Published in Transactions on Machine Learning Research (11/2025)

A Note On The Stability Of The Focal Loss

Martijn P. van Leeuwen m.p.vanleeuwen@tilburguniversity.edu
Dept. of Intelligent Systems, Research Center for Cognitive Science and Artificial Intelligence,
Tilburg School of Humanities and Digital Sciences, Tilburg University

Koen V. Haak k.v.haak@tilburguniversity. edu
Dept. of Intelligent Systems, Research Center for Cognitive Science and Artificial Intelligence,
Tilburg School of Humanities and Digital Sciences, Tilburg University

Gorkem Saygili g.saygili@tilburguniversity. edu
Dept. of Intelligent Systems, Research Center for Cognitive Science and Artificial Intelligence,
Tilburg School of Humanities and Digital Sciences, Tilburg University

Eric Postma e.o.postma@tilburguniversity.edu
Dept. of Computational Cognitive Science, Research Center for Cognitive Science and Artificial Intelligence,
Tilburg School of Humanities and Digital Sciences, Tilburg University

L.L. Sharon Ong l.l.ong@tilburguniversity. edu
Dept. of Intelligent Systems, Research Center for Cognitive Science and Artificial Intelligence,
Tilburg School of Humanities and Digital Sciences, Tilburg University

Reviewed on OpenReview: https: //openreview. net/ forum? 1d=eCYActnGbu

Abstract

The Focal Loss is a widely deployed loss function that is used to train various types of deep
learning models. It is a modification of the cross-entropy loss designed to mitigate the effect
of class imbalance in dense object detection tasks. By downweighting the losses for easy,
correctly classified samples, the method places more emphasis on harder, misclassified ones.
As a result, gradient updates are not dominated by samples that the model already handles
correctly. The downweighting of the loss is achieved by scaling the cross-entropy loss with
a term that depends on a focusing parameter . In this paper, we highlight an unaddressed
numerical instability of the Focal Loss that arises when this focusing parameter is set to
a value between 0 and 1. We present the theoretical basis of this numerical instability,
show that it can be detected in the computation of Focal Loss gradients, and demonstrate
its effects across several classification and segmentation tasks. Additionally, we propose a
straightforward modification to the original Focal Loss to ensure stability whenever these
unstable focusing parameter values are used.

1 Introduction

The Focal Loss is widely used in one-stage object detectors, medical imaging, image segmentation,
and pose estimation tasks. (Terven et al. [2023). This function modifies the distribution-based cross-
entropy loss by introducing a focusing parameter () that downweights the penalty that is applied
to "easy" examples (Lin et al) 2017). This downweighting of the loss prevents gradients from being
dominated by easy examples, allowing the model to focus on difficult samples. (Lin et all |2017)). This is
particularly useful when the training data contains a large proportion of background (or other) class samples.

The selection of parameter -y, and with this, the extent to which easy examples are downweighted,
should be done via cross-validation (Lin et al., 2017)). [Lin et al.[(2017)) reported that using a v of 2 led to the

https://openreview.net/forum?id=eCYActnGbu

Published in Transactions on Machine Learning Research (11/2025)

best results in their experiments (Lin et al. 2017)). There is, however, a limit to what v values can be used.
Selecting ~y values much larger than 2 has been shown to result in gradients close to 0 for relatively low model
outputs, causing training to fail (Mukhoti et al.l 2020)). This paper will shed light on the other end of the
spectrum, showing that the Focal Loss gradients can become unstable whenever ~ is too small. More specif-
ically, we address a numerical instability of the Focal Loss that arises whenever a + is set to a value between
0 and 1. These v values can cause the Focal Loss derivative to become undefined and destabilize model
training due to a singularity. This singularity arises whenever the Focal Loss, in combination with a + on
the open unit interval, is used to learn a task for which a model can confidently predict a correct class label.
We will demonstrate that this numerical instability of the Focal Loss is not only a theoretical problem by
showing that a simple convolutional neural network (CNN), a vision transformer (ViT) (Wu et al., 2020), and
a 2D U-net (Ronneberger et al., [2015) can return undefined loss values during training whenever v values on
the open unit interval are used. Henceforth, we will refer to the y values between 0 and 1 as unstable v values.

The original Focal Loss paper (Lin et al., [2017) did not address this numerical instability and presents
experimental results generated with v between 0 and 1. While their findings show that training with
unstable v values does not always lead to instability, our experiments highlight certain training conditions
that increase the chance of encountering this instability.

For instance, will show that using unbalanced datasets increases the likelihood of encountering nu-
merical instability when using unstable v values. Especially in the medical field, collected datasets are
often class-imbalanced as a result of the prevalence of diseased patients (Salmi et al., [2024). Given that
the Focal Loss is designed to deal with class imbalance, using the Focal Loss in medical machine learning
tasks is not an uncommon approach (Ahmed et all [2022; |[Romdhane & Pr} [2020; [Tran et al., 2019). Class
imbalance is also encountered in other fields such as autonomous driving (Chen & Qinl 2022)) and fault
detection (Zareapoor et al. [2021). Due to the class imbalance in these tasks, the Focal Loss is also employed
in research on these topics (Wei et al., [2022; |Carranza-Garcia et al., |2021)). The optimal ~ value for any of
these applications could be in the unstable range. To avoid numerical instability, it may be necessary to use
a suboptimal value, which can in turn limit overall model performance. It is therefore crucial to address
this instability, so that all possible v can be considered without risking training instability.

This instability is likely not confined to the Focal Loss itself but may also influence other loss func-
tions that build upon or are drived from it. In recent years, various modifications of the Focal Loss have
been proposed, such as the Generalized Focal Loss (Li et al., |2020), the Adaptive Focal Loss (Islam et al.)
2024), and the Unified Focal Loss (Yeung et all [2022). The Generalized Focal Loss extends the Focal
Loss to jointly model classification confidence and localization quality in a joint representation, applying a
focusing parameter similar to the original Focal Loss. In the Adaptive Focal Loss (Islam et al., [2024]), the
focusing parameter is dynamically adjusted during training, and the Unified Focal Loss combines the Focal
Loss with the Focal Tversky Loss (Abraham & Khan) 2019) but constrains the focusing parameter to a fixed
range between 0 and 1. All these new loss functions build upon the Focal Loss and similarly employ the
focusing parameter as in the original formulation. As a result, they are likely to exhibit the same numerical
instability that we address in this paper.

In this paper, we highlight the origin of the instability and demonstrate how to resolve it. Without
altering the original behavior of the Focal Loss, our proposed stabilization approach ensures compatibility
with existing methods that employ the Focal Loss using these unstable v values. Our contribution is
therefore not only to provide evidence that the instability exists, but also to apply a minimally invasive
modification to eliminate it, while simultaneously eliminating the instability in all Focal Loss variants that
use the focusing parameter similarly.

2 Methods

This section will review the definition of the Focal Loss and its derivative to explain the origin of the
instability. We then show that the numerical instability becomes apparent when computing the gradients
of the original Focal Loss with unstable v values. Additionally, to show that this instability is not only a

Published in Transactions on Machine Learning Research (11/2025)

theoretical obstacle, we will demonstrate that under certain conditions, the instability can be induced in
binary classification and 2D segmentation tasks. Lastly, we present a modification of the original Focal Loss
that eliminates the instability whenever unstable v values are used.

2.1 Cross-entropy and the Focal Loss

The Focal Loss was introduced to address class imbalance by reducing the effect of easily classifiable examples,
thereby placing more emphasis on harder, misclassified ones (Lin et al.,[2017)). This is achieved by modulating
the standard cross-entropy loss in Equation with a scaling factor that is based on the prediction error
and a focusing parameter . This modulating factor ensures that the smaller the prediction error becomes,
the more the cross-entropy is downscaled. In other words, predictions that are closer to the correct label
(easy examples) are downscaled by the focusing parameter 4. Note that whenever a v of 0 is used, the
Focal Loss simplifies to the cross-entropy loss. For simplicity, without loss of generality, we will simplify the
cross-entropy loss function to the binary cross-entropy loss and reformulate the equations to a foreground
(L4) and background loss (L44). For consistency, we make use of the same notation for the ground truth
(y) and model output (p) as was used in the original Focal Loss paper (Lin et al.,|2017)). While the original
Focal Loss paper reformulates the loss as a foreground loss for notational convenience, this paper explicitly
highlights both the foreground and background components of the Focal Loss.

Lcr(y,p) = —ylog(p) — (1 —y)log(1 - p) (1)
N——
E.f.q ﬁbg
Le(y,p, 7, 00) = =gy (1 = p) ¥ log(p) — (1 — o) (1 — y) p” log(1 — p) (2)
L"fg ﬁbg

The Focal Loss, as defined in Equation 7 downscales both the foreground and background loss equally
with the focusing parameter . As shown in Equation [2| the Focal Loss also includes a parameter a; that
can be used to scale the contribution of the foreground and the background loss relative to each other.

2.2 Derivative of the Focal Loss

Figure [Ip and Figure show the foreground and background components of the Focal Loss for different
model outputs p when changing the value for the focusing parameter . These plots show that an increase
in v will cause the Focal Loss to show near-zero loss values for model outputs close to the ground truth
label, consequently lowering their associated gradients. As we previously decomposed the Focal Loss into

— y=0 - y=05 —— y=1 —— y=2 —— y=5
3.0 3.0 04 3
2.5 2.5
2.0 2.0 o -14 / o 21
=) > T ke
g 157 & 1.5 2 2
1.0 1 1.0 ° 5 "1-/
0.5 0.5 1
0.0 0.0 34 . . 01]]
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
p p p p

(a) (b) (c) (d)

Figure 1: Foreground (a) and background (b) components of the Focal Loss and their associated foreground
(¢) and background (d) derivatives. The losses and derivatives were calculated with different ~ values and a
fixed a; of 0.5. The orange markers indicate undefined gradient values as a result of a division by 0 in the
derivative of the Focal Loss and represent the model outputs when p is equal to 1 in Figure (¢) and 0 in
Figure (d).

Published in Transactions on Machine Learning Research (11/2025)

a foreground and background loss, we can define the Focal Loss derivative as the sum of the foreground
and background components, as shown in Equation (3). These two components are defined in Equations
and , and are displayed in Figure [l and Figur. The derivation of these equations is included in
Appendix [A7T]

d»CF(pa’%Oét) _ dﬁfg(pv’%at) + dﬁbg(P»’Y,Olt) (3)
dp dp dp
d'cfg(Pv%at) _ _ y—1 _ (1 _p)FY
447%4—*—at70 p)" " log(p) E— (4)
d‘cbg(p77aat) _ _ y—1 _ _ p’y
— (1 —ayg) | yp" " log(1l —p) - (5)

2.3 Focal Loss Instability

In the derivative of the Focal Loss, a (7 — 1) exponent is introduced in both the foreground and background
components. Whenever 0 < v < 1, this (7 — 1) term becomes negative, and the model output is raised to
the power of a negative number, creating a fraction with the model output in the denominator. An example
of this is illustrated in Equations @ and , showing the derivatives of the foreground and background loss

for v = 0.5.
0.5 VI-—
log(p) — p)
Vi=p p

dLygq(p,
4L1o(p. o) ly=0.5 = ((6)

dp

dﬂbg (pa at)
dp

03 = =1 =) (S lox1) - 222) ™
The scenarios involving a value of 0.5, where p equals 1 for the foreground and 0 for the background
component, are shown in Equations and @ These equations show that at these points, the fraction
introduced in the derivative leads to a division by 0, creating a singularity that causes training instability.
Although in this example v was set to 0.5, this singularity holds for all «v values between 0 and 1, as all these
values introduce a fraction in the Focal Loss derivative with the model output in the denominator.

dl 0

%b:m:o.s =y (ﬁ - 0) = Undefinded (8)
dﬁb (a) 0
STt|p:0,v:O.5 = _(1 - Oét) % — 0) = Undefinded (9)

Consider training a binary classification model with the Focal Loss and a « value of 0.5, to distinguish a
foreground class from a background class. When the foreground is easily separated from the background
class, the model will quickly produce high model outputs for the correct classes. Whenever these model
outputs are equal (within floating-point precision) to the ground truth value (y = p), the derivative
will become undefined due to a division by 0, consequently triggering the instability. When faced with
a more challenging task, the model is unlikely to produce model outputs equal to the ground truth,
thereby preventing instability from being triggered. Since most deep learning tasks are complex, this is
presumably why the instability is not always an issue and why it has not yet been addressed in the literature.

One important note to consider when discussing the stability of the Focal Loss is that whenever the
opposite of the ground truth is predicted by the model, a log(0) is introduced in the equation of the Focal
Loss, which also causes instabilities. Note that the instability that this paper addresses occurs whenever
the model produces output values that are equal to the ground truth. In other words, the log(0) instability
occurs when the prediction error becomes extremely large, whereas the instability that we address occurs
whenever the prediction error becomes near-zero. Since machine learning models are trained to minimize
prediction error, they are optimized towards a state where this instability will eventually occur if it is not
addressed.

Published in Transactions on Machine Learning Research (11/2025)

— y=0 y=05 —— y=1 — y=2 — y=5
0.0
V 0.6 1
15 15
_0 2 -
x 5 0.4+
2 10 £ 101 3 %
3 —0.41 3
<] < | 0.2 1
0- T T T o- T T T T T T 00 1 T T T
25 0 25 25 0 25 -25 0 25 25 0 25
X X X X

Figure 2: Computed values for the foreground (a) and background (b) components of the Focal Loss in
combination with the foreground (¢) and background (d) gradients. These losses and gradients were com-
puted with model outputs (x) that were not yet processed by the sigmoid and ranged between [-38,38]. Both
the losses and gradients were computed with the torchvision.ops.sigmoid_ focal loss function with an a; of
0.5, and different values for 7. The orange markers indicate the values for = that cause "NaN" values when
computing the loss gradients. They represents the model output when z is equal to 1 in Figure (¢) and 0 in
Figure (d).

2.3.1 Numerical Gradient Computation

In this subsection, we show that the instability occurs when computing the gradients with the original
Focal Loss function (torchvision.ops.sigmoid__ focal loss) used in the seminal work (Lin et all 2017). This
implementation of the Focal Loss applies a sigmoid activation function to the model outputs as shown in
Equation , in which the model output prior to applying the sigmoid is defined as x. After the sigmoid, the
Focal Loss is calculated using Equation . Figure [2p and Figure [2b show the foreground and background
components of the Focal Loss when computing them with the original Focal Loss function.

1

- _ 1
l1+e® (10)

p=o(z)
Similar to Figure[l] Figure 2] shows the foreground and background loss in combination with their associated
gradients. Figure [T] shows the Focal Loss for model outputs that are processed by a sigmoid, and Figure [2]
shows the Focal Loss for unprocessed model outputs (z). These unprocessed output values are not confined
to a range of [0,1] but can theoretically span from [—oo,00]. Figure [2c and Figure present the computed
Focal Loss gradients for the foreground and background components of the Focal Loss. The orange markers
in Figure[2]indicate the output values that cause the gradient to become undefined, consequently returning a
"NaN". The points at which the loss becomes undefined indicate where instability arises in the computation
of the original Focal Loss.

2.4 Stabilized Focal Loss

As described in the previous section, the numerical instability of the Focal Loss arises as a result of a division
by 0 in its derivative. One commonly used approach to prevent a division by 0 in a loss function is the
introduction of a smoothing constant € in the denominator of the loss, which is a stabilization method that is
also applied to the well-known Dice loss (Milletari et al.,|2016; |Sudre et al.,|2017)). We propose a modification
of the original Focal Loss that leads to the introduction of a smoothing constant in the denominator of its
derivative when unstable v values are used. This slightly differs from what is done to stabilize the Dice
loss, in which the division by zero is prevented in the loss itself. Instead, we modify the original Focal
Loss with a parameter €, so that the € term is placed in the denominator of its derivative and not in
the loss itself. This ultimetaly prevents division by zero when computing the gradient with unstable -y values.

The modified Focal Loss and the derivatives for its foreground and background components are de-

Published in Transactions on Machine Learning Research (11/2025)

fined as shown in Equations , (12), and . By introducing a constant denominator term independent
of the model output, the proposed modification ensures numerical stability for + values between 0 and
1. This prevents division by zero when the prediction approaches the ground truth within floating-point
precision, effectively eliminating the instability in the original Focal Loss. Note that smaller v values will
cause the denominator to approach 0 more quickly for model outputs close to the ground truth, compared
to when a larger value for 7 is used. This means that a larger e is required to ensure stability whenever
a smaller v value is used. We ran the experiments in this paper with a value of € equal to le — 3, as it
stabilized model training whenever a + as small as 0.1 was used.

Lem (Y, 0,7, at,€) = —awy (1 — p+€)7log(p) — (1 — a)(1 — y) (p + €); log(1 — p) (11)
Lgg Lpg

dﬁfg(p(’l;’) _ o (7(1 —p+e) log(p) — Uoptey ﬂzf e)v> (12)

dﬁbg(p&;’at’ o a-ay (7 (p+€)" log(1 — p) — (pf_jv) (13)

When revisiting the example in which ~ is equal to 0.5, the derivatives for the foreground and background
loss become equal to Equation and . When the model output is again equal to 1 in the foreground
and 0 in the background loss, as shown in Equation and , the division by zero is prevented by the
smoothing constant e. The implementation details of the modified version of the Focal Loss can be found in

Appendix L sy) 0.5 VI=pF
fg\D, 0, € . - P €
i ly=0.5 = (57 og(p) P) (14)
dLg(p, at, €) 0.5 D+ e
Sbg D OC)) (1 — 2 log(1—p) — 1
dp |"/*0~5 (at) \/m Og(p) 1 —p (5)

AL (cu,€) 0 e
fgdipthz:lwzo‘f) =0 (ﬁ - T = —Olt\/g (16)
dﬁbg(at, 6)

1) m = (1 a0 (= ¥) = (1 a0y (17

2.5 Experiments

To demonstrate the instability of the Focal Loss, we conducted several experiments. First, we tested whether
the instability could occur when training a basic convolutional neural network (CNN) (shown in Appendix
to perform a binary classification task on the MNIST dataset (Deng, [2012). We then examined if this
instability could be induced on a larger and more complex dataset, the CIFAR-10 dataset (Krizhevsky!
et al.l |2009)), using a CNN and a Vision Transformer (ViT) (Wu et al., 2020). In a final experiment, we
evaluated whether the instability could be observed during the training of a 2D U-Net (Ronneberger et al.
2015)) (implementation shown in on a segmentation task using the MNIST dataset. This subsection
will describe how these experiments were set up.

2.5.1 Binary Classification - MNIST

In the first experiment, we divided the MNIST dataset (Deng}, [2012)), a dataset composed of handwritten
numbers ranging from 0 to 9, into two classes, where a threshold determined which numbers belonged to
which class. The goal of the CNN was to learn to distinguish between the two classes by training for 100
epochs. As we are interested in the stability of the Focal Loss during training, we did not focus on model
performance, but rather on whether the model could complete all 100 epochs without encountering any
instabilities. In this experiment, we tested stable (0,1,2,3,4,5) and unstable v values (0 < v < 1) to verify
that the instability only occurs when using unstable v values.

To transform the multiclass MNIST dataset into a dataset that could be used for a binary classifica-

Published in Transactions on Machine Learning Research (11/2025)

Table 1: The number of samples in each class of the MNIST dataset (Deng), [2012)) when using different class
distributions. The class distribution was determined by a binarization threshold ranging from 0 to 8. The
threshold value indicates the cut-off value for the classes belonging to class A or class B. All values larger
than the threshold belonged to class B, and all classes below or equal to the threshold belonged to class A.

Threshold Samples Class A Samples Class B Class A/B ratio

0 5.923 54.077 0.11
1 12.665 47.335 0.27
2 18.623 41.377 0.45
3 24.754 35.246 0.70
4 30.596 29.404 1.04
5 36.017 23.983 1.50
6 41.935 18.065 2.32
7 48.200 11.800 4.08
8 54.051 5.949 9.09

401 /12131-15146]71714
- 121 A 3 EE 0 B3 R v T B

Figure 3: Example input images from the MNIST dataset (Deng} 2012) for digits 0-9. The original images
are shown in (a), while (b) and (c¢) illustrate the effects of adding “Medium Noise” and “High Noise,”
respectively. The "Medium Noise" was generated by multiplying uniformly sampled noise between 0 and 1
by 0.5, while the "High Noise" was generated by multiplying this noise by 0.75.

tion task, we applied a threshold to the MNIST class labels, restructuring the dataset into a dataset with
two classes: a foreground (A) and background (B) class. Because the number of samples for each class of
the MNIST training dataset is approximately the same (Hamidi & Borji, 2010)), changing this threshold
allows for incrementally modifying the foreground-background ratio. Assessing the effect of changing
this threshold provides insight into whether an imbalance in classes influences training stability whenever
unstable v values are used. For example, a threshold of 4 means that the MNIST numbers with classes
0-4 belong to class A and the classes 5-9 belong to class B. Adjusting this threshold, therefore, changes the
degree of class imbalance. By increasing the imbalance, we intentionally introduced a bias toward the ma-
jority class, resulting in more confident predictions for the correct labels, thereby aiming to induce instability.

The initial part of this experiment was designed to test whether increasing class imbalance in the
classification task influenced the expression of the instability. The second part of the experiment repeated
the initial experiment, but trained the CNN with random noise added to the input images. By adding
noise, we can evaluate whether increasing the classification task’s difficulty mitigates the unstable behavior
of the Focal Loss. The noise was generated by sampling random values from a uniform distribution over
[0, 1). These values were then scaled by 0.5 and 0.75 to produce what we refer to as “Medium Noise” and
“High Noise,” respectively. This randomly sampled noise was then added to the input images. Examples of
input images with and without added noise are shown in Figure [3]

Published in Transactions on Machine Learning Research (11/2025)

2.5.2 Binary Classification - CIFAR-10

The CIFAR-10 dataset (Krizhevsky et al. [2009) is composed of images belonging to one of the following
classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, or truck. To perform binary classification
on this dataset, the classes were partitioned into two classes: animals and vehicles. Each class of the
original CIFAR-10 classes contained 5000 images, and with 6 animal and 4 vehicle classes, the classes for
the restructured dataset became slightly imbalanced (6:4 ratio). This setup, with its slight imbalance and
the use of Focal Loss, reflects a realistic scenario commonly encountered in real-world datasets. Following
dataset preparation, a Vision Transformer (ViT) (Wu et al., 2020) and a CNN were trained to perform the
binary classification task. The CNN was the same model that was used in the MNIST experiment, with
some minor adjustments to account for the difference in input sizes. The used ViT (Wu et al.l 2020) took
224x224 images as input and divided each image into 16 x16 patches, before flattening them, and projecting
each patch into a learnable embedding. More information about the used ViT can be found in Appendix
[A75] Both models were trained for 1000 epochs with a batch size of 128 and a y and «; of 0.5 without using
pre-trained weights. We trained on the complete training dataset, as we did not perform any hyperparameter
optimization or testing.

2.5.3 2D Segmentation - MNIST

In the final experiment, we tested whether the instability could be induced when training a model to segment
the numbers in the MNIST dataset using a 2D U-net |[Ronneberger et al.| (2015). Since the MNIST dataset
is intended for classification tasks, it does not include segmentation masks. We therefore applied a threshold
of 0.5 to the input images, setting all pixels that exceeded this value to the foreground of the segmentation
mask, and setting all pixels below this value to the background class. Similar to the binary classification
task, we repeated the experiment after adding noise to the input data to test whether increasing the difficulty
of the segmentation task influenced training stability. The noise was added after creating the segmentation
masks to maintain a consistent segmentation mask across experiments. After preprocessing of the data, the
2D U-net was trained with the Focal Loss using a v and a; of 0.5 for 1000 epochs. More details on the U-Net
architecture can be found in Appendix [A6]

3 Results

In this section, we demonstrate the Focal Loss instability that is caused by unstable v values. We report our
findings for the original Focal Loss and also analyze how our modified version impacts training stability.

3.1 Binary Classification - MNIST

For the binary classification task, we trained the CNN for 100 epochs with v values ranging from 0 to 5 using
the different class A/B ratios that are shown in Table|ll Whenever a "NaN" was encountered during training,
training was stopped, otherwise, training would continue until all 100 epochs were completed. The results
for these experiments are presented in Figure [l where the number of completed epochs is shown for different
~ and A/B class ratios. The left plot in Figure shows that when v was set to 0 or to values greater than 1,
training remained stable across all class A /B ratios, completing all 100 epochs without any signs of instability.

The middle-column figure shows the results of training with « values ranging from 0.1 to 0.9 in in-
crements of 0.1 From this figure, we see that using « values between 0 and 1 frequently causes instability.
These instabilities quickly arise, especially for smaller v values and unbalanced datasets. However, when
using a v of 0.9 in combination with a relatively balanced dataset, all 100 epochs were completed. It is,
however, not unlikely that whenever these models were trained for more than 100 epochs, the instability
would still have been found in a later epoch.

Figure @b and [show that adding noise has a mitigating effect on how quickly the instabilities are
detected. These figures indicate that higher levels of noise result in a greater number of v values exhibiting
stable behavior. Moreover, introducing noise enables a wider range of class distributions to achieve stable

Published in Transactions on Machine Learning Research (11/2025)

training outcomes, particularly for larger v values. Furthermore, the left plot in Figure [db and Figure [dc
also show that adding noise did not affect the number of completed epochs when training with stable v values.

After stabilizing the Focal Loss with the smoothing constant, all experiments were repeated, for

X Not Completed * Completed
Unstable/Stable Focal loss 0 Unstable Focal loss 100 Stable Focal loss 100
9.09 9.09 9.09
4.08 80 o 4.08 80 » 4.08 80 o
0 2.32 S 91232 S 9232 S
T 15 60 & & 15 60 & & 15 60 i
£ 104 3 o4 T ZLo4 2
g o7 40 2 g o7 40 2 2 07 40 2
< 0.45 E Toss £ Toss g
[} (&} &)
0.27 20 0.27 20 0.27 20
0.11 0 0.11 0 0.11 0
0.10.20.30.40.50.60.70.80.9 0.10.20.30.40.50.60.70.80.9
y Y
(a) No noise
X Not Completed * Completed
Unstable/Stable Focal loss Unstable Focal loss Stable Focal loss
00 100 100
9.09
4.08 80 o 80 w 80 w
2232 S e S e S
T 15 60 & © 60 & O 60
% o7 o 3 g 4% 3 2 40 2
T 0.45 E S E T £
0.27 20 © 20 © 20 ©
0.11 0 0 0
0.10.20.30.40.50.60.70.80.9 0.10.20.30.40.50.60.70.80.9
y Y
(b) Medium Noise
X Not Completed * Completed
Unstable/Stable Focal loss Unstable Focal loss Stable Focal loss
100 100 100
9.09 9.09
4.08 80 o 80 w 4.08 80 u
0232 § ° § 0232 §
15 60 & © 60 & & 15 60 o
g 104 T2 T ZLo04 3
8 07 o 32 g 0 2 8 07 a0 2
S 0.45 E 3 E T o045 g
(@] (@] O
0.27 20 20 0.27 20
011 0 0 011 0
0.10.20.30.40.50.60.70.80.9 0.10.20.30.40.50.60.70.80.9
y Y

(c) High Noise

Figure 4: (a): Binary classification results on the MNIST dataset, illustrating the number of completed
epochs for different v values under varying class A/B ratios. The left plots show model results using vy values
of 0,1,2,3,4, and 5. The middle and left plots show the number of completed epochs whenever the v values
of 0.1 to 0.9 with increments of 0.1 are used, where the middle plot shows the results when training with
the original Focal Loss, and the plot on the right shows the results when using the stabilized Focal Loss.
Each plot in the figures includes a marker that indicates whether all 100 epochs were completed. (b-c):
Experiment results when the initial experiment is repeated with "Medium" and "High" amounts of noise
added to the input images to increase the difficulty of the classification task.

Published in Transactions on Machine Learning Research (11/2025)

which the results are shown on the right in Figure [d] These results show that the modification of the Focal
Loss successfully eliminated the instability, as no more instabilities are reported in any of the experiments.

3.2 Binary Classification - CIFAR-10

Figure [5h shows the Focal Loss values when training the CNN and ViT to perform the binary classification
tasks on the CIFAR-10 dataset. Similar to the classification results on the MNIST dataset, Figure [ph shows
that the numerical instability occurs during training for both models. Figure [5p shows the results when the
models were trained with the stabilized Focal Loss. Similar to the MNIST classification experiments, no
further instabilities were reported when the models were trained with the stabilized Focal Loss, and both
models completed training of all 1000 epochs.

3.3 2D Segmentation - MNIST

The results of training the 2D U-net are shown in Figure[6] This figure reports the computed Focal Loss for
each epoch, but halted training whenever a "NaN" was encountered or all 1000 epochs were completed. When

CNN —— ViT
Unstable Focal Loss Stable Focal Loss
0.30 — 0.30
0.25 1 i 0.25 1
1
» 0.20 1 i «» 0.20 1
%) 1 w
o : o
w 0.15 1 1 = 0.15 1
|9 1 v
(o] 1 (o]
- 0.10 1] Y- 0.10 A
1
0.05 ! 0.05
1
0.00 L . . : 0.00 . . : .
0 200 400 600 800 1000 0 200 400 600 800 1000
Epoch Epoch

(a) (b)

Figure 5: Results after training the CNN and ViT with the Focal Loss using a v and a; of 0.5 for 1000
epochs on the CIFAR-10 dataset with the original Focal Loss (a), and the stabilized Focal Loss (b). A cross
indicates the epoch at which a "NaN" was encountered during training.

—— No Noise —— Medium Noise = —— High Noise
Unstable Focal Loss Stable Focal Loss
0.04 : 0.04
1
1
RER I » 0.037
%] : wn
o H o
S 0.02 : T 0.02 A
£ : £
0.01 4 + 0.01 4
1
0.00 T T T —L 0.00 — = T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Epoch Epoch

(a) (b)

Figure 6: Results after training the 2D U-net with the Focal Loss using a v and «; of 0.5 for 1000 epochs
on the MNIST dataset with the original Focal Loss (a), and the stabilized Focal Loss (b). The model was
trained without noise, and with "Medium" and "High" noise levels. A cross indicates the epoch at which a
"NaN" was encountered during training.

10

Published in Transactions on Machine Learning Research (11/2025)

no noise was added to the input data, instability was quickly observed. Introducing a small amount of noise
delayed its onset, and at higher noise levels, instability was no longer observed. The segmentation results
are consistent with the results from the binary classification task. Again, when using the modified version
of the Focal Loss, no more instabilities were reported, and all three models were trained to completion.
Note that the losses have different asymptotes, which originate from the way that the noise was added and
the segmentation masks were generated. Introducing noise before generating the masks may have reduced
the clarity of the boundary between foreground and background. Consequently, accurately determining this
boundary becomes more difficult, leading to an increase in loss and a corresponding shift in the asymptote

4 Discussion and Conclusion

This paper addresses a hitherto unreported instability of the Focal Loss when the focussing parameter -y is
set to a value between 0 and 1. We showed that this instability is not only mathematically derivable but
can also be demonstrated using some simple deep learning experiments. Due to the singularity that arises
in the derivative of the Focal Loss when using these unstable v values, training deep learning models like
a basic CNN, a ViT, or a 2D U-net can lead to unstable behavior. Our experiments suggest that when
training with the Focal Loss using unstable v values, datasets with severe class imbalance are more prone
to exhibiting instabilities earlier than when using balanced datasets, and that task complexity further
influences the rate at which these instabilities manifest. A likely explanation is that models trained on easy
tasks tend to overfit quickly, producing highly confident predictions. As a result, the model outputs become
equal to the true class values, which leads to a singularity in the derivative of the Focal Loss consequently
causing instability. The more difficult the task at hand, the more epochs are needed to reach a state where
the predictions are confident enough to trigger the instability. This is also demonstrated in our experiments,
which show that increasing task difficulty by adding noise delays the onset of the instability. With the
presented experiments, we highlight that the instability is not necessarily an issue in all training scenarios,
but that it can arise under certain conditions.

To resolve this instability, we proposed a modification of the original Focal Loss by adding a smoothing
constant to the term that downscales the cross-entropy loss. This ensures that the singularity in the Focal
Loss derivative is eliminated, consequently stabilizing model training. While unstable v values triggered
instability with the original Focal Loss in our experiments, training with the modified version led to
completing all epochs in each experiment.

In this paper, we provide numerical and experimental evidence of the existence of this Focal Loss
instability. Our experiments highlight that the instability can be induced when training deep learning
models. We therefore recommend refraining from using ~ values that fall between 0 and 1 when using the
original Focal Loss. If by design, the only possible values for v fall between 0 and 1, as is the case for
the Unified Focal Loss (Yeung et al., 2022)), we recommend using our stabilized version of the Focal Loss
to eliminate the chance of encountering instability. [Yeung et al| (2022)) did not report that their method
suffered from numerical instabilities, even though their loss makes use of these unstable v values. Their
published code shows clipping of the model outputs, which would prevent their model from reaching model
outputs that trigger the instability. However, no explanations were provided for the clipping operation.
Additionally, their paper focuses on complex segmentation tasks, which, as we have shown, are less prone
to expressing instability. It could be possible that applying the Unified Focal Loss to more simplistic
segmentation tasks could still trigger the instability.

In summary, we identified an unaddressed numerical instability in the Focal Loss and proposed the
addition of a stabilizing smoothing constant to prevent it from destabilizing model training. Our experi-
ments showed that after the addition of this smoothing constant to the Focal Loss, the instabilities were
effectively removed. We therefore recommend either refraining from using the unstable v values when using
the Focal Loss or adopting our modification to prevent instabilities from occurring.

11

Published in Transactions on Machine Learning Research (11/2025)

Acknowledgements

This research has been funded by a NWO Starter Grant (Project Reference: 510.023.062). Additionally, KVH
gratefully acknowledges funding from the Dutch Research Council (NWO, Vidi grant no. 09150171910043)

References

Nabila Abraham and Naimul Mefraz Khan. A novel focal tversky loss function with improved attention
u-net for lesion segmentation. In 2019 IEEE 16th international symposium on biomedical imaging (ISBI
2019), pp. 683-687. IEEE, 2019.

Syed Rakin Ahmed, Andreanne Lemay, Katharina V Hoebel, and Jayashree Kalpathy-Cramer. Focal loss
improves repeatability of deep learning models. In Medical Imaging with Deep Learning, 2022.

Manuel Carranza-Garcia, Pedro Lara-Benitez, Jorge Garcia-Gutiérrez, and José C Riquelme. Enhancing
object detection for autonomous driving by optimizing anchor generation and addressing class imbalance.
Neurocomputing, 449:229-244, 2021.

Guancheng Chen and Huabiao Qin. Class-discriminative focal loss for extreme imbalanced multiclass object
detection towards autonomous driving. The Visual Computer, 38(3):1051-1063, 2022.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141-142, 2012.

Mandana Hamidi and Ali Borji. Invariance analysis of modified ¢2 features: case study—handwritten digit
recognition. Machine Vision and Applications, 21:969-979, 2010.

Md Rakibul Islam, Riad Hassan, Abdullah Nazib, Kien Nguyen, Clinton Fookes, and Md Zahidul Is-
lam. Enhancing semantic segmentation with adaptive focal loss: A novel approach. arXiv preprint
arXiw:2407.09828, 2024.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin Hu, Jun Li, Jinhui Tang, and Jian Yang. Generalized
focal loss: Learning qualified and distributed bounding boxes for dense object detection. Advances in neural
information processing systems, 33:21002-21012, 2020.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision, pp. 2980-2988, 2017.

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural networks for
volumetric medical image segmentation. In 2016 fourth international conference on 3D wision (3DV), pp.
565-571. ITeee, 2016.

Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip Torr, and Puneet Dokania.
Calibrating deep neural networks using focal loss. Advances in neural information processing systems, 33:
15288-15299, 2020.

Taissir Fekih Romdhane and Mohamed Atri Pr. Electrocardiogram heartbeat classification based on a deep
convolutional neural network and focal loss. Computers in Biology and Medicine, 123:103866, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical image computing and computer-assisted intervention-MICCAI 2015: 18th inter-
national conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pp. 234-241. Springer,
2015.

Mabrouka Salmi, Dalia Atif, Diego Oliva, Ajith Abraham, and Sebastian Ventura. Handling imbalanced
medical datasets: review of a decade of research. Artificial intelligence review, 57(10):273, 2024.

12

Published in Transactions on Machine Learning Research (11/2025)

Carole H Sudre, Wengqi Li, Tom Vercauteren, Sebastien Ourselin, and M Jorge Cardoso. Generalised dice
overlap as a deep learning loss function for highly unbalanced segmentations. In Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop,
DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017,
Québec City, QC, Canada, September 14, Proceedings 3, pp. 240-248. Springer, 2017.

Juan Terven, Diana M Cordova-Esparza, Alfonso Ramirez-Pedraza, Edgar A Chavez-Urbiola, and Julio A
Romero-Gonzalez. Loss functions and metrics in deep learning. arXiv preprint arXiv:2307.02694, 2023.

Giang Son Tran, Thi Phuong Nghiem, Van Thi Nguyen, Chi Mai Luong, and Jean-Christophe Burie. Im-
proving accuracy of lung nodule classification using deep learning with focal loss. Journal of healthcare
engineering, 2019(1):5156416, 2019.

Xiao-Li Wei, Chun-Xia Zhang, Sang-Woon Kim, Kai-Li Jing, Yong-Jun Wang, Shuang Xu, and Zhuang-
Zhuang Xie. Seismic fault detection using convolutional neural networks with focal loss. Computers €
Geosciences, 158:104968, 2022.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi Tomizuka,
Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based image representation
and processing for computer vision, 2020.

Michael Yeung, Evis Sala, Carola-Bibiane Schonlieb, and Leonardo Rundo. Unified focal loss: Generalising
dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Computerized
Medical Imaging and Graphics, 95:102026, 2022.

Masoumeh Zareapoor, Pourya Shamsolmoali, and Jie Yang. Oversampling adversarial network for class-
imbalanced fault diagnosis. Mechanical Systems and Signal Processing, 149:107175, 2021.

13

Published in Transactions on Machine Learning Research (11/2025)

A Appendix

A.1 Derivation Focal Loss Derivative

This Appendix contains the derivations of the Focal loss derivative. We provide separate derivations for the
foreground and background classes.

A.1.1 Complete Focal loss

Le(y,p,7,0u) = —apy (1 —p)"log(p) — (1 — ay)(1 —y) p” log(1 — p) (18)
Lsg Lig

A.1.2 Foreground Derivative

dﬁfg(p,%at et = <d o&(p) + dlc:jg(p)(1 _p)7>
~ar (=201 - 5 g + L2 (19)
— (m PP~ log(p) — ‘pp))

A.2 Background Derivative

dﬁbg(pv'-%at) _ dpl leg(l—p) ol
—a ly=0 = —(1 — o) i log(1 —p) + PR

—(1— o) (w”‘llog(l—p)— v)

1-p

14

© W N e TR W N

57
58
59
60
61
62

Published in Transactions on Machine Learning Research (11/2025)

A.3 Modified Focal Loss

In this Appendix, we show the Python implementation of the modified version of the original Focal loss
(2017)). Modifications to the original code are indicated by the "#Modification" comment.

import torch
import torch.nn.functional as F

from torchvision.utils import _log_api_usage_once #Modi fication

def sigmoid_focal_loss_modified(
inputs: torch.Tensor,
targets: torch.Tensor,
alpha: float = 0.25,
gamma: float 2,
reduction: str = "none",
epsilon=1e-3 #Modification

) -> torch.Tensor:
nmmnn
Modified version of the Focal Loss. The epsilon scalar that is
added to the output stabilizes the model training. Whenever
epsilon is set to 0, it simplifies to the original Focal loss.

Args:
inputs (Tensor): A float tensor of arbitrary shape.
The predictions for each exzample.
targets (Tensor): A float tensor with the same shape as inputs.
Stores the binary classification label for each element
in inputs (0 for the negative class and
1 for the positive class).
alpha (float): Weighting factor in range (0,1) to balance
positive vs negative examples or -1 for
ignore. Default: "~ 0.25°".
gamma (float): Ezpoment of the modulating factor (1 - p_t) to
balance easy vs hard examples. Default: "~"2°°
epsilon(float): Smoothing constant preventing the
instabilities when gamma values between 0 and 1
are used. Default: "~"1e-3°°
reduction (string): *“'mone’' " [" 'mean’'”’ |

S o ho o

sum

“'none'”": No reduction will be applied to the output.
“'mean'"": The output will be averaged.
“'sum'": The output will be summed.

Default: " 'mone'”"

Returns:

Loss tensor with the reduction option applied.
#Modification of the Original implementation from
https://github.com/facebookresearch/fvcore/blob/master/fvcore/nn/focal_loss.py

if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(sigmoid_focal_loss_modified) #Modification
p = torch.sigmoid(inputs)
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets,
reduction="none")
p_t = (p) * targets + (1 - p) * (1 - targets)
loss = ce_loss * ((1 - p_t+epsilon) ** gamma) #Modification

if alpha >= 0O:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss

Check reduction option and return loss accordingly

if reduction == "none":
pass

15

63
64
65
66
67
68
69
70
71
72
73

Published in Transactions on Machine Learning Research (11/2025)

elif reduction == "mean":

loss = loss.mean()
elif reduction == "sum":

loss = loss.sum()
else:

raise ValueError(

f"Invalid Value for arg 'reduction':
Supported reduction modes:

)

return loss

'{reduction} \n
|511m|"

16

© 0 N O U A W N e

Published in Transactions on Machine Learning Research (11/2025)

A.4 CNN for Binary and Muilticlass classification

A summary of the CNN (modified from a CNN in a Pytorch Tutorial https://pytorch.org/tutorials/
beginner/blitz/cifar10_tutorial.html)) that was used for binary classification is shown in Table [3] A
code snippet that displays the implementation of this model in Python is also provided below.

Table 2: Summary of the binary classification CNN when using a batch size of 64 to train on the MNIST
dataset

Layer (type:depth-idx) Owutput Shape Param #
CNN (64, 1] -

Conv2d: 1-1 (64, 6, 24, 24] 156
MaxPool2d: 1-2 64, 6, 12, 12] -

Convad: 1-3 64, 16, 8, 8] 2.416
MaxPool2d: 1-4 (64, 16, 4, 4] -

Linear: 1-5 [64, 120] 30.840
Linear: 1-6 (64, 84] 10.164
Linear: 1-7 (64, 1] 85

Table 3: Summary of the binary classification CNN when using a batch size of 128 to train on the CIFAR-10

dataset
Layer (type:depth-idx) Owutput Shape Param #
CNN [128, 3] -
Conv2d: 1-1 [128, 6, 28, 28] 156
MaxPool2d: 1-2 [128, 6, 14, 14] -
Convad: 1-3 (128, 16, 10, 10] 2.416
MaxPool2d: 1-4 [128, 16, 5, 5] -
Linear: 1-5 [128, 120] 48.120
Linear: 1-6 [128, 84] 10.164
Linear: 1-7 [128, 1] 85

import torch.nn as nn

import torch.nn.functional as F
import torch

from torchinfo import summary

class CNN(nn.Module):
def __init__(self,no_classes=1):

super () . __init__Q)
self.channels=channels
Conv_output_size=int ((((input_size-4)/2)-4)/2)
self.convl = nn.Conv2d(channels, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)

self.fcl = nn.Linear(Conv_output_size*Conv_output_size*16, 120)
self.fc2 = nn.Linear (120, 84)
self.fc3 = nn.Linear(84, no_classes)

def forward(self, x):

self .pool(F.relu(self.convi(x)))
self.pool(F.relu(self.conv2(x)))
torch.flatten(x, 1)

»
o n

x = F.relu(self.fcl1(x))

x = F.relu(self.fc2(x))
x = self.fc3(x)
return x

17

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

Published in Transactions on Machine Learning Research (11/2025)

A.5 Architecture VisionTransformer (ViT)

Summary of the Vision Transformer architecture. More details on this architecture can be found at https:
//huggingface.co/google/vit-base-patchl16-224,

Table 4: Summary of the Vision Transformer architecture

Layer (type:depth-idx) Output Shape Param #
VisionTransformer - 152,064
PatchEmbed: 1-1 - -
Conv2d: 2-1 — 590,592
Identity: 2-2 - -
Dropout: 1-2 - -

Identity: 1-3 - -
Identity: 1-4 - -
Sequential: 1-5 - -

Block: 2-x (repeated 14 times) — -

LayerNorm - 1,536
Attention - 2,362,368
Identity - -
Identity - -
LayerNorm - 1,536
Mip — 4,722,432
Identity - -
Identity - -
LayerNorm: 1-6 - 1,536
Identity: 1-7 - -
Dropout: 1-8 - -
Linear: 1-9 - 769
Total params: 85,799,425
Trainable params: 85,799,425

18

https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/google/vit-base-patch16-224

© 0 N e U A W N e

Published in Transactions on Machine Learning Research (11/2025)

A.6 U-Net

The U-Net [Ronneberger et al.| (2015) implementation used in this paper was adapted from https://github.
com/clemkoa/u-net/blob/master/unet/unet.py with some minor modifications.

Table 5: Summary of the 2D U-Net architecture when using a batch size of 64

Layer (type:depth-idx) Output Shape Param #
UNet [64, 1, 28, 28] -

Conv2d: 3-1 [64, 64, 28, 28] 640
BatchNorm2d: 3-2 64, 64, 28, 28] 128
Conv2d: 3-4 64, 64, 28, 28| 36,928
BatchNorm2d: 3-5 64, 64, 28, 28| 128
Sequential: 3-7 64, 128, 14, 14] 221,952
Sequential: 3-8 64, 256, 7, 7] 886,272
Sequential: 3-9 64, 512, 3, 3] 3,542,016
Sequential: 3-10 64, 1024, 1, 1] 14,161,920
ConvTranspose2d: 3-11 64, 512, 2, 2] 2,097,664
Sequential: 3-12 64, 512, 3, 3] 7,080,960
ConvTranspose2d: 3-13 64, 256, 6, 6] 524,544
Sequential: 3-14 64, 256, 7, 7) 1,771,008
ConvTranspose2d: 3-15 64, 128, 14, 14] 131,200
Sequential: 3-16 64, 128, 14, 14] 443,136
ConvTranspose2d: 3-17 64, 64, 28, 28] 32,832
Sequential: 3-18 64, 64, 28, 28] 110,976
Conv2d: 1-10 64, 1, 28, 28] 65

Total params 31,042,369
Trainable params 31,042,369
Non-trainable params 0

Total mult-adds (G) 36.16
Input size (MB) 0.20
Forward/backward size (MB) 425.34
Params size (MB) 124.17
Estimated Total Size (MB) 549.71

#Downloaded and modified from:
#https://qithub. com/clemkoa/u-net/blob/master/unet/unet.py

import torch
from torch import nn
import torch.nn.functional as F

class DoubleConv(nn.Module) :
def __init__(self, in_ch, out_ch):

super (DoubleConv, self).__init__()

self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d (out_ch),
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d (out_ch),
nn.ReLU(inplace=True),

def forward(self, x):
x = self.conv(x)
return x

class Up(nn.Module) :
def __init__(self, in_ch, out_ch):
super (Up, self).__init__Q)
self.up_scale = nn.ConvTranspose2d(in_ch, out_ch,
kernel_size=2, stride=2)

def forward(self, x1, x2):
x2 = self.up_scale(x2)

diffY = x1.size()[2] - x2.size() [2]

19

https://github.com/clemkoa/u-net/blob/master/unet/unet.py
https://github.com/clemkoa/u-net/blob/master/unet/unet.py

Published in Transactions on Machine Learning Research (11/2025)

34 diffX = x1.size() [3] - x2.size() [3]

35

36 x2 = F.pad(x2, [diffX // 2, diffX - diffX // 2,
37 diffy // 2, diffY - diffYy // 21)

38 x = torch.cat([x2, x1], dim=1)

39 return x

40

41
42 class DownLayer (nn.Module) :

43 def __init__(self, in_ch, out_ch):

44 super (DownLayer, self).__init__()

45 self.pool = nn.MaxPool2d(2, stride=2, padding=0)
46 self.conv = DoubleConv(in_ch, out_ch)

a7

48 def forward(self, x):

49 x = self.conv(self.pool(x))

50 return x

51

52
53 class UpLayer(nn.Module) :

54 def __init__(self, in_ch, out_ch):

55 super (UpLayer, self).__init__Q)

56 self.up = Up(in_ch, out_ch)

57 self.conv = DoubleConv(in_ch, out_ch)
58

59 def forward(self, x1, x2):

60 a = self.up(xl, x2)

61 x = self.conv(a)

62 return x

63

64
65 class UNet(nn.Module):

66 def __init__(self,channels=1, dimensions=1):
67 super (UNet, self).__init__Q)

68 self.convl = DoubleConv(channels, 64)
69 self.downl = DownLayer (64, 128)

70 self.down2 = DownLayer (128, 256)

71 self.down3 = DownLayer (256, 512)

72 self.down4 = DownLayer (512, 1024)

73 self.upl = UpLayer(1024, 512)

74 self.up2 = UpLayer(512, 256)

75 self.up3 = UpLayer (256, 128)

76 self.up4 = UpLayer (128, 64)

77 self.last_conv = nn.Conv2d(64, dimensions, 1)
78

79 def forward(self, x):

80 x1 = self.convi(x)

81 x2 = self.downl(x1)

82 x3 = self.down2(x2)

83 x4 = self.down3(x3)

84 x5 = self.down4(x4)

85 x1_up = self.upl(x4, x5)

86 x2_up = self.up2(x3, x1_up)

87 x3_up = self.up3(x2, x2_up)

88 x4_up = self.up4(xl, x3_up)

89 output = self.last_conv(x4_up)

90 return output

20

	Introduction
	Methods
	Cross-entropy and the Focal Loss
	Derivative of the Focal Loss
	Focal Loss Instability
	Numerical Gradient Computation

	Stabilized Focal Loss
	Experiments
	Binary Classification - MNIST
	Binary Classification - CIFAR-10
	2D Segmentation - MNIST

	Results
	Binary Classification - MNIST
	Binary Classification - CIFAR-10
	2D Segmentation - MNIST

	Discussion and Conclusion
	Appendix
	Derivation Focal Loss Derivative
	Complete Focal loss
	Foreground Derivative

	Background Derivative
	Modified Focal Loss
	CNN for Binary and Multiclass classification
	Architecture VisionTransformer (ViT)
	U-Net

