
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SIMGFM: SIMPLIFYING DISCRETE FLOW MATCHING
FOR GRAPH GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Discrete Flow Matching (DFM) presents a promising approach for graph gen-
eration; however, existing adaptations often introduce substantial complexity by
incorporating task-specific heuristics, compromising the continuity equation and
significantly expanding the hyperparameter space. Moreover, their sampling ef-
ficiency remains limited, as the required number of steps is often comparable
to diffusion models, diminishing DFM’s practical advantages. To address these
limitations, we propose SimGFM, a simplified graph DFM for graph generation.
SimGFM introduces a graph-structured rate formulation based on minimalist de-
sign principles—characterized by a clear mathematical expression, free of ad-hoc
heuristics, consistent with the continuity equation; along with a targeted scheduler
informed by our observation that, under uniform denoising, valid graph structures
predominantly emerge near the end of the denoising trajectory. SimGFM achieves
strong empirical results: on QM9, it matches prior models requiring 500–1000
steps with only 10 steps, and on most datasets, its performance at 50 steps matches
or surpasses these baselines, demonstrating both efficiency and competitiveness.

1 INTRODUCTION

Figure 1: Validity on QM9 vs. sam-
pling steps. Campbell (red) requires
many steps, while vf-denoisers (blue)
achieve higher validity with fewer steps.
SimGFM further improves efficiency,
reaching over 99% validity in 10 steps.

Graph generation is fundamental across domains from
molecular chemistry to social networks, as graphs com-
pactly represent complex relations and generate realistic
structured data. Recent advances include continuous-time
discrete diffusion frameworks (Xu et al., 2024; Siraudin
et al., 2024) and discrete-flow frameworks (QIN et al.,
2025; Campbell et al., 2024; Gat et al., 2024).

Diffusion models (Ho et al., 2020; Nichol & Dhariwal,
2021; Vignac et al., 2022) tightly couple training and
sampling: once components such as the noise schedule
or rate matrix are modified (Nichol & Dhariwal, 2021;
Karras et al., 2022; Xu et al., 2024; Siraudin et al., 2024),
retraining is typically required, incurring substantial com-
putational cost. By contrast, discrete-flow models (Camp-
bell et al., 2024; Gat et al., 2024) decouple training from
sampling, allowing sampling adaptations without retrain-
ing and thus greater flexibility for diverse data distribu-
tions. In CV/NLP, flow matching has markedly accelerated sampling, in some cases enabling near
one-step generation (Song et al., 2023; Liu et al., 2022; Lee et al., 2024; Geng et al., 2025). How-
ever, in graph generation, existing discrete-flow models remain computationally costly and require
nearly as many steps as diffusion-based approaches, leaving the potential sampling efficiency of
flow matching largely unrealized (QIN et al., 2025; Hou et al., 2025).

As shown in Fig. 1, Campbell et al. (2024) derive a closed-form rate matrix (Eq. 5) from the poste-
rior endpoint p1|t(· | Xt), but its posterior expectations and combinatorial bookkeeping are costly
for graphs. Building on this, recent SOTA model (QIN et al., 2025) augments the Campbell field
with heuristic velocity terms to gain accuracy, at the cost of (i) potential violations of the conti-
nuity equation, and (ii) added methodological complexity. By contrast, the vf-denoiser (Gat et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2024) offers a concise scheduler-based formulation (Eq. 6), avoids posterior expectations, and shows
strong few-step performance, making it a simpler and more effective backbone for graph DFM.

Motivated by these observations, we propose SimGFM, a vf-denoiser-based method that strictly
adheres to the standard DFM formulation without auxiliary modules. In particular, while the vf-
denoiser is simple and flexible, it still suffers from compounding denoising errors, i.e., the accu-
mulation and propagation of small prediction errors along the iterative denoising trajectory (Boget,
2025). To address this, we introduce the rvf-denoiser (Eq. 11), a sampling-based variant that selects
a single candidate outcome at each step, numerically more stable in finite-precision implementation
and help mitigate compounding denoising errors. In addition, motivated by our observation that un-
der uniform denoising, valid graph structures predominantly emerge near the end of the trajectory,
SimGFM incorporates a targeted scheduler that allocates more updates to this endpoint region to
better align sampling with discrete flow dynamics. On QM9 (Wu et al., 2018), SimGFM achieves
99.5% validity in just 10 steps, and across most datasets, it reaches or approaches SOTA performance
with 10–50 steps, representing an order-of-magnitude reduction compared with diffusion/flow base-
lines (typically 500–1000), while also lowering hyperparameter tuning burden.

2 PRELIMINARIES

2.1 DISCRETE FLOW MATCHING

In this section, we introduce the core concepts of Discrete Flow Matching (DFM) (Campbell et al.,
2024; Gat et al., 2024). Unlike diffusion models, which learn a data distribution via iterative noising
and denoising, the goal of DFM is to learn a deterministic probability path pt from a simple source
distribution p0 (e.g., a sequence composed of a “mask” symbol) to a target data distribution p1. The
core of the model is to train a neural network to predict the velocity field ut of this probability path,
which guides how samples evolve with time t ∈ [0, 1] from the source to the target.

To build this framework, we first define a conditional probability path from a specific source
sample x0 ∼ p0 to a specific target sample x1 ∼ p1. A simple and effective choice is their convex
combination:

pt
(
xi | x0, x1

)
= (1− κt) δxi

0

(
xi
)
+ κt δxi

1

(
xi
)
, (1)

where xi is the i-th element of the sequence, δ is the Dirac delta (point mass), and κt is a schedule
increasing monotonically from κ0 = 0 to κ1 = 1. This formula states that at time t = 0, the sample
coincides with the source x0, and at t = 1 it fully transforms into the target x1.

To simulate generation along the prescribed path pt(x) for t ∈ [0, 1], DFM adopts the continuous-
time Markov chain (CTMC) paradigm: the sample Xt makes jumps over a state space D as time
t evolves continuously on [0, 1]. DFM focuses on a model that predicts the rate of change of
probabilities for each coordinate (token) of the current sample Xt with N tokens. Thus, for a
sample Xt ∼ pt, each token updates independently as

Xi
t+h ∼ δXi

t
(·) + hui

t(·, Xt), (2)

where δXi
t

denotes a Dirac mass at the current value and ui
t is the probability velocity field for the

i-th coordinate. If the probabilistic velocity ut generates the probability path pt, it means that for all
t ∈ [0, 1) and any sample xt ∼ pt, updating each position i using the rule above equation 2 yields
xt+h ∼ pt+h + o(h).

Moreover, the velocity ut should satisfy the following rate conditions:∑
xi∈[K]

ui
t(x

i, z) = 0, ui
t(x

i, z) ≥ 0 ∀ i ∈ [D], xi ̸= zi. (3)

Furthermore, prior work (Campbell et al., 2024; Gat et al., 2024) shows that a continuity equation
(also called the Kolmogorov forward equation) holds in discrete flow matching, describing the time
derivative of the state-marginal probability ṗt(x), x ∈ S:

ṗt(x) + divx
(
pt ut

)
= 0, (4)

where divx
(
pt ut

)
=

∑
z∈S

∑D
i=1 δx

(
z ī
) [

pt(x)u
i
t(x

i, x) − pt(z)u
i
t(x

i, z)
]
, measures the total

outflow (probability flow x → z) minus total inflow (z → x) at state x ∈ S, and δx
(
z ī
)

=

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

∏
j ̸=i δxj (zj) indicates that only pairs (x, z) agreeing on all coordinates except possibly the i-th are

considered when computing the flow. Intuitively, the continuity equation expresses that the rate of
change of probability mass at x equals the net effect of the probability flow ptut at x. It has been
shown that if the continuity equation holds, then ut can generate the probability path pt.

The choice of ut is crucial. Two commonly used constructions for the rate matrix are:

(1) Campbell’s construction. Campbell et al. (2024) provide a closed-form solution for the rate
matrix ut:

u∗
t (x, z|z1) =

ReLU
[
∂tpt|1 (x | z1)− ∂tpt|1 (z | z1)

]
Z>0
t pt|1 (z | z1)

, x ̸= z. (5)

where pt|1(z | x) means the state z at time t given the state x at time 1 and Z>0
t =∣∣{zt : pt|1 (zt | z1) > 0

}∣∣, the diagonal case is set by u∗
t (x, x|z1) = −

∑
x̸=z u

∗
t (x, z|z1). Finally,

the rate matrix is obtained by taking the posterior expectation: ut (x, z) = Ep1|t(z1|z) [u
∗
t (x, z | z1)].

(2) Vf-denoiser. Gat et al. (2024) propose the vf-denoiser:

ui
t(x

i, z) =
κ̇t

1− κt

[
p1|t

(
xi | z

)
− δzi

(
xi
)]

, (6)

where p1|t(x | z) means the state x at time 1 given the state z at time t and κt is a scheduler (a
monotone time mapping) satisfying κ̇t ≥ 0, κ0 = 0, and κ1 = 1.

Both constructions depend on the prior p1|t(· | zt), which is typically estimated by a trained model;
we denote the model output by pθ1|t(· | zt). The training objective is

L(θ) = −
∑
i∈[N]

Et, (X0,X1), Xt
log pθ1|t

(
Xi

1 | Xt

)
. (7)

2.2 DISCRETE FLOW MATCHING ON GRAPHS

Applying the Discrete Flow Matching (DFM) framework to graph generation requires accounting
for the unique structure of graphs—namely, sets of nodes and edges. We represent a graph with N
nodes as G = (X,E), where X = {x(i)}Ni=1 is the set of node attributes and E = {e(ij)}1≤i<j≤N

is the set of edge attributes. Based on Eq. 1, the probability path over graphs factorizes as

pt(Gt | G0, G1) =

N∏
i=1

pt

(
x
(i)
t | x(i)

0 , x
(i)
1

) ∏
1≤i<j≤N

pt

(
e
(ij)
t | e(ij)0 , e

(ij)
1

)
, (8)

where G0 ∼ p0 is a prior noise graph and G1 ∼ p1 is a real data graph. Given this factorization, the
sampling process for graphs follows the general update rule in Eq. 2: each node or edge is updated
independently according to its velocity field,

G
(k)
t+∆t ∼ δ

G
(k)
t

(·) + ∆t · u(k)
t (·, Gt), (9)

where k denotes either a node index (i) or an edge index (ij). Iterating this process from t = 0 to
t = 1 yields a generated graph.

2.2.1 EXISTING METHODS

Due to the structural complexity of graphs, graph generation is inherently more challenging than
image or text generation. Although DFM has solid theoretical foundations, directly applying it to
complex graph structures often yields suboptimal results. Consequently, researchers have developed
a range of auxiliary or heuristic techniques to improve performance.

Fine-tuning the model output. This line of work optimizes the predictor ϕθ to produce graphs
with desired properties. For example, GGFLOW (Hou et al., 2025) adopts a two-stage strategy:
first pretraining with standard flow-matching loss to learn pθ(G1 | Gt), and then fine-tuning via
reinforcement learning (RL). Reward functions tied to graph properties (e.g., docking scores, con-
nectivity) guide RL, yielding an optimized policy pRL

θ (G1 | Gt).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Ablation Study (b) Sampling Efficiency on QM9 dataset

Figure 2: Comparison of (a) ablation study and (b) sampling efficiency on the QM9 dataset.

Modifying the velocity field. Another line directly alters the sampling dynamics. DEFOG (QIN
et al., 2025), for instance, augments Campbell’s base field (Eq. 5) with heuristic terms:

ut(· | G1) = u∗
t (· | G1) + ω uω

t (· | G1) + η uDB
t (· | G1), (10)

where u∗
t is the base velocity from Campbell’s construction, uω

t is a target-guidance term weighted
by ω, and uDB

t is a stochastic exploration term weighted by η.

2.2.2 OPEN CHALLENGES IN GRAPH DFM

Violations of the continuity equation. Directly fine-tuning the model output or modifying the
velocity field (e.g., target-guidance heuristics) can break the core constraints required by Eq. 4,
such as mass conservation and nonnegativity. In practice, these approaches often rely on auxiliary
adjustments (e.g., normalization or clipping), which act as external interventions on the probability
flow. While they may work empirically, such strategies lack a firm theoretical foundation and deviate
from the standard DFM formulation.

Methodological complexity. Many enhancements to DFM introduce additional heuristics and de-
sign choices, which increase the overall modeling complexity and reduce reproducibility. These
techniques expand the configuration space, making it harder to conduct systematic evaluation across
tasks and datasets. As shown in Figure 2a, our experiments further indicate that, on some bench-
marks, SOTA variant (QIN et al., 2025) do not consistently outperform pure baselines.

Sampling efficiency. In CV and NLP, flow models are valued for reducing the number of sam-
pling steps compared to diffusion models. However, in graph generation, the steps required by
current DFM methods remain comparable to those of diffusion approaches. This can be observed in
Figure 2b, where existing graph DFM methods require nearly the same number of steps as diffusion-
based models, suggesting that the efficiency advantage of DFM is not yet fully realized.

3 PROPOSED FRAMEWORK

We propose SimGFM, a minimalist framework for graph DFM that adheres strictly to the standard
formulation without introducing auxiliary modules, thereby preserving fidelity to flow-matching
theory. The overall pipeline is illustrated in Figure 3.

3.1 VELOCITY FIELD OF SIMGFM

In the DFM framework, the choice of the velocity field ut is central. Campbell’s construction (Eq.
5), while theoretically sound, requires conditioning on fixed endpoints and averaging over poste-
rior distributions, which incurs substantial computational overhead and hinders low-step generation.
To alleviate this, we adopt the vf denoiser (Eq. 6) as our backbone, valued for its simplicity and
scheduler-based flexibility.

However, in complex graph generation tasks such as MOSES (Polykovskiy et al., 2020) and
TLS (Madeira et al., 2024), the vanilla vf-denoiser still exhibits compounding denoising errors (Bo-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Our Proposed SimGFM Framework.

get, 2025). Therefore, we introduce rvf-denoiser (random vf-denoiser), a sampling-based variant
of the vf-denoiser

Rather than using the full posterior distribution p1|t(· | z), rvf-denoiser samples a single candidate
x1|t

i ∼ p1|t(· | z) and constructs the following velocity field:

urvf ,i
t (xi, z) =

κ̇t

1− κt

[
δx1|ti(x

i)− δzi(xi)
]
. (11)

Our update rule uniformly depends on p1|t(· | Gt), which can be interpreted as the expectation over
all possible terminal graphs G1 conditioned on the current state Gt. In practice, this distribution
is approximated by the model, and we denote the resulting estimate as pθ1|t(· | Gt). However,
pθ1|t always contains statistical noise. The vf-denoiser directly applies the scaling factor h κ̇t

1−κt
to

this noise, causing severe error amplification and systematic numerical drift. To address this, we
adopt a stochastic strategy that first samples according to p1|t and then updates (rvf-denoiser). By
employing sparse sampling, the rvf-denoiser precludes such amplification by decoupling the scaling
factor from dense noise, thereby guaranteeing numerical stability; see Section A.6 for a rigorous
analysis. When the data contain only a single dominant structure, the two updates are nearly aligned
and incur negligible extra cost.
Proposition 1 (Unbiasedness of rvf-denoiser). The rvf-denoiser is an unbiased estimator of the
vf-denoiser. Specifically, taking expectation over all possible candidate targets x1|t

i, we have

Ex1|ti|z
[
urvf ,i
t (xi, z)

]
= ui

t(x
i, z). (12)

The proof is provided in Appendix A.1. It shows that rvf-denoiser behaves identically to vf-denoiser
in expectation.
Corollary 1 (Consistency with DFM Updates). Due to its unbiasedness, the rvf-denoiser also sat-
isfies the consistency requirement of DFM for one-step updates. Consequently, iterative sampling
with rvf-denoiser simulates a distribution path that is consistent in expectation with the theoretical
trajectory pt, up to error o(h).

The proof is deferred to Appendix A.2. This corollary highlights that SimGFM is not a heuristic
modification but a theoretically grounded alternative, fully consistent with the DFM framework in
expectation. This expectation-level agreement ensures that the rvf-denoiser is a legitimate solver for
DFM and that it exhibits improved numerical stability under finite-precision arithmetic.
Proposition 2 (Variance Characterization of rvf-denoiser). Conditioned on the current state xt, the
one-step update of the rvf-denoiser exhibits strictly higher variance than that of the vf-denoiser in
the sense of positive semi-definite (PSD) matrices. Specifically:

Var
(
δxt + hurvf

)
⪰ Var

(
δxt + huvf

)
. (13)

The detailed proof is provided in Appendix A.5. This inequality confirms that while both methods
share the same expectation (consistency), the rvf-denoiser introduces structured stochasticity into the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Validity Trajectory (b) Polynomial Scheduler Curves

Figure 4: (a) On Planar, the baseline (dashed) rises sharply only at the very end, suggesting that
valid graphs emerge predominantly in the late denoising phase. Using fk(t) with k = 10, SimGFM
(solid) allocates more steps to this late-stage refinement, improving validity. (b) The polynomial
scheduler fk(t) flattens near t = 1 at higher k, concentrating steps in the critical refinement region.

generative trajectory. This stochastic trajectory effectively prevents the scale factor from amplifying
model prediction errors, thereby improving numerical stability (see Appendix A.6).

3.2 THE CHOICE OF SCHEDULER

The temporal dynamics of discrete graph generation differ significantly from continuous domains.
As illustrated in Figure 4a, we analyze the denoising trajectory on the Planar dataset and observe
a critical phenomenon: under uniform denoising, valid graph structures emerge almost exclusively
near the endpoint regime t → 1. In the early and mid stages, structural validity remains close to
zero, suggesting that a large portion of the computation budget is spent in regions that contribute
little to the formation of valid structures.

This empirical pattern motivates the use of a non-uniform scheduler that allocates more updates near
t = 1, where graph validity is most sensitive. Building upon the time-distortion strategy popularized
by DeFoG (QIN et al., 2025), we adopt a polynomial scheduler of the form fk(t) = 1 − (1 − t)k

with k ≥ 1 (Figure 4b). A larger k slows down noise progression in the endpoint region, allowing
the model to devote finer-grained updates precisely where valid structures are formed. As shown in
Figure 4a, this leads to notably earlier and smoother emergence of valid graphs, in contrast to the
sharp late-stage jump exhibited by baseline methods.

Importantly, while this scheduler substantially enhances the performance of our velocity-field-based
formulation (Sec. 3.1), it is incompatible with Campbell’s construction. Campbell’s formulation
was not derived with any scheduler in mind, and applying it with non-uniform schedules typically
requires a time-distortion approximation. As analyzed in Appendix A.4, this approximation causes
Campbell’s updates to diminish rapidly under high-k schedulers, leading to vanishing refinements
in the endpoint region. In contrast, our vf/rvf velocity modeling maintains stable update magnitudes
even under very high-order scheduling, enabling efficient targeted refinement and supporting high
validity with significantly fewer denoising steps.

3.3 TRAINING AND SAMPLING PROCEDURES OF SIMGFM

Our framework follows the standard procedure of DFM (see Figure 3), but its core driving
mechanism—the construction of the rate matrix—is redesigned to be more direct and efficient.

Training. We design the training procedure of SimGFM as shown in Algorithm 1. The entire
objective centers on a single task: to teach a graph neural network fθ to accurately predict the final,
clean target graph G1 from a halfway-evolved, ambiguous intermediate graph Gt. Each training
iteration begins by sampling a real graph G1 from the dataset and a time point t. An intermediate
state Gt between pure noise and real data is then generated according to Eq. 8. Next, the noised
graph Gt, together with the current time t, is fed into the network to produce a prediction of the
posterior distribution over the original graph G1. Finally, we optimize the model parameters by

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 SimGFM Training & Sampling

1 Input: Graph dataset D = {G1, . . . , GM}
2 while fθ not converged do
3 Sample G1 ∼ D
4 Sample t ∼ T
5 Sample G0 ∼ p0(G0)
6 Sample Gt ∼ pt(Gt|G0, G1) ▷ Noising
7 pθ1|t(·|Gt)← fθ(Gt, t) ▷ Denoising
8 loss← CEλ(G1, p

θ
1|t(·|Gt))

9 optimizer.step(loss)
10 end while

1 Input: # graphs to sample S
2 for i = 1 to S do
3 Sample N from train set ▷ # Nodes
4 Sample G0 ∼ p0(G0)
5 for t = 0 to 1−∆t with step ∆t do
6 pθ1|t(·|Gt)← fθ(Gt, t) ▷ Denoising prediction
7 Gθ

1|t ∼ pθ1|t (· | Gt) ▷ Sample a potential graph

8 ut(·, Gt)← κ̇t
1−κt

[
δGθ

1|t
(·)− δGt(·)

]
9 Gt+∆t ∼ δGt(·) + ∆t · ut (·, Gt) ▷ Update graph

10 end for
11 Store G1

12 end for

computing the cross-entropy between this predicted distribution and the ground-truth graph.

L(θ) = −
∑
i∈[N]

Et, (G0,G1), Gt
log pθ1|t

(
x i
1 | Gt

)
−

∑
1≤i<j≤N

Et, (G0,G1), Gt
log pθ1|t

(
eij1 | Gt

)
(14)

Here, x i
1 denotes the attribute of the i-th node in G1 (i.e., the target label), and eij1 denotes the

attribute of the node pair (i, j) in G1: the value 1 indicates that the edge is absent, while any other
value represents the attribute of an existing edge.

Sampling. The sampling process of SimGFM, shown in Algorithm 1, realizes graph generation as
a direct evolution from chaos to order. It starts from a noise graph G0 sampled entirely from the
prior distribution. The model then iteratively evolves from t = 0 to t = 1 through a sequence of
discrete time steps ∆t. At each step t, given input Gt, the model predicts the posterior distribution
pθ1|t(· | Gt) of the final target graph. Updates are performed according to Eq. 9.

Rather than averaging over the full distribution, we sample a concrete candidate target graph
Gθ

1|t, which provides a sharp provisional direction for the current state. The rvf-denoiser then con-
structs a rate matrix ut that links Gt only to this candidate target. The graph is updated via the
corresponding Markov jump process, yielding Gt+∆t. Repeating this predict–sample–update cycle
gradually transforms pure noise into a structured graph at t = 1 that matches the target distribution.

3.4 PERMUTATION INVARIANCE GUARANTEES

Graph generative models should respect the permutation symmetries of graphs: both training and
sampling must be independent of node indices. In our model, we ensure: (1) the loss is permutation-
invariant; (2) the backbone denoiser is permutation-equivariant; (3) the one-step update kernels of
both vf - and rvf -denoisers are permutation-equivariant; (4) consequently, the overall training objec-
tive and the sampling distribution are permutation-invariant. Full proofs are in the Appendix A.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate SimGFM across three task groups: (1) generic graph generation —
Planar, SBM (Martinkus et al., 2022), Tree (Bergmeister et al., 2023), Ego-small, Community-
small, Grid (Jo et al., 2022); (2) molecular graph generation — QM9 / QM9-with-H (Wu et al.,
2018), MOSES (Polykovskiy et al., 2020); and (3) conditional generation — TLS (Madeira et al.,
2024). Following prior work, we adopt the standard evaluation protocol for each dataset, reporting
Valid/Unique/Novel (V.U.N.), Ratio, Fréchet ChemNet Distance (FCD), and graph statistics dis-
tances (Degree-MMD, Clustering-MMD, Orbit-MMD).

Baselines. We compare against major families of graph generative models. Autoregressive mod-
els include GraphRNN (You et al., 2018), GRAN (Liao et al., 2019), GraphGen (Goyal et al., 2020)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Graph generation performance on the synthetic datasets: Planar, Tree and SBM. V.U.N.
denotes Valid, Unique, and Novel, with Ratio closer to 1 indicating better alignment. Values are
mean ± std from five runs of 40 graphs each. Best and second-best results are in bold and underline.

Model Class # Steps ↓ Planar Tree SBM
V.U.N. ↑ Ratio ↓ V.U.N. ↑ Ratio ↓ V.U.N. ↑ Ratio ↓

Train set — — 100 1.0 100 1.0 85.9 1.0

GraphRNN Autoregressive — 0.0 490.2 0.0 607.0 5.0 14.7
GRAN Autoregressive — 0.0 2.0 0.0 607.0 25.0 9.7
BiGG Autoregressive — 5.0 16.0 75.0 5.2 10.0 11.9
GraphGen Autoregressive — 7.5 210.3 95.0 33.2 5.0 48.8
AUTOGRAPH Autoregressive — 87.5 1.5 — — 92.5 3.4
EDGE Diffusion 1000 0.0 431.4 0.0 850.7 0.0 51.4
BwR (EDP-GNN) Diffusion 1000 0.0 251.9 0.0 11.4 7.5 38.6
DiGress Diffusion 1000 77.5 5.1 90.0 1.6 60.0 1.7
HSpectre Diffusion — 95.0 2.1 100.0 4.0 75.0 10.5
GruM Diffusion — 90.0 1.8 — — 85.0 1.1
DisCo Diffusion 500 83.6 — — — 66.2 —
Cometh Diffusion 500 92.5 — — — 77.0 —
Cometh-PC Diffusion — 99.5 — — — — —
CatFlow Flow — 80.0 — — — 85.0 —
DeFoG (50 steps) Flow 50 95.0 3.2 73.5 2.5 86.5 2.2
DeFoG (1000 steps) Flow 1000 99.5 1.6 96.5 1.6 90.0 4.9

SimGFM (20 steps) Flow 20 94.0±4.4 2.3±0.6 88.0±4.8 2.5±0.9 82.0±4.0 5.6±1.1
SimGFM (50 steps) Flow 50 99.5±1.0 1.8±0.5 97.0±1.0 2.0±0.7 87.0±4.0 2.9±0.5
SimGFM (200 steps) Flow 200 100.0±0.0 9.3±2.6 99.5±1.0 1.5±0.2 90.5±4.0 3.2±0.5

Table 2: Molecule generation on QM9. We present the results over five sampling runs of 10000
generated graphs each. We include the results of Relaxed Validity, which accounts for charged
molecules, to facilitate comparison, as different methods may report varying types of validity.

Without Explicit Hydrogenes With Explicit Hydrogenes
Model # Steps ↓ Valid ↑ Relaxed Valid ↑ Unique ↑ FCD ↓ # Steps ↓ Valid ↑ Relaxed Valid ↑ Unique ↑ FCD ↓
Training set — 99.3 99.5 99.2 0.03 — 97.8 98.9 99.9 0.01

SPECTRE — 87.3 — 35.7 — — — — — —
GraphNVP — 83.1 — 99.2 — — — — — —
GDSS — 95.7 — 98.5 2.9 — — — — —
DiGress — 99.0 — 96.2 — — 95.4 — 97.6 —
GruM — 99.2 — 96.7 0.11 — — — — —
CatFlow — 99.8 — 100.0 0.44 — — — — —
DisCo — 99.3 — — — — — — — —
Cometh — 99.6 — 96.8 0.25 — — — — —
GRAPHARM — 90.25 — 95.62 1.22 — — — — —
SID — 99.7 — — 0.50 — — — — —
CID — 99.9 — — 1.76 — — — — —

DeFoG (50 steps) 50 98.9 99.2 96.2 0.26 50 97.1 98.1 94.8 0.31
DeFoG (500 steps) 500 99.3 99.4 96.3 0.12 500 98.0 98.8 96.7 0.05
SimGFM (10 steps) 10 99.5±0.0 99.7±0.0 95.0±0.2 0.92±0.0 10 93.7±0.2 95.6±0.3 97.6±0.1 0.10±0.0
SimGFM (50 steps) 50 99.7±0.0 99.8±0.0 96.3±0.0 0.13±0.0 50 98.4±0.0 99.2±0.1 97.1±0.1 0.10±0.0
SimGFM (200 steps) 200 99.8±0.0 99.8±0.0 95.9±0.0 0.15±0.0 200 98.4±0.1 99.2±0.0 97.0±0.3 0.10±0.0

BiGG (Dai et al., 2020), and AUTOGRAPH (Chen et al., 2025). GAN models cover Graph-
NVP (Madhawa et al., 2019) and SPECTRE (Martinkus et al., 2022). Diffusion models consist
of DiGress (Vignac et al., 2022), GDSS (Jo et al., 2022), EDGE (Chen et al., 2023), BwR (Dia-
mant et al., 2023), HSpectre (Bergmeister et al., 2023), GruM (Jo et al., 2023), DisCo (Xu et al.,
2024), Cometh (Siraudin et al., 2024) and SID/CID (Boget, 2025) Finally, Flow models include
DeFoG (QIN et al., 2025), CatFlow (Eijkelboom et al., 2024), and GGFlow (Hou et al., 2025).

Baseline results are from official implementations or reported numbers in the corresponding papers;
further details in Appendix B.

4.2 OVERALL PERFORMANCE

Requiring only 10–50 sampling steps, SimGFM can match or even outperform state-of-the-art
models across generic, molecular, and conditional graph generation tasks.

4.2.1 GENERIC GRAPH GENERATION

We evaluate SimGFM on the standard Planar, SBM, and Tree benchmarks. Table 1 reports two key
metrics: (i) valid/unique/novel (V.U.N.) graphs and (ii) the Ratio of graph-statistic distances between
generated and test sets relative to the train–test distance (lower is better). SimGFM demonstrates
strong efficiency: on Planar, it achieves 99.5% V.U.N. with a Ratio of 1.8 using only 50 steps; on

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Generation results on the generic graph datasets. Results are the means of 3 different runs.
The best results and the second-best results are marked bold and underline.

Model # Steps↓ Ego-small Community-small Grid
Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓

Training Set - 0.014 0.022 0.004 0.013 0.003 0.009 0.001 0.005 0.000 0.000 0.000 0.000

GraphRNN - 0.090 0.220 0.003 0.104 0.080 0.120 0.040 0.080 0.064 0.043 0.021 0.043
EDP-GNN 1000 0.054 0.092 0.007 0.051 0.050 0.159 0.027 0.079 0.460 0.243 0.316 0.340
GDSS 1000 0.027 0.033 0.008 0.022 0.044 0.098 0.009 0.058 0.133 0.009 0.123 0.088
DiGress 500 0.028 0.046 0.008 0.027 0.032 0.047 0.009 0.025 0.037 0.046 0.069 0.051
GGFlow 500 0.005 0.033 0.004 0.014 0.011 0.030 0.002 0.014 0.030 0.000 0.016 0.015
CatFlow - 0.013 0.024 0.008 0.015 0.018 0.086 0.007 0.037 0.115 0.004 0.075 0.065

DeFoG (50 steps) 50 0.034 0.012 0.067 0.039 0.029 0.157 0.052 0.079 0.004 0.000 0.000 0.001
DeFoG (200 steps) 200 0.056 0.149 0.068 0.091 0.022 0.040 0.002 0.022 0.001 0.000 0.000 0.000
SimGFM (50 steps) 50 0.004 0.024 0.006 0.011 0.038 0.081 0.008 0.043 0.000 0.000 0.000 0.000
SimGFM (200 steps) 200 0.006 0.009 0.001 0.005 0.031 0.027 0.002 0.020 0.000 0.000 0.000 0.000

Table 4: Large molecule generation performance.
Only iterative denoising-based methods are reported here.

MOSES
Model Val. ↑ Unique. ↑ Novelty ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Training set 100.0 100.0 0.0 100.0 0.01 0.64 99.1

AUTOGRAPH 87.4 100.0 85.9 98.6 0.91 0.55 —
DiGress 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh 90.5 99.9 92.6 99.1 1.27 0.54 16.0

DeFoG (50 steps) 83.9 99.9 96.9 96.5 1.87 0.50 23.5
DeFoG (500 steps) 92.8 99.9 92.1 98.9 1.95 0.55 14.4

SimGFM (50 steps) 88.7 100.0 95.9 98.4 0.39 — —
SimGFM (200 steps) 90.8 100.0 94.8 99.0 0.29 — —

Table 5: TLS conditional generation results.

Model TLS Dataset
V.U.N. ↑ TLS Val. ↑

Train set 0.0 100

GraphGen 40.2 25.1
BiGG 0.6 16.7
SPECTRE 7.9 25.3
DiGress 13.2 12.6
ConStruct 99.1 92.1

DeFoG (50 steps) 44.5 93.0
DeFoG (1000 steps) 94.5 95.8

SimGFM (50 steps) 81.3 91.3
SimGFM (200 steps) 96.3 96.3

Tree, it reaches 99.5% V.U.N. and 1.5 Ratio at 200 steps; and on SBM, it matches the performance
of DeFoG with 200 steps, compared to DeFoG’s 1000. These results highlight that a minimalist,
well-founded design can deliver both competitiveness and efficiency.

We further assess structural fidelity on Ego-small, Community-small, and Grid. Table 3 shows that
SimGFM with 200 steps achieves consistently small deviations across degree, clustering, and orbit
statistics, reaching or approaching the best overall scores among all compared methods.

4.2.2 MOLECULAR GRAPH GENERATION

We further evaluate SimGFM on three molecular benchmarks. On QM9, Table 2 shows that
SimGFM achieves SOTA performance at 200 steps, while already reaching 99.5% validity with
only 10 steps, which is an order of magnitude fewer than the ∼ 500 steps typically required by
diffusion models, thereby demonstrating substantial gains in sampling efficiency. On QM9-with-H,
results in Table 2 indicate that SimGFM at 200 steps matches or surpasses the best reported scores
across all metrics, and at just 50 steps achieves a FCD of 0.10. For the large-molecule dataset
MOSES, Table 4 shows that SimGFM with 200 steps reduces FCD to 0.29, the lowest among all
compared methods, while maintaining strong validity and uniqueness.

4.2.3 CONDITIONAL GENERATION

(a) Valid (b) FCD

Figure 5: Sampling Efficiency on QM9

We evaluate conditional gener-
ation on TLS dataset. Perfor-
mance is assessed by (i) TLS
Valid, measuring consistency
between generated graphs and
provided labels, and (ii) V.U.N.
(validity, uniqueness, and nov-
elty), where a graph is consid-
ered valid if it is both planar and
connected. For fairness, we re-
port the mean performance of
existing methods on two sub-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

sets, as summarized in Table 5. SimGFM achieves 96.3% TLS Valid and 96.3% V.U.N. with
only 200 steps, matching or surpassing DeFoG while requiring far fewer inference steps.

4.3 SAMPLING EFFICIENCY

We report validity and FCD as functions of sampling steps on QM9 (Figs. 5a and 5b). SimGFM
surpasses 0.99 validity with only 10 steps, whereas other methods typically require at least 50. This
advantage arises from the DFM mechanism: by following a straighter probability path, SimGFM
reaches high validity with substantially fewer refinement steps.

In terms of FCD (Fig. 5b), SimGFM decays rapidly from 0.92 at 10 to 0.15 at 200. Thus, 10 steps
already attain performance once associated with 500− 1000, while 200 steps achieve best-in-class
results, underscoring a significant improvement in sampling efficiency.

4.4 ABLATION STUDY

Dataset Vf-denoiser Rvf-denoiser Gain
TLS 2.50 96.25 +93.75
QM9-with-H 97.25 98.40 +1.15
MOSES 85.78 89.39 +3.61

Table 6: Rate-matrix ablation.

We study two training–sampling sensitive com-
ponents: (i) the rate-matrix estimator (vf-
denoiser vs. rvf-denoiser) and (ii) the DFM
time scheduler κt.

Table 6 summarizes the effect of replacing the
vf-denoiser with the rvf-denoiser under 200
sampling steps. On TLS conditional generation, rvf-denoiser improves Valid by an absolute 93.75
points (2.50 → 96.25), indicating a substantial robustness gain under conditional constraints. On
MOSES, Valid rises from 85.78 to 89.39 (+3.61). Overall, rvf-denoiser outperforms vf-denoiser
across benchmarks and is a stronger default choice.

We further analyze the time scheduler κt. Results across datasets show that stronger front loading
(larger k) benefits small step budgets, while moderate front loading (5 ≤ k ≤ 10) is more effective
for larger budgets. Detailed results are provided in Appendix C (Table 9 and 10).

5 RELATED WORK

Diffusion models (Ho et al., 2020) treat generation as iterative denoising. Discrete variants like
DiGress (Vignac et al., 2022) edit nodes and edges categorically while preserving marginals, achiev-
ing strong results on molecular and non-molecular datasets. Extensions such as EDGE (Chen
et al., 2023), and DisCo (Xu et al., 2024) improve efficiency or structural modeling through mix-
ture strategies, bandwidth constraints, or richer encodings. SID (Boget, 2025) partially mitigates
compounding denoising errors by assuming conditional independence between intermediate states.
Continuous-time variants (Campbell et al., 2022; Xu et al., 2024) employ CTMCs; e.g., Cometh (Sir-
audin et al., 2024) integrates random-walk features to boost validity, uniqueness, and novelty. De-
spite these advances, diffusion remains hindered by slow sampling and broader error accumulation.

Flow Matching (FM) offers a more efficient refinement paradigm, transporting noise to data via
ODEs or CTMCs with improved stability (Lipman et al., 2022; Liu et al., 2022) and demonstrated
success in vision domains (Esser et al., 2024; Ma et al., 2024). Its discrete extension, DFM (Camp-
bell et al., 2024; Gat et al., 2024), extends the framework to categorical data, including graphs,
by employing linear interpolation and CTMC dynamics. Subsequent works such as CatFlow (Hou
et al., 2025), DeFoG (QIN et al., 2025), and GGFlow (Hou et al., 2025) enhance performance but
rely on costly optimization, heuristics, or reinforcement learning, complicating the framework.

6 CONCLUSION

We presented SimGFM, a minimal yet strong framework for discrete flow matching on graphs.
Our approach employs a clean CTMC formulation, a simple monotone scheduler, and the unbiased
rvf-denoiser, which together are sufficient to match or surpass more complex systems using only
10–50 steps. These results demonstrate that principled probabilistic design choices, free from ad-
hoc heuristics, can substantially improve sampling efficiency while maintaining strong performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient
and scalable graph generation through iterative local expansion. arXiv preprint arXiv:2312.11529,
2023.

Yoann Boget. Simple and critical iterative denoising: A recasting of discrete diffusion in graph
generation. arXiv preprint arXiv:2503.21592, 2025.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024.

Dexiong Chen, Markus Krimmel, and Karsten Borgwardt. Flatten graphs as sequences: Transform-
ers are scalable graph generators. arXiv preprint arXiv:2502.02216, 2025.

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation
via discrete diffusion modeling. arXiv preprint arXiv:2305.04111, 2023.

Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, and Dale Schuurmans. Scalable deep generative model-
ing for sparse graphs. In International conference on machine learning, pp. 2302–2312. PMLR,
2020.

Nathaniel Lee Diamant, Alex M Tseng, Kangway V Chuang, Tommaso Biancalani, and Gabriele
Scalia. Improving graph generation by restricting graph bandwidth. In International Conference
on Machine Learning, pp. 7939–7959. PMLR, 2023.

Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
van de Meent. Variational flow matching for graph generation. Advances in Neural Information
Processing Systems, 37:11735–11764, 2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. Advances in Neural Information Processing Systems, 37:
133345–133385, 2024.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Nikhil Goyal, Harsh Vardhan Jain, and Sayan Ranu. Graphgen: A scalable approach to domain-
agnostic labeled graph generation. In Proceedings of the web conference 2020, pp. 1253–1263,
2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Xiaoyang Hou, Tian Zhu, Milong Ren, Dongbo Bu, Xin Gao, Chunming Zhang, and Shiwei Sun.
Improving graph generation with flow matching and optimal transport, 2025. URL https:
//openreview.net/forum?id=rMyfMS5nMt.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International conference on machine learning, pp.
10362–10383. PMLR, 2022.

11

https://openreview.net/forum?id=rMyfMS5nMt
https://openreview.net/forum?id=rMyfMS5nMt

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture. arXiv
preprint arXiv:2302.03596, 2023.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Sangyun Lee, Zinan Lin, and Giulia Fanti. Improving the training of rectified flows. Advances in
neural information processing systems, 37:63082–63109, 2024.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
Advances in neural information processing systems, 32, 2019.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. In European Conference on Computer Vision, pp. 23–40. Springer, 2024.

Manuel Madeira, Clement Vignac, Dorina Thanou, and Pascal Frossard. Generative modelling of
structurally constrained graphs. Advances in Neural Information Processing Systems, 37:137218–
137262, 2024.

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An invert-
ible flow model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spectral
conditioning helps to overcome the expressivity limits of one-shot graph generators. In Interna-
tional Conference on Machine Learning, pp. 15159–15179. PMLR, 2022.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
Veselov, et al. Molecular sets (moses): a benchmarking platform for molecular generation models.
Frontiers in pharmacology, 11:565644, 2020.

Yiming QIN, Manuel Madeira, Dorina Thanou, and Pascal Frossard. Defog: Discrete flow matching
for graph generation. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=KPRIwWhqAZ.

Antoine Siraudin, Fragkiskos D Malliaros, and Christopher Morris. Cometh: A continuous-time
discrete-state graph diffusion model. arXiv preprint arXiv:2406.06449, 2024.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv preprint
arXiv:2209.14734, 2022.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng,
Mahashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph gener-
ation. Advances in Neural Information Processing Systems, 37:79704–79740, 2024.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In International conference on machine
learning, pp. 5708–5717. PMLR, 2018.

12

https://openreview.net/forum?id=KPRIwWhqAZ

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF

A.1 PROOF OF UNBIASEDNESS OF RVF-DENOISER

Proposition 1 (Unbiasedness of rvf-denoiser). The rvf-denoiser is an unbiased estimator of the
vf-denoiser. Specifically, taking expectation over all possible candidate targets xi

1|t, we have

Exi
1|t|z

[
urvf
t (xi, z)

]
= ui

t(x
i, z). (15)

Proof. The derivation follows directly. Starting from the definition:

Exi
1|t|Xt

[
urvf
t

]
= Exi

1|t|Xt

[
κ̇t

1− κt

(
δxi

1|t
(xi)− δXi

t
(xi)

)]
. (16)

Moving constants outside of the expectation:

=
κ̇t

1− κt

(
Exi

1|t|Xt
[δxi

1|t
(xi)]− δXi

t
(xi)

)
. (17)

By definition of expectation, Exi
1|t|Xt

[δxi
1|t
(xi)] equals p1|t(xi | Xt). Substituting, we obtain:

=
κ̇t

1− κt

[
p1|t(x

i | Xt)− δXi
t
(xi)

]
= ui

t(x
i, Xt). (18)

A.2 PROOF OF CONSISTENCY OF SIMGFM UPDATES WITH DFM

Corollary 1 (Consistency with DFM Updates). Due to its unbiasedness, the rvf-denoiser also sat-
isfies the consistency requirement of DFM for one-step updates. Consequently, iterative sampling
with rvf-denoiser simulates a distribution path that is consistent in expectation with the theoretical
trajectory pt, up to error o(h).

Proof. The validity of DFM relies on ensuring that each update approximately pushes the sample
distribution from pt to pt+h in expectation. Itai et al. proved that vf-denoiser satisfies:

EXt

[
δXt(x) + h

N∑
i=1

δXt(x
ī)ui

t(x
i, Xt)

]
= pt+h(x) + o(h). (19)

Applying the law of total expectation and the unbiasedness property, we obtain:

EXt,X1|t

[
δXt

(x) + h

N∑
i=1

δXt
(xī)urvf

t (xi, Xt)

]
(20)

= EXt

[
EX1|t|Xt

[
δXt

(x) + h

N∑
i=1

δXt
(xī)urvf

t (xi, Xt)

]]
(21)

= EXt

δXt
(x) + h

N∑
i=1

δXt
(xī) EX1|t

i|Xt

[
urvf
t (xi, Xt)

]︸ ︷︷ ︸
=ui

t(x
i,Xt)

 (22)

= pt+h(x) + o(h). (23)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 PROOF OF PERMUTATION INVARIANCE FOR RVF-DENOISER

A.3.1 NOTATION AND SETUP

We denote an undirected graph by G = (x1:N , e1≤i<j≤N), where node variables take values in
X and edge variables in E . For any node permutation with matrix P ∈ {0, 1}N×N , define the
relabeling action on graph-indexed tensors by

πP (X) = PX, πP (A) = PAP⊤, [πP (E)]{i,j} = E{P−1(i),P−1(j)}.

Let δG denote the Dirac measure at G, and (πP)#µ the pushforward of a measure µ via πP . Scalars
such as t,∆t, κt, κ̇t are invariant under πP . We write Gt for a noisy state, fθ for the denoiser, and
pθ1|t(· | Gt) for the predicted clean-graph distribution.

A.3.2 BACKBONE EQUIVARIANCE

Proposition 2. The attention-based Graph Transformer denoiser satisfies

fθ(πP (Gt), t) = πP

(
fθ(Gt, t)

)
, pθ1|t(· | πP (Gt)) = πP

(
pθ1|t(· | Gt)

)
.

Proof. With shared projections Q = XWQ, K = XWK , V = XWV , relabeling yields Q′ =
PQ, K ′ = PK, V ′ = PV . Shared edge bias/mask obeys B′ = PBP⊤, M ′ = PMP⊤. The
score matrix satisfies L′ = Q′K′⊤

√
dk

+ B′ + M ′ = PLP⊤. Row-softmax commutes with row
permutations, hence Att′ = P AttP⊤. Aggregation gives Y ′ = Att′V ′ = P (AttV) = PY .
Pointwise residuals, layer normalizations, and MLPs commute with P . Multi-head attention and
stacking preserve equivariance.

A.3.3 LOSS INVARIANCE

Proposition 3. The training loss

L(θ;Gt, G1) = −
∑
i∈[N]

log pθ1|t(x
i
1 | Gt) −

∑
1≤i<j≤N

log pθ1|t(e
ij
1 | Gt)

is permutation-invariant:

L(θ;πP (Gt), πP (G1)) = L(θ;Gt, G1).

Proof. By backbone equivariance, pθ1|t(· | πP (Gt)) = πP

(
pθ1|t(· | Gt)

)
. The node sum reindexes

via i 7→ P (i); the unordered edge sum reindexes via {i, j} 7→ {P (i), P (j)}. Reindexing does not
change the sums, proving invariance.

A.3.4 ONE-STEP KERNEL EQUIVARIANCE

Define the vector fields and one-step kernels (with global scalars κt, κ̇t,∆t):

Ĝ ∼ pθ1|t(· | Gt), urvf
t (·, Gt) =

κ̇t

1− κt

[
δĜ(·)− δGt

(·)
]
, Krvf

t = δGt
+∆t urvf

t ,

uvf
t (·, Gt) =

κ̇t

1− κt

[
EĜ∼pθ

1|t(·|Gt)
δĜ(·)− δGt

(·)
]
, Kvf

t = δGt
+∆t uvf

t .

Proposition 4. Vf-denoiser. For any measurable set S,

Kvf
t (πP (Gt), πP (S)) = Kvf

t (Gt,S).

Proof. From backbone equivariance, πP (Ĝ)
d
= Ĝ′ ∼ pθ1|t(· | πP (Gt)). Pushforward

gives (πP)#E[δĜ] = E[δπP (Ĝ)] and (πP)#δGt
= δπP (Gt), hence Kvf

t (πP (Gt), ·) =

(πP)#K
vf
t (Gt, ·).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proposition 5. Rvf-denoiser. For any measurable set S,

Krvf
t (πP (Gt), πP (S)) = Krvf

t (Gt,S) in distribution.

Proof. With πP (Ĝ)
d
= Ĝ′ ∼ pθ1|t(· | πP (Gt)) and (πP)#δĜ = δπP (Ĝ), the claim follows immedi-

ately.

A.3.5 SAMPLING TRAJECTORY AND TRAINING OBJECTIVE

Sampling invariance. If the initial distribution p0 and the noising kernel pt(Gt | G0, G1) are
compatible with permutations (relabeling only changes indices, not structural dependence), then
kernel equivariance implies, by the Markov property and induction over time steps, that for any time
grid and finite set of times,

Pr
(
Gt1 ∈ S1, . . . , Gtk ∈ Sk

)
= Pr

(
πP (Gt1) ∈ S1, . . . , πP (Gtk) ∈ Sk

)
,

so the terminal sampling distribution over isomorphism classes is permutation-invariant.

Training invariance. Taking expectation over (t, (G0, G1), Gt) in the loss shows that the overall
training objective is permutation-invariant; the expected gradient is unchanged under node relabel-
ing.

A.4 THEORETICAL ANALYSIS OF SCHEDULER COMPATIBILITY AND UPDATE DYNAMICS

In this section, we provide the theoretical motivation for our choice of scheduler and strictly analyze
the numerical behavior of different discrete flow matching formulations near the terminal time t →
1.

A.4.1 MOTIVATION: THE NECESSITY OF NON-LINEAR SCHEDULERS

Empirical observations on discrete graph generation (as discussed in Method) reveal a critical dy-
namical property: valid graph structures typically emerge only when the diffusion time t is very close
to 1. Consequently, a linear scheduler often wastes computational budget on early noisy stages. To
address this, we employ a polynomial scheduler of the form:

fk(t) = 1− (1− t)k, k ≥ 1. (24)
Let κt = fk(t). A larger k (e.g., k = 10 or 20) flattens the trajectory near t = 1, effectively
increasing the sampling resolution in the region where structural validity is determined.

A.4.2 INCOMPATIBILITY OF TIME-DISTORTION APPROXIMATIONS (CAMPBELL’S
FORMULATION)

Campbell et al. (2024) proposed a discrete flow matching update based on time distortion. We prove
here that this approximation suffers from vanishing updates when combined with the necessary
high-k schedulers derived above.

The inference process under time distortion approximates the flow by adjusting the time step mag-
nitude based on κt. The update rule implies a transition proportional to the change in noise level:

xκt+h
∼ xκt

+ (κt+h − κt) ·R, (25)
where R represents the rate or update direction. To analyze the behavior as h → 0, we perform a
Taylor expansion of the scheduler fk(t) around t:

κt+h = fk(t+ h) = fk(t) + f ′
k(t)h+O(h2). (26)

Substituting the derivative f ′
k(t) = k(1− t)k−1, the effective update magnitude becomes:

∆κ ≈ κt+h − κt = k(1− t)k−1h. (27)
Analysis as t → 1: When utilizing a scheduler with a large k to improve validity, the term (1 −
t)k−1 approaches zero extremely rapidly as t → 1. Consequently, the update probability mass ∆κ
vanishes. This causes the sampling trajectory to “freeze” prematurely—the model fails to execute
necessary structural refinements in the final steps because the effective step size under time distortion
becomes numerically negligible.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 6: Comparison of validity trajectories on QM9 (10 steps, k = 20). While SimGFM (rvf/vf)
continues to refine graph structures near t → 1, the time-distortion baseline (Campbell) plateaus
due to vanishing updates, validating our theoretical analysis.

A.4.3 ROBUSTNESS OF THE VELOCITY-FIELD FORMULATION (SIMGFM)

In contrast, our proposed method (SimGFM) directly models the velocity field. The solver update
rule for both rvf and vf is governed by the ratio of the rate of change to the remaining noise budget:

xt+h ∼ δxt
(·) + h

κ̇t

1− κt
u, (28)

where u is the conditional vector field. Substituting the definitions for the polynomial scheduler
κt = 1− (1− t)k:

• The numerator: κ̇t = k(1− t)k−1.
• The denominator: 1− κt = (1− t)k.

The update coefficient simplifies to:
κ̇t

1− κt
=

k(1− t)k−1

(1− t)k
=

k

1− t
. (29)

Thus, the effective update rule behaves as:

xt+h ∼ δxt
(·) + h

k

1− t
u. (30)

Conclusion: Unlike the time-distortion formulation, the coefficient h k
1−t does not vanish as t → 1;

instead, it compensates for the shrinking time horizon. This ensures that even with large k values, the
model maintains a significant probability of updating the graph structure up until the very end of the
generation process. This theoretical derivation aligns with the experimental results on QM9, where
SimGFM (rvf/vf) continues to improve validity in later steps, while the time-distortion baseline
plateaus.

Figure 6 provides visual confirmation of this theoretical analysis. We conducted a controlled exper-
iment on the QM9 dataset using a constrained budget of 10 steps with a high scheduler curvature
(k = 20). The experimental curves clearly demonstrate the divergence in behavior near the terminal
phase:

• Campbell (Blue Line): The validity curve flattens significantly as the step count pro-
gresses, confirming that the update magnitude κt+h − κt becomes negligible, preventing
the model from making final structural corrections.

• SimGFM (Teal/Orange Lines): Both the rvf and vf solvers maintain an upward trend
in validity throughout the entire generation process. The non-vanishing coefficient h k

1−t
ensures that the model remains active and effective even as t → 1, leading to superior final
performance.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.5 VARIANCE ANALYSIS: DISTINGUISHING RVF-DENOISER FROM VF-DENOISER

We make precise that given the current state, vf and rvf share the same conditional mean but differ
in conditional variance. By the law of total variance, the unconditional variance of rvf is therefore
larger than or equal to that of vf, with strict inequality whenever the model is uncertain and the step
size (scale) is nonzero.

A.5.1 NOTATION AND SETUP

Let et = δxt
be the one-hot encoding of the current state xt. Let p = p1|t(· | xt) denote the model-

predicted simplex probability at time t. Define the step scale λt := h κ̇t/(1− κt). For any random
vector X, we use the matrix-valued variance Var(X) = E

[
(X − E[X])(X − E[X])⊤

]
. Let Gt :=

σ(xt,p, λt) denote the σ-field describing all randomness at time t that is “current-information–
measurable”.

A.5.2 VF-DENOISER (DETERMINISTIC GIVEN Gt)

uvf =
λt

h
(p− et), vvf = et + huvf = (1− λt)et + λtp. (31)

Because vvf is a deterministic function of Gt, its conditional variance vanishes:

Var(vvf | Gt) = 0. (32)

However, its unconditional variance generally does not vanish, since (xt,p, λt) vary across trajec-
tories:

Var(vvf) = E[Var(vvf | Gt)]︸ ︷︷ ︸
= 0

+Var(E[vvf | Gt]) = Var((1− λt)et + λtp) . (33)

A.5.3 RVF-DENOISER (STOCHASTIC GIVEN Gt)

Draw a one-hot sample S ∼ Cat(p) conditionally on Gt. Then

urvf =
λt

h
(S− et), vrvf = et + hurvf = (1− λt)et + λtS. (34)

Using E[S | Gt] = p and Var(S | Gt) = diag(p) − pp⊤, we obtain the conditional mean and
variance:

E[vrvf | Gt]= (1− λt)et + λtp = vvf , (35)

Var(vrvf | Gt)= λ2
t

(
diag(p)− pp⊤) . (36)

A.5.4 COMPARISON VIA THE LAW OF TOTAL VARIANCE

Applying Var(X) = E[Var(X | Gt)] + Var(E[X | Gt]) to both updates yields

Var(vrvf)= E[Var(vrvf | Gt)] + Var(E[vrvf | Gt]) (37)

= E
[
λ2
t

(
diag(p)− pp⊤)]+Var(vvf) . (38)

Hence,
Var(vrvf)−Var(vvf) = E

[
λ2
t

(
diag(p)− pp⊤)] ⪰ 0, (39)

because diag(p) − pp⊤ is positive semidefinite and expectations preserve the PSD order. The
inequality is strict whenever P(λt ̸= 0, p is not one-hot) > 0.

Coordinate-wise Form

Var
(
v
(i)
rvf

)
−Var

(
v
(i)
vf

)
= E

[
λ2
t pi(1− pi)

]
≥ 0, (40)

with strict inequality under the same nondegeneracy conditions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Takeaway Conditionally on Gt, vf and rvf share the same mean, but rvf adds the covariance
λ2
t (diag(p) − pp⊤). Unconditionally, rvf inherits the same across-trajectory variability as vf and

adds a PSD term, so Var(vrvf) ⪰ Var(vvf).

A.6 NUMERICAL STABILITY ANALYSIS

In this section,we demonstrate that the vf-denoiser amplifies the model prediction error δ through
the scaling factor λt, whereas the rvf-denoiser’s sampling mechanism decouples this interaction,
strictly bounding the numerical error to machine precision ϵ.

A.6.1 PRELIMINARIES: ERROR DECOMPOSITION AND PROJECTION LEMMA

Decomposition of Error Sources. Let p̂ = p + δ be the neural network output, where δ denotes
the statistical error of the model.

We define three update vectors: the true vector vtrue derived from p; the statistical vector vstat
derived from p̂ before projection; and the numerical vector vnum, the actual output after projection
Π and floating-point arithmetic. The total error can be decomposed into a statistical and a numerical
part: ∥∥vnum − vtrue

∥∥
1
≤

∥∥vstat − vtrue
∥∥
1︸ ︷︷ ︸

Statistical Error

+
∥∥vnum − vstat

∥∥
1︸ ︷︷ ︸

Numerical Error

. (41)

Since the vf-denoiser and rvf-denoiser share the same underlying transition kernel, their sta-
tistical error components are strictly identical. In this section, we focus exclusively on the
numerical error, isolating the deviation introduced solely by the solver’s execution mechanism.

Projection Operator and Truncation Lemma. Define the projection operator Π : RK → ∆K−1

as “clipping negative entries and renormalizing”:

Π(u) :=
max(0, u)∑
i max(0, ui)

, (42)

where max(0, u) is applied elementwise.

Define the truncation mass L(u) of a vector u as the sum of the absolute values of all negative
components:

L(u) :=
∑
ui<0

|ui|. (43)

Lemma 1 (Projection Error Identity). For any vector u with
∑

i ui = 1, if Π(u) is well-defined,
then the L1-error introduced by the projection operator equals twice the truncation mass:∥∥Π(u)− u

∥∥
1
= 2L(u). (44)

Proof. The projection error consists of two components: the truncation of negative values, contribut-
ing

∑
ui<0 |ui| = L(u); and the renormalization of nonnegative values (which sum to 1 + L(u)).

The latter contributes (1+L(u))
∣∣∣ 1
1+L(u) − 1

∣∣∣ = L(u). Summing both yields a total error of 2L(u).
□

A.6.2 NUMERICAL INSTABILITY OF THE VF-DENOISER: LINEAR AMPLIFICATION OF NOISE

We first rewrite the vf update in terms of its conditional transition kernel. The ideal vf transition
kernel at time t with true posterior p is

pvt+h(x | xt) := (1− λt)1{x=xt} + λt p(x), (45)

so that pvt+h(· | xt) is a nonnegative probability vector on the simplex.

Given the approximate posterior p̂ = p+δ, the ideal unprojected statistical vector of the vf-denoiser
can be written as

vstat
vf = pvt+h(· | xt) + λt δ. (46)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

In practice, floating-point arithmetic introduces a perturbation ξ with ∥ξ∥1 ≤ ϵ. The actual vector
input to the projection operator is

ṽvf = vstat
vf + ξ = pvt+h(· | xt)︸ ︷︷ ︸

≥0

+(λt δ + ξ). (47)

The final numerical vector is v̂vf = Π(ṽvf).

We define the numerical error as the deviation of the final output from the intended statistical vector
vstat
vf . Using the triangle inequality, we decompose the error Enum

vf :

Enum
vf :=

∥∥v̂vf − vstat
vf

∥∥
1

(48)

≤
∥∥Π(ṽvf)− ṽvf

∥∥
1︸ ︷︷ ︸

Projection Error

+
∥∥ṽvf − vstat

vf

∥∥
1︸ ︷︷ ︸

Floating-point Error

. (49)

By Lemma 1, the projection error equals 2L(ṽvf). The second term is simply ∥ξ∥1. Thus:

Enum
vf ≤ 2L(ṽvf) + ∥ξ∥1. (50)

To bound the truncation mass L(ṽvf), note that the bracketed kernel pvt+h(· | xt) is theoretically
nonnegative. Hence any negative entries in ṽvf must originate from the noise term λtδ + ξ. Using
the property that L(u+ v) ≤ L(u) + ∥v∥1 (and L(pvt+h(· | xt)) = 0), we obtain

L(ṽvf) ≤
∥∥negative part of (λtδ + ξ)

∥∥
1
≤ 1

2
λt∥δ∥1 + ∥ξ∥1. (51)

Substituting this back into the error bound:

Enum
vf ≤ 2

(
1

2
λt∥δ∥1 + ∥ξ∥1

)
+ ∥ξ∥1 = λt∥δ∥1 + 3∥ξ∥1. (52)

Letting η be the upper bound of ∥δ∥1 and ϵ be the machine precision bound on ∥ξ∥1, we obtain:

Enum
vf ≤ λtη + 3ϵ. (53)

Conclusion. Since the weighted statistical error typically dominates machine precision (λtη ≫ ϵ)
in practical scenarios, the numerical error bound is effectively determined by the model error:

Enum
vf ≤ O(λtη). (54)

This indicates that the vf-denoiser directly amplifies the statistical prediction error, converting it into
significant numerical bias.

A.6.3 NUMERICAL ROBUSTNESS OF THE RVF-DENOISER: DECOUPLING VIA SPARSITY

We now express the rvf update in terms of its conditional transition kernel. Given a sampled target
z ∼ p̂, the rvf-denoiser defines the conditional transition kernel

prt+h(x | xt, z) := (1− λt)1{x=xt} + λt 1{x=z}, (55)

which is a valid probability distribution. The corresponding ideal sparse update vector for this
sample is therefore

vstat
rvf (z) = prt+h(· | xt, z). (56)

In practice, floating-point errors introduce a perturbation ξ with ∥ξ∥1 ≤ ϵ, so the actual vector before
projection is

ṽrvf = vstat
rvf (z) + ξ = prt+h(· | xt, z)︸ ︷︷ ︸

≥0

+ξ. (57)

The final numerical vector is
v̂rvf = Π

(
ṽrvf

)
. (58)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Using Lemma 1, the numerical error for a given sample z is

Enum
rvf (z) :=

∥∥v̂rvf − vstat
rvf (z)

∥∥
1
≤ 2L

(
ṽrvf

)
+ ∥ξ∥1. (59)

Because prt+h(· | xt, z) is itself nonnegative, any negative components of ṽrvf must come from the
floating-point error ξ. Hence

L
(
ṽrvf

)
≤

∥∥negative part of ξ
∥∥
1
≤ ∥ξ∥1 ≤ ϵ. (60)

Therefore, for each z we have
Enum
rvf (z) ≤ 2ϵ+ ϵ = 3ϵ, (61)

and thus, up to a constant factor, the rvf numerical error is of order

Enum
rvf ≤ O(ϵ). (62)

Conclusion. The numerical error of the rvf-denoiser is controlled solely by machine precision and
is independent of the model error η. The “sample–then–sparsify” mechanism effectively decouples
numerical error from the statistical prediction error.

A.6.4 SUMMARY AND COMPARISON

Comparing the upper bounds of numerical error for the two denoisers, we obtain
Upper bound of Enum

vf

Upper bound of Enum
rvf

∼ λt η

ϵ
. (63)

In our experiments, the validation error η of the model is typically around 10−2, whereas single-
precision machine error ϵ is much smaller (often below 10−6).

Crucially, as λt grows, the vf-denoiser directly amplifies the prediction error η, resulting in numer-
ical noise far exceeding machine precision. In contrast, the rvf-denoiser structurally decouples this
interaction, keeping the error strictly bound by ϵ and ensuring superior numerical robustness.

B EXPERIMENTAL DETAILS

B.1 COMPUTING ENVIRONMENT

Our implementation is based on PyG (Fey & Lenssen, 2019). The experiments are conducted on a
single workstation with 8 A100 GPUs.

B.2 COMPUTATIONAL COST ANALYSIS

In this section, we address the concern regarding the potential computational overhead introduced
by the rvf-denoiser. Although the rvf-denoiser involves an additional sampling step compared to the
vf-denoiser, we demonstrate both empirically and theoretically that this cost is negligible.

B.2.1 EMPIRICAL RUNTIME COMPARISON

We conducted a rigorous runtime comparison on four datasets: Planar, Tree, SBM, and QM9. As
shown in Table 7, the wall-clock time differences between vf and rvf are statistically insignificant.
In some cases (e.g., QM9), rvf appears slightly faster solely due to system-level fluctuations (such as
GPU scheduling jitter and memory allocation noise), which overshadow the minute computational
difference between the two methods.

B.2.2 THEORETICAL COMPLEXITY ANALYSIS

To further justify the minimal overhead, we provide a time complexity analysis. Let N be the
number of nodes, L the number of Transformer layers, and d the hidden dimension.

• Model Inference (Tmodel): The computational bottleneck lies in the self-attention mecha-
nism of the graph transformer, which scales as:

Tmodel ≈ O(L ·N2 · d). (64)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Runtime comparison between vf and rvf samplers. The results indicate no observable
latency overhead for the rvf-denoiser.

Dataset Graphs Sampled vf-denoiser Sampling Time (s) rvf-denoiser Sampling Time (s)

Planar 40 24.8 ± 0.1 24.8 ± 0.1
Tree 40 2.6 ± 0.1 2.6 ± 0.1
SBM 40 135.5 ± 8.3 135.9 ± 8.2
QM9 10,000 126.5 ± 0.2 125.7 ± 0.2

• Sampling Overhead (Tsample): Sampling a discrete adjacency matrix involves iterating
over N2 edges. Both vf and rvf require O(N2) operations to compute the update. rvf
performs one additional sampling step from the categorical distribution, adding another
O(N2) term. The relative overhead ratio is:

Extra Cost
Tmodel

≈ O(N2)

O(L ·N2 · d)
=

1

L · d
. (65)

Conclusion: Under typical experimental settings (e.g., d = 256, L = 10), the theoretical additional
cost is less than 0.04%. This confirms that the rvf-denoiser improves generation diversity without
incurring any practical computational penalty.

B.3 IMPLEMENTATION DETAILS

We adopt the Graph Transformer backbone from DiGress (Vignac et al., 2022), with further experi-
mental details available in our source code at https://anonymous.4open.science/r/SimGFM-F9C5.

B.3.1 SPECIFICATION OF SOURCE DISTRIBUTION p0

To ensure full reproducibility, we explicitly specify the source distribution p0 used for initialization
in each experiment. The choice of p0 defines the prior noise distribution from which the backward
generation process starts (x1 ∼ p0).

Table 8: Source distribution (p0) configurations for all datasets.

Dataset Node Distribution (pV0) Edge Distribution (pE0) Remarks

QM9 Marginal Marginal —

QM9H Marginal Marginal —

Planar Marginal Marginal —

Tree Marginal Marginal —

MOSES Marginal Marginal —

Ego-Small Marginal Marginal —

Community-Small Marginal Marginal —

Grid Marginal Marginal —

TLS Marginal Marginal —

SBM AbsorbFirst AbsorbFirst Initialized with absorbing state

C FURTHER RESULTS

C.1 SCHEDULER SENSITIVITY

We adopt the power-accelerated family κt = fk(t) = 1− (1− t)k with k ∈ {1, 2, 5, 10, 20}, where
larger k front loads progress. Table 9 reports Valid under three representative settings: QM9 with
a small step budget (10 steps), MOSES with a large step budget (200 steps), and TLS conditional
generation (200 steps). On QM9 (10 steps), Valid improves monotonically with k and peaks at

21

https://anonymous.4open.science/r/SimGFM-F9C5

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

k = 20, suggesting strong front loading is preferred when steps are scarce. On MOSES (200 steps),
Valid peaks at k = 10 and remains close at k = 20, indicating that moderate front loading balances
early progress and late refinement. On TLS (200 steps), the best results occur at k = 2 and k = 20,
while k = 10 underperforms, reflecting task-dependent optima.

Table 9: Scheduler sensitivity on QM9 (10 steps), MOSES (200 steps), and TLS (200 steps).

Dataset Steps Valid ↑
κt = t κt = f2(t) κt = f5(t) κt = f10(t) κt = f20(t)

QM9 10 95.72 95.84 98.83 99.09 99.37
MOSES 200 81.92 87.52 88.24 89.39 89.29
TLS 200 93.75 96.25 95.00 93.75 96.25

We further compare our scheduler to the identity baseline, which assumes uniform transition rates.
Table 10 shows results for both vf-denoiser and rvf-denoiser across four datasets. Our scheduler
consistently improves validity, underscoring the importance of allocating more updates to the re-
finement phase and validating the effectiveness of our rate-matrix design.

Table 10: Ablation study on the transition rate matrix. We compare the performance of the identity
scheduler versus our proposed scheduler using both vf-denoiser and rvf-denoiser. The results (va-
lidity %) demonstrate the critical role of our rate matrix design.

Method QM9 QM9H Tree Planar

vf-denoiser (w/ identity scheduler) 98.3 ± 0.2 97.7 ± 0.1 49.5 ± 4.0 38.0 ± 5.0
rvf-denoiser (w/ identity scheduler) 99.3 ± 0.1 95.6 ± 0.1 57.0 ± 4.6 57.5 ± 6.5

vf-denoiser (w/ our scheduler) 99.6 ± 0.0 97.7 ± 0.1 95.5 ± 1.0 96.0 ± 3.0
rvf-denoiser (w/ our scheduler) 99.8 ± 0.0 98.4 ± 0.1 99.5 ± 1.0 100.0 ± 0.0

D FURTHER DISCUSSION

D.1 LIMITATIONS AND IMPACT

We have not fully explored the space of DFM schedulers, leaving room for improvement. As with all
molecular generators, practitioners must ensure responsible downstream use; our focus is method-
ological efficiency, not property-targeted design.

D.2 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility. Source code, datasets, and detailed instruc-
tions are available at https://anonymous.4open.science/r/SimGFM-F9C5.

D.3 LLM USAGE

We used large language models (LLMs) for language editing and polishing only.

D.4 ETHICS STATEMENT

Our study does not involve human subjects, sensitive personal data, or applications with foresee-
able harmful impact. All datasets used are publicly available, and we follow community standards
regarding data usage, fairness, and privacy.

22

https://anonymous.4open.science/r/SimGFM-F9C5

	introduction
	preliminaries
	Discrete Flow Matching
	Discrete Flow Matching on Graphs
	Existing Methods
	Open Challenges in Graph DFM

	Proposed Framework
	Velocity Field of SimGFM
	The Choice of Scheduler
	Training and Sampling Procedures of SimGFM
	Permutation Invariance Guarantees

	Experiments
	Experimental Setup
	OVERALL PERFORMANCE
	Generic Graph Generation
	Molecular Graph Generation
	Conditional Generation

	Sampling Efficiency
	Ablation Study

	Related Work
	Conclusion
	Proof
	Proof of Unbiasedness of rvf-denoiser
	Proof of Consistency of SimGFM Updates with DFM
	Proof of Permutation Invariance for rvf-denoiser
	Notation and Setup
	Backbone Equivariance
	Loss Invariance
	One-step Kernel Equivariance
	Sampling Trajectory and Training Objective

	Theoretical Analysis of Scheduler Compatibility and Update Dynamics
	Motivation: The Necessity of Non-Linear Schedulers
	Incompatibility of Time-Distortion Approximations (Campbell's Formulation)
	Robustness of the Velocity-Field Formulation (SimGFM)

	Variance Analysis: Distinguishing rvf-denoiser from vf-denoiser
	Notation and Setup
	Vf-Denoiser (Deterministic given Gt)
	Rvf-Denoiser (Stochastic given Gt)
	Comparison via the Law of Total Variance

	Numerical Stability Analysis
	Preliminaries: Error Decomposition and Projection Lemma
	Numerical Instability of the vf-denoiser: Linear Amplification of Noise
	Numerical Robustness of the rvf-denoiser: Decoupling via Sparsity
	Summary and Comparison

	Experimental Details
	Computing Environment
	Computational Cost Analysis
	Empirical Runtime Comparison
	Theoretical Complexity Analysis

	Implementation details
	Specification of Source Distribution p0

	Further Results
	Scheduler Sensitivity

	Further Discussion
	Limitations and Impact
	Reproducibility Statement
	LLM Usage
	Ethics Statement

