
Under review as submission to TMLR

A Note On The Stability Of The Focal Loss

Anonymous authors
Paper under double-blind review

Abstract

The Focal loss is a widely deployed loss function that is used to train various types of deep
learning models. This loss function is a modification of the cross-entropy loss designed
to mitigate the effect of class imbalance in dense object detection tasks by downweighing
easy, well-classified examples. In doing so, more focus is placed on hard, wrongly-classified
examples by preventing the gradients from being dominated by examples from which the
model can easily predict the correct class. This downweighing is achieved by scaling the
cross-entropy loss with a term that depends on a focusing parameter γ. In this paper, we
highlight an unaddressed numerical instability of the Focal loss that arises when this focusing
parameter is set to a value between 0 and 1. We present the theoretical foundation behind
this numerical instability, show that it is numerically identifiable, and demonstrate it in a
number of classification and segmentation tasks. Additionally, we propose a straightforward
modification to the original Focal loss to ensure stability whenever these unstable focusing
parameter values are used.

1 Introduction

The Focal loss is a broadly used loss function for one-stage detectors, medical imaging, segmentation, and
pose estimation (Terven et al., 2023). This function modifies the distribution-based cross-entropy loss by
introducing a focusing parameter (γ) that downweighs the penalty applied to "easy" examples (Lin et al.,
2017). The downweighing of losses prevents the gradients from being dominated by easy examples, allowing
for an increased focus on difficult examples (Lin et al., 2017). This is especially useful when the training
data comprises a high proportion of the background (or another) class.

The selection of parameter γ, and with this, the extent to which these easy examples are down-
weighted, should be done via cross-validation (Lin et al., 2017). The original Focal loss reported that using
a γ of 2 led to the best results in their experiments (Lin et al., 2017). There is, however, a limit to what γ
values can be used. Selecting γ values much larger than 2 has been found to result in gradients close to 0
for relatively low model outputs, causing training to fail (Mukhoti et al., 2020). This paper will shed light
on the other end of the spectrum, showing that the Focal loss gradients can become unstable whenever γ
is too small. More specifically, we address a numerical instability of the Focal loss that arises whenever a γ
is set to a value between 0 and 1. These γ values can cause the Focal loss derivative to become undefined
and destabilize model training. The singularity arises whenever the Focal loss, in combination with a γ on
the open unit interval, is used to learn a task for which a model can predict a correct class label with high
confidence. We will demonstrate that this numerical instability of the Focal loss is not only a theoretical
problem by demonstrating that a simple convolutional neural network (CNN), a vision transformer
(ViT), and a 2D U-net can return undefined loss values during training whenever γ values on the open
unit interval are used. Henceforth, we will refer to the γ values on the open unit interval as unstable γ values.

The original Focal loss paper (Lin et al., 2017) did not address this numerical instability, and con-
tains experimental training results generated with unstable γ values. Their results indicate that training
with these unstable γ values does not always cause instabilities. However, we show that under certain
conditions, the singularity can be encountered when training with the Focal loss and these unstable focusing
parameter values.

1

Under review as submission to TMLR

This instability we address in this paper, not only affects the Focal loss but also impacts other loss
functions that are based on the Focal loss. In recent years, various modifications of the Focal loss have been
proposed, such as the Generalized Focal loss (Li et al., 2020), the Adaptive Focal loss (Islam et al., 2024),
and the Unified Focal loss (Yeung et al., 2022). The Generalized Focal Loss extends the Focal Loss to jointly
model classification confidence and localization quality in a joint representation and applies a focusing
parameter similar to the original Focal loss. Hence, this variation of Focal loss is likely to exhibit the same
instability when a focusing parameter is on an open unit interval (between 0 and 1). With the Adaptive
Focal loss Islam et al. (2024), the focusing parameter is dynamically modified during training. The Unified
Focal loss combines the Focal loss with the Focal Tversky loss (Abraham & Khan, 2019) and is designed to
be used for segmentation tasks. As the focal loss with the same focusing parameter is incorporated in both
functions, the same numerical instability can occur.

In this paper, we not only highlight the origin of the instability, but also resolve it by modifying the
original Focal loss with a smoothing constant that eliminates the root of the singularity. By adopting the
modification, the singularity can be removed without altering the original behavior of the Focal loss. Our
modification, therefore, does not hinder existing methods that utilize these unstable γ values.

2 Methods

This section will review the definition of the Focal loss and its derivative to explain the origin of the instability.
We will then show that the numerical instability is detectable when computing the gradients of the Focal loss
with the original Focal loss function when using unstable γ values. Additionally, to show that this instability
is not only a theoretical obstacle, we will demonstrate that under certain conditions, the instability can be
induced in a binary classification and 2D segmentation task. Lastly, we show how to modify the original
Focal loss to eliminate the instability whenever γ values between 0 and 1 are used.

2.1 Cross-entropy and the Focal Loss

The Focal Loss was introduced to address class imbalance by reducing the effect of easily classifiable examples,
thereby placing more emphasis on harder, misclassified ones (Lin et al., 2017). This is achieved by modulating
the standard cross-entropy loss in Equation (1) with a scaling factor based on the prediction error and a
focusing parameter γ. This modulating factor ensures that the smaller the prediction error becomes, the
more the cross-entropy is downscaled. In other words, predictions that are closer to the correct label (easy
examples) are downscaled by the focusing parameter γ. Note that whenever a γ of 0 is used, the Focal
loss simplifies to the cross-entropy loss. For simplicity, without loss of generality, we will simplify the cross-
entropy loss function to the binary cross-entropy loss and reformulate the equations to a foreground (Lfg)
and background loss (Lbg). Nevertheless, the derivations shown below also hold for the multiclass cross-
entropy. For consistency, we make use of the same notation for the ground truth (y) and model output (p) as
was used in the original Focal loss paper (Lin et al., 2017). While the original Focal Loss paper reformulates
the loss as a foreground loss for notational convenience, this paper explicitly highlights both the foreground
and background components of the Focal Loss.

L(y, p)CE = − y log(p)︸ ︷︷ ︸
Lfg

− (1 − y) log(1 − p)︸ ︷︷ ︸
Lbg

(1)

L(y, p, γ, αt)F = −αty (1 − p)γ log(p)︸ ︷︷ ︸
Lfg

− (1 − αt)(1 − y) pγ log(1 − p)︸ ︷︷ ︸
Lbg

(2)

The Focal loss, as defined in Equation (2), downscales both the foreground and background loss equally with
the focusing parameter γ. As shown in Equation 2, the Focal loss also includes a parameter αt that is used
to scale the contribution of the foreground and the background loss relative to each other.

2

Under review as submission to TMLR

Figure 1: Foreground (a) and background (b) component of the Focal loss and their associated foreground
(c) and background (d) derivative. The losses and derivatives were calculated with different γ values and a
fixed αt of 0.5. The orange marker indicates undefined gradient values as a result of a division by 0. The
orange marker represents the model output when p is equal to 1 in Figure (c) and when p is equal to 0 in
Figure (d).

2.2 Derivative of the Focal Loss

Figure 1a and Figure 1b shows the foreground and background components of the Focal loss for different
model outputs p when changing the value for the focusing parameter γ. These plots show that an increase
in γ will cause the Focal loss to show near-zero loss values for model outputs close to the ground truth
label, consequently lowering their associated gradients. As we previously decomposed the Focal loss into a
foreground and background loss, we can define the Focal loss derivative as the sum of the foreground and
background components, as shown in Equation (3). These two components are defined in Equations (4) and
(5), and are displayed in Figure 1c and Figure 1d. A more detailed derivation of these equations is included
in Appendix A.1.

dLF (p, γ, αt)
dp

= dLfg(p, γ, αt)
dp

+ dLbg(p, γ, αt)
dp

(3)

dLfg(p, γ, αt)
dp

= αt

(
γ(1 − p)γ−1 log(p) − (1 − p)γ

p

)
(4)

dLbg(p, γ, αt)
dp

= −(1 − αt)
(

γ pγ−1 log(1 − p) − pγ

1 − p

)
(5)

2.3 Focal Loss Instability

In the derivative of the Focal loss, a (γ − 1) exponent is introduced in both the foreground and background
loss. Whenever 0 < γ < 1, this (γ − 1) term becomes negative, and the model output is raised to the power
of a negative number, leading to a fraction with the model output in the denominator. An example of this
is illustrated in Equations (6) and (7), showing the derivatives of the foreground and background loss for
γ = 0.5.

dLfg(p, αt)
dp

|γ=0.5 = αt

(
0.5√
1 − p

log(p) −
√

1 − p

p

)
(6)

dLbg(p, αt)
dp

|γ=0.5 = −(1 − αt)
(

0.5
√

p
log(1 − p) −

√
p

1 − p

)
(7)

The scenarios where p is equal to 1 in the case of predicting the foreground class and 0 for predicting the
background class are presented in Equation (8) and (9). These equations show that in these points, the
fraction introduced in the derivative leads to a division by 0, creating a singularity that causes training

3

Under review as submission to TMLR

Figure 2: Computed values for the foreground (a) and background (b) components of the Focal loss in com-
bination with the foreground (c) and background (d) gradients. These losses and gradients were computed
with model outputs that were not yet processed by the sigmoid (x) and ranged between [-38,38]. Both the
losses and gradients were computed with the torchvision.ops.sigmoid_focal_loss function with an αt of 0.5,
and different values for γ. The orange marker indicates the value for x that causes "NaN" values when
computing the loss. The orange marker represents the model output when x is equal to 1 in Figure (c) and
when x is equal to 0 in Figure (d).

instability. Although in this example γ was set to 0.5, this holds for all γ values between 0 and 1, as all these
values introduce a fraction in the derivative with the model output in the denominator.

dLfg(αt)
dp

|p=1,γ=0.5 = αt

(
0√
0

− 0
)

= Undefinded (8)

dLbg(αt)
dp

|p=0,γ=0.5 = −(1 − αt)
(

0√
0

− 0
)

= Undefinded (9)

Consider training a binary classification model with the Focal loss and a γ value of 0.5, which should
distinguish a foreground class from a background class. When the foreground is easily separated from the
background class, the model will assign high values to the model outputs representing the correct class.
Whenever these model outputs are equal (within floating point precision) to the ground truth value (y = p),
the derivative will become undefined due to a division by 0, consequently triggering the instability. When
faced with a more challenging task, the classification model is unlikely to produce model outputs equal to
the ground truth, thereby preventing instability from being triggered. Since most deep learning tasks are
complex, this is presumably why the instability is not always an issue and why it has not yet been addressed
in the literature.

One important note to consider when discussing the stability of the Focal loss is that whenever the
opposite of the ground truth is predicted by the model, a log(0) is introduced in the equation of the Focal
loss, which also causes instabilities. Note that the instability that this paper addresses occurs whenever the
model produces output values that are equal to the ground truth. In other words, the log(0) instability
occurs when the prediction error becomes extremely large, whereas the instability that we address occurs
whenever the prediction error becomes near-zero. Since machine learning models are optimized to minimize
the prediction error, models are optimized towards a state where this instability will eventually occur,
emphasizing the importance of resolving this instability.

2.3.1 Numerical Gradient Computation

Here we show that the instability can be detected when computing the gradients with the original Focal loss
function (torchvision.ops.sigmoid_ focal_loss) used in the seminal work (Lin et al., 2017). This implemen-
tation of the Focal loss applies a sigmoid activation function to the model outputs as shown in Equation
(10), in which the model output before applying the sigmoid is defined as x. After applying the sigmoid, the

4

Under review as submission to TMLR

Focal loss is calculated using Equation (2). Figure 2a and Figure 2b show the foreground and background
components of the Focal loss when computing the losses with the original Focal loss function.

p = σ(x) = 1
1 + e−x

(10)

Similar to Figure 1, Figure 2 shows the foreground and background loss in combination with their associated
gradients. Figure 1 shows the Focal loss for model outputs that are processed by a sigmoid, and Figure 2
shows the Focal loss for unprocessed model outputs (x). These unprocessed output values are not confined
to a range of [0,1] but can span from [−∞,∞]. Figure 2c and Figure 2d present the computed Focal loss
gradients for the foreground and background components of the Focal loss. Similar gradients are presented
in the original Focal loss paper, but instead of using an αt of 0.5, they computed the gradients with an
αt of 1. The orange ’X’ markers in Figure 2 indicate the output value that causes the gradient to become
undefined, consequently returning an "NaN". This shows that the instability can also occur when computing
the loss with the loss function published by the original Focal loss paper.

2.4 Stabilized Focal Loss

As described in the previous section, the numerical instability of the Focal loss arises as a result of a division
by 0 in its derivative. One commonly used method to prevent a division by 0 in a loss function is the
introduction of a smoothing constant ϵ in the denominator of the loss. This method is also applied to the
well-known Dice loss (Milletari et al., 2016; Sudre et al., 2017). We propose a modification of the original
Focal loss that leads to the introduction of a smoothing constant in the denominator of the derivative when
unstable γ values are used. This is slightly different from what is done to stabilize the Dice loss, in which
the division by zero is prevented in the loss itself. Instead, we modify the original loss with a parameter ϵ, so
that the ϵ term is placed in the denominator of the derivative, preventing division by zero when computing
the gradient with unstable γ values.

The modified Focal loss and the derivatives for its foreground and background components are de-
fined as shown in Equations (11), (12), and (13). The modification ensures that when a γ value between 0
and 1 is used, the derivative will have a constant term in the denominator that is independent of the model
output, preventing the division by 0 when the prediction equals 0, eliminating the Focal loss’s instability.
Note that smaller γ values will cause the denominator to approach 0 more quickly for model outputs close
to the ground truth, compared to when a larger value of γ is used. This means that a larger ϵ is required to
ensure stability whenever a smaller γ value is used. We ran the experiments in this paper with a value of ϵ
equal to 1e − 3, as it stabilized model training whenever a γ as small as 0.1 was used.

LFm(y, p, γ, αt, ϵ) = −αty (1 − p + ϵ)γ log(p)︸ ︷︷ ︸
Lfg

− (1 − αt)(1 − y) (p + ϵ)γ
i log(1 − p)︸ ︷︷ ︸

Lbg

(11)

dLfg(p, γ, αt, ϵ)
dp

= αt

(
γ(1 − p + ϵ)γ−1 log(p) − (1 − p + ϵ)γ

p

)
(12)

dLbg(p, γ, αt, ϵ)
dp

= −(1 − αt)
(

γ (p + ϵ)γ−1 log(1 − p) − (p + ϵ)γ

1 − p

)
(13)

When revisiting the example in which γ is equal to 0.5, the derivatives for the foreground and background
loss become equal to Equation (14) and (15). When the model output is again equal to 1 in the foreground
and 0 in the background loss, as shown in Equation (16) and (17), the division by zero is prevented by the
smoothing constant ϵ. The implementation details of the modified version of the Focal loss can be found in
Appendix A.3.

dLfg(p, αt, ϵ)
dp

|γ=0.5 = αt

(
0.5√

1 − p + ϵ
log(p) −

√
1 − p + ϵ

p

)
(14)

dLbg(p, αt, ϵ)
dp

|γ=0.5 = −(1 − αt)
(

0.5√
p + ϵ

log(1 − p) −
√

p + ϵ

1 − p

)
(15)

5

Under review as submission to TMLR

dLfg(αt, ϵ)
dp

|p=1γ=0.5 = αt

(
0√
ϵ

−
√

ϵ

1

)
= −αt

√
ϵ (16)

dLbg(αt, ϵ)
dp

|p=0,γ=0.5 = −(1 − αt)
(

0√
ϵ

−
√

ϵ

1

)
= (1 − αt)

√
ϵ (17)

2.5 Experiments

To demonstrate the instability of the Focal loss, we conducted several experiments. First we tested whether
the instability can occur when training a basic CNN (shown in Appendix A.4) to perform a binary classi-
fication task on the MNIST dataset (Deng, 2012). We then examine if this instability can be induced on a
larger and more complex dataset with more realistic training scenarios; the CIFAR-10 (Krizhevsky et al.,
2009), with two models: a basic CNN and the Vision Transformer (ViT) (Wu et al., 2020). In a final
experiment, we tested whether the instability can be detected in a segmentation task when training for a 2D
U-Net (Ronneberger et al., 2015) (shown in A.8) while also using the MNIST dataset. This subsection will
describe how these experiments were set up.

2.5.1 Binary Classification MNIST

In the first experiment, we divided the MNIST dataset (Deng, 2012) into two classes, where a threshold
determined which numbers belonged to which class. The goal of the CNN was to learn to distinguish
between the two classes by training for 100 epochs. As we are interested in the stability of the Focal loss
during training, we did not focus on model performance, but rather on whether the model could complete all
100 epochs without encountering any instabilities. We tested this for both stable (0,1,2,3,4,5) and unstable
γ values (0 < γ < 1).

To transform the multiclass MNIST dataset into a dataset that can be used for a binary classifica-
tion task, we applied a threshold to the MNIST class labels, restructuring the dataset into a dataset with
two classes: a foreground (A) and background (B) class. The number of samples for each class of the MNIST
training dataset is approximately the same (Hamidi & Borji, 2010), so by changing this threshold, the
foreground-background class distribution could be changed incrementally. Assessing the effect of changing
this threshold provides insight into whether imbalance in classes influences training stability whenever
unstable γ values are used. For example, a threshold of 4 means that the MNIST numbers with classes 0-4
belong to class A and the classes 5-9 belong to class B. Increasing or decreasing this threshold would mean an
increase in class imbalance. By changing the class distribution, we aimed to introduce a bias to the major-
ity class, leading to confident predictions of the accurate label and, consequently, the expression of instability.

The initial part of the experiment determined whether simplifying the classification task influenced

Table 1: The number of samples in each class of the MNIST dataset (Deng, 2012) when using different class
distributions. The class distribution was determined by a binarization threshold ranging between 0 and 8.
The threshold value indicates the cut-off value for the classes belonging to class A or class B. All values
larger than the threshold belong to class B, and all classes below or equal to the threshold to class A.

Threshold Samples Class A Samples Class B Class A/B ratio

0 5.923 54.077 0.11
1 12.665 47.335 0.27
2 18.623 41.377 0.45
3 24.754 35.246 0.70
4 30.596 29.404 1.04
5 36.017 23.983 1.50
6 41.935 18.065 2.32
7 48.200 11.800 4.08
8 54.051 5.949 9.09

6

Under review as submission to TMLR

Figure 3: Example of the input images from the MNIST dataset (Deng, 2012) with classes 0 to 9. (a) shows
the original images, (b) shows the images with "Medium Noise" added, and (c) shows the images with "High
Noise" added. The "Medium Noise" was generated by multiplying uniformly sampled noise between 0 and 1
by 0.5, while the "High Noise" was generated by multiplying this noise by 0.75.

the instability. The second part of the experiment repeated the initial experiment, but trained the CNN
with random noise added to the input images to evaluate whether an increased difficulty of the classification
task mitigates the unstable behavior of the Focal loss. In this experiment, we added noise to the input
images by sampling random values from a uniform distribution over [0, 1). The noise was multiplied by
0.5 and 0.75 to create what we refer to as "Medium Noise" and "High Noise," respectively. This randomly
sampled noise was then added to the pixels of the input images. Examples of input images with and without
added noise are shown in Figure 3.

2.5.2 Binary Classification CIFAR-10

The CIFAR-10 dataset(Krizhevsky et al., 2009) is composed of images belonging to one of the following
classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, or truck. We perform a binary classi-
fication task by partitioning the dataset into two classes: animals and vehicles. Each class of the original
CIFAR-10 classes contained 5000 images. With 6 animal classes and 4 vehicle classes, the dataset is slightly
imbalanced (6:4 ratio). We trained on the complete training dataset, as we did not perform any hyperpa-
rameter optimization. The used ViT (Wu et al., 2020) took 224x224 images as input, and linearly embedded
the input images as a sequence of 16x16 patches. More information about the used ViT can be found in
Appendix A.6. Both models were trained for 1000 epochs with a batch size of 128 and a γ and αt of 0.5
without using pre-trained weights. More information on the experiment details can be found in Appendix
A.7.

2.5.3 2D Segmentation MNIST

In the final experiment, we tested whether we could induce the Focal loss instability when training a segmen-
tation model to segment the numbers in the MNIST dataset using a 2D U-net. However, since the MNIST
dataset is a classification dataset, it does not include segmentation masks. We therefore applied a threshold
of 0.5 to the input images, setting all pixels that exceeded this value to the foreground of the segmentation
mask, and setting all pixels below this value to the background class. Similar to the binary classification
task, we repeated the experiment after adding noise to the input data, testing whether increasing the task’s
difficulty influenced training stability. The noise was added after creating the segmentation masks to main-
tain a consistent segmentation mask across experiments. After preprocessing of the data, the 2D U-net was
trained with the Focal loss using a γ and αt of 0.5 for 1000 epochs.

7

Under review as submission to TMLR

3 Results

In this section, we show the unstable behavior of the Focal loss when training a simplistic CNN and a 2D
U-Net with γ values between 0 and 1. We present results when using the original Focal loss and show how
training stability changes when training with our modified version of the Focal loss.

(a) No noise

(b) Medium Noise

(c) High Noise

Figure 4: (a): Results for the binary classification experiment on the MNIST dataset, showing the number
of completed epochs when using different γ values. The left plot shows model results when using γ values of
0,1,2,3,4, and 5. The middle and left plots show the number of completed epochs whenever the γ values of
0.1 to 0.9 with increments of 0.1 are used, where the middle plot shows the results when training with the
original Focal loss, and the last plot shows the results when using the stabilized Focal loss. (b-c): Experiment
results when the initial experiment is repeated with additional noise added to the input images, increasing
the difficulty of the classification task.

8

Under review as submission to TMLR

3.1 Binary Classification MNIST

For the binary classification task, we trained the CNN for 100 epochs with γ values ranging from 0 to
5 using the different class A/B ratios as shown in Table 1. Whenever a "NaN" was encountered during
training, training was stopped, otherwise, training would continue until all 100 epochs were completed. The
results for these experiments are presented in Figure 4, where the number of completed epochs is shown
for all γ and A/B class ratios. The left plot in Figure 4 shows the training results when training with γ
values of either 0 or larger than 1. This figure shows that for these γ values, all 100 epochs were completed,
reporting no instabilities.

The figures in the middle column show the results when training with γ values that range from 0.1
to 0.9 with increments of 0.1. From this figure, we see that using γ values between 0 and 1 causes instability
in almost all cases. These instabilities quickly arise, especially for smaller γ values and unbalanced datasets.
However, when using a γ value of 0.9, all 100 epochs were still completed whenever a balanced class
distribution was used. It is, however, not unlikely that whenever these models were trained for more than
100 epochs, the instability would still have been found in a later epoch.

Figure 4b and 4c show that adding noise has a mitigating effect on how quickly the instabilities are
found. These figures show that larger amounts of noise lead to more γ values showing stable behavior.
Additionally, adding noise allows for a broader range of class distributions to show stable training results
whenever larger γ values are used.

After stabilizing the Focal loss, as proposed, all experiments were repeated, the results of which are
shown in the last column of Figure 4. These results show that the modification of the Focal loss successfully
eliminated the instability, as no more instabilities are reported in any of the experiments.

3.2 Binary Classification CIFAR-10

Figure 5a shows the Focal loss values when training the CNN and ViT to perform the binary classification
tasks on the CIFAR-10 dataset. Similar to the classification results on the MNIST dataset, Figure 5a shows
that the numerical instability occurs during training for both models. Figure 5b shows the results when the
models were trained with the modified Focal loss. Again, similar to the MNIST experiments, no further

Figure 5: Results after training the CNN and ViT with the Focal loss using a γ and α of 0.5 for 1000 epochs
on the CIFAR-10 dataset with the original Focal loss (a), and the stabilized Focal loss (b). A cross indicates
the epoch at which a "NaN" was encountered during training.

9

Under review as submission to TMLR

Figure 6: Results after training the 2D U-net with the Focal loss using a γ and α of 0.5 for 1000 epochs on
the MNIST dataset with the original Focal loss (a), and the stabilized Focal loss (b). The model was trained
without noise, and with "Medium" and "High" noise levels. A cross indicates the epoch at which a "NaN"
was encountered during training.

instabilities were reported when the models were trained with the modified Focal loss, and both models
completed training of all 1000 epochs.

3.3 2D Segmentation MNIST

The results of training the 2D U-net are shown in Figure 6. This figure reports the computed Focal loss
for each epoch, but halted training whenever a "NaN" was encountered or all 1000 epochs were completed.
If no noise was added to the input data, model instability was quickly detected. Adding some noise to the
input data delayed this point, and the instability could not be detected when enough noise was added. The
segmentation results are consistent with the results from the binary classification task. Again, when using
the modified version of the Focal loss, no more instabilities were reported, and all 3 models were trained to
completion. Note that the losses have different asymptotes, which originate from the way that the noise was
added and the segmentation masks were generated. The introduction of noise prior to generating the masks
may have compromised the clarity of the boundary between the foreground and background. As a result, it
becomes difficult to accurately determine this boundary after noise is introduced, leading to an increase in
loss and therefore a shift in the assymptote.

4 Discussion and Conclusion

This paper addresses a hitherto unreported instability of the Focal loss when a γ value between 0 and 1 is
used. We showed that this instability is not only mathematically derivable but can also be demonstrated
using two simple experiments. Due to the singularity that arises in the derivative of the Focal loss when
using these γ values, training deep learning models like a basic CNN, a ViT, or a 2D U-net can lead to
unstable behavior. Our experiments suggest that datasets with a severe class imbalance are susceptible to
presenting such instabilities more quickly compared to balanced datasets and that the complexity of the
task influences the speed at which the instability is expressed. A likely explanation is that models will
overfit quickly when trained on easy tasks. This consequently results in confident predictions, causing the
model output to reach the true value of the class, resulting in a singularity in the derivative of the Focal
loss that causes instability. The more difficult the task at hand, the more epochs are needed to reach a state
where the predictions are confident enough to trigger the instability. This is also shown when adding noise
to the input data, highlighting that increasing the difficulty of that task requires more epochs to reach this

10

Under review as submission to TMLR

critical instability point. With the presented experiments, we highlight that the instability is not necessarily
an issue in all training scenarios, but that it can arise under certain conditions.

To resolve this instability, we propose a modification of the original Focal loss by adding a smooth-
ing constant to the term that downscales the cross-entropy loss. This ensures that the singularity in the
Focal loss derivative is eliminated, which stabilizes model training. Where unstable γ values triggered the
instability when using the original Focal loss in our experiments, the modified version completed all epochs
for each experiment.

In this paper, we provide numerical and experimental evidence of the existence of this Focal loss in-
stability. Our experiments highlight that under certain conditions, the instability can be induced when
training deep learning models. We therefore recommend refraining from using γ values that fall between 0
and 1 when using the original Focal loss. If by design, the only possible values for γ fall between 0 and 1, as
is the case for the Unified Focal Loss (Yeung et al., 2022), we recommend using our stabilized version of the
Focal loss to eliminate the chance of encountering this instability. The authors who presented the Unified
Focal Loss did not report any instabilities even though their loss makes use of these unstable γ values.
Their published code shows clipping of the model outputs, which would prevent their model from reaching
model outputs that would trigger instability. However, no explanations were provided for the clipping
operation. Additionally, their paper focuses on complex segmentation tasks, which we suggest are less prone
to instability. It could be possible that when their method is applied to more simplistic segmentation tasks,
the instability can still occur.

In summary, we highlighted an unaddressed numerical instability of the Focal loss and proposed the
addition of a stabilizing smoothing constant to prevent this instability from occurring. Our experiments
showed that after modifying the Focal loss, the instabilities were effectively removed. We therefore
recommend either refraining from using the unstable γ values when using the Focal loss or adopting our
modification to prevent these instabilities from occurring.

References
Nabila Abraham and Naimul Mefraz Khan. A novel focal tversky loss function with improved attention

u-net for lesion segmentation. In 2019 IEEE 16th international symposium on biomedical imaging (ISBI
2019), pp. 683–687. IEEE, 2019.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Mandana Hamidi and Ali Borji. Invariance analysis of modified c2 features: case study—handwritten digit
recognition. Machine Vision and Applications, 21:969–979, 2010.

Md Rakibul Islam, Riad Hassan, Abdullah Nazib, Kien Nguyen, Clinton Fookes, and Md Zahidul Is-
lam. Enhancing semantic segmentation with adaptive focal loss: A novel approach. arXiv preprint
arXiv:2407.09828, 2024.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin Hu, Jun Li, Jinhui Tang, and Jian Yang. Generalized
focal loss: Learning qualified and distributed bounding boxes for dense object detection. Advances in neural
information processing systems, 33:21002–21012, 2020.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision, pp. 2980–2988, 2017.

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural networks for
volumetric medical image segmentation. In 2016 fourth international conference on 3D vision (3DV), pp.
565–571. Ieee, 2016.

11

Under review as submission to TMLR

Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip Torr, and Puneet Dokania.
Calibrating deep neural networks using focal loss. Advances in neural information processing systems, 33:
15288–15299, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th inter-
national conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pp. 234–241. Springer,
2015.

Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and M Jorge Cardoso. Generalised dice
overlap as a deep learning loss function for highly unbalanced segmentations. In Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop,
DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017,
Québec City, QC, Canada, September 14, Proceedings 3, pp. 240–248. Springer, 2017.

Juan Terven, Diana M Cordova-Esparza, Alfonso Ramirez-Pedraza, Edgar A Chavez-Urbiola, and Julio A
Romero-Gonzalez. Loss functions and metrics in deep learning. arXiv preprint arXiv:2307.02694, 2023.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi Tomizuka,
Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based image representation
and processing for computer vision, 2020.

Michael Yeung, Evis Sala, Carola-Bibiane Schönlieb, and Leonardo Rundo. Unified focal loss: Generalising
dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Computerized
Medical Imaging and Graphics, 95:102026, 2022.

12

Under review as submission to TMLR

A Appendix

A.1 Derivation Focal Loss Derivative

This Appendix contains the derivations of the Focal-loss derivative. We provide separate derivations for the
foreground and background classes.

A.1.1 Complete Focal loss

LF(y, p, γ, α) = − αty (1 − p)γ log(p)︸ ︷︷ ︸
Lfg

− (1 − αt)(1 − y) pγ log(1 − p)︸ ︷︷ ︸
Lbg

(18)

A.1.2 Foreground Derivative

dLfg(p, γ, αt)
dp

|y=1 = −αt

(
d(1 − p)γ

dp
log(p) + d log(p)

dp
(1 − p)γ

)
= −αt

(
−γ(1 − p)γ−1 log(p) + (1 − p)γ

p

)
= αt

(
γ(1 − p)γ−1 log(p) − (1 − p)γ

p

) (19)

A.2 Background Derivative

dLbg(p, γ, αt)
dp

|y=0 = −(1 − αt)
(

dpγ

dp
log(1 − p) + d log(1 − p)

dp
pγ

)
= −(1 − αt)

(
γpγ−1 log(1 − p) − pγ

1 − p

) (20)

13

Under review as submission to TMLR

A.3 Modified Focal Loss

We provide code for the modified version of the original Focal loss Lin et al. (2017). Modifications to the
original code are indicated by the "#Modification" comment.

1 import torch
2 import torch.nn.functional as F
3

4 from torchvision.utils import _log_api_usage_once #Modification
5

6

7 def sigmoid_focal_loss_modified(
8 inputs: torch.Tensor,
9 targets: torch.Tensor,

10 alpha: float = 0.25,
11 gamma: float = 2,
12 reduction: str = "none",
13 epsilon=1e-3 #Modification
14

15

16) -> torch.Tensor:
17 """
18 Modified version of the Focal Loss. The epsilon scalar that is
19 added to the output stabilizes the model training. Whenever
20 epsilon is set to 0, it simplifies to the original Focal loss.
21

22 Args:
23 inputs (Tensor): A float tensor of arbitrary shape.
24 The predictions for each example.
25 targets (Tensor): A float tensor with the same shape as inputs.
26 Stores the binary classification label for each element
27 in inputs (0 for the negative class and
28 1 for the positive class).
29 alpha (float): Weighting factor in range (0,1) to balance
30 positive vs negative examples or -1 for
31 ignore. Default: ``0.25``.
32 gamma (float): Exponent of the modulating factor (1 - p_t) to
33 balance easy vs hard examples. Default: ``2``.
34 epsilon(float): Smoothing constant preventing the
35 instabilities when gamma values between 0 and 1
36 are used. Default: ``1e-3``
37 reduction (string): ``'none'`` | ``'mean'`` | ``'sum'``
38 ``'none'``: No reduction will be applied to the output.
39 ``'mean'``: The output will be averaged.
40 ``'sum'``: The output will be summed.
41 Default: ``'none'``.
42 Returns:
43 Loss tensor with the reduction option applied.
44 """
45 #Modification of the Original implementation from
46 https://github.com/facebookresearch/fvcore/blob/master/fvcore/nn/focal_loss.py
47

48 if not torch.jit.is_scripting() and not torch.jit.is_tracing():
49 _log_api_usage_once(sigmoid_focal_loss_modified) #Modification
50 p = torch.sigmoid(inputs)
51 ce_loss = F.binary_cross_entropy_with_logits(inputs, targets,
52 reduction="none")
53 p_t = (p) * targets + (1 - p) * (1 - targets)
54 loss = ce_loss * ((1 - p_t+epsilon) ** gamma) #Modification
55

56 if alpha >= 0:
57 alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
58 loss = alpha_t * loss
59

60 # Check reduction option and return loss accordingly
61 if reduction == "none":
62 pass

14

Under review as submission to TMLR

63 elif reduction == "mean":
64 loss = loss.mean()
65 elif reduction == "sum":
66 loss = loss.sum()
67 else:
68 raise ValueError(
69 f"Invalid Value for arg 'reduction': '{reduction} \n
70 Supported reduction modes: 'none', 'mean', 'sum'"
71)
72 return loss
73

15

Under review as submission to TMLR

A.4 CNN for Binary and Multiclass classification

A summary of the CNN for binary classification is shown 3. The code snippet displaying the implementation
of this model is provided. The CNN was modified from a CNN in a Pytorch Tutorial https://pytorch.
org/tutorials/beginner/blitz/cifar10_tutorial.html.

Table 2: Summary of the binary classification CNN when using a batchsize of 64 to train on the MNIST
dataset

Layer (type:depth-idx) Output Shape Param #

CNN [64, 1] –
Conv2d: 1-1 [64, 6, 24, 24] 156
MaxPool2d: 1-2 [64, 6, 12, 12] –
Conv2d: 1-3 [64, 16, 8, 8] 2.416
MaxPool2d: 1-4 [64, 16, 4, 4] –
Linear: 1-5 [64, 120] 30.840
Linear: 1-6 [64, 84] 10.164
Linear: 1-7 [64, 1] 85

Table 3: Summary of the binary classification CNN when using a batchsize of 128 to train on the CIFAR-10
dataset

Layer (type:depth-idx) Output Shape Param #

CNN [128, 3] –
Conv2d: 1-1 [128, 6, 28, 28] 156
MaxPool2d: 1-2 [128, 6, 14, 14] –
Conv2d: 1-3 [128, 16, 10, 10] 2.416
MaxPool2d: 1-4 [128, 16, 5, 5] –
Linear: 1-5 [128, 120] 48.120
Linear: 1-6 [128, 84] 10.164
Linear: 1-7 [128, 1] 85

1 import torch.nn as nn
2 import torch.nn.functional as F
3 import torch
4 from torchinfo import summary
5

6 class CNN(nn.Module):
7 def __init__(self,no_classes=1):
8 super().__init__()
9 self.channels=channels

10 Conv_output_size=int((((input_size-4)/2)-4)/2)
11 self.conv1 = nn.Conv2d(channels, 6, 5)
12 self.pool = nn.MaxPool2d(2, 2)
13 self.conv2 = nn.Conv2d(6, 16, 5)
14 self.fc1 = nn.Linear(Conv_output_size*Conv_output_size*16, 120)
15 self.fc2 = nn.Linear(120, 84)
16 self.fc3 = nn.Linear(84, no_classes)
17

18 def forward(self, x):
19 x = self.pool(F.relu(self.conv1(x)))
20 x = self.pool(F.relu(self.conv2(x)))
21 x = torch.flatten(x, 1)
22

23 x = F.relu(self.fc1(x))
24 x = F.relu(self.fc2(x))
25 x = self.fc3(x)
26 return x

16

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

Under review as submission to TMLR

A.5 CNN Binary Classification Experiment Code: MNIST

This Appendix contains the code that was used to execute the experiments. In this code, the package
Simple_CNN is the CNN shown in A.4, and the Revised_Focal_loss is the modified Focal loss function in
Appendix A.3.

1 import torch
2 import torchvision
3 import torchvision.datasets as datasets
4 import torchvision.transforms as tvt
5 from Simple_CNN import Net
6 import torch.optim as optim
7 import numpy as np
8 import pandas as pd
9 from tqdm import tqdm

10 import os
11 import random
12 import matplotlib.pyplot as plt
13 from Revised_Focal_loss import sigmoid_focal_loss_modified
14
15 mnist_trainset=datasets.MNIST(root='',
16 train=True,download=False,
17 transform=tvt.ToTensor()) #Add root where the MNIST dataset is stored
18
19
20 device = torch.device("cuda:0")
21 epsilon=1e-3
22 batch_size=64
23 epochs=100
24 alpha=0.5
25 lr=1e-3
26 Add_noise=True
27 gamma_values=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0,1,2,3,4,5]
28 THs=[0,1,2,3,4,5,6,7,8]
29
30 columns = ['Gamma', 'TH']+[str(i) for i in range(0,epochs)]
31
32 noise_amplitudes=[0,0.5,0.75]
33
34 Loss_functions=['Adapted','Original']
35
36 Sigmoid=torch.nn.Sigmoid()
37
38 for Lf in Loss_functions:
39
40 Path_to_experiments='' #insert path
41
42 if os.path.isdir(Path_to_experiments)==False:
43 os.makedirs(Path_to_experiments)
44
45 for Na in noise_amplitudes:
46
47 result_folder=os.path.join(Path_to_experiments,"Noise_level_%s"%Na)
48
49 if os.path.isdir(result_folder)==False:
50
51 All_training_losses=np.ones((len(gamma_values)*len(THs),epochs+2))*-1
52 All_training_acc=np.ones((len(gamma_values)*len(THs),epochs+2))*-1
53
54 df_epoch = pd.DataFrame (All_training_losses)
55 df_ac = pd.DataFrame (All_training_acc)
56
57 os.mkdir(result_folder)
58 noise_amplitude=Na
59 random.seed(123)
60
61 Exp_nr=0
62 for GAMMA in range(len(gamma_values)):
63 for TH in range(len(THs)):
64
65 All_training_losses[Exp_nr,0]=gamma_values[GAMMA]
66 All_training_losses[Exp_nr,1]=THs[TH]
67 All_training_acc[Exp_nr,0]=gamma_values[GAMMA]
68 All_training_acc[Exp_nr,1]=THs[TH]
69
70 trainloader = torch.utils.data.DataLoader(mnist_trainset,
71 batch_size=batch_size,
72 shuffle=True,

17

Under review as submission to TMLR

73 num_workers=2)
74 dataiter = iter(trainloader)
75 images, labels = next(dataiter)
76
77 net=Net().to(device)
78 optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9)
79 Train_loss=np.ones((1,epochs))*-1
80
81 for epoch in tqdm(range(epochs)):
82 running_loss = 0.0
83 train_acc=0
84 for i, data in enumerate(trainloader, 0):
85 # get the inputs; data is a list of [inputs, labels]
86 inputs, labels = data
87 for ii in range(len(labels)):
88 if labels[ii]>THs[TH]:
89 labels[ii]=torch.tensor(0.,dtype=torch.float64)
90 if Add_noise:
91 noise=np.random.rand(28, 28)*noise_amplitude
92 inputs[ii]=inputs[ii]+noise
93 inputs[ii]=np.clip(inputs[ii],0,1)
94 else:
95 labels[ii]=torch.tensor(1.)
96 if Add_noise:
97 noise=np.random.rand(28, 28)*noise_amplitude
98 inputs[ii]=inputs[ii]+noise
99 inputs[ii]=np.clip(inputs[ii],0,1)

100
101 optimizer.zero_grad()
102
103 inputs=inputs.to(device)
104
105 outputs = net(inputs)
106 labels=torch.unsqueeze(labels,1).float()
107 labels=labels.to(device)
108
109 if Lf=="Original":
110 loss = torchvision.ops.sigmoid_focal_loss(outputs, labels,
111 alpha=alpha,gamma=gamma_values[GAMMA],
112 reduction = 'mean')
113 else:
114 loss = sigmoid_focal_loss_modified(outputs, labels,
115 alpha=alpha,gamma=gamma_values[GAMMA],
116 reduction = 'mean',epsilon_scalar=epsilon)
117
118 loss.backward()
119 optimizer.step()
120
121 running_loss += loss.item()
122
123 outputs=Sigmoid(outputs)
124 outputs=torch.round(outputs)
125
126 train_acc += torch.sum(outputs == labels).item()
127
128 Epoch_accuracy=train_acc/len(mnist_trainset)
129
130 Epoch_loss= running_loss/len(trainloader)
131
132 if torch.isnan(loss)==True:
133 print('Terminated due to NaN at epoch %s'%epoch)
134 df_epoch.iloc[Exp_nr,epoch+2]='inf'
135 df_ac.iloc[Exp_nr,epoch+2]='inf'
136
137 break
138 else:
139 df_epoch.iloc[Exp_nr,epoch+2]=Epoch_loss
140 df_ac.iloc[Exp_nr,epoch+2]=Epoch_accuracy
141
142
143 print('Finished Training')
144
145 df_epoch.iloc[Exp_nr,:]=df_epoch.iloc[Exp_nr,:].replace(-1,'inf')
146 df_ac.iloc[Exp_nr,:]=df_ac.iloc[Exp_nr,:].replace(-1,'inf')
147
148 df_epoch.columns=columns
149 df_ac.columns=columns
150
151 filepath_epochs = os.path.join(result_folder,
152 'Experiment_Results_no_noise_new_loss_epoch.xlsx')

18

Under review as submission to TMLR

153 filepath_accuracy = os.path.join(result_folder,
154 'Experiment_Results_no_noise_new_loss_acc.xlsx')
155
156 df_epoch.to_excel(filepath_epochs, index=False)
157 df_ac.to_excel(filepath_accuracy, index=False)
158
159 Exp_nr+=1

19

Under review as submission to TMLR

A.6 Architecture VisionTransformer (ViT)

Summary of the Vision Transformer architecture. More details on this architecture can be found at https:
//huggingface.co/google/vit-base-patch16-224.

Table 4: Summary of the Vision Transformer architecture

Layer (type:depth-idx) Output Shape Param #

VisionTransformer – 152,064
PatchEmbed: 1-1 – –

Conv2d: 2-1 – 590,592
Identity: 2-2 – –

Dropout: 1-2 – –
Identity: 1-3 – –
Identity: 1-4 – –
Sequential: 1-5 – –

Block: 2-x (repeated 14 times) – –
LayerNorm – 1,536
Attention – 2,362,368
Identity – –
Identity – –
LayerNorm – 1,536
Mlp – 4,722,432
Identity – –
Identity – –

LayerNorm: 1-6 – 1,536
Identity: 1-7 – –
Dropout: 1-8 – –
Linear: 1-9 – 769

Total params: 85,799,425
Trainable params: 85,799,425

20

https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/google/vit-base-patch16-224

Under review as submission to TMLR

A.7 Binary Classification Experiment Code: CIFAR-10

Code used to run the binary classification experiment on the CIFAR-10 dataset using both a CNN and a
Vision Transformer (ViT).

1 import torch
2 import torch.nn as nn
3 import torch.optim as optim
4 from torchvision import datasets, transforms
5 from torch.utils.data import DataLoader
6 from timm import create_model
7 import time
8 import torchvision
9 import os

10 import pandas as pd
11 from torchvision.io import decode_image
12 from torch.utils.data import Dataset, DataLoader
13 from PIL import Image
14 import numpy as np
15 from Revised_Focal_loss import *
16 from Simple_CNN import *
17

18 class CustomImageDataset(Dataset):
19 def __init__(self, img_dir, transform=None,foreground=[0,1,8,9],background=[2,3,4,5,6,7]):
20 self.img_dir = img_dir
21 self.image_files=os.listdir(img_dir)
22 self.transform = transform
23 self.no_classes=no_classes
24 self.foreground=foreground
25 self.background=background
26

27 def __len__(self):
28 return len(self.image_files)
29

30 def __getitem__(self, idx):
31 img_path = os.path.join(self.img_dir, self.image_files[idx])
32 im = Image.open(img_path)
33 label = int(self.image_files[idx].split("_")[-1][:-4])
34 if label in self.foreground:
35 label=np.array([1.]).astype(np.float64)
36 else:
37 label=np.array([0.]).astype(np.float64)
38 if self.transform:
39 image = self.transform(im)
40 return image, label
41

42

43 # Parameters
44 train_dir = '/home/mleeuwen/DATA/CIFAR/images'
45 result_dir='/home/mleeuwen/Model_results/Focal_loss_experiment_CIFAR/binary_fixed'
46

47 if os.path.isdir(result_dir)==False:
48 os.mkdir(result_dir)
49

50 batch_size = 128
51 num_workers = 8
52 num_epochs = 1000
53 no_classes=10
54 Lf="fixed"
55 model_type="CNN"
56 device = torch.device("cuda:1")
57

58 # Transforms (ViT expects 224x224 input)
59 train_transforms = transforms.Compose([
60 transforms.RandomResizedCrop(224),
61 transforms.ToTensor(),
62 transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),

21

Under review as submission to TMLR

63])
64

65

66 # Data Loader
67 train_dataset=CustomImageDataset(train_dir, transform=train_transforms)
68

69 train_loader = DataLoader(train_dataset,
70 batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True)
71

72 # Create Model
73 if model_type='CNN':
74 model=Net(channels=3,output_classes=1).to(device)
75 else:
76 model = create_model('vit_base_patch16_224', pretrained=False, num_classes=1)
77 model.to(device)
78

79 # Loss, Optimizer, Scheduler
80 optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
81

82 losses=np.ones(num_epochs)*-1.
83 accuracy=np.ones(num_epochs)*-1
84

85 print('Start training')
86

87 for epoch in range(num_epochs):
88 print('epoch %s'%epoch)
89 model.train()
90 running_loss = 0.0
91 correct = 0
92 total = 0
93 start_time = time.time()
94

95 for inputs, labels in train_loader:
96 inputs, labels = inputs.to(device), labels.to(device)
97 optimizer.zero_grad()
98 outputs = model(inputs)
99

100 if Lf=="Original":
101 loss = torchvision.ops.sigmoid_focal_loss(outputs, labels,alpha=0.5,
102 gamma=0.5,reduction = 'mean')
103 else:
104 loss = sigmoid_focal_loss_revised(outputs, labels,alpha=0.5,
105 gamma=0.5,reduction = 'mean',epsilon_scalar=1e-3)
106

107 loss.backward()
108 optimizer.step()
109 running_loss += loss.item() * inputs.size(0)
110

111 preds=torch.tensor(outputs>0.5,dtype=torch.uint8)
112 labs=torch.tensor(labels,dtype=torch.uint8)
113

114 correct += torch.sum(preds == labs).item()
115 total += labs.size(0)
116

117 train_acc = correct / total
118 train_loss = running_loss / total
119

120 if torch.isnan(loss)==True:
121 print('terminated due to NaN')
122 train_loss='NaN'
123

124 losses[epoch]=train_loss
125 accuracy[epoch]=train_acc
126

127 Dictionary={"Losses":losses,"Accuracy":accuracy}
128 df = pd.DataFrame.from_dict(Dictionary)
129 df.to_excel(os.path.join(result_dir,'results.xlsx'))

22

Under review as submission to TMLR

130

131 if torch.isnan(loss)==True:
132 print('terminated due to NaN')
133 break
134

135 # Save Model
136 torch.save(model.state_dict(), os.path.join(result_dir,'vit_base_patch16_224_imagenet.pth'))
137

138

139

140

141

23

Under review as submission to TMLR

A.8 U-Net

The U-Net used for this paper was obtained from https://github.com/clemkoa/u-net/blob/master/
unet/unet.py with some minor modification.

Table 5: Summary of the 2D U-Net architecture when using a batch size of 64

Layer (type:depth-idx) Output Shape Param #

UNet [64, 1, 28, 28] –
Conv2d: 3-1 [64, 64, 28, 28] 640
BatchNorm2d: 3-2 [64, 64, 28, 28] 128
Conv2d: 3-4 [64, 64, 28, 28] 36,928
BatchNorm2d: 3-5 [64, 64, 28, 28] 128
Sequential: 3-7 [64, 128, 14, 14] 221,952
Sequential: 3-8 [64, 256, 7, 7] 886,272
Sequential: 3-9 [64, 512, 3, 3] 3,542,016
Sequential: 3-10 [64, 1024, 1, 1] 14,161,920
ConvTranspose2d: 3-11 [64, 512, 2, 2] 2,097,664
Sequential: 3-12 [64, 512, 3, 3] 7,080,960
ConvTranspose2d: 3-13 [64, 256, 6, 6] 524,544
Sequential: 3-14 [64, 256, 7, 7] 1,771,008
ConvTranspose2d: 3-15 [64, 128, 14, 14] 131,200
Sequential: 3-16 [64, 128, 14, 14] 443,136
ConvTranspose2d: 3-17 [64, 64, 28, 28] 32,832
Sequential: 3-18 [64, 64, 28, 28] 110,976
Conv2d: 1-10 [64, 1, 28, 28] 65

Total params 31,042,369
Trainable params 31,042,369
Non-trainable params 0
Total mult-adds (G) 36.16
Input size (MB) 0.20
Forward/backward size (MB) 425.34
Params size (MB) 124.17
Estimated Total Size (MB) 549.71

1 #Downloaded and modified from:
2 #https://github.com/clemkoa/u-net/blob/master/unet/unet.py
3

4 import torch
5 from torch import nn
6 import torch.nn.functional as F
7

8 class DoubleConv(nn.Module):
9 def __init__(self, in_ch, out_ch):

10 super(DoubleConv, self).__init__()
11 self.conv = nn.Sequential(
12 nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
13 nn.BatchNorm2d(out_ch),
14 nn.ReLU(inplace=True),
15 nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
16 nn.BatchNorm2d(out_ch),
17 nn.ReLU(inplace=True),
18)
19

20 def forward(self, x):
21 x = self.conv(x)
22 return x
23

24 class Up(nn.Module):
25 def __init__(self, in_ch, out_ch):
26 super(Up, self).__init__()
27 self.up_scale = nn.ConvTranspose2d(in_ch, out_ch,
28 kernel_size=2, stride=2)
29

30 def forward(self, x1, x2):
31 x2 = self.up_scale(x2)
32

33 diffY = x1.size()[2] - x2.size()[2]

24

https://github.com/clemkoa/u-net/blob/master/unet/unet.py
https://github.com/clemkoa/u-net/blob/master/unet/unet.py

Under review as submission to TMLR

34 diffX = x1.size()[3] - x2.size()[3]
35

36 x2 = F.pad(x2, [diffX // 2, diffX - diffX // 2,
37 diffY // 2, diffY - diffY // 2])
38 x = torch.cat([x2, x1], dim=1)
39 return x
40

41

42 class DownLayer(nn.Module):
43 def __init__(self, in_ch, out_ch):
44 super(DownLayer, self).__init__()
45 self.pool = nn.MaxPool2d(2, stride=2, padding=0)
46 self.conv = DoubleConv(in_ch, out_ch)
47

48 def forward(self, x):
49 x = self.conv(self.pool(x))
50 return x
51

52

53 class UpLayer(nn.Module):
54 def __init__(self, in_ch, out_ch):
55 super(UpLayer, self).__init__()
56 self.up = Up(in_ch, out_ch)
57 self.conv = DoubleConv(in_ch, out_ch)
58

59 def forward(self, x1, x2):
60 a = self.up(x1, x2)
61 x = self.conv(a)
62 return x
63

64

65 class UNet(nn.Module):
66 def __init__(self,channels=1, dimensions=1):
67 super(UNet, self).__init__()
68 self.conv1 = DoubleConv(channels, 64)
69 self.down1 = DownLayer(64, 128)
70 self.down2 = DownLayer(128, 256)
71 self.down3 = DownLayer(256, 512)
72 self.down4 = DownLayer(512, 1024)
73 self.up1 = UpLayer(1024, 512)
74 self.up2 = UpLayer(512, 256)
75 self.up3 = UpLayer(256, 128)
76 self.up4 = UpLayer(128, 64)
77 self.last_conv = nn.Conv2d(64, dimensions, 1)
78

79 def forward(self, x):
80 x1 = self.conv1(x)
81 x2 = self.down1(x1)
82 x3 = self.down2(x2)
83 x4 = self.down3(x3)
84 x5 = self.down4(x4)
85 x1_up = self.up1(x4, x5)
86 x2_up = self.up2(x3, x1_up)
87 x3_up = self.up3(x2, x2_up)
88 x4_up = self.up4(x1, x3_up)
89 output = self.last_conv(x4_up)
90 return output
91

25

Under review as submission to TMLR

A.9 Unet Experiment Code

Code to run the segmentation experiments.

1

2 from Revised_Focal_loss import sigmoid_focal_loss_revised
3 from unet import UNet
4 import torch
5 import torch.optim as optim
6 import torchvision
7 import torchvision.datasets as datasets
8 import copy
9 import os

10 from torch.utils.data import DataLoader
11 import numpy as np
12 import pandas as pd
13

14 device = torch.device("cuda:1")
15

16 path_to_results="" # insert path to results
17

18 if os.path.isdir(path_to_results)==False:
19 os.makedirs(path_to_results)
20

21 transforms = torchvision.transforms.Compose([
22 torchvision.transforms.ToTensor(),
23

24 mnist_trainset=datasets.MNIST(root='',
25 train=True,download=False,
26 transform=transforms) #Add root where the MNIST dataset is stored
27

28 batch_size=64
29 epochs=1000
30 gamma=0.5
31 alpha=0.5
32 epsilon=1e-3 # 0 for original Focal loss
33 train_loader = torch.utils.data.DataLoader(mnist_trainset,
34 batch_size=batch_size,
35 shuffle=True,
36 num_workers=2)
37

38 Noise_levels=[0,0.5,0.75]
39 running_loss=0.0
40

41 columns = ['Noise']+[str(i) for i in range(0,epochs)]
42 All_training_losses=np.ones((len(Noise_levels),epochs+1))*-1
43 df_epoch = pd.DataFrame (All_training_losses)
44

45 Epochs_losses=[]
46 Experiment_nr=0
47

48 for nl in range(len(Noise_levels)):
49

50 Unet=UNet(channels=1).to(device)
51 optimizer = optim.SGD(Unet.parameters(), lr=0.001, momentum=0.9)
52

53 NA=Noise_levels[nl]
54 All_training_losses[Experiment_nr,0]=NA
55

56 for epoch in range(epochs):
57

58 running_loss=0.0
59 batch=0
60

61 for inputs, labels in train_loader:
62

63 optimizer.zero_grad()
64

26

Under review as submission to TMLR

65 noise=torch.tensor(np.random.rand(len(inputs),1,28, 28)*NA)
66

67 labels=copy.copy(inputs)>0.5
68 labels=labels.type(torch.float)
69 labels=labels.to(device)
70

71 inputs=inputs+noise
72 inputs=np.clip(inputs,0.0,1.0).type(torch.float)
73 inputs=inputs.to(device)
74 outputs = Unet(inputs)
75

76 loss= sigmoid_focal_loss_revised(outputs,
77 labels,alpha=alpha,
78 gamma=gamma,
79 reduction = 'mean',
80 epsilon_scalar=epsilon)
81

82 loss.backward()
83 optimizer.step()
84 running_loss += loss.item()
85

86 running_loss=running_loss/len(train_loader)
87 Epochs_losses.append(running_loss)
88

89 if torch.isnan(loss)==True:
90 print('Terminated due to NaN at epoch %s'%epoch)
91 df_epoch.iloc[Experiment_nr,epoch+1]='inf'
92

93 break
94 else:
95 df_epoch.iloc[Experiment_nr,epoch+1]=running_loss
96

97 Experiment_nr+=1
98 print('Finished Training')
99

100 df_epoch.iloc[:,:]=df_epoch.iloc[:,:].replace(-1,'inf')
101 df_epoch.columns=columns
102

103 filepath_epochs = os.path.join(path_to_results,
104 'Segmentation_results.xlsx')
105

106 df_epoch.to_excel(filepath_epochs, index=False)
107

27

	Introduction
	Methods
	Cross-entropy and the Focal Loss
	Derivative of the Focal Loss
	Focal Loss Instability
	Numerical Gradient Computation

	Stabilized Focal Loss
	Experiments
	Binary Classification MNIST
	Binary Classification CIFAR-10
	2D Segmentation MNIST

	Results
	Binary Classification MNIST
	Binary Classification CIFAR-10
	2D Segmentation MNIST

	Discussion and Conclusion
	Appendix
	Derivation Focal Loss Derivative
	Complete Focal loss
	Foreground Derivative

	Background Derivative
	Modified Focal Loss
	CNN for Binary and Multiclass classification
	CNN Binary Classification Experiment Code: MNIST
	Architecture VisionTransformer (ViT)
	Binary Classification Experiment Code: CIFAR-10
	U-Net
	Unet Experiment Code

