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ABSTRACT

Discrete Flow Matching (DFM) presents a promising approach for graph gen-
eration; however, existing adaptations often introduce substantial complexity by
incorporating task-specific heuristics, compromising the continuity equation and
significantly expanding the hyperparameter space. Moreover, their sampling ef-
ficiency remains limited, as the required number of steps is often comparable
to diffusion models, diminishing DFM’s practical advantages. To address these
limitations, we propose SimGFM, a simplified graph DFM for graph generation.
SimGFM introduces a graph-structured rate formulation based on minimalist de-
sign principles—characterized by a clear mathematical expression, free of ad-hoc
heuristics, and consistent with the continuity equation. SInGFM achieves strong
empirical results: on QM9, it matches prior models requiring S00—1000 steps with
only 10 steps, and on most datasets, its performance at 50 steps matches or sur-
passes these baselines, demonstrating both efficiency and competitiveness.

1 INTRODUCTION

Graph generation is fundamental across domains from
molecular chemistry to social networks, as graphs com- 100
pactly represent complex relations and generate realistic 90r
structured data. Recent advances include continuous-time
discrete diffusion frameworks (Xu et al., 2024; Siraudin
et al., 2024) and discrete-flow frameworks (QIN et al.,
2025; Campbell et al., 2024; Gat et al., 2024). w0
Diffusion models (Ho et al., 2020; Nichol & Dhariwal, a0k e S50 260560
2021; Vignac et al., 2022) tightly couple training and # Steps

sampling: once components such as the noise schedule

or rate matrix are modified (Nichol & Dhariwal, 2021; Figure 1: Validity on QM9 vs. sam-
Karras et al., 2022; Xu et al., 2024; Siraudin et al., 2024), p]ing steps. Campbe]l (red) requires
retraining is typically required, incurring substantial com- many steps, while vf-denoisers (blue)
putational cost. By contrast, discrete-flow models (Camp-  achieve higher validity with fewer steps.
bell et al., 2024; Gat et al., 2024) decouple training from SimGFM further improves efficiency,
sampling, allowing sampling adaptations without retrain- reaching over 99% validity in 10 steps.
ing and thus greater flexibility for diverse data distribu-

tions. In CV/NLP, flow matching has markedly accelerated sampling, in some cases enabling near
one-step generation (Song et al., 2023; Liu et al., 2022; Lee et al., 2024; Geng et al., 2025). How-
ever, in graph generation, existing discrete-flow models remain computationally costly and require
nearly as many steps as diffusion-based approaches, leaving the potential sampling efficiency of
flow matching largely unrealized (QIN et al., 2025; Hou et al., 2025).
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As shown in Fig. 1, Campbell et al. (2024) derive a closed-form rate matrix (Eq. 5) from the poste-
rior endpoint py (- | X;), but its posterior expectations and combinatorial bookkeeping are costly
for graphs. Building on this, recent SOTA model (QIN et al., 2025) augments the Campbell field
with heuristic velocity terms to gain accuracy, at the cost of (i) potential violations of the conti-
nuity equation, and (ii) added methodological complexity. By contrast, the vf-denoiser (Gat et al.,
2024) offers a concise scheduler-based formulation (Eq. 6), avoids posterior expectations, and shows
strong few-step performance, making it a simpler and more effective backbone for graph DFM.
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Motivated by these observations, we propose SimGFM, a vf-denoiser-based method that strictly
adheres to the standard DFM formulation without auxiliary modules. In particular, while the vf-
denoiser is simple and flexible, its deterministic updates in complex graph tasks often collapse into
template-like trajectories, limiting diversity. To address this, we introduce the rvf-denoiser (Eq. 11),
a sampling-based variant that selects a single candidate outcome at each step, breaking symme-
try and enhancing diversity while preserving theoretical consistency. On QM9 (Wu et al., 2018),
SimGFM achieves 99.4% validity in just 10 steps, and across most datasets, it reaches or approaches
SOTA performance with 10-50 steps, representing an order-of-magnitude reduction compared with
diffusion/flow baselines (typically 500-1000), while also lowering hyperparameter tuning burden.

2 PRELIMINARIES

2.1 DISCRETE FLOW MATCHING

In this section, we introduce the core concepts of Discrete Flow Matching (DFM) (Campbell et al.,
2024; Gat et al., 2024). Unlike diffusion models, which learn a data distribution via iterative noising
and denoising, the goal of DFM is to learn a deterministic probability path p; from a simple source
distribution py (e.g., a sequence composed of a “mask” symbol) to a target data distribution p;. The
core of the model is to train a neural network to predict the velocity field u, of this probability path,
which guides how samples evolve with time ¢ € [0, 1] from the source to the target.

To build this framework, we first define a conditional probability path from a specific source
sample zg ~ pg to a specific target sample 1 ~ p;. A simple and effective choice is their convex
combination:

pt(xi | 20, 1) = (1 — Ky) Oz (mz) + Kt Oy (m’) , (1)

where 27 is the i-th element of the sequence, ¢ is the Dirac delta (point mass), and k; is a schedule
increasing monotonically from xo = 0 to x; = 1. This formula states that at time ¢ = 0, the sample
coincides with the source x(, and at ¢ = 1 it fully transforms into the target .

To simulate generation along the prescribed path p;(z) for ¢ € [0, 1], DFM adopts the continuous-
time Markov chain (CTMC) paradigm: the sample X; makes jumps over a state space D as time
t evolves continuously on [0,1]. DFM focuses on a model that predicts the rate of change of
probabilities for each coordinate (token) of the current sample X; with IV tokens. Thus, for a
sample X; ~ p;, each token updates independently as

Xipn ~ 0xi () + huj(-, Xy), )

where dx; denotes a Dirac mass at the current value and u! is the probability velocity field for the
i-th coordinate. If the probabilistic velocity u; generates the probability path p,, it means that for all
t € [0,1) and any sample x; ~ p¢, updating each position ¢ using the rule above equation 2 yields
Ten ~ Pen + o(h).

Moreover, the velocity u; should satisfy the following rate conditions:
Z ul(z',2) =0, ul(z',2) >0 Vie[D], z' # 2" 3)
' €[K]
Furthermore, prior work (Campbell et al., 2024; Gat et al., 2024) shows that a continuity equation

(also called the Kolmogorov forward equation) holds in discrete flow matching, describing the time
derivative of the state-marginal probability p;(x), z € S:

pe(x) + dive(prus) = 0, 4)

where div(p;w) = 3, cq Zi’;l 51(25) {pt(x) ul(xh, ) — pi(2)ui(z?, 2) ] , measures the total
outflow (probability flow x — 2z) minus total inflow (z — x) at state z € S, and 593(2;) =
1 0a (27) indicates that only pairs (z, z) agreeing on all coordinates except possibly the i-th are
considered when computing the flow. Intuitively, the continuity equation expresses that the rate of

change of probability mass at x equals the net effect of the probability flow p,u; at . It has been
shown that if the continuity equation holds, then u; can generate the probability path p;.
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The choice of u; is crucial. Two commonly used constructions for the rate matrix are:

(1) Campbell’s construction. Campbell et al. (2024) provide a closed-form solution for the rate
matrix us:
ReLU [9ypy1 (z | 21) — Oypyn (2 | 21)]

Z7 % (2] 21)

up (x,z|z1) = , X # 2. (5)
where pyi(z | x) means the state z at time ¢ given the state x at time 1 and Z; E—
[{z : pep (24 | 21) > 0}, the diagonal case is set by u; (z, x|21) = — > wsz Ui (%, 2|21). Finally,
the rate matrix is obtained by taking the posterior expectation: u; (z,2) = E,, ,(z,|2) [uf (z,2 | 21)].

(2) Vf-denoiser. Gat et al. (2024) propose the vf-denoiser:
u;(xz7 Z) = 1 : |:pl\t(xz | Z) - (;z"’ (‘Tl) ]7 (6)
— Ky
where p;j¢(z | z) means the state x at time 1 given the state z at time ¢ and & is a scheduler (a
monotone time mapping) satisfying £, > 0, kg = 0, and xk; = 1.

Both constructions depend on the prior py (- | 2¢), which is typically estimated by a trained model;
we denote the model output by p?lt(- | 2¢). The training objective is

'C(a) = Z Et,(Xle)th logp%t (Xi | Xt) : %)
i€[N]

2.2 DISCRETE FLOW MATCHING ON GRAPHS

Applying the Discrete Flow Matching (DFM) framework to graph generation requires accounting
for the unique structure of graphs—namely, sets of nodes and edges. We represent a graph with NV
nodes as G = (X, E), where X = {2(V}V, is the set of node attributes and E = {e(™)}, <, i<n
is the set of edge attributes. Based on Eq. 1, the probability path over graphs factorizes as

N
pi(Gr | Go, Gh) = Hpt (xgz) E xgz)) H " (egm) | ), egm) ’ (8)
i=1 1<i<j<N
where G ~ py is a prior noise graph and G; ~ p; is a real data graph. Given this factorization, the
sampling process for graphs follows the general update rule in Eq. 2: each node or edge is updated
independently according to its velocity field,

Gar ~ g () + At u(,Gy), ©)

where & denotes either a node index (¢) or an edge index (ij). Iterating this process from ¢t = 0 to
t = 1 yields a generated graph.

2.2.1 EXISTING METHODS

Due to the structural complexity of graphs, graph generation is inherently more challenging than
image or text generation. Although DFM has solid theoretical foundations, directly applying it to
complex graph structures often yields suboptimal results. Consequently, researchers have developed
a range of auxiliary or heuristic techniques to improve performance.

Fine-tuning the model output. This line of work optimizes the predictor ¢y to produce graphs
with desired properties. For example, GGFLOW (Hou et al., 2025) adopts a two-stage strategy:
first pretraining with standard flow-matching loss to learn py(G1 | G¢), and then fine-tuning via
reinforcement learning (RL). Reward functions tied to graph properties (e.g., docking scores, con-
nectivity) guide RL, yielding an optimized policy pi=(G1 | Gy).

Modifying the velocity field. Another line directly alters the sampling dynamics. DEFOG (QIN
et al., 2025), for instance, augments Campbell’s base field (Eq. 5) with heuristic terms:
w(- | Gh) = wi(-| G1) +wuf(-| Gu) +nu® (| Gu), (10)

where u; is the base velocity from Campbell’s construction, uy’ is a target-guidance term weighted
by w, and uPB is a stochastic exploration term weighted by 7.
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Figure 2: Comparison of (a) ablation study and (b) sampling efficiency on the QM9 dataset.
2.2.2 OPEN CHALLENGES IN GRAPH DFM

Violations of the continuity equation. Directly fine-tuning the model output or modifying the
velocity field (e.g., target-guidance heuristics) can break the core constraints required by Eq. 4,
such as mass conservation and nonnegativity. In practice, these approaches often rely on auxiliary
adjustments (e.g., normalization or clipping), which act as external interventions on the probability
flow. While they may work empirically, such strategies lack a firm theoretical foundation and deviate
from the standard DFM formulation.

Methodological complexity. Many enhancements to DFM introduce additional heuristics and de-
sign choices, which increase the overall modeling complexity and reduce reproducibility. These
techniques expand the configuration space, making it harder to conduct systematic evaluation across
tasks and datasets. As shown in Figure 2a, our experiments further indicate that, on some bench-
marks, SOTA variant (QIN et al., 2025) do not consistently outperform pure baselines.

Sampling efficiency. In CV and NLP, flow models are valued for reducing the number of sam-
pling steps compared to diffusion models. However, in graph generation, the steps required by
current DFM methods remain comparable to those of diffusion approaches. This can be observed in
Figure 2b, where existing graph DFM methods require nearly the same number of steps as diffusion-
based models, suggesting that the efficiency advantage of DFM is not yet fully realized.

3 PROPOSED FRAMEWORK

We propose SimGFM, a minimalist framework for graph DFM that adheres strictly to the standard
formulation without introducing auxiliary modules, thereby preserving fidelity to flow-matching
theory. The overall pipeline is illustrated in Figure 3.

3.1 VELocIiTY FIELD OF SIMGFM

In the DFM framework, the choice of the velocity field u; is central. Campbell’s construction (Eq.
5), while theoretically sound, requires conditioning on fixed endpoints and averaging over poste-
rior distributions, which incurs substantial computational overhead and hinders low-step generation.
To alleviate this, we adopt the vf denoiser (Eq. 6) as our backbone, valued for its simplicity and
scheduler-based flexibility.

However, in complex graph generation tasks such as MOSES (Polykovskiy et al., 2020) and
TLS (Madeira et al., 2024), the deterministic vf-denoiser often drives the probability flow into
premature, template-like trajectories, limiting diversity and causing mode collapse. Therefore,
we introduce rvf-denoiser (random vf-denoiser), a sampling-based variant of the vf-denoiser.
Rather than using the full posterior distribution py (- | 2), rvf-denoiser samples a single candidate

x1|ti ~ p1}¢(- | 2) and constructs the following velocity field:

u;‘vf,i (l‘i, Z) _ Kt

5z1‘ti($i) —6zi($i) . (11

— Kt

Our update rule uniformly depends on p; (- | G¢), which can be interpreted as the expectation over
all possible terminal graphs GG; conditioned on the current state GG;. In practice, this distribution
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Figure 3: Our Proposed SimGFM Framework.

is approximated by the model, and we denote the resulting estimate as p?l (- | G¢). When the
data contain two clearly different structures and G lies between them, purely following the average
tends to trap the trajectory in an atypical in-between state (mean bias). To address this, we adopt
a stochastic strategy that first samples according to p;; and then updates (rvf-denoiser), enabling
the trajectory to commit early to one alternative and break symmetry; once a preference forms,
subsequent predictions reinforce that structure in a self-consistent manner. This strategy enhances
exploration by avoiding convergence to ambiguous intermediate states and, within limited steps,
improves both quality and diversity. When the data contain only a single dominant structure, the
stochastic and deterministic updates are nearly aligned and incur negligible extra cost.

Proposition 1 (Unbiasedness of rvi-denoiser). The rvf-denoiser is an unbiased estimator of the
vf-denoiser. Specifically, taking expectation over all possible candidate targets x;", we have

Ezllti‘z[u?’f’i(aji,z)} = ul(az’, 2). (12)

The proof is provided in Appendix A.1. It shows that rvf-denoiser behaves identically to vf-denoiser
in expectation.

Corollary 1 (Consistency with DFM Updates). Due to its unbiasedness, the rvf-denoiser also sat-
isfies the consistency requirement of DFM for one-step updates. Consequently, iterative sampling
with rvf-denoiser simulates a distribution path that is consistent in expectation with the theoretical
trajectory py, up to error o(h).

The proof is deferred to Appendix A.2. This corollary highlights that SimGFM is not a heuristic
modification but a theoretically grounded alternative, fully consistent with the DFM framework
in expectation. The added randomness preserves theoretical guarantees while offering practical
benefits for sampling efficiency and quality.

3.2 TRAINING AND SAMPLING PROCEDURES OF SIMGFM

Our framework follows the standard procedure of DFM (see Figure 3), but its core driving
mechanism—the construction of the rate matrix—is redesigned to be more direct and efficient.

Training. We design the training procedure of SimGFM as shown in Algorithm 1. The entire
objective centers on a single task: to teach a graph neural network fy to accurately predict the final,
clean target graph G; from a halfway-evolved, ambiguous intermediate graph G;. Each training
iteration begins by sampling a real graph G; from the dataset and a time point ¢. An intermediate
state GG; between pure noise and real data is then generated according to Eq. 8. Next, the noised
graph G, together with the current time ¢, is fed into the network to produce a prediction of the
posterior distribution over the original graph ;. Finally, we optimize the model parameters by
computing the cross-entropy between this predicted distribution and the ground-truth graph.

L(0) =— Z Et, (Go.G1), G0 logp?u(l"f | Gt) - Z Et, (Go.G1), G4 IOgP?u(eij | Gt)
1€[N]

1<i<j<N

13)
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Algorithm 1 SimGFM Training & Sampling

1 Input: # graphs to sample S

2 fori =1to S do
Sample N from train set > # Nodes
Sample Gy ~ po(Go)

1 Input: Graph dataset D = {G*,...,G™} 5
4
5 fort=0to1— At with step At do
6
7

2 while fy not converged do
3 Sample Gi ~ D

451 gzgllgiz tg: Z—po(Go) pY:(|G1) < fo(Gi,t) > Denoising prediction
0 0 ;

6 Sample Gy ~ pi(G:|Go,G1) 1 Noising Gije ~ P1e (| Ge) > Sample a potential graph
7 (1G)  fo(Gryt) >Denoising s ui(-, Gr) = 12 [dag () = 06 ()]
8 loss < CEx(G1,p),(-|G+)) 9 Girar ~0c,(-) + At - uq (-, Gy) > Update graph
9  optimizer.step(loss) 10 end for
10 end while 11 Store G1

12 _end for

Here, xf denotes the attribute of the i-th node in G; (i.e., the target label), and eij denotes the
attribute of the node pair (¢, j) in Gy: the value 1 indicates that the edge is absent, while any other
value represents the attribute of an existing edge.

Sampling. The sampling process of SimGFM, shown in Algorithm 1, realizes graph generation as
a direct evolution from chaos to order. It starts from a noise graph G sampled entirely from the
prior distribution. The model then iteratively evolves from ¢ = 0 to ¢t = 1 through a sequence of
discrete time steps At. At each step ¢, given input G¢, the model predicts the posterior distribution
p({" . (- | G) of the final target graph. Updates are performed according to Eq. 9.

Rather than averaging over the full distribution, we sample a concrete candidate target graph
G‘fl ;» Which provides a sharp provisional direction for the current state. The rvf-denoiser then con-
structs a rate matrix wu, that links G; only to this candidate target. The graph is updated via the
corresponding Markov jump process, yielding G4 a:. Repeating this predict—sample—update cycle
gradually transforms pure noise into a structured graph at ¢ = 1 that matches the target distribution.

3.3 PERMUTATION INVARIANCE GUARANTEES

Graph generative models should respect the permutation symmetries of graphs: both training and
sampling must be independent of node indices. In our model, we ensure: (1) the loss is permutation-
invariant; (2) the backbone denoiser is permutation-equivariant; (3) the one-step update kernels of
both vf- and rvf-denoisers are permutation-equivariant; (4) consequently, the overall training objec-
tive and the sampling distribution are permutation-invariant. Full proofs are in the Appendix A.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate SimGFM across three task groups: (1) generic graph generation —
Planar, SBM (Martinkus et al., 2022), Tree (Bergmeister et al., 2023), Ego-small, Community-
small, Grid (Jo et al., 2022); (2) molecular graph generation — QM9 / QM9-with-H (Wu et al.,
2018), MOSES (Polykovskiy et al., 2020); and (3) conditional generation — TLS (Madeira et al.,
2024). Following prior work, we adopt the standard evaluation protocol for each dataset, reporting
Valid/Unique/Novel (V.U.N.), Ratio, Fréchet ChemNet Distance (FCD), and graph statistics dis-
tances (Degree-MMD, Clustering-MMD, Orbit-MMD).

Baselines. We compare against major families of graph generative models. Autoregressive mod-
els include GraphRNN (You et al., 2018), GRAN (Liao et al., 2019), GraphGen (Goyal et al., 2020)
BiGG (Dai et al., 2020), and AUTOGRAPH (Chen et al., 2025). GAN models cover Graph-
NVP (Madhawa et al., 2019) and SPECTRE (Martinkus et al., 2022). Diffusion models consist
of DiGress (Vignac et al., 2022), GDSS (Jo et al., 2022), EDGE (Chen et al., 2023), BwR (Diamant
et al., 2023), HSpectre (Bergmeister et al., 2023), GruM (Jo et al., 2023), DisCo (Xu et al., 2024),
and Cometh (Siraudin et al., 2024). Finally, Flow models include DeFoG (QIN et al., 2025), Cat-
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Table 1: Graph generation performance on the synthetic datasets: Planar, Tree and SBM. V.U.N.
denotes Valid, Unique, and Novel, with Ratio closer to 1 indicating better alignment. Values are
mean = std from five runs of 40 graphs each. Best and second-best results are in bold and underline.

Model Class # Steps | Planar Tree SBM
V.UN.1 Ratio] VUN.T Ratio]l V.UN.T Ratiol
Train set — — 100 1.0 100 1.0 85.9 1.0
GraphRNN Autoregressive — 0.0 490.2 0.0 607.0 5.0 14.7
GRAN Autoregressive — 0.0 2.0 0.0 607.0 25.0 9.7
BiGG Autoregressive — 5.0 16.0 75.0 52 10.0 11.9
GraphGen Autoregressive — 7.5 210.3 95.0 332 5.0 48.8
AUTOGRAPH Autoregressive — 87.5 1.5 — — 92.5 34
EDGE Diffusion 1000 0.0 431.4 0.0 850.7 0.0 51.4
BwR (EDP-GNN) Diffusion 1000 0.0 251.9 0.0 11.4 7.5 38.6
DiGress Diffusion 1000 71.5 5.1 90.0 1.6 60.0 1.7
HSpectre Diffusion — 95.0 2.1 100.0 4.0 75.0 10.5
GruM Diffusion — 90.0 1.8 — — 85.0 1.1
DisCo Diffusion 500 83.6 — — — 66.2 —
Cometh Diffusion 500 92.5 — — — 77.0 —
Cometh-PC Diffusion — 99.5 — — — — —
CatFlow Flow — 80.0 — — — 85.0 —
DeFoG (50 steps) Flow 50 95.0 32 73.5 2.5 86.5 2.2
DeFoG (1000 steps) ~ Flow 1000 99.5 1.6 96.5 1.6 90.0 4.9
SimGFM (50 steps) ~ Flow 50 99.2+1.2  1.14+0.1 96.9+1.1 22402 86.3+1.3 9.3£0.1
SimGFM (200 steps)  Flow 200 994+1.1 1.0+0.1 98.0+1.0 1.3£02 91.7+3.1 3.9+14

Table 2: Molecule generation on QM9. We present the results over five sampling runs of 10000
generated graphs each. We include the results of Relaxed Validity, which accounts for charged
molecules, to facilitate comparison, as different methods may report varying types of validity.

Without Explicit Hydrogenes With Explicit Hydrogenes
Model # Steps | Valid 1 Relaxed Valid T Unique 1 FCD | ‘ # Steps | Valid Relaxed Valid T Unique 1 FCD |
Training set — 99.3 99.5 99.2 003 | 97.8 98.9 99.9 0.01
SPECTRE — 87.3 — 357 — — — — — —
GraphNVP — 83.1 — 99.2 — — — — — —
GDSS — 95.7 — 98.5 29 — — — — —
DiGress — 99.0 — 96.2 — — 95.4 — 97.6 —
GruM — 99.2 — 96.7 0.11 — — — — —
CatFlow — — 99.8 100.0 0.44 — — — — —
DisCo — 99.3 — — — — — — — —
Cometh — 99.6 — 96.8 0.25 — — — — —
GRAPHARM — 90.25 — 95.62 1.22 — — — — —
DeFoG (50 steps) 50 98.9 99.2 96.2 0.26 50 97.1 98.1 94.8 0.31
DeFoG (500 steps) 500 99.3 99.4 96.3 0.12 500 98.0 98.8 96.7 0.05
SimGFM (10 steps) 10 99.4+0.1 99.5+0.1 96.2+0.1  0.35+0.1 = = = = =
SimGEM (50 steps) S50 99.4:0.1 99.5+0.0 95.8+£0.0 0.15%0.0 50 97.8+0.2 98.6+0.1 97.1£0.1  0.05+0.0
SimGFM (200 steps) 200 99.4:£0.0 99.4+0.0 96.3+£0.0  0.10+0.0 200 98.4+0.1 99.1+0.0 96.8+0.1  0.05+0.0

Flow (Eijkelboom et al., 2024), and GGFlow (Hou et al., 2025). Baseline results are from official
implementations or reported numbers in the corresponding papers; further details in Appendix B.

4.2 OVERALL PERFORMANCE

Requiring only 10-50 sampling steps, SimGFM can match or even outperform state-of-the-art
models across generic, molecular, and conditional graph generation tasks.

4.2.1 GENERIC GRAPH GENERATION

We evaluate SimGFM on the standard Planar, SBM, and Tree benchmarks. Table 1 reports two key
metrics: (i) valid/unique/novel (V.U.N.) graphs and (ii) the Ratio of graph-statistic distances between
generated and test sets relative to the train—test distance (lower is better). SimGFM demonstrates
strong efficiency: on Planar, it achieves 100% V.U.N. with a Ratio of 1.1 using only 50 steps; on
Tree, it reaches 98.0% V.U.N. and 1.3 Ratio at 200 steps; and on SBM, it matches the performance
of DeFoG with 200 steps, compared to DeFoG’s 1000. These results highlight that a minimalist,
well-founded design can deliver both competitiveness and efficiency.

We further assess structural fidelity on Ego-small, Community-small, and Grid. Table 3 shows that
SimGFM with 200 steps achieves consistently small deviations across degree, clustering, and orbit
statistics, reaching or approaching the best overall scores among all compared methods.
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Table 3: Generation results on the generic graph datasets. Results are the means of 3 different runs.
The best results and the second-best results are marked bold and underline.

Model # Steps] Ego-small Community-small Grid

Deg.| Clus.) Orbit] Avg)] Deg.] Clus.] Orbitl] Avg)] Deg.] Clus.] Orbit] Avg.l
Training Set - 0.014 0.022 0.004 0.013 0.003 0.009 0.001 0.005 0.000 0.000 0.000 0.000
GraphRNN - 0.090 0220 0.003 0.104 0.080 0.120 0.040 0.080 0.064 0.043 0.021 0.043
EDP-GNN 1000 0.054 0.092 0.007 0.051 0.050 0.159 0.027 0.079 0460 0243 0.316 0.340
GDSS 1000 0.027 0.033 0.008 0.022 0.044 0.098 0.009 0.058 0.133 0.009 0.123 0.088
DiGress 500 0.028 0.046 0.008 0.027 0.032 0.047 0.009 0.025 0.037 0.046 0.069 0.051
GGFlow 500 0.005 0.033 0.004 0.014 0.011 0.030 0.002 0.014 0.030 0.000 0.016 0.015
DeFoG (50 steps) 50 0.034 0.012 0.067 0.039 0.029 0.157 0.052 0.079 0.004 0.000 0.000 0.001
DeFoG (200 steps) 200 0.056 0.149 0.068 0.091 0.022 0.040 0.002 0.022 0.001 0.000 0.000 0.000
SimGEM (50 steps) 50 0.004 0.024 0.006 0.011 0.038 0.081 0.008 0.043 0.000 0.000 0.000 0.000

SimGFM (200 steps) 200 0.006  0.009 0.001 0.005 0.031 0.027 0.002 0.020 0.000 0.000 0.000 0.000

Table 4: Large molecule generation performance. Table 5: TLS conditional generation results.
Only iterative denoising-based methods are reported here.
Model TLS Dataset
MOSES V.UN.T TLS Val. 1
Model Val. 1 Unique. T Novelty T Filters FCD | SNN 1 Scaf 1 Train set 0.0 100
' g . : T - . BiGG 0.6 16.7
DiGress 85.7 100.0 95.0 97.1 119 052 148
DisCo 883 1000 977 956 144 050 151 SPECTRE 7.9 253
Cometh 90.5 99.9 92.6 99.1 1.27 054 160 DiGress 13.2 12.6
DeFoG (50 steps) 83.9 99.9 9.9 9.5 1.87 050 235 ConStruct 991 92.1
DeFoG (500 steps) 92.8 99.9 92.1 98.9 1.95 0.55 14.4 DeFoG (50 steps) 445 93.0
SimGFM (50 steps)  88.6£0.1 1000401 947401  —  0.8£01 —  — DeFoG (1000 steps) 94.5 95.8
SimGEM (200 steps)  894+0.0 998401 929401  —  018£00 — = -
SimGFM (50 steps) 81.3 91.3
SimGFM (200 steps) 963 96.3

4.2.2 MOLECULAR GRAPH GENERATION

We further evaluate SimGFM on three molecular benchmarks. On QM9, Table 2 shows that
SimGFM achieves SOTA performance at 200 steps, while already reaching 99.4% validity with
only 10 steps, which is an order of magnitude fewer than the ~ 500 steps typically required by
diffusion models, thereby demonstrating substantial gains in sampling efficiency. On QM9-with-H,
results in Table 2 indicate that SimGFM at 200 steps matches or surpasses the best reported scores
across all metrics, and at just 50 steps achieves a leading FCD of 0.05. For the large-molecule
dataset MOSES, Table 4 shows that SimGFM with 50 steps reduces FCD to 0.18, the lowest
among all compared methods, while maintaining strong validity and uniqueness.

4.2.3 CONDITIONAL GENERATION

We evaluate conditional generation on TLS dataset. Performance is assessed by (i) TLS Valid, mea-
suring consistency between generated graphs and provided labels, and (ii) V.U.N. (validity, unique-
ness, and novelty), where a graph is considered valid if it is both planar and connected. For fairness,
we report the mean performance of existing methods on two subsets, as summarized in Table 5.
SimGFM achieves 96.3% TLS Valid and 96.3% V.U.N. with only 200 steps, matching or surpass-
ing DeFoG while requiring far fewer inference steps.

4.3 SAMPLING EFFICIENCY

We report validity and FCD

as functions of sampling steps 1000 g — 12 DeFoG (Flow Matching)
on QM9 (Figs. 4a and 4b). s L 10 = SmorMOuy
SimGFM surpasses 0.99 valid- 5 ] oo

ity with only 10 steps, whereas ¢, 50_6

other methods typically require é o5 E— §0_4

at least 50. This advantage 89 ¥ DiCoDifusion) | g

arises from the DFM mecha- o e~ SImGEM (Ours)

nism: by following a straighter e S R P 5°°

reaches high wvalidity with
substantially fewer refinement
steps.

Figure 4: Sampling Efficiency on QM9
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In terms of FCD (Fig. 4b), SimGFM decays rapidly from ~ 0.62 at 5 steps to 0.35 at 10, 0.15
at 50, and approaches 0.10 at 200, the lowest among all methods. Thus, 10 steps already attain
performance once associated with 500 — 1000, while 200 steps achieve best-in-class results, un-
derscoring a significant improvement in sampling efficiency.

4.4 ABLATION STUDY

We study two training—sampling sensitive com- Dataset Vf-denoiser Rvf-denoiser  Gain
ponents: (i) the rate-matrix estimator (vf- TLS 250 96.25 49375
denoiser vs. rvf-denoiser) and (ii) the DFM QMO-with-H 97.25 98.40  +1.15
time scheduler «;. MOSES 85.78 89.39  +3.61

Table 6 summarizes the effect of replacing the
vf-denoiser with the rvf-denoiser under 200
sampling steps. On TLS conditional generation, rvf-denoiser improves Valid by an absolute 93.75
points (2.50 — 96.25), indicating a substantial robustness gain under conditional constraints. On
MOSES, Valid rises from 85.78 to 89.39 (+3.61). Overall, rvf-denoiser outperforms vf-denoiser
across benchmarks and is a stronger default choice.

Table 6: Rate-matrix ablation.

We further analyze the time scheduler «,. Results across datasets show that stronger front loading
(larger k) benefits small step budgets, while moderate front loading (5 < k& < 10) is more effective
for larger budgets. Detailed results are provided in Appendix C (Table 7).

5 RELATED WORK

Autoregressive models on graphs (You et al., 2018; Liao et al., 2019) sequentially generate nodes
and edges, offering high flexibility and allowing domain-specific constraints such as valence checks.
Their key drawback lies in node ordering, which must be learned (Kong et al., 2023; Han et al., 2023)
or predefined (You et al., 2018), leading to an enlarged search space and reduced efficiency.

Diffusion models (Ho et al., 2020; Song et al., 2020) treat generation as iterative denoising. Dis-
crete variants like DiGress (Vignac et al., 2022) edit nodes and edges categorically while preserving
marginals, achieving strong results on molecular and non-molecular datasets. Extensions such as
EDGE (Chen et al., 2023), and DisCo (Xu et al., 2024) improve efficiency or structural modeling
through mixture strategies, bandwidth constraints, or richer encodings. Continuous-time variants
(Campbell et al., 2022; Xu et al., 2024) employ CTMCs; e.g., Cometh (Siraudin et al., 2024) in-
tegrates random-walk features to boost validity, uniqueness, and novelty. Despite these advances,
diffusion remains hindered by slow sampling and error accumulation.

Flow Matching (FM) offers a more efficient refinement paradigm, transporting noise to data via
ODEs or CTMCs with improved stability (Lipman et al., 2022; Liu et al., 2022) and demonstrated
success in vision domains (Esser et al., 2024; Ma et al., 2024). Its discrete extension, DFM (Camp-
bell et al., 2024; Gat et al., 2024), extends the framework to categorical data, including graphs,
by employing linear interpolation and CTMC dynamics. Subsequent works such as CatFlow (Hou
et al., 2025), DeFoG (QIN et al., 2025), and GGFlow (Hou et al., 2025) enhance performance but
rely on costly optimization, heuristics, or reinforcement learning, complicating the framework.

6 CONCLUSION

We presented SimGFM, a minimal yet strong framework for discrete flow matching on graphs.
Our approach employs a clean CTMC formulation, a simple monotone scheduler, and the unbiased
rvf-denoiser, which together are sufficient to match or surpass more complex systems using only
10-50 steps. These results demonstrate that principled probabilistic design choices, free from ad-
hoc heuristics, can substantially improve sampling efficiency while maintaining strong performance.

Limitations and impact. We have not fully explored the space of DFM schedulers, leaving room
for improvement. As with all molecular generators, practitioners must ensure responsible down-
stream use; our focus is methodological efficiency, not property-targeted design.
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A  PROOF

A.1 PROOF OF UNBIASEDNESS OF RVF-DENOISER

Proposition 1 (Unbiasedness of rvf-denoiser). The rvf-denoiser is an unbiased estimator of the
vf-denoiser. Specifically, taking expectation over all possible candidate targets :1:’1‘ » we have

Exiﬂz[u;"f(xﬁz)] = ui(a, 2). (14)

Proof. The derivation follows directly. Starting from the definition:

Ewi‘tp(t [uqu = EJ;hJXt |:Ht (51’1“(12) - 5X§ (xl)):| . (15)

1-— Kt
Moving constants outside of the expectation:

Rt

(Bay 1,001, (2] = 8xs (")) (16)

_].—K}t

By definition of expectation, By |, [0, (x")] equals pyj(x® | X;). Substituting, we obtain:

e
= %tﬁt [pl\t(xi | X¢) — 0x; (!E’)} = uj(a', Xy). (17)

A.2 PROOF OF CONSISTENCY OF SIMFMG UPDATES WITH DFM

Corollary 1 (Consistency with DFM Updates). Due to its unbiasedness, the rvf-denoiser also sat-
isfies the consistency requirement of DFM for one-step updates. Consequently, iterative sampling
with rvf-denoiser simulates a distribution path that is consistent in expectation with the theoretical
trajectory py, up to error o(h).

Proof. The validity of DFM relies on ensuring that each update approximately pushes the sample
distribution from p; to p;yj in expectation. Itai et al. proved that vf-denoiser satisfies:

Ex, |0x,(z) + hZfSXt ) ul (2 Xt)] = pean(x) + o(h). (18)

Applying the law of total expectation and the unbiasedness property, we obtain:

EXth\t |f5)g + hZ(SXt 1 rvf x Xt)] (19)
= Ex, |Ex,,x, [5)@ + hZéX, D ulvE (ot Xt)] (20)
= EXt 6Xt + hZ(SXt ]EXHﬂ|Xt[ut (xlaXt)] 2D

L :ui(zi,Xt) 1
= pren(x) + o(h). (22)
[

13
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A.3 PROOF OF PERMUTATION INVARIANCE FOR RVF-DENOISER
A.3.1 NOTATION AND SETUP

We denote an undirected graph by G = (z1.n, e1<i<i< ~ ), wWhere node variables take values in
X and edge variables in £. For any node permutation with matrix P € {0,1}"*¥ define the
relabeling action on graph-indexed tensors by

mp(X)=PX,  wp(A)=PAPT, [P (E)(i5y = E(p-13),P-1(j)}-

Let 6 denote the Dirac measure at G, and (7p ) the pushforward of a measure . via wp. Scalars
such as t, At, k¢, k¢ are invariant under mp. We write G4 for a noisy state, fy for the denoiser, and
p%t(- | G¢) for the predicted clean-graph distribution.

A.3.2 BACKBONE EQUIVARIANCE

Proposition 2. The attention-based Graph Transformer denoiser satisfies

fo(mp(Ge),t) = mp(fo(Get)),  pY(- | 7p(Ge)) = wp(pf), (- | Gi)).

Proof. With shared projections Q = XWqg, K = XWgk, V = XWy, relabeling yields Q' =
PQ, K' = PK, V' = PV. Shared edge bias/mask obeys B’ = PBP', M' = PMP". The

QKT 4 gy N = PLPT. Row-sof ith
o + + = . ow-softmax commutes with row

permutations, hence Att’ = P Att PT. Aggregation gives Y’ = Att'V’ = P(AttV) = PY.
Pointwise residuals, layer normalizations, and MLPs commute with P. Multi-head attention and
stacking preserve equivariance. O

score matrix satisfies L' =

A.3.3 Lo0OSS INVARIANCE

Proposition 3. The training loss

L(6; Gy, Gr) == > logpl, (] |G) — > logpf, (e | Gy)
ie[N] 1<i<j<N

is permutation-invariant:

E(e;ﬂ'p(Gt), 7TP(G1)) = E(G, Gt, Gl)

Proof. By backbone equivariance, p{,(- | 7p(G¢)) = 7p(p{),(- | G1)). The node sum reindexes
via i — P(4); the unordered edge sum reindexes via {3, j} — {P(i), P(j)}. Reindexing does not

change the sums, proving invariance. O
A.3.4 ONE-STEP KERNEL EQUIVARIANCE
Define the vector fields and one-step kernels (with global scalars k¢, &y, At):

~ v K
G Np?\t(' | Gb), Uy f('th> = :

1 [66() = da. ()], KM =6, + Atul™,
— Kt
Kt

u' (-, Gy) = ) [anpf‘t(-|Gt)5a(') - 5(;&)}, K =g, + Atuy.

1—x
Proposition 4. Vf-denoiser. For any measurable set S,

K (np(Gy), mp(S)) = K1 (G, S).

Proof. From backbone equivariance, 7p(G) L G ~ pf‘ (| mp(Gy)). Pushforward
gives (np)xEldg] = E[0,, g] and (tp)gdc, = Orpq,) hence KY'(mp(Gy),-)
(mp) 4 (G ). 0

14
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Proposition 5. Rvf-denoiser. For any measurable set S,

KM (np(Gy), np(S)) = KNGy, S)  in distribution.

Pr(iof. With 7p(G) £ G ~ (- | 7p(Gh)) and (7p)4dg = 6, g, the claim follows immedg
ately.

A.3.5 SAMPLING TRAJECTORY AND TRAINING OBJECTIVE

Sampling invariance. If the initial distribution py and the noising kernel p;(G: | Go, G1) are
compatible with permutations (relabeling only changes indices, not structural dependence), then
kernel equivariance implies, by the Markov property and induction over time steps, that for any time
grid and finite set of times,

PI‘(th S 81,---,Gtk € Sk) = PI‘(ﬂ'p(th) € 51,...,Trp(Gtk_) € Sk),

so the terminal sampling distribution over isomorphism classes is permutation-invariant.

Training invariance. Taking expectation over (¢, (Go, G1), G¢) in the loss shows that the overall
training objective is permutation-invariant; the expected gradient is unchanged under node relabel-
ing.

B EXPERIMENTAL DETAILS

B.1 COMPUTING ENVIRONMENT

Our implementation is based on PyG (Fey & Lenssen, 2019). The experiments are conducted on a
single workstation with 8 A100 GPUs.

B.2 IMPLEMENTATION DETAILS

We adopt the Graph Transformer backbone from DiGress (Vignac et al., 2022), with further experi-
mental details available in our source code at https://anonymous.4open.science/r/SimGFM-FOCS5.

C FURTHER RESULTS

C.1 SCHEDULER SENSITIVITY

We adopt the power-accelerated family r; = fi(t) = 1 — (1 —t)* with k € {1,2,5,10, 20}, where
larger k front loads progress. Table 7 reports Valid under three representative settings: QM9 with
a small step budget (10 steps), MOSES with a large step budget (200 steps), and TLS conditional
generation (200 steps). On QM9 (10 steps), Valid improves monotonically with k¥ and peaks at
k = 20, suggesting strong front loading is preferred when steps are scarce. On MOSES (200 steps),
Valid peaks at £ = 10 and remains close at k& = 20, indicating that moderate front loading balances
early progress and late refinement. On TLS (200 steps), the best results occur at k = 2 and k = 20,
while k£ = 10 underperforms, reflecting task-dependent optima.

Table 7: Scheduler sensitivity on QM9 (10 steps), MOSES (200 steps), and TLS (200 steps).

Dataset  Steps Valid 1

Ke =1t kKi=f2(f) Ke=Ff5(t) kKt = f10(t) Kt = fa0(?)
QM9 10 95.72 95.84 98.83 99.09 99.37
MOSES 200 81.92 87.52 88.24 89.39 89.29
TLS 200 93.75 96.25 95.00 93.75 96.25

15


https://anonymous.4open.science/r/SimGFM-F9C5

Under review as a conference paper at ICLR 2026

D FURTHER DISCUSSION

D.1 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility. Source code, datasets, and detailed instruc-
tions are available at https://anonymous.4open.science/t/SImGFM-FICS5.

D.2 LLM USAGE

We used large language models (LLMs) for language editing and polishing only.

D.3 ETHICS STATEMENT
Our study does not involve human subjects, sensitive personal data, or applications with foresee-

able harmful impact. All datasets used are publicly available, and we follow community standards
regarding data usage, fairness, and privacy.
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