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ABSTRACT

State-space models (SSMs) perform predictions by learning the underlying dy-
namics of observed sequence. We propose a new SSM approach in both high and
low dimensional observation space, which utilizes Bayesian filtering-smoothing
to model system’s dynamics more accurately than RNN-based SSMs and can be
learned in an end-to-end manner. The designed architecture, which we call the
Gated Inference Network (GIN), is able to integrate the uncertainty estimates and
learn the complicated dynamics of the system that enables us to perform estimation
and imputation tasks in both data presence and absence. The proposed model uses
the GRU cells into its structure to complete the data flow, while avoids expensive
computations and potentially unstable matrix inversions. The GIN is able to deal
with any time-series data and gives us a strong robustness to handle the obser-
vational noise. In the numerical experiments, we show that the GIN reduces the
uncertainty of estimates and outperforms its counterparts , LSTMs, GRUs and
variational approaches.

1 INTRODUCTION

State estimation and inference in the states in dynamical systems is one of the most interesting
problems that has lots of application in signal processing and time series Rauch et al. (1965). In
some cases, learning state space is a very complicated task due to the relatively high dimension of
observations and measurements, which only provides the partial information about the states. Noise
is another significant issue in this scenario, where it is more likely to obtain a noisy observation. Time
series prediction and estimating the next scene, e.g, the state prediction or next observation prediction,
is another substantial application that again requires the inference within the states which comes from
the observations. Classical memory networks such as LSTMs (Hochreiter & Schmidhuber, 1997),
GRUs (Cho et al., 2014) and simple RNNs like (Wilson & Finkel, 2009) and (Yadaiah & Sowmya,
2006) fail to give some intuition about the uncertainties and dynamics. A group of approaches
perform the Kalman Filtering (KF) in the latent state which usually requires a deep encoder for
feature extraction. Krishnan et al. (2017), Ghalamzan et al. (2021) and Hashempour et al. (2020)
belong to these group of works. However the mentioned solutions have some restrictions, where
they are not able to deal with high dimensional non-linear systems and the classic KF approach is
computationally expensive, e.g matrix inversion issue. Likewise, indirect optimization of an objective
fuction by using variational inference, like the work of Kingma & Welling (2013), increases the
complexity of the model. Moreover, in the variational inference approaches that usually implemented
in the context of variational auto encoders for dimension reduction, they do not have access to the
loss directly and have to minimize its lower bound instead, which reduce the ability of learning
dynamics and affect the performance of the model. KalmanNet Revach et al. (2021) and Ruhe &
Forré (2021) use GRU in their structure for the state update. However, they are only able to deal with
low-dimensional state space and cannot handle complex high dimensional inputs because of directly
using classic Bayesian equations and matrix inversion issue. Moreover, their structure require the
full, or at least partial, dynamic information.

The mentioned restrictions for KF and its variants and variational models in addition the necessity
of having a metric to measure the uncertainty, motivate us to introduce the GIN, an end to end
structure with dynamics learning ability using Bayesian properties for filtering-smoothing. The
contributions of GIN are: (i) modeling high-low dimensional sequences: we show the eligibility of
the GIN to infer both cases by a simple adjustment in the observation transferring functions in the
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(a) Observation (b) LGSSM(smooth) (c) GIN(filter) (d) GIN(smooth)

Figure 1: Inferred 5k length trajectories for Lorenz attractor.

proposed structure, where we conduct three experiments of high dimensional non-linear dynamics
and two experiments of low dimensional chaotic observation. (ii) Learning/using dynamics: the
ability of learning the dynamics(in the lack of them) and utilizing available dynamics(in the presence
of them) alongside modeling high-low dimensional observations makes the GIN applicable to a wide
range of applications. To attain more accurate inference of observed dynamical system, we apply
GRU cells that increases the modeling capability of the Kalman filtering-smoothing. By conduction
an ablation study of the GIN being replaced by a linearized Gaussian state transition, we show
the GIN is able for better learning state space representation with disentangled dynamics features.
(iii) Direct optimization: We show that the posterior and smoothing inference distribution of the
state-space model is tractable while dynamics and parameters are estimated by neural networks.
Despite variational approaches, this allows us to use recursive Bayesian updates for direct likelihood
maximization. (iv) Noise robustness: verified by the numerical results, inferencing for highly distorted
sequences is feasible with the GIN. (v) Missing data imputation: by using Bayesian properties, the
GIN decides whether to keep the previous information in the memory cell or update them by the
obtained observation. Experimental results show the out-performance of the GIN over the SOTA
studies in the imputation task.

2 RELATED WORKS

To deal with complex sensory inputs, some approaches integrate a deep auto encoders into their
architecture. Among these works, Embed to Control (E2C) (Watter et al., 2015) uses a deep encoder
to obtain the observation and a variational inference about the states. However, these methods are
not able to deal with missing data problem and imputation task since they do not rely on memory
cells and are not recurrent. Another group of works like BackpropKF (Haarnoja et al., 2016) and
RKN (Becker et al., 2019) apply CNNs for dimension-reduction and output both the uncertainty
vector and observation, where they move away from variational inference and borrow Bayesian
properties for the inference. However, these methods cannot handle the cases with the available
knowledge of the dynamics and impose restrictive assumptions over covariance matrices, while the
GIN provides a principled way for using the available partial dynamics information and release
any assumption over covariance. Toward learning state space (system identification) a group of
works like Wang et al. (2007), Ko & Fox (2011) and Frigola et al. (2013) propose algorithms to
learn GPSSMs based on maximum likelihood estimation with the iterative EM algorithm. Frigola
et al. (2013) obtain sample trajectories from the smoothing distribution, then conditioned on this
trajectory they conduct M step for the model’s parameters. Switching linear dynamics systems
(SLDS) (Ghahramani & Hinton, 2000), use additional latent variables to switch among different
linear dynamics, where the approximate inference algorithms can be utilized to model switching
linearity for reducing approximation errors ,however, this approach is not as flexible as general
non-linear dynamical systems because the switch transition model is assumed independent of states
and observations. To address this problem, Linderman et al. (2017) performs SLDS method through
augmentation with a Polya-gamma-distributed variable and a stick-breaking process, however, this
approach employs Gibbs sampling for inferring the parameters and therefore is not scalable to large
datasets. Auto-regressive Hidden Markov Models (ARHMM) explain time series structures by
defining a mapping from past observations to the current observation. (Salinas et al., 2020) is a
ARHMM approach, in which target values are used as inputs directly. However, this dependency of
the model on the targets makes the model more vulnerable to noise. This issue is addressed in DSSM
(Rangapuram et al., 2018), another ARHMM approach, where the target values are only incorporated
through the likelihood term. Other group of works consider EM-based variational-inference like
Structured Inference Networks (SIN) (Krishnan et al., 2017), where it utilizes a RNN to update
the state. Kalman Variational Autoencoder (KVAE) (Fraccaro et al., 2017) and Extended KVAE
(EKVAE) (Klushyn et al., 2021) use the original KF equations and apply both filtering and smoothing.
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However, these EM-based variational inference methods are not able to estimate the states directly
because of optimizing the lower bound of likelihood. Extra complexity is another issue with these
approaches, while they are addressed by the proposed structure and direct end-to-end optimization
in the GIN. We compare the GIN with these approaches in the experiment section and provide an
empirical complexity analysis in appendix A.8.2. We provide a detailed discussion of recent related
work in appendix A.8.3.

3 GATED INFERENCE NETWORK FOR SYSTEM IDENTIFICATION

In the context of System Identification (SI) the GIN is similar to a Hammerstein-Wiener (HW) model
(Schoukens & Tiels, 2017) (Gilabert et al., 2005), in the sense that it estimates the system parameters
directly from the observations, which is in the figure 2. e(.) and d(.) are implemented with non-linear
functions, e.g. auto encoders-MLPs. Transition block in figure 2 represents the dynamics of the
system that allows for the inference using the Gaussian state space filtering-smoothing equations.
However unlike a HW model, we employ non-linear GRU cells in the transition block that calculate
the Kalman Gain (KG) and smoothing gain (SG) in an appropriate manner by circumventing the
computational complexity, i.e matrix inversion issues. GRU cells empower the whole system by
applying non-linearity to the linearized Gaussian state space models (LGSSMs). Numerical results
indicate that by the proposed structure, having a good inference for even the complex non-linear
systems with high dimensional observations is feasible. To achieve this, we assume the state fits into
Gaussian state space models (GSSMs), which are commonly used to model sequences of vectors.

Figure 2: The GIN as a HW model for system identi-
fication. By appropriate structure selection for e(.)
and d(.), the GIN can handle high-low dimensional
observations. The proposed architectures for each
case are depicted separately with further details in
appendix figures 10 and 11. The relation between
the internal variables, wt and xt, is simulated by the
transition block.

In most cases, the dynamics of the system
might not be available or hard to obtain; while
the process noise and observation noise are
unknown (our first three experiments). Ac-
cordingly, we construct GIN to learn unknown
variables from data in an end to end fashion,
then we utilize the constructed KG and SG
during inference time to obtain the filtered-
smoothed states. The proposed architecture is
depicted in figure 4. In the presence of dynam-
ics (our last two experiments), auto-encoder
and Dynamics Network in figure 4 are replaced
by MLP to model the observation noise.

4 PARAMETERIZATION

Figure 3: Graphical model for high dimen-
sional observations. dynt is the model’s
dynamics at time t.

In this section we show the parameterization of the infer-
ence model. Firstly, we refer the readers to the summary
of Kalman filtering-smoothing background for the com-
pleteness in appendix A.2. In the rest of the paper we
use the following notations, where the original observa-
tions are o1:T , the transferred observations are w1:T and
R1:T are diagonal matrices with r1:T diagonal elements
that correspond to the covariance of transferred observa-
tion noise. x1:T corresponds to the states and Q1:T are
diagonal matrices with q1:T diagonal elements which
are the covariance of state process noise. (x−

t ,Σ
−
t ) are

the mean vector and covariance matrix of the prior state
at time step t, i.e. p(xt|w1:t−1), and (x+

t ,Σ
+
t ) are the

mean vector and covariance matrix of the posterior state
at time step t, i.e. p(xt|w1:t). We define the transition
matrices F1:T and emission matrices H1:T as the dy-
namics of the model, where lack of dynamics in the first
three experiments means that (F1:T ,H1:T ) are not know and are going to be trained(graphical model
is in figure 3), while the presence of dynamics in our last two experiments means that (F1:T ,H1:T )
are known(graphical models are in figures 9a and 9b). The dynamics (F1:T ,H1:T ) and noise matrices

3



Under review as a conference paper at ICLR 2023

Figure 4: The high level structure of the GIN for high dimensional observation in the lack of dynamics,
while for low dimensional cases auto-encoder is replaced by MLPs and dynamics are directly used.
The transferred observation wt and its uncertainty rt, are obtained from the encoder(MLPs). In each
time step, the last posterior mean x+

t−1 is fed to the Dynamic Network to compute F̂t and Ĥt. In the
Prediction Step the next priors (x−

t ,Σ
−
t ) are obtained by using new dynamics and the last posteriors.

In the filtering step, by using the priors (x−
t ,Σ

−
t ) and the observation (wt, rt), the next posteriors

(x+
t ,Σ

+
t ) are obtained. Applying smoothing operation over the obtained posteriors (x+

t ,Σ
+
t ) is

feasible in the smoothing step. Finally, the decoder(MLP) is utilized to produce o+
t , which can be the

high-low dimensional noise free estimates.

(R1:T ,Q1:T ) construct the system parameters γ1:T = (F1:T ,H1:T ,Q1:T ,R1:T ). Given original
observations o1:T and transferred observations w1:T , we want to find good estimate of the latent
states x1:T . To achieve this, we want to infer the marginal distributions p(xt|w1:t) for the online
inference approach or filtering; and p(xt|w1:T ) for the full inference approach or smoothing.

We introduce an advantageous prediction parameterization as pγt
(xt|xt−1,w1:t−1) =

N (Ftxt−1,Qt), where xt−1 ∼ pγt−1
(xt−1|w1:t−1) = N (x+

t−1,Σ
+
t−1). Then, pγt

(xt|w1:t−1) =

N (Ftx
+
t−1,FtΣ

+
t−1F

T
t +Qt) = N (x−

t ,Σ
−
t ) is obtained by marginalizing out xt−1 and the Gaus-

sianity of pγt
(xt|w1:t−1) results from the Gaussianity of prediction parameterization. By having

pγt(xt|w1:t−1) and observing wt, filtering parameterization is introduced as:

pγt
(xt|w1:t) = N

(
x−
t +Kt[wt−Htx

−
t ], Σ−

t −Kt[HtΣ
−
t H

T
t +Rt]K

T
t

)
= N

(
x+
t ,Σ

+
t

)
(1)

where Kt is KG. After observing all transferred observations w1:T , one can do backward induction
and propagate to the previous states using the chain rule. This procedure, known as smoothing, can
be parameterized as:

pγt
(xt|w1:T ) = N

(
x+
t + Jt[xt+1|T − Ft+1x

+
t ], Σ+

t + Jt

[
Σt+1|T −Σ−

t+1

]
JT
t

)
(2)

where Jt is SG and we use short handed notation N (xt|T ,Σt|T ) instead of (2) . These parameter-
izations give us some insight to 1-illustrate a tractable way to construct pγ(x|w) and accordingly
obtain the posterior and smoothened states, based on which o+ is constructed and 2- appropriately
modeling γ and KG(SG) with neural networks.

To construct the KG and SG networks, we have to find appropriate inputs containing related informa-
tion to attain the KG and SG. In (1) and (2), KG and SG are given by (3) and (4), respectively.

Kt = Σ−
t H

T
t .
[
HtΣ

−
t H

T
t +Rt

]−1 ∝ (Σ−
t ,Rt) (3)

Jt = Σ+
t F

T
t+1.

[
Ft+1Σ

+
t F

T
t+1 +Qt+1

]−1
= Σ+

t F
T
t+1Σ

−
t+1 ∝ Σ−

t+1
(4)

(3) is proportional to the prior covariance at time t, Σ−
t , and the observation noise matrix, Rt, while

(4) is proportional to prior covariance matrix at time t+1, Σ−
t+1. Our encoder(MLP) directly maps the

observation noise matrix from the observation space, but the state covariance is a recursive function
of previous states. Consequently, we consider GRUKG and GRUSG which are networks including
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GRU that map [f(Σ−
t ),Rt] and f(Σ−

t+1) to the KG and SG, respectively. GRUKG considers Rt,
a diagonal matrix with rt elements in figure 4, as a part of its input to incorporate the effects of
observation noise. In the case of high dimensional state space, due to the high dimension of Σ−

t and
Σ−

t+1 , f is a convolutional layer with pooling to extract the valuable information of the covariance
matrix that reduces its size, while for the low dimension of Σ−

t and Σ−
t+1, f is the identity function.

Learning The Process Noise. In the filtering procedure, the process noise in time t is obtained as

Qt = Σ−
t − FtΣ

+
t−1F

T
t . (5)

where Σ−
t , Ft and Σ+

t−1 are prior state covariance, transition matrix and posterior state covariance at
time t. It is shown that Qt can be written as a function of Ft as

Qt = Σ−
t − FtΣ

+
t−1F

T
t = Σ−

t − Ft

[
Σ−

t−1 −Kt−1[Ht−1Σ
−
t−1H

T
t−1 +Rt−1]

−1KT
t−1

]
FT

t (6)

while the derivations are rather lengthy, therefore, we refer to the appendix materials A.3. From (32),
the relation of the process noise with the transition matrix indicates that Ft can possess the effects of
Qt if we learn it in an appropriate manner. F̂t(Qt) notation means that the learned transition matrix
F̂t comprises the effects of Qt, while for the simplicity we use F̂t abbreviation. Therefore, it is
possible to rewrite (5) as

Σ−
t = F̂tΣ

+
t−1F̂

T
t . (7)

Another way to have a a meaningful inference about the process noise matrix is to obtain it from (30)
as a recursive function of x+

t−1 and Qt−1. Intuitively, g function in (30) that we call it Q Network,
can be implemented by a memory cell, e.g., a GRU cell, to keep the past status of Q ,however, it
increases the complexity of the model. Equivalently, one can obtain Qt directly from x+

t−1 with MLP
as stated in (32). Both of these solutions can be utilized when the dynamics are known, i.e. we cannot
learn the effects of Qt jointly with Ft as Ft is not trainable.

Prediction Step. Similar to the model based Kalman Filter, by using dynamics of the system and
transition, the next priors are obtained from the current posterior by

x−
t = F̂tx

+
t−1 , Σ−

t = F̂tΣ
+
t−1F̂

T
t (8)

where F̂t is the learned transition matrix comprises the effects of the process noise from previous
section. By which, it is feasible to predict state mean and the state covariance matrix.

Filtering Step. To obtain the next posteriors based on the new observation (wt, rt), i.e. the
output of e(.) in figure 2, we have to use the obtained KG matrix from GRUKG network and learned
emission matrix Ĥt to complete updating the state mean vector and state covariance matrix. This
procedure is given by

S−
t = Ĥt.Σ

−
t .Ĥ

T
T +Rt, Kt = Σ−

t Ĥ
T
t MtM

T
t , Mt = GRUKG(f(Σ−

t ),Rt) (9)

x+
t = x−

t +Kt.[wt − Ĥtx
−
t ], Σ+

t = Σ−
t +Kt.S

−
t .K

T
t . (10)

In addition to avoiding the matrix inversion that arises in the computation of Kalman gain and applying
non-linearity to handle more complex dynamics, the architecture of KG network, GRUKG, can
reduce the dimension of the input to its corresponding GRU cell, and thus reduces the total amount of
parameters quadratically. Additionally, positive rt vector and Cholesky factor consideration, MtM

T
t

in (9), guarantee the positive definiteness of the resulted covariance matrices.

Smoothing Step. After obtaining filtered states (x+
1:T ,Σ

+
1:T ) in filtering step, we employ smoothing

properties of Bayesian to get smoothed version of the states. In this stage, we use J1:T matrices
obtained from GRUSG network, learned transition matrices F̂1:T and filtered states (x+

1:T ,Σ
+
1:T ).

The procedure in each smoothing step is given by:

Jt = Σ+
t F̂

T
t+1NtN

T
t , Nt = GRUSG

(
f(Σ−

t+1)
)

(11)

xt|T = x+
t + Jt

[
xt+1|T − F̂t+1x

+
t

]
, Σt|T = Σ+

t + Jt

(
Σt+1|T − F̂t+1Σ

+
t F̂

T
t+1

)
JT
t (12)

where the first smoothing state is set to the last filtering state, i.e. (xT |T ,ΣT |T ) = (x+
T ,Σ

+
T ) .
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Learning Dynamics. We can model the dynamics in each time step t as a function of the transferred
observations w1:t−1. However, conditioning on the noisy observations can distort the procedure of
learning the dynamics. Instead, we use the state x+

t−1 in GSSM that includes the history of the system
with considerable lower noise distortion to increase system’s noise robustness, where we generate
time correlated noise in our experiments to show this robustness(see appendix A.5). In other words,
original transition and emission equations, xt = f(xt−1) + qt and wt = h(xt) + rt, are modeled
as xt = F̂t(x

+
t−1)xt−1 + qt and wt = Ĥt(x

+
t−1)xt + rt. We learn K state transition and emission

matrices F̂k and Ĥk, and combine each one with the state dependent coefficient αk(x+
t−1).

F̂t(x
+
t−1) =

K∑
k=1

αk
t (x

+
t−1)F̂

k
t , Ĥt(x

+
t−1) =

K∑
k=1

αk
t (x

+
t−1)Ĥ

k
t (13)

where a separated neural network with softmax output is utilized to learn αk(x+
t−1) that we call it

Dynamics Network. This formulation enables us to follow Bayesian methodology. Despite classic
LGSSMs that are not able to learn the dynamics, e.g. EKF and UKF, the trainable dynamics in
the GIN are function of the states. For the notation simplicity, we have used (F̂t, Ĥt) instead of
(F̂t(x

+
t−1), Ĥt(x

+
t−1)) in the paper.

5 FITTING

For the state estimation task, by implementing p(w1:T |o1:T ), p(xt|w1:T ) and p(st|xt) with encoder,
smoothing parameterization and decoder, we maximise the log-likelihood of output p(st|o1:T ) =∫
p(st|xt)p(xt|w1:T )p(w1:T |o1:T )dxtdw1:T ,where st is the estimated state, i.e. equal to o+

t in
figure 4. For the image imputation task, in addition to the state likelihood, we add the reconstruction
pseudo-likelihood for inferring images by using Bernoulli distributions as p(it|xt), i.e. the decoder
in figure 4 maps both state st and image it : o+

t = [it, st]. Further details of distribution assumptions
and hyper parameter optimization can be found in the appendix A.4 and A.8. After training phase,
forecasting desired number of time steps is applicable by plugging the new value xt = F̂txt−1

recursively in the model, and so on.

Likelihood for Inferring States. Consider the ground truth sequence is defined as s1:T. We
determine the log likelihood of the states as:

L(s1:T ) =
T∑

t=1

log N
(
st

∣∣∣∣decmean(xt|T), deccovar(Σt|T)

)
(14)

where the decmean(.) and deccovar(.) determines those parts of the decoder that are used to obtain the
state mean and state variance, respectively. We use Wishart distribution as a prior for our estimated
covariance matrix, which pushes the estimated covariance toward a scale of identity matrix and the
scale is a hyper parameter. Such prior prevents getting high log-likelihood due to the high uncertainty.

Likelihood for inferring images. For the imputation task, consider the ground truth as the sequence
of images and their corresponding states, which are defined as [s1:T , i1:T ] and the dimension of it is
Do. We determine the log likelihood:

L(o+
1:T ) = L(s1:T ) + λ

T∑
t=1

Do∑
k=0

i
(k)
t log

(
deck(xt|T)

)
+
(
1− i

(k)
t

)
log(1− deck(xt|T)). (15)

deck(xt) defines the corresponding part of the decoder that maps the k-th pixel of it image and λ
constant determines the importance of the reconstruction. The first term in RHS is obtained from (14)
and we abbreviate the second term as L(i1:T ).

6 EVALUATION AND EXPERIMENTS

We divide our experiments into two parts, first the tasks in which the observation space is high
dimensional like sequence of images, and second the applications that the observation is in low
dimension by itself so there is no need to include encoder for dimension reduction. The training
algorithms of both cases are added in the appendix section A.11.
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Table 1: Double pendulum state estimation. (x1, x3)
refers to the position of the first joint, while (x2, x4) is
for the second joint.

Model SEPos
x1

SEPos
x3

SEPos
x2

SEPos
x4

Log Likelihood

LSTM (units=50) 0.163 0.171 0.148 0.167 3.901 ± 0.706
LSTM (units=100) 0.154 0.147 0.134 0.152 4.053 ± 0.565

GRU (units=50) 0.189 0.183 0.179 0.177 3.886 ± 0.369
GRU (units=100) 0.164 0.156 0.162 0.145 3.976 ± 0.231

KVAE (n=2m) 0.193 0.188 0.178 0.149 3.679 ± 0.101
KVAE (n=3m) 0.171 0.159 0.151 0.162 3.801 ± 0.116

RKN (n=2m) 0.134 0.129 0.139 0.118 4.176 ± 0.294

LGSSMfilter(n=3m) 0.125 0.119 0.121 0.107 4.192 ± 0.127
LGSSMsmooth(n=3m) 0.109 0.111 0.104 0.101 4.231 ± 0.154

GINfilter(n=2m) 0.115 0.109 0.119 0.109 4.224 ± 0.105
GINfilter(n=3m) 0.093 0.091 0.098 0.089 4.329 ± 0.151
GINsmooth(n=2m) 0.091 0.104 0.101 0.092 4.308 ± 0.123
GINsmooth(n=3m) 0.079 0.083 0.085 0.077 4.477 ± 0.168

Table 2: Pendulum state estimation. By
consider n = 3m, intuitively the last part
of the state is dedicated to the acceleration
information causing a more lieklihood.

Model SEPos
x1

SEPos
x2

Log Likelihood

LSTM (units=25) 0.092 0.094 5.891 ± 0.151
LSTM (units=100) 0.089 0.087 5.751 ± 0.215

GRU (units=30) 0.095 0.089 5.986 ± 0.168
GRU (units=100) 0.091 0.089 5.698 ± 0.205

KVAE (n=2m) 0.104 0.095 5.786 ± 0.098
KVAE (n=3m) 0.088 0.093 5.858 ± 0.113

RKN (n=2m) 0.078 0.075 6.161 ± 0.23

LGSSMfilter 0.077 0.073 6.211 ± 0.265
LGSSMsmooth 0.071 0.069 6.242 ± 0.109

GINfilter(n=2m) 0.073 0.07 6.192 ± 0.239
GINfilter(n=3m) 0.067 0.066 6.315 ± 0.220
GINsmooth(n=2m) 0.065 0.067 6.292 ± 0.173
GINsmooth(n=3m) 0.059 0.057 6.445 ± 0.165

6.1 HIGH DIMENSIONAL OBSERVATION WITH LACK OF DYNAMICS

We include three high dimensional experiments. The first two experiments are single pendulum and
double pendulum, where the dynamics of the latter one is more complicated. The last experiment is
visual odometry task. Intuitive python code in appendix A.12.1.

6.1.1 SINGLE PENDULUM AND DOUBLE PENDULUM

The inputs of the encoder are the images with size of 24× 24. The angular velocity is disturbed by
transition noise which follows Normal distribution with σ = 0.1 as its standard deviation at each step.
In the pendulum experiment, we perform the filtering-smoothing by the GIN where the observation
is distorted with high observation noise. Furthermore, we compare GIN with LGSSM, where the
GRU cells are omitted from the GIN structure and classic filtering-smoothing equations are used,
instead. The log-likelihood and squared error (SE) of positions for single and double pendulum are
given in table 2 and 1, respectively. Generated samples from trained smooth-filter distributions are in
appendix figures 16-33.

By randomly deleting the half of images from the generated sequences, we conduct the image
imputation task to our model by predicting those missing parts, while the missingness applied to
train and test are not same, but random. The results are in table 3 and 4.The GIN outperforms all
the other models, although the variational inference models have more complex structures in KAVE

Table 3: Image imputation task for the different models. Models contain boolean masks determining
the available and missed images. For uninformed masks, a black image is considered as the input of
the cell whenever the image is missed, which requires the model to infer the accurate dynamics for
the generation. We conduct uninformed experiment as well.

Model Log Likelihood

E2C -95.539 ± 1.754
SIN -101.268 ± 0.567

KVAE (informed smooth) -14.217 ± 0.236
KVAE (unformed smooth) -39.260 ± 5.399

EKVAE (informed smooth) -12.897 ± 0.524
EKVAE (unformed smooth) -29.246 ± 3.328

RKN (informed) -12.782 ± 0.0160
RKN (uninformed) -12.788 ± 0.0142

LGSSM(informed smooth) -12.695 ± 0.048
GIN (informed smooth) -12.215 ± 0.027
GIN (unformed smooth) -12.246 ± 0.029

Figure 5: Pendulum image imputation. Each figure,
beginning from up to down, indicates the ground
truth, uninformed observation and the imputation
results of the GIN(smoothed). Missingness is ap-
plied randomly for train and test.
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Table 4: Image imputation for double pendulum.

Model Log Likelihood

KVAE (informed smooth) -15.917 ± 0.294
KVAE (unformed smooth) -38.544 ± 6.419

EKVAE (informed smooth) -13.917 ± 0.414
EKVAE (unformed smooth) -33.548 ± 4.516

RKN (informed) -13.832 ± 0.023
RKN (uninformed) -13.898 ± 0.0191

LGSSM(informed smooth) -13.775 ± 0.013
GIN (informed smooth) -13.284 ± 0.021
GIN (unformed smooth) -13.351 ± 0.019

Figure 6: Double pendulum image imputation.
Each figure, beginning from up to down, indicates
the ground truth, uninformed observation and the
imputation results of the GIN(smoothed).

and EKVAE. We include the results using the MSE as well, to illustrate that our approach is also
competitive in prediction accuracy (See A.10).

6.1.2 VISUAL ODOMETRY OF KITTI DATASET

We also evaluate the GIN with the higher dimensional observations for the visual odometry task
on the KITTI dataset Geiger et al. (2012). This dataset consists of 11 separated image sequences
with their corresponding labels. In order to extract the positional features, we use a feature extractor
network proposed by Zhou et al. in Zhou et al. (2017). The obtained features are considered as the
observations of the GIN, i.e. (w, r). Additionally, we compare the results with LSTM, GRU, DeepVO
Wang et al. (2017) and KVAE. The results are in table 5 and figure 8, where the common evaluation
scheme for the KITTI dataset is exploited. The results of the KVAE degrades substantially as we
have to reduce the size of the transferred observation to prevent the complexity of matrix inversion.

6.2 LOW DIMENSIONAL OBSERVATION WITH PRESENCE OF DYNAMICS

We conduct two experiments, Lorenz attractor problem and the real world dynamics NCLT dataset,
where we are aware of the dynamics. Intuitive python code in appendix A.12.2. However, the GIN is
able to deal the cases in which the dynamics are not known. To show this, we conduct additional
experiment in the appendix, where we do not give the dynamics information of Lorenz attractor and
NCLT dataset to the model, so that they will be learned(see figures 42-46).

6.2.1 LORENZ ATRRACTOR

Figure 7: MSE of Lorenz attractor.

The Lorenz system is a system of ordinary differential equations
that describes a non-linear dynamic system used for atmospheric
convection. Due to nonlinear dynamics of this chaotic system
(see A.6), it can be a good evaluation for the GIN cell. We
evaluate the performance of the GIN on a trajectory of 5k length.
Each point in the generated trajectories is distorted with an ob-
servation noise that follows Gaussian distribution with standard
deviation σ = 0.5. The likelihood with Gaussian distribution
is calculated and maximized in the training phase. The mean
square error (MSE) of the test data for various number of train-

Table 5: Comparison of model performance on KITTI dataset. See 34, 35, 36, 37, 38 and 39 figures
in A.9 for the visualization results.

Seq LSTM GRU DeepVO KVAE LGSSM GIN
trel(%) rrel(

◦) trel(%) rrel(
◦) trel(%) rrel(

◦) trel(%) rrel(
◦) trel(%) rrel(

◦) trel(%) rrel(
◦)

03 8.99 4.55 9.34 3.81 8.49 6.89 12.14 4.38 7.51 3.98 6.98 3.27
04 11.88 3.44 12.36 2.89 7.19 6.97 13.17 4.73 9.12 2.64 9.14 2.28
05 8.96 3.43 10.02 3.43 2.62 3.61 11.47 5.14 6.11 3.21 4.38 2.51
06 9.66 2.8 10.99 3.22 5.42 5.82 10.93 3.98 6.70 3.51 6.14 2.90
07 9.83 5.48 13.70 6.52 3.91 4.60 12.73 4.68 6.59 3.49 7.21 2.98
10 13.58 3.49 13.37 3.25 8.11 8.83 14.79 10.91 9.32 2.90 8.37 2.59

mean 10.53 3.87 11.63 3.85 5.96 6.12 12.53 5.63 7.55 3.28 7.03 2.75
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(a) GIN (b) LGSSM (c) KVAE

Figure 8: Generated samples from smoothing distribution for the joint position (x1, x2), equivalent
to (o1+, o2+) in figure 4, at 100-th time step of visual odometry experiment. The ground truth is
shown with a black point.

ing samples are depicted in figure 7. Hybrid is a graphical GNN based model Garcia Satorras et al.
(2019) and DSSM Rangapuram et al. (2018) is a version of LGSSM using LSTM cells.

Due to the non-linearity of the dynamics of this system, LGSSM has to use linearization and then use
the linearized dynamics to model the transition. The DSSM model performs better for lager amount
of data (>10K) because it needs to learn the dynamics. The results of the Hybrid GNN and the GIN
are similar, while the results of the GIN are slightly improved. Although, the core of both models is
based on the GRU cell, this enhancement may come from the structure of the GIN that learns the
observation and process noises separately. Inferred trajectories are in figure 1.

6.2.2 REAL WORLD DYNAMICS: MICHIGAN NCLT DATASET

To evaluate the performance of the GIN on a real world dataset, the Michigan NCLT dataset Carlevaris-
Bianco et al. (2016) is utilized that encompasses a collection of navigation data gathered by a segwey
robot moving inside of the University of Michigan’s North Campus. The states in each time, xt ∈ R4,
comprise the position and the velocity in each direction and the observations, yt ∈ R2, include noisy
positions. The ultimate purpose is to localize the real position of the segway robot, while only the noisy
GPS observations are available. We apply the GIN to find the current location of the segway robot.

Table 6: MSE for NCLT experiment.

Model MSE[dB]

GIN(smooth) 18.64±0.13
Hybrid GNN 20.73± 0.21
KalmanNet 22.2±0.17
DSSM 29.54±0.58
Vanilla RNN 40.21±0.52
LGSSM 24.38±0.17
Observation 25.47±0.08

In this experiment, we randomly select the session 2012-
01-22 captured in a cloudy situation with the length of 6.1
Km. By sampling with 1Hz and removing the unstable
GPS observations, 4280 time steps are achieved. For the
dynamics of the system, we consider a uniform motion
pattern with a constant velocity (see A.7). The training
procedure is completed by maximizing the likelihood with
Gaussian distribution assumption. The mean squared error
of each approach for the test set are mentioned in the table
6, where the GIN (73.12± 2.21 MSE) outperforms other
approaches.In summary, this experiment indicates that the
GIN can generalize with good performance to a real world
dataset.

7 CONCLUSION

The GIN, an approach for representation learning in both high and low dimensional SSMs, is
introduced in this paper. The data flow is conducted by Bayesian filtering-smoothing, while, due
to the usage of GRU based KG and SG network, the computational issues are tackled resulting in
an efficient model with numerical stable results. In the presence of the dynamics, the GIN directly
use them, otherwise it directly learns them in an end to end manner, which makes the GIN as a HW
model with strong system identification abilities. Insightful representation for the uncertainty of the
predictions is incorporated in this approach, while it outperforms its counterparts including LSTMs,
GRUs and several generative models with variational inferences.
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A APPENDIX

A.1 GAUSSIAN STATE SPACE MODELS

In order to model the vectors of time series w = w1:T = [w1, ...,wT ], Gaussian state space models
(GSSMs) are commonly applied due to their filtering-smoothing ability. In fact, GSSMs model the
first-order Markov process on the state space x = [x1, ...,xT ], which can also include the external
control input u = [u1, ...,uT ] by multivariate normality assumption of the state

pγt
(xt|xt−1,ut) = N (xt;Ftxt−1 +Btut,Q), pγt

(wt|xt) = N (wt;Htzt,R). (16)

For the cases, which are not controlled via external input, Bt matrix is simply 0 matrix. By Defining
γt as parameters which explain how the state state changes during the time, it contains the information
of Ft,Bt and Ht which are the state transition, control and emission matrices. In each step, the
procedure is distorted via Q and R that are process noise and observation noise, respectively. It is
common to initial the first state x1 ∼ N (0,Σ0), then the joint probability distribution of the GSSM
is

pγ(w,x|u) = pγ(w|x)pγ(x|u) =
T∏

t=1

pγt(wt|xt).p(x1)

T∏
t=2

pγt(xt|xt−1,ut). (17)

GSSMs have substantial properties that we can utilize. Filtering and smoothing are among these
properties which allow us to obtain the filtered and smoothed posterior based on the priors and
observations. By applying classic Bayesian properties, we can have a strong tool to handle the
missing data in the image imputation task.

A.2 FILTERING AND SMOOTHING PARAMETERIZATION

The idea of Kalman filter applies two iterative steps, in the former one a prediction is made by the
prior state information, while in the latter one an update is done based on the obtained observation.
By normality assumption of known additive process and observation noise, the filter can go through
the two mentioned steps. In the prediction step, the filter uses the transition matrix F to estimate the
next priors (x−

t+1,Σ
−
t+1) which are the estimate of the the next states without any observation.

x−
t+1 = Fx+

t , and Σ−
t+1 = FΣ+

t F
T +Q, and Q = σ2

transI (18)

In the presence of new observation, the Kalman filter idea goes through the second step and modifies
the predicted prior based on the new observation and emission matrix H that results in the next
posterior (x+

t+1,Σ
+
t+1).

Kt+1 = Σ−
t+1H

T
(
HΣ−

t+1H
T +R

)−1
, and (19)

x+
t+1 = x−

t+1+Σ−
t+1H

T
(
HΣ−

t+1H
T +R

)−1
(wt−Hx−

t+1) = x−
t+1+Kt+1(wt−Hx−

t+1), (20)

Σ+
t+1 = Σ−

t+1 −Σ−
t+1H

T
(
HΣ−

t+1H
T +R

)−1
HΣ−

t+1. (21)

The whole observation update procedure can be considered as a weighted mean between the the next
prior, that comes from state update, and new observation, where this weighting is a function of Q and
R that has uncertainty nature.

We derive smoothing parameterization, where the key idea is to use Markov property, which states
that xt is independent of future observations wt+1:T as long as xt+1 is known. However, we are not
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aware of xt+1, but there is a distribution over it. So by conditioning on xt+1 and then marginalizing
out it is possible to obtain xt conditioned on w1:T .

p(xt|w1:T ) =

∫
p(xt|xt+1,w1:T )p(xt+1|w1:T )dxt+1

=

∫
p(xt|xt+1,w1:t,����wt+1:T )p(xt+1|w1:T )dxt+1

(22)

By using induction and and smoothed distribution for t+ 1:

p(xt+1|w1:T ) = N (xt+1|T ,Σt+1|T ) (23)

we calculate the filtered two-slice distribution as follows:

.p(xt,xt+1|w1:t) = N
((

x+
t

x−
t+1

)
,

(
Σ+

t Σ+
t F

T
t+1

Ft+1Σ
+
t Σ−

t+1

))
(24)

by using Gaussian conditioning we have:

p(xt|xt+1,w1:t) = N (x+
t + Jt

(
xt+1 − Ft+1x

+
t

)
,Σ+

t − JtΣ
−
t+1J

T
t ) (25)

where Jt = Σ+
t Ft+1[Σ

−
t+1]

−1. We calculate the smoothed distribution for t using the rules of
iterated expectation and covariance:

xt|T = E
[
E[xt|xt+1,w1:T ] |w1:T

]
= E

[
E[xt|xt+1,w1:t] |w1:T

]
= E

[
x+
t + Jt(xt+1 − Ft+1x

+
t ) |w1:T

]
= x+

t + Jt(xt+1|T − Ft+1x
+
t )

(26)

Σt|T = cov
[
E[xt|xt+1,w1:T ] |w1:T

]
+ E

[
cov[xt|xt+1,w1:T ] |w1:T

]
= cov

[
E[xt|xt+1,w1:t] |w1:T

]
+ E

[
cov[xt|xt+1,w1:t] |w1:T

]
= cov

[
x+
t + Jt(xt+1 − Ft+1x

+
t ) |w1:T

]
+ E

[
Σ+

t − JtΣ
−
t+1J

T
t |w1:T

]
= Jtcov

[
xt+1 − Ft+1x

+
t |w1:T

]
JT
t +Σ+

t − JtΣ
−
t+1J

T
t

= JtΣt+1|TJ
T
t +Σ+

t − JtΣ
−
t+1J

T
t

= Σ+
t + Jt

(
Σt+1|T −Σ−

t+1

)
JT
t .

(27)

A.3 PROCESS NOISE MATRIX

As stated in (18), we can elaborate the process noise matrix at time t in more details

Qt = Σ−
t − FtΣ

+
t−1F

T
t = Σ−

t − Ft

[
Σ−

t−1 −Kt−1[Ht−1Σ
−
t−1H

T
t−1 +Rt−1]

−1KT
t−1

]
FT

t (28)

combining (18) into (28) results in

Qt = Σ−
t − Ft

[
[Ft−1Σ

+
t−2F

T
t−1 +Qt−1]

−Kt−1[Ht−1[Ft−1Σ
+
t−2F

T
t−1 +Qt−1]H

T
t−1 +Rt−1]

−1KT
t−1

]
FT

t

(29)

which is a function of Ft, Qt−1, Ft−1 and Ht−1. In the GIN, F̂t and Ĥt are learned by the Dynamics
Network with the input of x+

t−1 . From (20), x+
t−1 is derived as a function of both Ft−1 and Ht−1,

13



Under review as a conference paper at ICLR 2023

(a) Without recurrent dependency on qt. (b) With recurrent dependency on qt.

Figure 9: Graphical models for low dimensional observations experiments.

meaning the learned F̂t carries the information of both Ht−1 and Ft−1. Therefore, one can rewrite
the equation (29) as

Qt = g

(
F̂t

(
x+
t−1

)
,Qt−1

)
,where F̂t = Dynamics Network

(
x+
t−1

(
Ht−1,Ft−1

))
. (30)

where g is a nonlinear function mapping x+
t−1 and Qt−1 to Qt and the graphical model for such

choice of structure is in figure 9b. It is possible to go one step further and simplify x+
t−1 more, as it

has Σ−
t−1 term in (20), combining it with (18) results in

x+
t−1 = x−

t−1 + [Ft−1Σ
+
t−2F

T
t−1 +Qt−1]

HT
t−1

(
Ht−1[Ft−1Σ

+
t−2F

T
t−1 +Qt−1]H

T
t−1 +Rt−1

)−1
(wt −Ht−1x

−
t−1)

(31)

indicating that not only Ft−1 and Ht−1, but also Qt−1 is included in x+
t−1, meaning that Qt can be

written solely as a function of x+
t−1 and the graphical model for such choice is in figure 9a.

Qt = g

(
F̂t

(
x+
t−1

))
,where F̂t = Dynamics Network

(
x+
t−1

(
Ht−1,Ft−1,Qt−1

))
. (32)

We call g as Q Network, where g can be modeled by a MLP (32) or a recurrent network (30), based
on the mentioned explanations. In figure 11, it is shown how the Q Network is integrated into the
whole model structure.

A.4 OUTPUT DISTRIBUTION

In the case of grayscale images, consider each pixel, yi, is one or zero with the probability of pi or
1− pi respectively, meaning that P (Y = y) = py(1− p)1−y . By re-writing the probability equation
into the exponential families form

fθ(y) = h(y).exp
(
θ.y − ψ(θ)

)
→ elog(p

y(1−p)1−y) = ey log( p
1−p )+ log(1−p) (33)

and by choosing θ = log( p
1−p ) and ψ(θ) = log(1− p), we can obtain p = 1

1+e−θ . It means that by
considering θ as the last layer of the decoder and applying a softmax layer, p is obtained. Equivalently,
one can calculate the deviance between real p and estimation of it, p̂, which is given by

D(p, p̂) =
[
p log(

p

p̂
) + (1− p)log(

1− p

1− p̂
)
]

(34)
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and minimize the deviance with respect to p̂ as we did in (15).

Similarly, consider x, x̂θ and θ as the ground truth state, estimated state and the model variables
respectively, where the residual follows Gaussian distribution x = x̂θ + ϵ ∼ N (x̂θ, σ̂θ), where σ̂θ is
the estimated variance. Then, the negative log likelihood is given by (35) as we obtained it in (14).

−log(L) ∝ 1

2
log(σ̂θ) +

(x− x̂θ)
2

2σ̂θ
(35)

A.5 NOISE GENERATION PROCESS

In the high dimensional observation experiments, to show the noise robustness of the system, we
use time correlated noise generation scheme. It makes the noise factors correlated over time by
introducing a sequence of factors ft of the same length of the data sequence. Let f0 ∼ U(0, 1) and
ft+1 = min(max(0, ft + rt), 1) with rt ∼ U(−0.2, 0.2), where f0 is the initialized factor and U is
the uniform distribution. Then by defining two thresholds, t1 ∼ U(0, 0.25) and t2 ∼ U(0.75, 1),
ft < t1 are set to 0 and ft > t2 are set to 1 and the rest are splitted linearly within the range of [0, 1].
The t-th obtained observation is given by ot = ftit + (1− ft)i

pn
t , where the it is the t-th true image

and ipnt is the t-th generated pure noise.

A.6 LORENZ ATTRACTOR DYNAMICS

There are three differential equations that model a Lorenz system, x the convection rate, y the
horizontal temperature variation and z the vertical temperature variation.

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz (36)

where the constant values σ, ρ and β are 10, 28 and − 8
3 , respectively. To construct a trajectory we

use Lorenz system equations (36) with dt = 10−5, then we sample from it with the step time of
∆t = 0.01.

Based on the equations of the system (36), the state is st = [xt, yt, zt] and we can write the dynamics
of the system as At and obtain the transition matrix Exp[At] = Ft. To achieve this, we use the
Taylor expansion of Exp function with 5 degrees.

ṡt = Atst =

 −10 10 0
28− z −1 0
y 0 − 8

3

[
x
y
z

]
, and Ft = Exp[At] = I+

J∑
j=1

(At.∆t)
j

j!
(37)

where J is the degrees of expansion and I is the identity matrix. For the emission matrix we
use Ht = I and for process and observation noise standard deviation, we use Qt = 1

100σ
2I and

Rt = σ2I, respectively.

A.7 MOVEMENT MODEL DETAILS FOR THE NCLT EXPERIMENT

We assume that the segway robot is moved with a constant velocity, that the equations for such
dynamics are given by

∂p1
∂t

= v1,
∂p2
∂t

= v2,
∂v1
∂t

= 0,
∂v2
∂t

= 0, xt = [p1, v1, p2, v2], yt = [p1, p2]. (38)

By such assumptions for the motion’s equations the transition, process noise distribution, emission
and measurement noise distribution matrices can be obtained by

F =

1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 , Q = σ2

∆t 0 0 0
0 ∆t 0 0
0 0 ∆t 0
0 0 0 ∆t

 , H =

[
1 0 0 0
0 0 1 0

]
,

R = λ2
[
1 0
0 1

]
.

(39)
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where ∆t = 1 since the sampling frequency is 1Hz. Process and measurement variance parameters, σ
and λ, are unknown that the model will learn them. we split the whole sequence into training, testing
and validation folds with the length of 3600 ( 18 sequences of length T = 200) , 280 (1 sequence of
length T = 280) and 400 (2 sequences of length T = 200), respectively.

A.8 NETWORK STRUCTURE AND PARAMETERS

In all experiments, Adam optimizer Kingma & Ba (2014) has been used on NVIDIA GeForce GTX
1050 Ti. We conduct a grid search for finding the hyperparameters to rule out the possibility of
the models being trained with the suboptimal hyperparameters. To find the initial learning rate, by
conducting a grid search between 0.001 and 0.2 with the increment of 0.005, we select the best one
among them that corresponds to the highest log-likelihood. With an initial learning rate of 0.006 and
an exponential decay with rate of 0.9 every 10 epochs, we employ back propagation through time
Werbos (1990) to compute the gradients as we deploy GRU cells in the structure. Layer normalization
technique Ba et al. (2016) is used to stabilize the dynamics in the recurrent structure and normalize
the filter response. Elu + 1 activation function, can ensure the positiveness of the diagonal elements
of the process, noise and covariance matrices.

In order to prevent the model being stuck in the poor local minima, e.g. focusing on the reconstruction
instead of learning the dynamics obtained by filtering-smoothing, we find it useful to use two training
tricks for an end-to-end learning:

1- Generating time correlated noisy sequences as consecutive observations, forces the model to
learn the dynamics instead of focusing on reconstruction, e.g. figure 13 and 15.

2- For the first few epochs, only learn auto-encoder(MLPs) and globally learned parameters,
e.g. F(k) and H(k), but not Dynamics Network parameters αt(xt−1). All the parameters are
jointly learned, afterwards. This allows the system to learn good embedding and meaningful
latent vectors at first, then learns how to employ K different dynamics variables.

In the lack of dynamics, for the low dimensional observations we use K = 5, while for the high
dimensional observations we use K = 15 as they need to learn more complex dynamics. In general,
if the GIN is flexible enough, tuning the parameters is not difficult as the GIN is capable to learn how
to prune unused elements by the Dynamics Network.

To prevent the model being stuck into mode collapse, we provided two solutions:

1- By introducing k sets of Fk,Hk, where each set of Fk,Hk models different dynamics, we
introduce a loss term with a small constant factor which tries to increase the distance of each
pair of Fk,Hk set. Intuitively, the presence of different dynamics can easily modify the
states in each update. We found this method as a potential solution to prevent the model go
through the mode collapse.

2- Considering the negative distance of consecutive pairs of states as additional loss term with
a small constant factor (the distance can be considered as euclidean difference of mean or
KL of two consecutive states). Intuitively, this solution is forcing the states to not have
overlap with each other and impose them to change in each update step.

In the simulation results, we have used the first option.

A.8.1 PROPOSED ARCHITECTURE FOR HIGH AND LOW DIMENSIONAL OBSERVATIONS

The proposed structure to deal with high dimensional observations in the lack of the dynamics(the
first three experiments in the paper) is shown in figure 10. While, the proposed structure to handle
low dimensional observations in the presence of the dynamics(the last two experiments in the paper)
is shown in the figure 11.

A.8.2 EMPIRICAL RUNNING TIMES AND PARAMETERS

We present the number of parameters of the utilized cell structures in our experiments and their
corresponding empirical running times for 1 epoch in the table 7 and 8. In the first row of each model
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Figure 10: Proposed architecture for operating high dimensional observations in the lack of dynamics.

Figure 11: Proposed architecture for operating low dimensional observations in the presence of
dynamics.

structure in the high dimensional experiments, we set the number of their parameters approximately
equal to our GIN to indicate the outperformance of the GIN with the same number of the parameters,
i.e. tables 1, 2 and 5, while we include the empirical running time and parameters for more complex
structures as well. Extra running time of EM-variational approaches, like KVAE, is due to employing
classic Bayesian equations because it increases the running time substantially when dealing with
higher dimensional observations, however, the GIN circumvent this difficulty. The number of the
parameters of the GIN are noticeably lower than other memory cells, e.g. LSTM and GRU, and
EM-variational methods as we convert high dimensional sparse covariance matrices into lower
dimensional covariance matrices by employing convolutional operator. It allows us to reduce the
parameters of internal GRU cells quadratically.
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A.8.3 QUALITATIVE COMPARISON OF THE GIN TO RECENT RELATED WORK.

In table 9, we make a comparison to show whether algorithms are able to handle high and low
dimensional observations, learn dynamics, use available-partial dynamics, estimate state appropriately,
provide model’s uncertainty estimates handling noisy data, handle missing data and perform direct
optimization. Classic LGSSMs, e.g. EKF and UKF, work based on the linearization of the transition
and emission equations and apply classic Bayesian updates over the linearized system with respect
to the states. In other words, (F,H) in the classic LGSSMs are not data-deriven nor trainable.
Despite classic LGSSMs, in the GIN we use a data-driven based network to learn dynamics, i.e.
Dynamics Network in the paper.

A.8.4 SINGLE-PENDULUM AND DOUBLE-PENDULUM EXPERIMENTS

DATA GENERATION.

Dataset consists of 1000 train, 100 valid and 100 test sequences with the length of 150. The sequences
are distorted via generated noise, while in the informed imputation task half of the images are removed
and boolean flags indicating the availability of the observations are passed to the cell instead. If the
imputation task is in uninformed type, black images are considered as the observations instead of
informing the cell with boolean flags.

ENCODER/DECODER AND THE DYNAMICS NETWORK ARCHITECTURE

To design the dynamics network, we use a MLP including 60 hidden units with Relu activation
function and a softmax activation for the last layer. The state mean, with size of n, and number of the
bases, with size of k, are the input and output of the dynamics, respectively. The structures of the
encoder and decoder are in the table 10. In the table 10, m is the transferred observation dimension
that various values for this parameter are taken into account in the results. In the state estimation
tasks, out dim is 4 and 8 for the single-pendulum and double-pendulum experiment, respectively.
For the imputation task, number of the hidden units of the KG and SG network is set to 40 and 30,
respectively. The convolutional layer applied over the covariance matrix has 8 filters with kernel size
of 5.

A.8.5 LORENZ ATTRACTOR AND NCLT EXPERIMENTS

In these two experiments that we have the knowledge of the dynamics, we employ a fully connected
with the observations as its input and output dimension of 3 and 2 for Lorenz attractor and NCLT
experiments, respectively, to obtain the observation noise, r. The activation function is Elu + 1.
Similarly another fully connected with the posterior state as its input and output dimension of 3 and 2
for Lorenz attractor and NCLT experiments, respectively, to attain the uncertainty estimates, o+

σ . To
estimate the process noise matrix, a fully connect with the posterior state as the input and Elu + 1
activation function is used. Similarly, a GRU cell that maps the posterior states to the process noise
matrix with 10 hidden units can be used.

Table 7: Empirical running times and parameters of
high-low dimensional experiments.

Cell Single Pend Double Pend KITTI
Param T/E Param T/E Param T/E

LSTM (units=25) ∼18k ∼56s ∼18k ∼56s ∼45k ∼83s
LSTM (units=50) ∼36k ∼70s ∼36k ∼71s ∼70k ∼95s
LSTM (units=100) ∼76k ∼98s ∼76k ∼96s ∼120k ∼131s

GRU (units=30) ∼18k ∼61s ∼18k ∼62s ∼42k ∼79s
GRU (units=50) ∼27k ∼65s ∼27k ∼67s ∼53k ∼84s
GRU (units=100) ∼57k ∼86s ∼57k ∼85s ∼90k ∼111s

KVAE (n=40) ∼25k ∼95s ∼25k ∼97s ∼62k ∼141s
KVAE (n=60) ∼36k ∼114s ∼36k ∼111s ∼80k ∼165s
RKN (n=100) ∼25k ∼57s ∼25k ∼58s ∼45k ∼79s

LGSSM (n=30) ∼12k ∼82s ∼12k ∼84s ∼30k ∼117s
LGSSM (n=45) ∼15k ∼98s ∼15k ∼97s ∼36k ∼136s

GIN (n=30) ∼18k ∼55s ∼18k ∼55s ∼42k ∼80s
GIN (n=45) ∼25k ∼59s ∼25k ∼58s ∼48k ∼83s

Table 8: Low dimensional experiments.

Cell Lorenz NCLT
Param T/E Param T/E

KalmanNet ∼30k ∼65s
GNN ∼10k ∼35s ∼10k ∼40s
RNN ∼40k ∼79s

DSSM ∼40k ∼76s ∼40k ∼81s
LGSSM ∼6k ∼20s ∼6k ∼22s

GIN ∼9k ∼28s ∼9k ∼31s
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Table 9: Learning the dynamics in LGSSM is shown with ×/✓ because general LGSSMs, e.g. UKF
and EKF, are not able to learn the dynamics. However, in our setting and parameterization we use a
data driven-based network for obtaining (F,H) to make LGSSMs comparable with the GIN for high
dimensional observation experiments.

Model high-d low-d learn dynamics use dynamics state est uncertainty missing-noise dir opt

LSTM (Hochreiter & Schmidhuber, 1997) ✓ ✓ ✓ ✓ ✓ × ✓ ✓
GRU (Cho et al., 2014) ✓ ✓ ✓ ✓ ✓ × ✓ ✓

P2T (Wahlström et al., 2015) ✓ ✓ ✓ × ✓ × × ✓
E2C (Watter et al., 2015) ✓ ✓ ✓ × × ✓ × ×

BB-VI (Archer et al., 2015) × ✓ ✓ × × ✓ ✓ ×
SIN (Krishnan et al., 2017) ✓ ✓ ✓ × × ✓ ✓ ×
DVBF (Karl et al., 2016) ✓ ✓ ✓ × × ✓ ✓ ×
VSMC (Naesseth et al., 2018) ✓ ✓ ✓ × × ✓ ✓ ×
DSA (Li & Mandt, 2018) ✓ ✓ ✓ × × ✓ × ×
KVAE (Fraccaro et al., 2017) × ✓ ✓ × × ✓ ✓ ×
EKVAE (Klushyn et al., 2021) × ✓ ✓ × × ✓ ✓ ×

rSLSD Linderman et al. (2017) × ✓ × ✓ ✓ ✓ × ×
DeepAR Salinas et al. (2020) × ✓ ✓ × ✓ ✓ × ✓
DSSM Rangapuram et al. (2018) × ✓ ✓ × ✓ ✓ × ✓
HybridGNN Garcia Satorras et al. (2019) × ✓ × ✓ ✓ × ✓ ✓
KalmanNet Revach et al. (2021) × ✓ × ✓ ✓ × ✓ ✓
SSI Ruhe & Forré (2021) × ✓ × ✓ ✓ ✓ ✓ ✓

LGSSM × ✓ ×/✓ ✓ ✓ ✓ ✓ ✓
GIN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

A.9 VISUALIZATION AND THE IMPUTATION

Graphical results of informed, uninformed and noisy observations for image imputation task for both
single and double pendulum experiments can be found in 12, 13, 14 and 15 figures. Inference for
the trained smoothing and filtering distributions of all high dimensional experiments are in 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38 and 39 figures, where
we generated samples from the smoothing distribution, f(xt|w1:T ), and the filtering distribution,
f(xt|w1:t). Then we fit density on the generated samples. This visualization shows the effectiveness
of the GIN in reducing the uncertainty of the estimates compare to LGSSM and KVAE. Finally, the
results of NCLT experiment are in figure 47.

Table 10: The structure of the encoder and decoder for single and double pendulum experiments.

Encoder Decoder

6× 6 Conv, 12, max pooling 2× 2, stride 2× 2 o+
x : fully connected: out dim, linear activation

LayerNormalizer() o+
Σ : fully connected, Elu + 1 activation

4× 4 Conv, 12, max pooling 2× 2, stride 2× 2 if imputation task:
LayerNormalizer() fully connected: 144
fully connected: 40 6× 6 Trns Conv, 16, stride 4× 4
w: fully connected: m, linear activation LayerNormalizer()
r: fully connected, Elu + 1 activation 4× 4 Trns Conv, 12, stride 2× 2

LayerNormalizer()
o+
i : 1× 1 Trns Conv, stride 1× 1, softmax
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Ground Truth

Observed Sequence

LGSSM(filter)

LGSSM(smooth)

GIN(filter)

GIN(smooth)

Ground Truth

Observed Sequence

LGSSM(filter)

LGSSM(smooth)

GIN(filter)

GIN(smooth)

Figure 12: Informed(left column) and uninformed(right column) image imputation task for the single
pendulum experiments.

Figure 13: Image imputation task for the single pendulum experiment exposed to the noisy observa-
tions, where the generated noise has correlation with the time. Each figure, beginning from top to
bottom, indicates the ground truth, noisy observation and the imputation results of the GIN.
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Ground Truth

Observed Sequence

LGSSM(filter)

LGSSM(smooth)

GIN(filter)

GIN(smooth)

Ground Truth

Observed Sequence

LGSSM(filter)

LGSSM(smooth)

GIN(filter)

GIN(smooth)

Figure 14: Informed(left column) and uninformed(right column) image imputation task for the double
pendulum experiments.

Figure 15: Image imputation task for the double pendulum experiment exposed to the noisy observa-
tions, where the generated noise has correlation with the time. Each figure, beginning from top to
bottom, indicates the ground truth, noisy observation and the imputation results of the GIN.
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Figure 16: Inference for the single pendulum x1 position at 100-th time step. Generated samples from
smoothened distribution, f(x1100|w1:150), trained by the GIN, LGSSM and KVAE, respectively.
The dashed red line (x1Pos

100|w1:150) is the ground truth state with distribution of δ(x1100 − 0.7).
We calculate the sample mean and fit a distribution on the samples for further visualization and
comparison purpose.

Figure 17: Inference for the single pendulum x2 position at 100-th time step. Generated samples from
smoothened distribution, f(x2100|w1:150), trained by the GIN, LGSSM and KVAE, respectively.

(a) GIN (b) LGSSM (c) KVAE

Figure 18: Generated samples from the trained smoothened joint distribution of the single pendulum
position, (x1, x2), at 100-th time step for the GIN, LGSSM and KVAE, respectively. The ground
truth is shown with a black point.
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Figure 19: Inference for the single pendulum x1 position at 100-th time step. Generated samples
from filter distribution, f(x1100|w1:100), trained by the GIN, LGSSM and KVAE, respectively. The
dashed red line (x1Pos

100|w1:100) is the ground truth state with distribution of δ(x1100 − 0.7).

Figure 20: Inference for the single pendulum x2 position at 100-th time step. Generated samples
from filter distribution, f(x2100|w1:100), trained by the GIN, LGSSM and KVAE, respectively.

(a) GIN (b) LGSSM (c) KVAE

Figure 21: Generated samples from the trained filter joint distribution of the single pendulum position,
(x1, x2), at 100-th time step for the GIN, LGSSM and KVAE, respectively. The ground truth is
shown with a black point.
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Figure 22: Inference for the double pendulum x1 position at 100-th time step. Generated samples
from smoothened distribution, f(x1100|w1:150), trained by the GIN, LGSSM and KVAE, respectively.
The dashed red line (x1Pos

100|w1:150) is the ground truth state with distribution of δ(x1100 − 0.35).

Figure 23: Inference for the double pendulum x2 position at 100-th time step. Generated samples
from smoothened distribution, f(x2100|w1:150), trained by the GIN, LGSSM and KVAE, respectively.
The dashed red line (x2Pos

100|w1:150) is the ground truth state with distribution of δ(x2100 − 0.35).

(a) GIN (b) LGSSM (c) KVAE

Figure 24: Generated samples from the trained smoothened joint distribution of the double pendulum
first joint position, (x1, x2), at 100-th time step for the GIN, LGSSM and KVAE, respectively. The
ground truth is shown with a black point.
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Figure 25: Inference for the double pendulum x3 position at 100-th time step. Generated samples
from smoothened distribution, f(x3100|w1:150), trained by the GIN, LGSSM and KVAE, respectively.
The dashed red line (x3Pos

100|w1:150) is the ground truth state with distribution of δ(x3100 − 1).

Figure 26: Inference for the double pendulum x4 position at 100-th time step. Generated samples from
smoothened distribution, f(x4100|w1:150), trained by the GIN, LGSSM and KVAE, respectively.

(a) GIN (b) LGSSM (c) KVAE

Figure 27: Generated samples from the trained smoothened joint distribution of the double pendulum
second joint position, (x3, x4), at 100-th time step for the GIN, LGSSM and KVAE, respectively.
The ground truth is shown with a black point.
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Figure 28: Inference for the double pendulum x1 position at 100-th time step. Generated samples
from filter distribution, f(x1100|w1:100), trained by the GIN, LGSSM and KVAE, respectively. The
dashed red line (x1Pos

100|w1:100) is the ground truth state with distribution of δ(x1100 − 0.35).

Figure 29: Inference for the double pendulum x2 position at 100-th time step. Generated samples
from filter distribution, f(x2100|w1:100), trained by the GIN, LGSSM and KVAE, respectively. The
dashed red line (x2Pos

100|w1:100) is the ground truth state with distribution of δ(x2100 − 0.35).

(a) GIN (b) LGSSM (c) KVAE

Figure 30: Generated samples from the trained filter joint distribution of the double pendulum first
joint position, (x1, x2), at 100-th time step for the GIN, LGSSM and KVAE, respectively. The
ground truth is shown with a black point.
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Figure 31: Inference for the double pendulum x3 position at 100-th time step. Generated samples
from filter distribution, f(x3100|w1:100), trained by the GIN, LGSSM and KVAE, respectively. The
dashed red line (x3Pos

100|w1:100) is the ground truth state with distribution of δ(x3100 − 1).

Figure 32: Inference for the double pendulum x4 position at 100-th time step. Generated samples
from filter distribution, f(x4100|w1:100), trained by the GIN, LGSSM and KVAE, respectively.

(a) GIN (b) LGSSM (c) KVAE

Figure 33: Generated samples from the trained filter joint distribution of the double pendulum second
joint position, (x3, x4), at 100-th time step for the GIN, LGSSM and KVAE, respectively. The
ground truth is shown with a black point.
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Figure 34: Inference for the visual odometry x1 position at 100-th time step. Generated samples from
smoothened distribution, f(x1100|w1:500), trained by the GIN, LGSSM and KVAE, respectively.
The dashed red line (x1Pos

100|w1:500) is the ground truth state with distribution of δ(x1100 + 50).

Figure 35: Inference for the visual odometry x2 position at 100-th time step. Generated samples from
smoothened distribution, f(x2100|w1:500), trained by the GIN, LGSSM and KVAE, respectively.
The dashed red line (x2Pos

100|w1:500) is the ground truth state with distribution of δ(x1100 − 10).

(a) GIN (b) LGSSM (c) KVAE

Figure 36: Generated samples from the trained smoothened joint distribution of the visual odometry
joint position, (x1, x2), at 100-th time step for the GIN, LGSSM and KVAE, respectively. The
ground truth is shown with a black point.
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Figure 37: Inference for the visual odometry x1 position at 100-th time step. Generated samples
from filter distribution, f(x1100|w1:100), trained by the GIN, LGSSM and KVAE, respectively. The
dashed red line (x1Pos

100|w1:100) is the ground truth state with distribution of δ(x1100 + 50).

Figure 38: Inference for the visual odometry x2 position at 100-th time step. Generated samples
from filter distribution, f(x2100|w1:100), trained by the GIN, LGSSM and KVAE, respectively. The
dashed red line (x2Pos

100|w1:100) is the ground truth state with distribution of δ(x1100 − 10).

(a) GIN (b) LGSSM (c) KVAE

Figure 39: Generated samples from the trained filter joint distribution of the visual odometry joint
position, (x1, x2), at 100-th time step for the GIN, LGSSM and KVAE, respectively. The ground
truth is shown with a black point.
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(a) LGSSM (b) GIN(Filter) (c) GIN(Smooth)

Figure 42: Eigenvalues of the learned transition matrix F̂t and their corresponding true values in the
first 100 time steps for Lorenz attractor experiment. Despite the low dimensional experiments in the
paper that we give the dynamics (F,H) to the model, here we show the GIN ability for learning the
dynamics, when we do not provide the dynamics information, i.e. (Ft,Ht) in (37).
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(a) LGSSM (b) GIN(Filter) (c) GIN(Smooth)

Figure 44: Eigenvalues of the learned transition matrix F̂t and their corresponding true values in the
first 100 time steps for NCLT dataset experiment. Despite the low dimensional experiments in the
paper that we provided the dynamics (F,H) for the model, here we show the GIN ability for learning
the dynamics, when we do not provide the dynamics information, i.e. (Ft,Ht) in (39).
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(a) LGSSM (b) GIN(Filter) (c) GIN(Smooth)

Figure 46: Eigenvalues of the learned transition matrix F̂t and their corresponding true values in the
first 100 time steps for NCLT dataset experiment. Despite the low dimensional experiments in the
paper that we provided the dynamics (F,H) for the model, here we show the GIN ability for learning
the dynamics, when we do not provide the dynamics information, i.e. (Ft,Ht) in (39).
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Figure 47: NCLT dataset position for the first 50 observations: ground truth positions and the
generated trajectories with the GIN, LGSSM, KalmanNet and DSSM approaches are illustrated.

A.10 MSE RESULTS FOR THE STATE ESTIMATION AND ESTIMATED KG-SG

We compare the learned KG-SG matrices via the GRU cells with their corresponding ground truth for
the first 100 time steps of the low dimensional experiments. We calculate the element-wise squared
difference of the learned KG and its ground truth, ∆KGt = Tr

(
(K̂Gt −KGt)

T (K̂Gt −KGt)
)
, and

take the average of all ∆KGt, while similar procedure holds for the SG. The results are provided in
table 11.

Table 11: Comparison of leaned KG-SG matrices and ground truth KG-SG. Lorenz attractor and
NCLT experiments with dynamics refer to the situation, where are given the dynamics form, i.e.
(37)-(39).

Exp 50 epoch 80 epoch 100 epoch 200 epoch
∆ KG ∆ SG ∆ KG ∆ SG ∆ KG ∆ SG ∆ KG ∆ SG

Lorenz with dynamics 2.83 2.49 1.52 1.26 0.69 0.62 0.46 0.49
NCLT with dynamics 1.91 2.15 1.39 1.24 0.93 0.95 0.67 0.73

Lorenz without dynamics 12.31 13.26 8.55 7.93 5.40 6.29 4.19 4.58
NCLT without dynamics 9.88 9.62 6.73 7.11 5.11 4.83 3.29 3.10

The MSE results for the single and double pendulum experiments are in the table 12 and 13. In
addition to (7), where F matrix includes the effects of the process noise, two other mentioned
solutions introduced in section 4, are included in the MSE results as well. Using GRU cell and MLP
for mapping x+, as their input, to Q, as their output, where the former one is shown by GRU(Q) and
the latter one by MLP(Q) in the tables.

33



Under review as a conference paper at ICLR 2023

Table 12: MSE for single pendulum experiment.

Model MSE

LSTM (units = 25, m = 15) 0.092±0.003
LSTM (units = 25, m = 20) 0.092±0.005
LSTM (units = 25, m = 40) 0.090±0.005
LSTM (units = 100, m = 15) 0.089±0.002
LSTM (units = 100, m = 20) 0.089±0.005
LSTM (units = 100, m = 40) 0.090±0.004

GRU (units = 30, m = 15) 0.095±0.006
GRU (units = 30, m = 20) 0.093±0.002
GRU (units = 30, m = 40) 0.094±0.005
GRU (units = 100, m = 15) 0.091±0.002
GRU (units = 100, m = 20) 0.092±0.004
GRU (units = 100, m = 40) 0.091±0.008

Model F̂(Q) MLP(Q) GRU(Q)

LGSSM filter(m = 15, n = 30, K = 10) 0.089±0.009 0.088±0.005 0.088±0.006
LGSSM filter(m = 15, n = 30, K = 15) 0.088±0.011 0.087±0.007 0.086±0.004
LGSSM filter(m = 15, n = 45, K = 10) 0.085±0.004 0.084±0.007 0.084±0.009
LGSSM filter(m = 15, n = 45, K = 15) 0.084±0.005 0.083±0.004 0.082±0.004
LGSSM filter(m = 20, n = 40, K = 10) 0.084±0.009 0.082±0.014 0.082±0.011
LGSSM filter(m = 20, n = 40, K = 15) 0.083±0.012 0.081±0.005 0.080±0.014
LGSSM filter(m = 20, n = 60, K = 10) 0.079±0.005 0.078±0.012 0.076±0.009
LGSSM filter(m = 20, n = 60, K = 15) 0.077±0.006 0.075±0.011 0.074±0.008

LGSSM smooth(m = 15, n = 30, K = 10) 0.086±0.011 0.083±0.004 0.084±0.007
LGSSM smooth(m = 15, n = 30, K = 15) 0.085±0.012 0.084±0.008 0.083±0.012
LGSSM smooth(m = 15, n = 45, K = 10) 0.081±0.008 0.080±0.009 0.079±0.003
LGSSM smooth(m = 15, n = 45, K = 15) 0.081±0.014 0.078±0.007 0.077±0.011
LGSSM smooth(m = 20, n = 40, K = 10) 0.082±0.005 0.078±0.004 0.076±0.013
LGSSM smooth(m = 20, n = 40, K = 15) 0.080±0.003 0.076±0.006 0.074±0.010
LGSSM smooth(m = 20, n = 60, K = 10) 0.076±0.008 0.073±0.002 0.070±0.009
LGSSM smooth(m = 20, n = 60, K = 15) 0.073±0.013 0.071±0.011 0.068±0.013

GIN filter(m = 15, n = 30, K = 10) 0.078±0.013 0.076±0.005 0.075±0.004
GIN filter(m = 15, n = 30, K = 15) 0.078±0.014 0.075±0.009 0.074±0.012
GIN filter(m = 15, n = 45, K = 10) 0.074±0.010 0.073±0.008 0.072±0.009
GIN filter(m = 15, n = 45, K = 15) 0.073±0.015 0.074±0.011 0.071±0.005
GIN filter(m = 20, n = 40, K = 10) 0.072±0.005 0.072±0.008 0.070±0.002
GIN filter(m = 20, n = 40, K = 15) 0.071±0.007 0.071±0.004 0.071±0.009
GIN filter(m = 20, n = 60, K = 10) 0.067±0.009 0.066±0.005 0.065±0.006
GIN filter(m = 20, n = 60, K = 15) 0.065±0.013 0.064±0.009 0.063±0.010

GIN smooth(m = 15, n = 30, K = 10) 0.071±0.007 0.070±0.003 0.068±0.009
GIN smooth(m = 15, n = 30, K = 15) 0.070±0.008 0.068±0.011 0.068±0.007
GIN smooth(m = 15, n = 45, K = 10) 0.065±0.011 0.065±0.009 0.064±0.012
GIN smooth(m = 15, n = 45, K = 15) 0.064±0.008 0.066±0.007 0.063±0.009
GIN smooth(m = 20, n = 40, K = 10) 0.064±0.005 0.065±0.003 0.062±0.008
GIN smooth(m = 20, n = 40, K = 15) 0.063±0.004 0.064±0.011 0.063±0.007
GIN smooth(m = 20, n = 60, K = 10) 0.059±0.009 0.061±0.012 0.057±0.006
GIN smooth(m = 20, n = 60, K = 15) 0.058±0.005 0.057±0.009 0.056±0.004
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Table 13: MSE for double pendulum experiment.

Model MSE

LSTM (units = 50, m = 15) 0.172±0.012
LSTM (units = 50, m = 20) 0.166±0.009
LSTM (units = 50, m = 40) 0.167±0.011
LSTM (units = 100, m = 15) 0.164±0.006
LSTM (units = 100, m = 20) 0.162±0.009
LSTM (units = 100, m = 40) 0.159±0.010

GRU (units = 50, m = 15) 0.194±0.014
GRU (units = 50, m = 20) 0.189±0.013
GRU (units = 50, m = 40) 0.188±0.015
GRU (units = 100, m = 15) 0.173±0.009
GRU (units = 100, m = 20) 0.169±0.014
GRU (units = 100, m = 40) 0.166±0.018

Model F̂(Q) MLP(Q) GRU(Q)

LGSSM filter(m = 15, n = 30, K = 10) 0.154±0.013 0.159±0.021 0.153±0.009
LGSSM filter(m = 15, n = 30, K = 15) 0.152±0.008 0.153±0.010 0.152±0.012
LGSSM filter(m = 15, n = 45, K = 10) 0.144±0.011 0.141±0.015 0.139±0.013
LGSSM filter(m = 15, n = 45, K = 15) 0.142±0.007 0.138±0.012 0.137±0.017
LGSSM filter(m = 20, n = 40, K = 10) 0.144±0.012 0.137±0.009 0.138±0.013
LGSSM filter(m = 20, n = 40, K = 15) 0.141±0.007 0.137±0.008 0.136±0.016
LGSSM filter(m = 20, n = 60, K = 10) 0.129±0.009 0.126±0.014 0.122±0.015
LGSSM filter(m = 20, n = 60, K = 15) 0.127±0.012 0.124±0.013 0.119±0.009

LGSSM smooth(m = 15, n = 30, K = 10) 0.147±0.009 0.148±0.014 0.144±0.015
LGSSM smooth(m = 15, n = 30, K = 15) 0.146±0.014 0.146±0.013 0.142±0.017
LGSSM smooth(m = 15, n = 45, K = 10) 0.139±0.017 0.136±0.009 0.133±0.017
LGSSM smooth(m = 15, n = 45, K = 15) 0.137±0.009 0.135±0.017 0.133±0.012
LGSSM smooth(m = 20, n = 40, K = 10) 0.136±0.014 0.131±0.022 0.132±0.011
LGSSM smooth(m = 20, n = 40, K = 15) 0.134±0.011 0.129±0.014 0.129±0.022
LGSSM smooth(m = 20, n = 60, K = 10) 0.123±0.019 0.116±0.016 0.115±0.013
LGSSM smooth(m = 20, n = 60, K = 15) 0.120±0.010 0.112±0.009 0.108±0.014

GIN filter(m = 15, n = 30, K = 10) 0.126±0.014 0.125±0.012 0.125±0.011
GIN filter(m = 15, n = 30, K = 15) 0.124±0.015 0.124±0.019 0.121±0.009
GIN filter(m = 15, n = 45, K = 10) 0.115±0.011 0.114±0.015 0.110±0.017
GIN filter(m = 15, n = 45, K = 15) 0.114±0.019 0.112±0.020 0.110±0.011
GIN filter(m = 20, n = 40, K = 10) 0.113±0.013 0.111±0.009 0.111±0.013
GIN filter(m = 20, n = 40, K = 15) 0.111±0.009 0.109±0.018 0.108±0.009
GIN filter(m = 20, n = 60, K = 10) 0.099±0.018 0.094±0.017 0.095±0.021
GIN filter(m = 20, n = 60, K = 15) 0.097±0.009 0.093±0.009 0.091±0.008

GIN smooth(m = 15, n = 30, K = 10) 0.115±0.011 0.116±0.009 0.113±0.017
GIN smooth(m = 15, n = 30, K = 15) 0.113±0.015 0.113±0.018 0.112±0.014
GIN smooth(m = 15, n = 45, K = 10) 0.105±0.009 0.101±0.014 0.101±0.015
GIN smooth(m = 15, n = 45, K = 15) 0.102±0.013 0.100±0.011 0.098±0.008
GIN smooth(m = 20, n = 40, K = 10) 0.101±0.008 0.098±0.010 0.094±0.015
GIN smooth(m = 20, n = 40, K = 15) 0.098±0.017 0.095±0.014 0.092±0.007
GIN smooth(m = 20, n = 60, K = 10) 0.086±0.013 0.081±0.008 0.079±0.009
GIN smooth(m = 20, n = 60, K = 15) 0.083±0.009 0.079±0.006 0.076±0.013
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A.11 ALGORITHMS

Algorithm High-Dimensional Observations Training

Input: Ground Truth gt1:T , Observations o1:T , last posteriors (x+
1:T ,Σ

+
1:T ),

initial posterior (x+
0 ,Σ

+
0 )

α1:T = Dynamics Network (x+
0:T−1)

Obtain F̂1:T and Ĥ1:T by (13)
(x−

1:T ,Σ
−
1:T ) = Prediction Step ((x+

0:T−1,Σ
+
0:T−1), F̂1:T )

(w1:T , r1:T ) = encoder (o1:T )

K1:T = Σ−
1:T Ĥ1:T M1:TM

T
1:T , M1:T = GRUKG(Conv2D(Σ−

1:T ), r1:T )
J1:T = Σ+

1:T F̂
T
1:TN1:TN

T
1:T , N1:T = GRUSG (Conv2D(Σ−

1:T ))
(x+

1:T ,Σ
+
1:T ) = Filtering Step (x−

1:T ,Σ
−
1:T ,K1:T ,w1:T , Ĥ1:T )

(x1:T |T ,Σ1:T |T ) = Smoothing Step (x+
1:T ,Σ

+
1:T ,J1:T , F̂1:T )

o+
1:T = decoder (x1:T |T ,Σ1:T |T )

L1:T = - Likelihood (gt1:T ,o
+
1:T )

Backward Propagation ()

Algorithm Low-Dimensional Observations Training

Input: Ground Truth gt1:T , Observations y1:T , last posteriors (x+
1:T ,Σ

+
1:T ),

initial posterior (x+
0 ,Σ

+
0 )

if Dynamics are not known then
α1:T = Dynamics Network (x+

0:T−1)

Obtain F̂1:T and Ĥ1:T by (13)
(w1:T , r1:T ) = MLP (y1:T )

(x−
1:T ,Σ

−
1:T ) = Prediction Step (x+

0:T−1,Σ
+
0:T−1, F̂1:T )

K1:T = Σ−
1:T Ĥ1:T M1:TM

T
1:T , M1:T = GRUKG(Σ−

1:T , r1:T )
J1:T = Σ+

1:T F̂
T
1:TN1:TN

T
1:T , N1:T = GRUSG (Σ−

1:T )

(x+
1:T ,Σ

+
1:T ) = Filtering Step (x−

1:T ,Σ
−
1:T ,K1:T ,w1:T , Ĥ1:T )

(x1:T |T ,Σ1:T |T ) = Smoothing Step (x+
1:T ,Σ

+
1:T ,J1:T , F̂1:T )

o+
1:T = MLP (x1:T |T+,Σ1:T |T )

L1:T = - Likelihood (gt1:T ,o
+
1:T )

Backward Propagation ()
else
Q network = MLP (x+

0:T−1) or GRU (x+
0:T−1,Q1:T )

(F1:T ,H1:T ) = Dynamics
r1:T = trainable layer(y1:T )
q1:T = Q network(x+

0:T−1)

(x−
1:T ,Σ

−
1:T ) = Prediction Step ((x+

0:T−1,Σ
+
0:T−1),Q1:T ,F1:T )

K1:T = Σ−
1:TH1:T M1:TM

T
1:T , M1:T = GRUKG(Σ−

1:T , r1:T )
J1:T = Σ+

1:TF
T
1:TN1:TN

T
1:T , N1:T = GRUSG (Σ−

1:T )

(x+
1:T ,Σ

+
1:T ) = Filtering Step (x−

1:T ,Σ
−
1:T ,K1:T ,y1:T ,H1:T )

(x1:T |T ,Σ1:T |T ) = Smoothing Step (x+
1:T ,Σ

+
1:T ,J1:T ,F1:T )

σ1:T |T = Trainable Layer (Σ1:T |T )

o+
1:T = [x1:T |T , σ1:T |T ]

L1:T = - Likelihood (gt1:T ,o
+
1:T )

Backward Propagation ()
end if
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A.12 PYTHON INFERENCE CODE

To demonstrate the simplicity of our proposed GIN, we include intuitive inference code with Tensor-
flow library for both the high dimensional and low dimensional experiments. The code runs with
Python 3.6+. The entire code to reproduce the experiments are available in Github repository.

A.12.1 PYTHON INTUITIVE CODE FOR HIGH DIMENSIONAL EXPERIMENTS.

1 import tensorflow.keras as k
2 import Prediction
3 import Filtering
4 import Smoothing
5 import DynamicsNetwork
6 import Encoder
7 import Decoder
8 import DataGen
9

10 class GIN_CELL(k.layers.Layer):
11 def __init__(self, initial_states):
12 self.x_tm1_+, self.Sigma_tm1_+ = initial_states
13 self.filter_states = [[self.x_tm1_+, self.Sigma_tm1_+]]
14 def call(self, inputs):
15 w_1:T, r_1:T = inputs
16 for w_t, r_t in (w_1:T, r_1:T):
17 F_hat_t, H_hat_t = DynamicsNetwork(self.x_tm1_+)
18 x_t_-, Sigma_t_- = Prediction(F_hat_t, H_hat_t,...
19 self.x_tm1_+, self.Sigma_tm1_+)
20 x_t_+, Sigma_t_+ = Filtering(x_t_-, Sigma_t_-,...
21 w_t, r_t, H_hat_t)
22 self.filter_states.append([x_t_+, Sigma_t_+])
23 self.x_tm1_+, self.Sigma_tm1_+ = x_t_+, Sigma_t_+
24 x_1:T_T, Sigma_1:T_T = Smoothing(self.filter_states,...
25 Sigma_1:T_-, F_hat_1:T)
26 return x_1:T_T, Sigma_1:T_T
27

28 class GIN(k.models.Model):
29 def __init__(self, initial_states):
30 self.x_0_+, self.Sigma_0_+ = initial_states
31 self.GIN_CELL_OBJ = self.GIN_CELL(self.x_0_+, self.Sigma_0_+)
32 self.Encoder = Encoder
33 self.Decoder = Decoder
34

35 def call(self, o_1:T):
36 w_1:T, r_1:T = self.Encoder(o_1:T)
37 x_1:T_T, Sigma_1:T_T = self.GIN_CELL_OBJ(w_1:T, r_1:T)
38 o_1:T_+ = self.Decoder(x_1:T_T, Sigma_1:T_T)
39 return o_1:T_+
40

41 Data = DataGen()
42 o_1:T_+ = GIN(Data)
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A.12.2 PYTHON INTUITIVE CODE FOR LOW DIMENSIONAL EXPERIMENTS.

1 import tensorflow.keras as k
2 import Prediction
3 import Filtering
4 import Smoothing
5 import MLP_ENC
6 import MLP_DEC
7 import DataGen
8 import Dynamics
9

10 class GIN_CELL(k.layers.Layer):
11 def __init__(self, initial_states):
12 self.x_tm1_+, self.Sigma_tm1_+ = initial_states
13 self.filter_states = [[self.x_tm1_+, self.Sigma_tm1_+]]
14

15 def call(self, inputs):
16 w_1:T, r_1:T, F_1:T, H_1:T = inputs
17 for w_t, r_t, F_t, H_t in (w_1:T, r_1:T, F_1:T, H_1:T):
18 x_t_-, Sigma_t_- = Prediction(F_t, H_t, self.x_tm1_+,...
19 self.Sigma_tm1_+)
20 x_t_+, Sigma_t_+ = Filtering(x_t_-, Sigma_t_-, w_t, r_t, H_t)
21 self.filter_states.append([x_t_+, Sigma_t_+])
22 self.x_tm1_+, self.Sigma_tm1_+ = x_t_+, Sigma_t_+
23 x_1:T_T, Sigma_1:T_T = Smoothing(self.filter_states,...
24 Sigma_1:T_-, F_1:T)
25 return x_1:T_T, Sigma_1:T_T
26

27 class GIN(k.models.Model):
28 def __init__(self, initial_states, Dynamics):
29 self.x_0_+, self.Sigma_0_+ = initial_states
30 self.F_1:T, self.H_1:T = Dynamics
31 self.GIN_CELL_OBJ = self.GIN_CELL(self.x_0_+, self.Sigma_0_+)
32 self.MLP_ENC = MLP_ENC
33 self.MLP_DEC = MLP_DEC
34

35 def call(self, o_1:T):
36 r_1:T = self.MLP_ENC(o_1:T)
37 x_1:T_T, Sigma_1:T_T = self.GIN_CELL_OBJ(o_1:T, r_1:T,...
38 self.F_1:T, self.H_1:T)
39 Sigma_o_1:T_+ = self.MLP_DEC(Sigma_1:T_T)
40 x_o_1:T_+ = x_1:T_T
41 return x_o_1:T_+, Sigma_o_1:T_+
42

43 Data = DataGen()
44 Dynamics_Matrices = Dynamics()
45 x_o_1:T_+, Sigma_o_1:T_+ = GIN(Data, Dynamics_Matrices)
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