang Zhou, Yushu Zhang, Leo Yu Zhang, and Zhongyun Hua. Derd: Data-free adversarial ro-
 681 bustness distillation through self-adversarial teacher group. In *ACM Multimedia 2024*.
 682

683 Jianing Zhu, Jiangchao Yao, Bo Han, Jingfeng Zhang, Tongliang Liu, Gang Niu, Jingren Zhou,
 684 Jianliang Xu, and Hongxia Yang. Reliable adversarial distillation with unreliable teachers. *arXiv
 685 preprint arXiv:2106.04928*, 2021.

686 Bojia Zi, Shihao Zhao, Xingjun Ma, and Yu-Gang Jiang. Revisiting adversarial robustness distil-
 687 lation: Robust soft labels make student better. In *Proceedings of the IEEE/CVF International
 688 Conference on Computer Vision*, pp. 16443–16452, 2021.

689 Junhua Zou, Zhisong Pan, Junyang Qiu, Xin Liu, Ting Rui, and Wei Li. Improving the transferability
 690 of adversarial examples with resized-diverse-inputs, diversity-ensemble and region fitting. In
 691 *European Conference on Computer Vision*, pp. 563–579. Springer, 2020.
 692

693

694 APPENDIX

695 A RELATED WORKS

696 A.1 ADVERSARIAL ATTACKS

697 700 Adversarial attacks aim to introduce imperceptible perturbations to input data, causing a well-trained
 701 model to produce incorrect predictions. Depending on the amount of information accessible to
 the attacker, adversarial attacks are generally categorized into white-box and black-box settings.

702 In white-box attacks, the attackers has fully access to the target model. Common methods in-
 703 clude gradient-based approaches (Goodfellow et al., 2014; Dong et al., 2018; Madry et al., 2017),
 704 classifier-based methods (Moosavi-Dezfooli et al., 2016), and optimization-based techniques (Car-
 705 lini & Wagner, 2017). In contrast, black-box attacks assume limited prior knowledge of the target
 706 model and are typically classified into score-based (Chen et al., 2017), decision-based (Brendel et al.,
 707 2017), and transfer-based attacks (Xie et al., 2019b; Zou et al., 2020). Among them, transfer-based
 708 attacks involve training a surrogate model to simulate the target model’s behavior and are widely
 709 used to evaluate the black-box adversarial robustness of DNNs.

710 **A.2 ADVERSARIAL DEFENSES**

711 Adversarial defenses aim to improve a model’s accuracy on adversarial examples. AT (Goodfellow
 712 et al., 2014; Zhang et al., 2019; Dong et al., 2018; Madry et al., 2017; Jia et al., 2022a; Wang et al.,
 713 2019) is widely regarded as one of the most effective defense. RD (Goldblum et al., 2020; Zhu et al.,
 714 2021; Zi et al., 2021) is later proposed to transfer robustness from a large, robust model to a smaller,
 715 more efficient student model. Recently, AT are further explored, such as fairness issue (Zhang et al.,
 716 2024b), attention maps (Yin et al., 2023), and learnable strategies (Jia et al., 2022a). Data-free ad-
 717 versarial defense (Wang et al., 2024; Zhou et al.; Lee et al., 2024) are explored to achieve adversarial
 718 robustness in scenarios with limited data. Additionally, internal maximization methods like fast ad-
 719 versarial training (FAT) (Jia et al., 2022b; Huang et al., 2023) have been developed to enhance the
 720 efficiency of AT without significantly sacrificing robustness. In this paper, we focus on AT and pro-
 721 pose a simple yet effective regularization strategy from the perspective of output probability sparsity,
 722 which achieves state-of-the-art adversarial robustness with little additional computational overhead.

723 **B RESULTS ON IMAGENET-100**

724 In this section, we report the robustness performance of NAT on ImageNet100. Due to the lack
 725 of direct comparisons, we primarily compare NAT with natural models and adversarial training
 726 models. The experimental results are shown in Table 4. Under the same experimental setup, com-
 727 pared to smaller datasets like CIFAR10, NAT demonstrates significant robustness increments on
 728 ImageNet100.

729 **C RESULTS ON BLACK-BOX ATTACKS**

730 In this section, we provide a simple evaluation of NAT’s adversarial robustness against black-box
 731 attacks based on CIFAR10. We mainly follow the black-box attack settings in RSLAD, which test
 732 both the transfer attack and query-based attack. For transfer attack, we generate the adversarial
 733 examples by PGD-20 and CW on an adversarially pre-trained surrogate ResNet-50. The maximum
 734 perturbation is also set to 8/255. For query-based attack, we use the strong Square attack. The
 735 experimental results are shown in Table 5. The results in the table include both adversarial training
 736 methods and robustness distillation methods. To maintain consistency, we performed NAT training
 737 on MobileNetV2 for evaluation. It can be observed that our proposed NAT significantly outperforms
 738 the provided mainstream adversarial training methods and robustness distillation methods in black-
 739 box attacks, showing its superiority.

740 **D EVALUATION ON THE ADAPTIVE ATTACKS**

741 In this section, we discuss the effectiveness of NAT against adaptive attacks. This discussion is
 742 based on the assumption that the attacker is fully aware of the defender’s NAT defense paradigm
 743 and, consequently, uses the objective loss function of NAT as the target function for their attacks.
 744 The objective function of an adaptive attacker can be formalized as:

$$745 \arg \max_{\|\delta\|_p \leq \epsilon} [XE(\sigma(p_{f_{\theta_t}}(x + \delta)), y) - \omega_a KL(\sigma_{\tau_a}(p_{f_{\theta_t}}(x + \delta)), \sigma_{\tau_a}(p_{f_{\theta_a}}(x + \delta)))] \quad (14)$$

746 Such attack strategy is constructed using the PGD framework, with its hyperparameters remaining
 747 consistent with those specified in the main body of the paper. We similarly evaluate the effective-
 748 ness of NAT on both ResNet-18 and WideResNet-34-10 architectures, utilizing the CIFAR-10 and

756
 757 Table 3: The results of several advanced adversarial defense using the EDM-based data augmenta-
 758 tion.

759	Dataset	Architecture	Method	Generated	Batch	Epoch \dagger	Clean	AA		
760	WRN-34-10 ($l_\infty, \epsilon = 8/255$)	WRN-34-20	(Rice et al., 2020)	\times	128	200	85.34	53.42		
761		WRN-34-10	(Zhang et al., 2020a)	\times	128	120	84.52	53.51		
762		WRN-34-20	(Pang et al., 2020)	\times	128	110	86.43	54.39		
763		WRN-34-10	(Wu et al., 2020)	\times	128	200	85.36	56.17		
764		WRN-70-16	(Gowal et al., 2020)	\times	512	200	85.29	57.14		
765		WRN-34-10	(Sehwag et al., 2021)	10M	128	200	87.00	60.60		
766		WRN-28-10	(Rebuffi et al., 2021)	1M	1024	800	87.33	60.73		
767			(Pang et al., 2022)	1M	512	400	88.10	61.51		
768			(Gowal et al., 2021)	100M	1024	2000	87.50	63.38		
769	CIFAR-10 ($l_\infty, \epsilon = 8/255$)	WRN-28-10	(Wang et al., 2023)	1M	512	400	91.12	63.35		
770				50M	2048	1600	92.27	67.17		
771				20M	2048	2400	92.44	67.31		
772		WRN-70-16	(Pang et al., 2022)	1M	512	400	88.57	63.74		
773			(Rebuffi et al., 2021)	1M	1024	800	88.54	64.20		
774			(Gowal et al., 2021)	100M	1024	2000	88.74	66.11		
775		WRN-34-10	(Wang et al., 2023)	1M	512	400	91.98	65.54		
776				5M	512	800	92.58	67.92		
777				50M	1024	2000	93.25	70.69		
778		WRN-34-10	WRN-34-10	(Wu et al., 2020)	\times	128	200	60.38	28.86	
779				WRN-70-16	\times	512	200	60.86	30.03	
780				WRN-34-10	1M	128	200	65.90	31.20	
781		WRN-34-10	WRN-34-10	WRN-34-10	\times	128	200	0	0	
782					AutoAug	128	200	0	0	
783						512	300	89.15	52.95	
784		WRN-28-10	WRN-34-10	Ours	1M	1024	600	90.44	55.41	
785					5M	1024	600	91.01	57.24	
786										
787	CIFAR-100 ($l_\infty, \epsilon = 8/255$)	WRN-28-10	(Pang et al., 2022)	1M	512	400	62.08	31.40		
788			(Rebuffi et al., 2021)	1M	1024	800	62.41	32.06		
789			(Wang et al., 2023)	1M	512	400	68.06	35.65		
790		WRN-70-16	(Pang et al., 2022)	50M	2048	1600	72.58	38.83		
791			(Rebuffi et al., 2021)	1M	1024	800	63.99	33.65		
792			(Wang et al., 2023)	1M	512	400	63.56	34.64		
793		WRN-34-10		50M	1024	2000	70.21	38.69		
794							75.22	42.67		
795										
796	Table 4: Test accuracy and robustness of the ImageNet-100 dataset on ViT-small.									
797			Clean	PGD-10	PGD-20	PGD-50	PGD-100	C&W	AA	Ave.
798										
799	Vanilla Training	96.23	8.23	6.54	4.58	4.14	7.97	1.68	18.48	
800	PGD-AT	95.69	64.44	62.32	39.80	39.71	41.64	37.12	54.38	
801	NAT (best)	94.92	67.07	66.84	43.22	44.16	49.82	45.44	58.78	
802	NAT (last)	94.87	64.77	66.37	42.13	45.07	48.53	44.40	58.01	
803										
804										
805	CIFAR100 datasets, and compare its performance against both Vanilla Training and PGD-AT. The experimental results are summarized in Table 6. NAT consistently demonstrates effective robustness against adaptive attacks, significantly outperforming PGD-AT. This robust performance underscores the reliability of NAT’s defensive capabilities. In essence, unlike early defenses that rely on randomization, NAT remains fundamentally rooted in the adversarial training paradigm, which inherently avoids the pitfalls associated with “obfuscated gradients”.									
806										
807										
808										
809										

810

811

Table 5: Black-box robustness on CIFAR10.

Methods	PGDs	ResNet-18		MobileNetV2	
		CW	Square	PGDs	CW
SAT	60.84	60.52	54.27	60.46	59.83
ARD	63.49	63.05	56.89	62.13	61.85
IAD	62.78	62.26	56.62	61.57	61.25
Trades	62.20	61.75	55.13	60.90	60.23
RSLAD	64.11	63.84	57.90	63.30	63.20
LAS-AT	66.42	65.41	60.21	66.14	65.42
NAT	67.19	66.77	60.23	67.82	66.49

820

821

822

Table 6: Evaluation on the adaptive attacks.

Backbones	Defenses	CIFAR10					CIFAR100				
		APGD-10	APGD-20	APGD-50	APGD-100	Ave.	APGD-10	APGD-20	APGD-50	APGD-100	Ave.
WRN3410	VT	12.17	9.88	9.02	8.88	9.98	2.91	2.68	2.63	2.51	2.68
	AT-PGD	57.57	54.52	53.36	53.14	54.64	28.21	28.00	27.95	27.80	27.99
	NAT	61.48	59.02	58.27	58.11	59.22	33.14	32.41	32.01	31.77	32.33
ResNet18	VT	10.37	9.17	8.77	8.71	9.25	4.47	4.09	3.95	3.90	4.10
	AT-PGD	53.77	52.07	51.60	51.48	52.23	27.33	26.83	26.67	26.65	26.87
	NAT	61.00	58.25	58.11	57.75	58.77	33.62	32.72	32.14	32.01	32.62

829

830

831

E COMBINING NAT WITH EDM-BASED DATA AUGMENTATION

832

833

In this section, we provide the experimental results of NAT using EDM-based data augmentation (Wang et al., 2023), with comparisons to state-of-the-art (SOTA) adversarial defenses under the same data augmentation strategy. The results are shown in Table 3. According to the conclusion of Wang et al. (2023), under conditions of large-scale data augmentation, a larger batch size and more training epochs can significantly improve model performance (Wang et al., 2023). Still, with identical data augmentation conditions (i.e., generated data number, batch size, and epoch number), NAT can achieve optimal adversarial robustness performance. This demonstrates the inherent superiority of NAT, confirms its compatibility with such augmentation, and reveals how they mutually explore each other’s potential for enhancing adversarial robustness.

842

843

Table 7: The impact of different adversary model architecture. The target backbone is WRN-34-10.

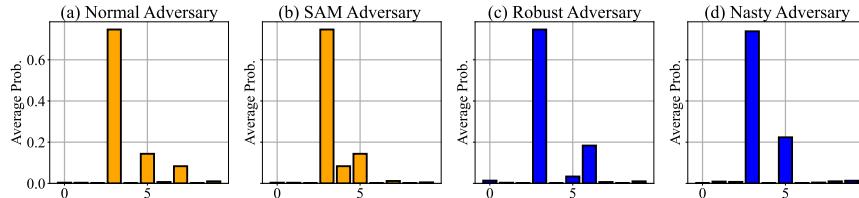
		Clean	PGD-10	PGD-20	PGD-50	PGD-100	C&W	AA	Ave.
Adversary Model Structure	WRN-34-10	89.15	63.69	62.34	62.05	62.01	65.10	52.95	65.32
	DN121	87.95	66.00	64.39	63.62	63.42	65.46	48.47	65.61
	RN18	88.09	66.73	64.88	64.09	63.00	67.36	48.43	66.08
	RN50	88.12	68.04	66.71	66.15	65.08	67.47	46.67	66.89
Ensemble Models		88.94	69.12	67.34	67.19	66.37	67.84	46.00	67.64

851

852

853

854



861

862

863

Figure 8: For the NAT with different adversary model structures, the output probability of “cat” class.

864
 865 Table 8: The impact of different adversary model parameter state. The target backbone is WRN-34-
 866 10.
 867

		Clean	PGD-10	PGD-20	PGD-50	C&W	AA	Ave.
Para. State	VT	89.15	63.69	62.34	62.05	65.10	52.95	65.88
	SAM	84.44	67.63	63.71	63.39	65.01	47.69	65.31
	AT	85.90	67.66	65.96	64.92	63.83	53.42	66.94
	Nasty	82.94	68.16	64.14	64.02	63.04	49.53	65.30

872
 873
 874 Table 9: Training time statistics for one epoch.
 875

	CIFAR10		CIFAR100	
	ResNet-18	WRN-34-10	ResNet-18	WRN-34-10
Vanilla Training	≈ 15.3 s	≈ 90.2 s	≈ 15.7 s	≈ 101.3 s
Adversarial Training	≈ 108.6 s	≈ 1047.2 s	≈ 110.9 s	≈ 1197.2 s
MID (Zhang et al., 2024a)	$\approx 2530 \pm 10$ s	-	$\approx 3460 \pm 20$ s	-
NAT	≈ 129.8 s	≈ 1165.8 s	≈ 127.3 s	≈ 1328.2 s

882
 883
 884 Table 10: The impact of NT to robustness distillation.
 885

		Clean	PGD-10	PGD-20	PGD-50	PGD-100	C&W	AA	Ave.
RSLAD	From AT Teacher	89.23	50.57	50.19	50.09	48.86	47.15	45.77	54.55
	From NAT Teacher	87.97	47.50	47.24	47.20	47.15	48.86	42.64	52.65
ARD	From AT Teacher	79.43	38.84	38.21	39.93	39.87	36.61	34.12	43.85
	From NAT Teacher	77.67	37.66	37.52	37.46	37.45	38.78	30.43	42.42
IAD	From AT Teacher	74.72	42.01	41.91	41.89	41.82	44.41	37.55	46.33
	From NAT Teacher	74.29	41.64	41.61	41.58	41.48	43.39	36.25	45.74

892
 893
 894 Table 11: Comparing NAT with explicit regularizers.
 895

Methods	Clean	PGD10	PGD20	PGD50	PGD-100	C&W	AA	Avg.
VT	95.03	11.72	10.52	10.13	10.09	11.42	7.81	22.38
NT	94.37	16.57	14.65	13.38	12.92	13.04	8.84	24.82
AT	84.25	46.88	46.56	44.85	44.76	45.75	41.69	50.67
AT+LASSO	88.06	41.45	39.77	39.08	38.78	40.18	30.54	45.40
AT+EMR	90.4	55.63	54.67	54.32	54.22	53.04	47.77	58.57
AT+NNR	92.13	53.83	52.59	52.1	51.97	52.04	46.53	57.31
AT+mixup	82.5	47.66	46.88	46.57	46.55	48.49	38.07	50.95
NAT	90.86	62.37	60.94	60.19	59.91	62.54	50.18	63.85

905
 906 F IMPACT OF ADVERSARY MODEL STRUCTURE
 907

908 In the original setup of NT, the adversary model is configured as a vanilla-trained model with the
 909 same structure as the target model. Here, we discuss the impact of adversary models with different
 910 structures on the robustness increments. We select WRN-34-10 as the backbone of the target model
 911 for ablation analysis and use DenseNet-121, ResNet-18, and ResNet-50 as the backbones of the
 912 adversary model, in order to analyze the effects of different structures and different capacities. For
 913 ease of comparison, we also report results for the adversary model that is isomorphic to the target
 914 model. The experimental results, as shown in Table 7, indicate that various structures of adversary
 915 models, whether isomorphic or heterogeneous, can provide a stable robustness increment to the tar-
 916 get model. Moreover, adversary models with larger capacities seem to demonstrate better robustness
 917 increments for the target model. For instance, ResNet50, serving as the nasty model, can provide
 better robustness increments compared to ResNet-18 to the target model.

918 **G IMPACT OF ADVERSARY MODEL STATE**
919920 In the original setup, the adversary model is configured as a natural model with the same structure
921 as the target model. Here, we discuss the impact of different model parameter states on robustness
922 improvement, which includes random initialization, vanilla training, adversarial training, SAM reg-
923 ularization, and Nasty model. The experimental results are shown in Table 8, demonstrating that
924 different model parameters can all provide robustness improvements for NAT.925 An interesting question is that the nasty model no longer shows the “single peak + uniform distri-
926 bution” probability distribution, yet still provides robustness improvement. We speculate that the
927 output probabilities of the nasty model exhibit “a few peaks & uniform zero distribution”, thus
928 allowing the target model to achieve a sparse probability distribution by moving away from the
929 uniform zero distribution. However, the non-target class peaks of the target model might have different
930 labels compared to the non-target class peaks when using a regular model as the adversary.931 We validated this hypothesis in Figure 8. For the “cat” class, when a normal model is used as the
932 adversary model, the suboptimal peaks are “dog” and “horse.” When the nasty model is used as the
933 adversary model, the suboptimal peak concentrates on “dog”. Similarly, suboptimal peak variations
934 also appear when SAM models and Robust models are used as adversary models. However, All
935 the setups can achieve a sparse probability distribution and robustness improvement on the target
936 model. Such results confirm our hypothesis: different adversary models may lead the model to learn
937 different suboptimal classes, but they consistently cause the target model to learn a sparse probability
938 distribution. The discussion above may also partially explains why feeding the adversary model with
939 both natural examples and adversarial examples can provide a significant adversarial robustness
940 improvement for the target model, even though the outputs of the adversary model on adversarial
941 examples may not satisfy the “single peak” assumption.942 **H ANALYSIS OF TIME COSTS**
943944 In this subsection, we briefly discuss the computational cost of NAT. In recent studies on adver-
945 sarial robustness, MID (Zhang et al., 2024a) provides an intuitive quantification of computational
946 time cost by measuring the time required to train one epoch. Following the setup in MID, we also
947 present a simple quantification of the computational time cost, as shown in Table 9. Intuitively, NAT
948 introduces only limited additional computation compared to standard adversarial training, primarily
949 attributed to the inference time of the adversary model. We further demonstrate that the architec-
950 tural design of the adversary model has negligible impact on the target model. It is worth mentioning
951 that the time cost reported in Table 9 does not include the time cost of performing Vanilla Training
952 (VT) on the adversary model. This omission is primarily based on the following considerations:
953 (a) The structure and training settings of the adversary model are flexible and can generally bring
954 performance gains to the model (as shown in Table 7 and Table 8). (b) Compared to adversarial
955 training, the time cost of vanilla training is negligible. In cases where the target model and the ad-
956 versarial model share the same architecture, the time cost reported for “vanilla training” in the first
957 row can serve as a reference for the VT time cost of the adversary model. In conclusion, we argue
958 that the extra computational cost of NAT remains controllable and acceptable compared to standard
959 adversarial training.960 **I DOES ENSEMBLE ADVERSARY MODEL HELP?**
961962 In machine learning, a natural approach to model enhancement is ensemble learning. In this section,
963 we discuss the robustness performance of NAT when the adversary model is an ensemble model.
964 Specifically, we choose ResNet-18, DenseNet121, and VGG11 to form the ensemble model. We use
965 the same ensemble method as A, guiding the nasty regularization with the mean of the logits output
966 by the three models. The experimental results are shown in the last line of Table 7.967 Compared to the standard setup, the ensemble model shows a slight incremental advantage. This is
968 an expected result, as models of any structure tend to exhibit a “single peak + uniform distribution”
969 probability output preference. Averaging the logits of different models further smooths the uniform
970 distribution. We have analyzed that moving away from this uniform distribution can bring robustness

972 improvements to NAT. However, given the significantly increased computational cost, this slight
 973 increment may suggest that an ensemble adversary model is not necessary.
 974

975 J TRANSFER NAT TO ROBUSTNESS DISTILLATION

978 In this section, we discuss an open question: Can NAT be transferred to robust distillation to achieve
 979 incremental improvements? Or does it, like a regular nasty model, prevent the robust model from
 980 being distilled by student models?

981 As we mentioned, the original purpose of NT is to make the nasty model difficult for student models
 982 to learn simply. However, whether this property can be transferred to NAT is still unclear. If this
 983 property is transferable, NAT could also serve as a method to protect the copyright of robust models,
 984 preventing robust teachers from being distilled into student models without authorization. We briefly
 985 discuss this issue in this section.

986 Specifically, we use WRN-34-10 trained with standard AT and NAT as the robust teacher models,
 987 and randomly initialized ResNet-18 as the student model. We apply RSLAD, ARD, and IAD as
 988 robustness distillation methods to perform robustness distillation on the student model. The exper-
 989 imental results are shown in Table 10. As a teacher model, although the NAT teacher shows better
 990 robustness performance than the AT teacher, its student model’s robustness performance is relatively
 991 poor. This indicates that NAT has a certain tendency to avoid being learned, which can also serve as
 992 a method to protect the intellectual property of robust teachers. However, this protective effect is still
 993 far from the ideal of an unlearnable teacher, as the student model still acquires a considerable level
 994 of robustness performance. There remains significant space for research in the intellectual property
 995 protection of adversarial robust models.

996 K COMPARING NAT WITH EXPLICIT REGULARIZERS

999 NAT can be considered as integrating probability sparsity regularization into AT. In this section, we
 1000 explain the differences between NAT and several other explicit regularization methods, as well as
 1001 the advantages of NAT.

1002 To begin with, we need to clarify the distinction between the proposed probability sparsity and
 1003 model sparsity. From the conceptual perspective, model sparsity generally refers to the sparsity of
 1004 model parameters, which reduces the redundancy of the model, while probability sparsity means that
 1005 the probabilities of irrelevant categories, calculated based on the model’s output logits, approach
 1006 zero. From the effect perspective, model sparsity aims to decrease model complexity and reduce
 1007 redundant features, thereby enhancing generalization. The effect of probability sparsity is more
 1008 intuitive: it induces the target model to output probabilities only for the target category or similar
 1009 categories, while reducing confidence in irrelevant categories. This allows the model to learn more
 1010 generalized and semantically coherent feature representations and classification preferences. Thus,
 1011 there is an essential difference between the two. A common regularization method for model sparsity
 1012 is LASSO regularization, which can be combined with adversarial training and formalized as:

$$1013 \quad 1014 \quad \mathcal{L} = \mathcal{L}_{\text{AT}} + \lambda_{\text{LASSO}} \cdot \sum_{w \in \theta} |w| \quad (15)$$

1016 where λ_{LASSO} is set as 0.0001. We compare the experimental results of NAT and Lasso regularization
 1017 in Table 11, where NAT still shows better results. This proves that LASSO regularization cannot
 1018 achieve the probability sparsity that NAT can provide, making it difficult to attain similar robustness
 1019 increments.

1020 Furthermore, in order to demonstrate the irreplaceability of NAT, we explain the differences between
 1021 NAT and directly constraining the probability outputs. One intuitively potential method to achieve
 1022 probability sparsity is to directly add explicit regularization at the output end, such as minimizing
 1023 the output entropy:

$$1024 \quad 1025 \quad \mathcal{L} = \mathcal{L}_{\text{AT}} + \lambda_{\text{EMR}} \cdot \sum_{i=1}^N p_i \log p_i \quad (16)$$

1026

1027

Table 12: Evaluate NAT on person Re-Identification.

1028

1029

1030

1031

Datasets	Defense	Clean	FNA		SMA		IFGSM	
			8/255-16	10/255-16	8/255-16	10/255-16	8/255-16	10/255-16
Market	None	78.49/92.01	0.20/0.17	0.18/0.14	0.27/0.26	0.20/0.11	1.25/1.95	1.09/1.66
	AMD	69.69/88.24	8.57/18.14	4.37/9.41	22.85/35.69	15.21/23.37	17.97/34.65	11.74/23.34
	AMD&NAT	68.92/88.25	12.64/25.42	8.66/15.43	26.14/38.05	22.07/27.42	22.33/36.79	13.90/28.93

1032

1033

Table 13: Evaluate NAT on object detection.

1034

1035

1036

1037

1038

Attacks	Clean	loss _{cls}	loss _{loc}	DAG	RAP
Standard	72.1	1.5	0.0	0.3	0.6
MTD	47.2	28.2	30.7	26.7	43.5
MTD&NAT	48.4	30.7	31.3	27.8	44.7

1039

1040

which we call entropy minimization regularization(EMR) later. Also, one can regularize negative of the L2 norm of the output values as:

1041

1042

1043

1044

1045

1046

$$\mathcal{L} = \mathcal{L}_{\text{AT}} - \lambda_{\text{NNR}} \cdot \sqrt{\sum_{i=1}^C p_i^2} \quad (17)$$

which we call negative norm regularization(NNR) later.

1047

Intuitively, both EMR and NNR induce the model to output sharp probability distributions and achieve optimal solutions when the model outputs one-hot probabilities. Although they also achieve probability sparsity in form, this sparsity is suboptimal. The overly rigid one-hot constraint resembles overfitting. EMR and NNR amplify the cross-entropy loss's "winner takes all" preference, causing the model to be overly confident in the current training data and label, which results in a loss of generalization capability. At the same time, the strict constraints may amplify the impact of noise. In contrast, NAT does not explicitly require the model to output very rigid one-hot labels; instead, it induces the model to allocate certain probability outputs for similar classes (e.g., cats and dogs) and output smaller probabilities for less related categories (e.g., cats and airplanes) in a adaptive manner, thus learning robust features that generalize across categories. To validate this perspective, we compare NAT with the performance of these two regularizers, and the experimental results are shown in Table 11 where $\lambda_{\text{EMR}} = 0.001$ and $\lambda_{\text{NNR}} = 0.001$. Although EMR and NNR can bring certain increments to AT, NAT still demonstrates optimal results, proving that it cannot be simply replaced by methods that constrain output probabilities.

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

Furthermore, one may think about not constraining the model to learn one-hot output tendencies but rather allowing the model's output to approach a soft label. However, obtaining such soft labels is costly, especially when the desired suboptimal classes are similar to the target class. Such soft labels require extensive manual identification of which classes are "similar classes". Robustness distillation (Goldblum et al., 2020; Zhu et al., 2021; Zi et al., 2021) uses soft labels from the teacher's output to guide the student model. However, the reliability of the soft labels depends on the robustness of the teacher model. Reliable regularization is still needed to guide the training of the teacher model. An alternative regularization to obtain soft label is to use mixup (Zhang et al., 2017; 2020b) to generate augmented samples and soft labels. Compared to the adaptive allocation capability of NAT, mixup soft labels is manually set and do not guarantee that suboptimal classes are always categories similar to the target class. We also report the experimental results in Table 11, where the ratio of mixup is set to [0.7, 0.3] and randomly sampled in the current batch. Compared to mixup, NAT still demonstrates superiority.

1074

1075

1076

1077

1078

1079

Finally, we need to point out that although probability sparsity helps with adversarial robustness, directly applying sparsity regularization to vanilla training (which is actually the original nasty training (Ma et al., 2021)) does not achieve sufficient and reliable adversarial robustness. This is because such models can only learn sparse probabilistic outputs but still cannot acquire robust representations. The role of probability sparsity is to further guide the semantic interpretability and generalization of robust knowledge based on the model's learning of that robust knowledge. Results of NT in Table 11 validate the above viewpoint.

1080 **L PERFORMANCE ON NON-CLASSIFICATION TASKS**
10811082 We further argue that NAT, through the orthogonalization of linear layers, can introduce a degree
1083 of feature space separation in the target model, and such property is transferable to other tasks.
1084 To further discuss the effectiveness of NAT for non-classification tasks, we consider two tasks dis-
1085 tinct from pure classification: (1) Person Re-identification (classification + metric learning), and (2)
1086 Object detection (classification + regression).1087 First, for the person re-identification task, we adopt the common setup combining the cross-entropy
1088 loss and the triplet loss. We investigate commonly used adversarial metric attacks in ReID, including
1089 FNA Bouniot et al. (2020), SMA Bouniot et al. (2020), and IFGSM (e.g., AMA Bai et al. (2020)).
1090 The experimental results are shown in Table 12. The effectiveness of NAT for metric models trained
1091 with cross-entropy loss is foreseeable. As stated in the theoretical analysis, we argue that the prob-
1092 abilistic sparsity of NAT primarily stems from the high-order power constraint on the output logits,
1093 which can subsequently regularize the metric relationships in the feature space. Therefore, NAT can
1094 also bring performance gains to metric learning tasks.1095 Secondly, for the object detection task, we adopt the setup from Dong et al. (2022); Zhang & Wang
1096 (2019) and reproduce the results of Table 2 in Zhang & Wang (2019) on the PASCAL VOC dataset,
1097 based on which we further provide a preliminary validation of the efficacy of combining NAT with
1098 Multi-task Domain (MTD) training (since method in [3] is based on generative reconstruction, which
1099 is not conducive to the integration and fair comparison with NAT). As defined in [4], the MTD setup
1100 here refers to the defender performing min-max adversarial training by leveraging both the classifi-
1101 cation loss and the localization loss during training. We follow the standard NAT configuration in
1102 this experiment, applying the adversary model and NAT procedure only to the classification loss.
1103 The attack methods employed include classification-loss-only attack ($loss_{cls}$), localization-loss-only
1104 attack ($loss_{loc}$), DAG Xie et al. (2017b), and RAP Li et al. (2018). The experimental results are
1105 shown in Table 13, which demonstrate that NAT not only brings robustness increments to the ad-
1106 versarial training framework based on the classification loss, but also generalizes to enhance the
1107 framework utilizing the localization loss. This outcome provides preliminary evidence that NAT can
1108 contribute to the adversarial robustness of object detection task.1109 In summary, we argue that NAT can stably bring robustness increments to adversarial training for
1110 non-classification tasks.1111 **M LIMITATIONS**
11121113 NAT can be regarded as a general improvement to commonly used adversarial, with its main contri-
1114 butions stemming from simple yet effective modifications to adversarial training and the exploration
1115 of robust sparsity attribution. The limitations of this work primarily lie in the evaluation and com-
1116 parison on larger datasets (e.g., the full ImageNet-1k). On one hand, this is due to the massive
1117 computational complexity involved, and on the other hand, because the primary evaluation proto-
1118 cols within the adversarial robustness community have predominantly focused on datasets such as
1119 CIFAR, while benchmarks for ImageNet-1k remain relatively underdeveloped and establishing such
1120 a benchmark may be a huge task. Furthermore, extending our method to other downstream tasks
1121 could represent an interesting direction for future exploration. We leave these explorations for future
1122 work.1123 **THE USE OF LARGE LANGUAGE MODELS (LLMs)**
11241125 LLMs are used sparingly and only to assist with proofreading and improving the linguistic fluency
1126 of a few sections of this paper (such as *Related Work*, *Experiments*, and *Appendix*), i.e., to aid or
1127 polish writing. All scientific contributions and core idea are the work of the authors. This assistance
1128 poses no issues of scientific ethics or misconduct.1129
1130
1131
1132
1133