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ABSTRACT

There is an ongoing effort to develop feature selection algorithms to improve inter-
pretability, reduce computational resources, and minimize overfitting in predictive
models. Neural networks stand out as architectures on which to build feature selec-
tion methods, and recently, neuron pruning and regrowth have emerged from the
sparse neural network literature as promising new tools. We introduce EntryPrune,
a novel supervised feature selection algorithm using a dense neural network with
a dynamic sparse input layer. It employs entry-based pruning, a novel approach
that compares neurons based on their relative change induced when they have
entered the network. Extensive experiments on 13 different datasets show that our
approach generally outperforms the current state-of-the-art methods, and in partic-
ular improves the average accuracy on low-dimensional datasets. Furthermore, we
show that EntryPruning surpasses traditional techniques such as magnitude pruning
within the EntryPrune framework and that EntryPrune achieves lower runtime than
competing approaches. Our code is available in the supplementary material.

1 INTRODUCTION

Feature selection is a key problem in predictive modelling (Imrie et al., 2022). Since especially in
high-dimensional datasets, many features are irrelevant or redundant for predicting the target, it can
serve to improve interpretability by highlighting important features, reduce computational resources,
or improve predictive performance by reducing overfitting (Li et al., 2018). Its real-world impact is
evident—for instance, selecting only 4–14% of features can improve heart attack prediction (Akter
et al., 2025), while using just 16–48% of features can enhance cyberattack detection (Umar et al.,
2025). Ongoing demand has motivated substantial recent efforts to enhance existing feature selection
methods and develop new ones (Theng & Bhoyar, 2024; Pavasovic et al., 2025).

Feature selection algorithms can be categorized into embedded, wrapper, and filter approaches.
Embedded methods select features during model training, such as linear regression (Tibshirani,
1996) or neural networks (Lemhadri et al., 2021). Wrapper approaches also work around a specific
predictive model, but treat it as a black box with the feature set as a hyperparameter, e.g., via particle
swarm optimization (Rostami et al., 2021). Filter approaches select feature sets without being tailored
around a predictive model, but using information-theoretic measures. They include, for example,
statistical tests of the relationship between the feature and the outcome (Bommert et al., 2020).

Neural networks have a great ability to capture nonlinear relationships and offer many entry points
for slightly modifying their architecture or training algorithm to build successful embedded feature
selection methods. To decide on the utility of an input neuron, approaches added gates in the input
layer (Yamada et al., 2020), added residual connections to the output (Lemhadri et al., 2021), or
added gradients with respect to data changes to the loss (Cherepanova et al., 2023).

Feature selection in neural networks translates to aiming for a sparse input layer and is therefore a
special case of sparse neural networks (Hoefler et al., 2021). Recently, it was shown that sparse neural
network training (Mocanu et al., 2018; Evci et al., 2020) can be adapted to achieve a dominant feature
selection performance (Liu et al., 2024; Atashgahi et al., 2024; Sokar et al., 2024). However, in the
dynamic sparse regime, competing neurons are active for varying durations, making it challenging to
compare them based on real-time metrics. Entry-based pruning addresses this issue by leveling the
playing field, allowing regrown neurons to compete more effectively with established neurons. This
is achieved by evaluating each neuron based on the change induced upon entering the network.
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All Features

Downstream Accuracy: 97.92%

Fisher (Gu et al., 2011)
Downstream Accuracy: 74.40%

NeuroFS (Atashgahi et al., 2023)

Downstream Accuracy: 87.86%

EntryPrune (ours)
Downstream Accuracy: 93.04%

Figure 1: Visualization of feature selection results on MNIST using 25 out of 784 features. Each
panel shows the binary mask (top left) of the selected pixels, along with sample digits where only the
selected pixels are visible. The downstream accuracy scores (from an SVM classifier) were computed
by training on only these selected features and are averaged across five runs (see Appendix E for
details). Our approach enhances interpretability by identifying a minimal set of critical features that
maintain classification performance. Appendix A includes a similar visualization for CIFAR-10.

In this paper, we introduce EntryPrune, a novel neural network feature selection algorithm imple-
menting dynamic sparsity via random regrowth and entry-based pruning in the input layer of a dense
neural network. Our main contributions are:

1. Entry-based pruning, a novel pruning approach that compares neurons based on remembering
the initial importance of features when they enter the network. We show that it outperforms
established pruning methods such as magnitude pruning in the context of our algorithm.

2. The EntryPrune feature selection algorithm, which has two key hyperparameters that allow
it to adapt to the characteristics of the dataset used. A variant can adjust the input layer size
at runtime, reducing sensitivity to one of its hyperparameters.

3. An extensive experimental evaluation of the approach, demonstrating that it outperforms
state-of-the-art methods such as NeuroFS and LassoNet on 9 out of 13 diverse datasets. An
illustration is given in Figure 1.

The paper is structured as follows: We start with a review of related work, focusing on neural network-
based methods. Then, we present the EntryPrune algorithm and its extension with an adaptive input
layer. Next, we report extensive experiments evaluating our approach. Finally, we include auxiliary
analyses on design parameters and computational efficiency.

2 BACKGROUND AND RELATED WORK

We introduce the feature selection problem in the context of neural networks and review prior
solutions. Most methods slightly modify a dense network architecture or its loss function. More
recently, successful approaches have drawn from sparse neural network frameworks.

Feature selection in neural networks. We consider the task of selecting a set of K features that
are most valuable for making accurate predictions in a supervised learning setting. The feature
selection problem can be formulated as: argminS⊂F,|S|=K L(S), where F is the full feature set,
|S| = K constrains the selection to exactly K features, and L(S) is the loss function of a downstream
learner using only the selected features S. This is an NP-hard problem and becomes intractable in
high-dimensional settings (Yamada et al., 2020; Theng & Bhoyar, 2024), which can be illustrated
through a practical example: when selecting a set of 25 features from the MNIST dataset (Figure 1),
there are approximately 1047 possible combinations – making exhaustive search computationally
infeasible. For neural networks, the task of feature selection translates to implementing an effective
L0 regularization of first layer weights W(1). We say that K neurons are active when∣∣∣{i | L0(W(1)

i. ) > 0}
∣∣∣ = K, (1)

where W(1)
i. is the vector of outgoing first layer weights from input neuron i. The related work

discussed below uses various approximations to address this challenge.
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Dense neural networks. There are several methods embedded in dense neural networks for feature
selection. A common property is that the number of active neurons is not strictly enforced before
model convergence. Instead, selection is gradual, starting with a full input layer of N neurons
and reducing active neurons during training. This approach makes it easier to identify complex
interactions between features, at the cost of increased computational complexity. Stochastic gates
(Yamada et al., 2020) approach the L0 regularization by adding a gate to each input layer neuron.
For each gate, a trainable parameter controls the probability of a feature being active. The LassoNet
(Lemhadri et al., 2021) adds a residual connection from each input layer neuron to the network output.
The absolute sizes of these N residual weights are added to the loss function and for each feature i

individually represent a bound on the size of the corresponding first layer weights, ||W(1)
i. ||1. A less

invasive approach is DeepLasso (Cherepanova et al., 2023), which adds the gradient with respect to
changes in the input data to the loss function. This encourages the network not to use some features
during training, rendering the corresponding input neuron inactive.

Sparse neural networks. Sparse neural networks maintain a large fraction of zero-valued weights
throughout the network to reduce memory requirements or computational cost (Hoefler et al., 2021).
Sparsity can be introduced either by pruning a trained dense model or by maintaining a sparse
structure throughout training, as in Dynamic Sparse Training (DST) (Nowak et al., 2023). Various
metrics have been proposed to guide structured pruning of neurons, including weight magnitudes
(Evci et al., 2020; Mocanu et al., 2018) or mathematical approximations of loss change (Molchanov
et al., 2019; Lee et al., 2019). In DST, neurons are typically regrown either randomly (e.g., Mocanu
et al., 2018) or based on the magnitude of adjacent gradients (Evci et al., 2020).

GradEnFS (Liu et al., 2024) is one approach utilizing DST for feature selection. Similar to DeepLasso,
it measures the importance of neurons based on how sensitive the loss is to changes in the input
neurons. After the model converges, it selects the top K features based on neuron importance.
NeuroFS (Atashgahi et al., 2023) extends DST approaches (Mocanu et al., 2018; Evci et al., 2020) to
the input layer. Input neurons are pruned after each epoch based on the magnitude of their outgoing
connections, ||W(1)

i. ||1. To regrow an input neuron, NeuroFS calculates the absolute gradients of all
currently pruned first layer weights. Neurons are then regrown based on the largest absolute gradient
among their adjacent weights. During training, the number of active neurons in the input layer is
continuously reduced. After training, the input neurons with the largest outgoing connections among
the remaining active neurons are selected.

We identify three opportunities for improvement in existing work: (1) Current pruning metrics
compare regrown neurons to ones active for longer, giving them unequal time to accumulate metrics.
We propose a metric that instead evaluates features based on their initial short-term impact. (2)
Gradient-based regrowth favors features with large initial gradients. But features lacking a linear
correlation with the target show gradients similar to noise features (see Appendix B). Consequently,
we favor random regrowth for its ability to better uncover interactions and its reduced computational
cost by omitting gradient calculations. (3) Prior work uses either fully sparse or fully dense networks.
We propose a dynamically sparse input layer with a dense body, where only the input layer is sparse.
Since modern GPUs are architected and optimized for dense matrix-matrix multiplication, existing
sparse kernels surpass dense ones only when the sparsity level is high (>70%) – consequently, with an
equivalent parameter count, sparse kernels remain well short of the performance achieved by dense
kernels (Gale et al., 2020; Okanovic et al., 2024).

3 THE ENTRYPRUNE ALGORITHM

We propose the EntryPrune algorithm for supervised feature selection using neural networks. This
section walks through the pseudocode in Algorithm 1 and explains its rationale. The core loop of
entry-based pruning and random regrowth is illustrated in Figure 2. EntryPrune is implemented using
PyTorch (Paszke et al., 2019) and is available as a Python package in the supplementary material.

Architecture and initialization. The algorithm uses a multi-layer perceptron (MLP) with a feed-
forward architecture and is integrated into the backpropagation training using the Adam optimizer
(Goodfellow et al., 2016; Kingma & Ba, 2015). This necessitates the adoption of the hyperparameters
of learning rate, batch size, and number of hidden layers and their sizes. The size of the input layer is
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Figure 2: Entry score calculation in EntryPrune, Algorithm 1. The network’s input layer includes K
selected features plus extra candidates. Over several mini-batches, set by the hyperparameter nmb,
first layer gradients G(1)

k are added in a matrix S. We then compute the L1 norm for each input
neuron and standardize the resulting vector to get relative change scores s. Candidate scores are
entered into entry score vector e. Features with the top K entry scores stay; others are randomly
regrown. Candidate feature weights are reinitialized before training continues.

Algorithm 1 EntryPrune
1: Input. Dataset with N features, number of selected features K, number of first hidden layer

neurons nhidden. Hyperparameters: Ratio of candidate features cratio, number of mini-batches nmb
2: Initialize. Number of candidate features Kc = round(cratio(N − K)). Network with input

layer size K + Kc. Randomly choose features to populate the input layer, Iinput = Icands =
Rand({1, . . . , N},K +Kc). Score vector s ∈ RK+Kc , entry score vector e is initialized as an
empty vector. First layer gradients G(1) and gradient sum matrix S: G(1),S ∈ R(K+Kc)×nhidden

3: while training not stopped do
4: S = 0
5: for nmb mini-batches do
6: Feed-forward step and backpropagation using a mini-batch of data
7: S = S + G(1)

8: end for
9: si =

∑nhidden
j=1 |Sij | for i ∈ {1, . . . ,K +Kc}

10: Normalize to obtain relative change scores s = (s− Mean(s))/SD(s)
11: Extend the entry score vector e with the relative change scores of the candidate neurons
12: Select the top K scoring features from e, indexed by Itop, and remove all other entries
13: Draw new candidates Icands = Rand({1, . . . , N} \ Itop,Kc)
14: Update features that populate the input layer Iinput = Itop ∪ Icands

15: Initialize candidate first layer weights W(1)
cands. = U(−10−8, 10−8). Initialize the optimizer

16: end while

based on the desired number of selected features K plus a percentage cratio of the remaining features,
Kc, which will be referred to as candidates. We discuss the tradeoffs involved in choosing the input
layer size via the cratio hyperparameter in a paragraph below.

Relative change scores. Steps 5-10 calculate the relative change scores s, where gradient sums for
each input neuron are aggregated and normalized to reflect their relative contribution across the last
nmb mini-batches (see also Figure 2). Instead of gradient sums, one could also use weight changes as
a relative change metric in Steps 5-8, which we compare in an ablation study in Section 4.2.

Entry-based pruning. The entry score e is the relative change score of each feature after the first
nmb mini-batches a feature is in the network. We therefore only add entries for regrown candidates to
the entry score vector e in Step 11. The entry scores are then used in Step 12 to select features that
remain in the network, and e is updated accordingly. This way, EntryPrune accounts for that features
might be in the network for different time spans. We are not aware of other pruning techniques that
account for this: For example, magnitude pruning (Atashgahi et al., 2023) or the importance score by
Molchanov et al. (2019) would compare metrics of newly added features with those of features that
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Feature change occured
Stable 

feature set

Figure 3: EntryPrune runtime metrics. Left: Number of changes to the top K features over time.
Right: Minimum entry score (blue) and minimum absolute first layer weight magnitude (red) among
top K features. Changes become less frequent as training progresses and the minimum entry score
increases. Minimum weight magnitudes increase during stable phases (e.g., updates 47–51).

have been in the network longer. We compare the performance of entry-based pruning with these
approaches in Section 4.2.

Random Regrowth. New candidate features are randomly sampled from the remaining features
(Step 13) to form the new input layer together with previous top features (Step 14). To avoid
introducing noise from standard initialization methods, which typically use larger weight magnitudes,
the weights of candidate features are reinitialized to very small random values, uniformly sampled
from [−10−8, 10−8] (Step 15). This also ensures symmetry breaking during training (Goodfellow
et al., 2016). Randomly regrowing weights is common in DST (Nowak et al., 2023). For feature
selection, it is particularly promising because it allows features to incrementally prove their relevance:
instead of relying on gradient signals for inclusion (Atashgahi et al., 2023), candidates are randomly
reselected and evaluated across multiple mini-batches. This benefits features contributing to complex,
non-linear patterns (see our demonstration in Appendix B).

Rationale. EntryPrune alternates between two coupled processes — continuous weight optimization
(SGD) and discrete, history-dependent mask updates produced by entry-based pruning and random
regrowth. Each rotation resets a subset of first-layer weights to near-zero, changing the parameter
space and the effective loss surface at every step. Consequently, the optimization problem becomes
non-stationary and bi-level: the inner level updates weights given a fixed mask, while the outer level
updates the mask as a function of the weight trajectory. Standard SGD convergence analyses, which
assume a fixed, smooth objective and unbiased gradients, no longer apply. The only rigorous result
we are aware of (Alistarh et al., 2018) covers gradient sparsification under convex assumptions and
cannot be extended to our setting. Hence, the analysis would require new tools for non-convex,
time-varying bi-level optimization and is therefore left for future work.

We show an example of the stabilization of the entry score vector during runtime in Figure 3. As
high-quality features are established, less important features are increasingly unlikely to enter the
network, leading to a more stable feature set. The figure highlights a key advantage of our entry score
mechanism over magnitude pruning: as the feature set stabilizes, the magnitude threshold for new
candidates grows over time (due to increasing magnitudes of active features), while the entry score
remains constant. This allows high-quality features to enter the network even after prolonged training,
which would be suppressed under magnitude-based criteria.

Input layer size. Balancing the input layer size cratio reflects an exploration–exploitation tradeoff.
Smaller input layers favor exploitation by stabilizing learning and refining already promising features.
Larger input layers promote exploration by sampling more candidate features simultaneously, in-
creasing the chance of uncovering feature interactions. However, they also introduce more noise: the
downstream network must continually adjust to frequent weight resets affecting a larger portion of
the input layer. As detailed in Appendix C, this tradeoff manifests in both feature selection stability
and model performance. To navigate it automatically, we introduce EntryPrune flex in Appendix D,
which dynamically adapts cratio during training.
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Figure 4: Resulting accuracy for the studied methods by dataset and number of selected features K
using the SVM downstream learner. "All Features" is the accuracy using all features in the dataset.
Each point shows the mean accuracy across five runs, with error bars indicating the standard deviation.
The percentage shown in parentheses after each dataset name indicates the proportion of features
that K = 100 corresponds to, relative to the full feature set. Datasets marked with an asterisk were
evaluated with a limited set of baseline methods (see Appendix E), while baseline results for the other
datasets are reproduced from Atashgahi et al. (2023). Results for all downstream learners are shown
in Appendix F.

4 EXPERIMENTS

We demonstrate the potential of EntryPrune for feature selection through a comprehensive exper-
imental evaluation across 13 diverse datasets and a range of additional analyses. We categorize
datasets as long if they have more cases than features, and wide otherwise. To conserve computational
resources, we replicate the experimental setup of Atashgahi et al. (2023), which is feasible for nine
datasets.1 We compare our results with those of nine state-of-the-art baseline methods reported in
their work. The experimental protocol includes feature selection using the candidate approaches and
subsequent predictive performance measurement using a set of downstream learners. Experimental
details, including dataset characteristics, baseline methods, and model configurations, are provided in
Appendix E. Code for replicating the main experiment is available in the supplementary material.

4.1 RESULTS

Figure 4 presents a comparison of the accuracies achieved using our methods ("EntryPrune" and
"EntryPrune flex") against the top baseline methods for the SVM downstream learner. The average
accuracy by dataset is shown for all methods in Figure 5. Detailed results for each dataset, method,
and value of K are provided in Appendix F.

According to the results, our methods consistently outperform the baseline methods for long datasets
(first eight panels in the plots). In particular, they achieve notable improvements on ISOLET, MNIST,
and FASHION-MNIST. For MNIST, our flex variant reaches an average accuracy of 96.3%, sig-
nificantly surpassing the best previously reported result of 94.3%. On CIFAR-100, our approaches
perform slightly below NeuroFS, likely due to architectural differences. As demonstrated in Ap-
pendix G, EntryPrune surpasses competing methods on this more complex dataset when paired with
a larger architecture.

1This includes code for data preprocessing, train-test split, and downstream learners, which is available
at https://github.com/zahraatashgahi/NeuroFS. The performance of the downstream learners
using all features was compared with the reported values to ensure accurate replication of the experiment setup.
As detailed in our supplementary material, this was unsuccessful for the BASEHOCK and SMK datasets, which
are therefore run separately alongside the added CIFAR-10 and CIFAR-100 datasets.
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Figure 5: Average accuracy (across all values of K) by dataset for the studied methods using the
SVM downstream learner. Our proposed methods are "EntryPrune" and "EntryPrune flex". Datasets
marked with an asterisk were evaluated with a limited set of baseline methods (see Appendix E),
while baseline results for the other datasets are reproduced from Atashgahi et al. (2023). Results for
all downstream learners are shown in Appendix F.

For the wide datasets (last five panels in the plots), performance is generally comparable to the
baselines. Our approach yields competitive results for the SMK, ARCENE, and PROSTATE-GE
datasets, while results for GLA-BRA-180 and BASEHOCK are slightly lower than those of the
top-performing baselines. The EntryPrune and EntryPrune flex variants perform similarly across most
datasets, with a more pronounced difference observed for the ARCENE dataset, where the EntryPrune
approach trails the strongest baselines. However, as visible in Figure 4, the higher standard errors for
the wide datasets imply lower separability of the methods’ performances.

We also evaluated two additional downstream learners, KNN and ET, for K = 50 selected variables
(see Tables 5 and 6 in Appendix F). The results are very similar to those obtained with the SVM
classifier, indicating that the selected feature sets are valuable across multiple downstream learners.

4.2 ADDITIONAL ANALYSES

In this section, we highlight some additional aspects to give a more complete picture of EntryPrune.
We include a comparison of the computational efficiency with similar methods, an ablation study of
the impact of the chosen change metric, and an investigation of the impact and feasible ranges of
hyperparameters. Additionally, we provide analyses of feature selection stability in Appendix C and
stopping criteria in Appendix H.

Computational efficiency. We examine the comparative computational costs with two other
approaches, NeuroFS and LassoNet. Both are well-performing sparse and dense neural network based
methods, respectively. One apparent disadvantage of our approach is that, since candidate features
are chosen randomly, it generally requires more training epochs than gradient-based approaches to
ensure that all linearly correlated features have a chance to enter the network (see also Appendix B).
This motivates comparing the overall runtime of the approaches.

We measure the wall-clock time for selecting K = 50 features, using two wide and two long datasets,
with settings otherwise as in the main experiment. For NeuroFS, we use the setup from the original
publication: a 3-layer sparse MLP with 1000 neurons in each layer, limiting the training epochs to
100. For LassoNet, we use the same MLP architecture as for EntryPrune, i.e., one hidden layer with

7
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6.0x faster
13.2x faster

3.0x faster

Figure 6: Wall-clock run time for the studied methods by dataset, measured over the entire training
duration. All configurations use K = 50 selected features and are repeated five times. The error bars
indicate the standard deviation across five runs. Mean training epochs for each method and dataset
are annotated above the bars.

100 neurons. We keep all other settings at the LassoNet package defaults.2 Each configuration is run
five times.

The results are shown in Figure 6. The EntryPrune and EntryPrune flex approaches have comparable
runtimes, both demonstrating significantly greater efficiency than NeuroFS across the studied datasets.
Additionally, EntryPrune is more efficient than LassoNet in the studied configurations. In terms of
training epochs, EntryPrune achieves similar efficiency while requiring fewer epochs than LassoNet.

We also assessed the overhead introduced by EntryPrune relative to standard dense MLP training. For
long datasets, the overhead remains minimal—between 5% and 10%. For wide datasets, the overhead
is higher (approximately 220%), primarily due to more frequent feature rotations (20× more often)
and a larger pool of candidate features. This trade-off enables EntryPrune to retain flexibility and
perform thorough feature exploration, while still maintaining a low absolute runtime across diverse
dataset types.

Ablation study: Pruning metrics. We compare the performance of EntryPrune under different
change metrics, both with and without an entry score, to classical pruning approaches. Among the
change metrics, we evaluate the gradient sums used in EntryPrune against alternatives based on
weight changes or magnitude. In both cases, the computation of S is modified just before Step
9 of Algorithm 1. For weight changes, we set S = W(1) − W(1)

old , where W(1)
old denotes the first

layer weights from the time of the last rotation. For magnitude, we simply set S equal to the first
layer weights, S = W(1). Each of these three configurations is evaluated both with and without
using an entry score. For instance, the magnitude approach without an entry score corresponds to
standard magnitude pruning, where features are retained based on having the highest absolute sums
of first-layer weights at each rotation. In addition, we evaluate the pruning method of Molchanov
et al. (2019) (Equation 8 in their paper), which does not utilize an entry score. To implement this
method, we accumulate an importance score for each weight after every mini-batch using (gw)2,
where g is the gradient and w is the weight. At rotation time, we select the top K features based on
the sum of these importance scores corresponding to each feature. We use four datasets, two long
and two wide, and K = 50 selected features, keeping all other properties the same as in the main
experiment.

Figure 7 shows the results. For the long datasets (left two panels), the gradient sums and weight
changes perform similarly, surpassing the performance of absolute weights. For the wide datasets
(right two panels), the gradient sums show superior performance, while the other two approaches
exhibit similar effectiveness. In summary, under the studied configurations, gradient sums are the
most effective metric for measuring relative change within the EntryPrune algorithm.

Impact of hyperparameters. We investigate the role of the hyperparameters cratio and nmb. Gen-
erally, cratio determines the percentage of features included in the network in addition to the K
selected features, while nmb specifies the number of mini-batches after which scores are computed
and features are rotated. We use both long and wide datasets—HAR, ISOLET (long), and ARCENE
(wide)—with K = 25, and keep all other properties consistent with the main experiment. We let cratio

2The LassoNet package is available at https://github.com/lasso-net/lassonet.
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Figure 7: Resulting accuracy for the studied pruning metrics by EntryPrune method and dataset for
K = 50 selected features using the SVM downstream learner. Metrics annotated with "(E)" are using
an entry score. The error bars indicate the standard deviation across five runs.
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Figure 8: Accuracy using EntryPrune feature selection by hyperparameters cratio and nmb for three
datasets and K = 25 selected features. Each point represents the average of three runs. As a visual
guide, a Gaussian Process interpolation is shown over the hyperparameter space.

vary between 0.01 and 1 and nmb between 1 and 150. As studied hyperparameter sets we include the
two configurations from our experiment: (cratio = 0.2, nmb = 100) for the long datasets and (cratio =
0.5, nmb = 5) for the wide datasets. Additionally, we include the four corners of the hyperparameter
space and draw 40 pseudo-random sets of configurations from a Halton sequence. Each resulting
configuration is run three times, and the accuracy is averaged.

The results are illustrated in Figure 8, where the impact of the hyperparameters is shown via a
Gaussian Process interpolation. As a visual guide, the fit smooths the observed accuracy values across
the hyperparameter space, providing a continuous view of the relationship between cratio and nmb
for the datasets. For the long datasets HAR and ISOLET (left and center panels), the combination
of low cratio and high nmb yields strong results. In contrast, for the ARCENE dataset (right panel),
configurations with low nmb generally perform well. A combination of low cratio and higher nmb
may also be effective. This highlights that hyperparameters must be selected differently for different
datasets, with a comparatively narrower range working well for wide datasets.

5 CONCLUSION

In this paper, we introduce EntryPrune, a novel feature selection algorithm designed to enhance
interpretability, reduce computational demands, and mitigate overfitting in predictive models. Its
dynamically sparse input layer employs EntryPruning – a novel approach that evaluates features based
on the relative change they induce upon entering the network, enabling fairer comparison among
competing neurons. Extensive experiments demonstrate that our method, along with an extension
featuring an adaptive input layer, consistently outperforms state-of-the-art techniques on datasets with
more cases than features. For datasets with more features than cases, its performance is comparable
to previous approaches. While the adaptive version has theoretical advantages and performs better
on one dataset, the base algorithm stands out for its simplicity and competitive performance in most
scenarios.
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REPRODUCIBILITY STATEMENT

We include the source code of our method in the form of a Python package, as well as code to
reproduce the main experiment results, in the supplementary material.
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A FEATURE SELECTION VISUALIZATION FOR CIFAR-10

All Features
Downstream Accuracy: 54.36%

STG (Yamada et al., 2020)
Downstream Accuracy: 47.42%

NeuroFS (Atashgahi et al., 2023)
Downstream Accuracy: 49.50%

EntryPrune (ours)
Downstream Accuracy: 50.58%

Figure 9: Visualization of feature selection results on CIFAR-10 using 100 out of 3072 features.
Each panel shows the binary mask (top left) indicating the selected features (combinations of pixel
and color), along with sample images where only the selected features are visible. The downstream
accuracy scores (obtained using an SVM classifier) were computed by training on only these selected
features and are averaged across five runs (see Appendix E for details).

B GRADIENT-BASED REGROWTH AND INTERACTION FEATURES

We investigate a limitation of gradient-based regrowth in the context of interaction features using
a toy example. We define linear features as those that relate linearly to the target, and interaction
features as those that are uncorrelated with the target individually but contribute to predictions when
combined with other interaction features through an XOR (exclusive-or) logic.

Gradient-based regrowth, as used in Evci et al. (2020) and Atashgahi et al. (2023), selects candidates
for regrowth based on the highest absolute gradient of adjacent weights. In this toy example, we
examine how this metric behaves for interaction features. We generate a dataset with 20 features: 6
linear, 6 interaction, and 8 noise features. EntryPrune is run, and the gradient metric is computed
for all candidate features immediately after their weights are reset, since this is the point at which
candidates would typically be selected for regrowth in upcoming mini-batches. The resulting average
rankings are recorded and presented in Figure 10. In the left panel, we observe that linear features are
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Figure 10: Metrics for a toy dataset using linear, interaction, and noise features. The left panel shows
the mean Gradient Metric used in gradient-based regrowth, measured during EntryPrune’s runtime.
The other panels show the mean correlation of features with the target, the mean Entry Score after
training EntryPrune, and the mean gain (XGB importance measure). The error bars indicate the
standard deviation across five runs.

ranked highest according to the gradient metric, while interaction features are ranked similarly to
noise features. This implies that interaction features would be selected for regrowth at roughly the
same rate as noise features. The remaining panels serve to validate the toy dataset: linear features
show correlation with the target, while interaction and noise features do not; however, interaction
features receive the highest importance scores, both in terms of the entry scores and XGBoost feature
importance (Chen & Guestrin, 2016).

One likely explanation for this observation is that the initial gradient immediately after a feature
is added to the network does not capture complex interactions. It may primarily reflect simple
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Figure 11: Average Jaccard Index of the selected feature sets by dataset. Higher values represent
higher feature set stability between runs. All configurations use K = 50 selected features and five
runs.

correlations with the target, whereas the network requires more mini-batches to exploit interactions
between features. As a result, random regrowth may outperform gradient-based regrowth when it
comes to recovering interaction features.

C FEATURE SELECTION STABILITY

In this section, we want to explore the impact of random regrowth on feature selection stability,
i.e. how similar the selected feature sets are across runs. We first conduct a detailed analysis on
the MNIST dataset and then compare feature selection stability with other methods across multiple
datasets.

Input layer size and stability. A key factor influencing EntryPrune’s function is the cratio parameter,
which determines the input layer size. A smaller input layer may reduce stability since important
interacting features are less likely to appear together during random regrowth. Conversely, a larger
input layer (e.g., cratio = 0.8) increases the likelihood of co-occurrence but introduces more noise,
potentially hindering training due to frequent resets of a larger number of weights.

To investigate this, we assess the effect of different cratio values on the MNIST dataset using K = 50
selected features, three cratio settings, and 20 runs each. Feature selection stability is measured by
averaging the Jaccard indices (JI; for an overview, see Khaire & Dhanalakshmi, 2022) of selected
feature sets. Table 1 presents the results. The findings confirm our theoretical expectations: increasing

Table 1: Jaccard Index of the selected feature sets by cratio. Higher values represent higher feature set
stability between runs. All configurations use K = 50 selected features and 20 runs.

cratio JI EntryPrune Accuracy ± SD SVM Accuracy ± SD

0.2 0.13 95.80 ± 0.43 96.84 ± 0.16
0.5 0.15 93.95 ± 1.05 96.71 ± 0.14
0.8 0.21 91.50 ± 1.87 96.06 ± 0.22

cratio leads to greater overlap in selected feature sets but also results in decreased EntryPrune and SVM
accuracies with increased variance. Reducing the randomness of regrowth improves feature selection
stability but at the cost of lower and less stable model accuracy. This highlights the exploration-
exploitation tradeoff: a larger input layer increases noise, preventing the EntryPrune from refining
optimal solutions. Consequently, we either obtain slightly worse but consistent feature sets or better
sets with reduced overlap across runs.

Comparison with other methods. To understand the implications of this tradeoff, we assess how
our chosen cratio settings (0.2 for long and 0.5 for wide datasets) influenced feature selection stability
in our main experiment. We analyze four datasets—two long and two wide—with K = 50 selected
features. We compare EntryPrune with two similar neural-network-based approaches, LassoNet
and NeuroFS. The results are illustrated in Figure 11. The results indicate that LassoNet generally
achieves much higher stability than NeuroFS and EntryPrune, which exhibit similar performance. This
discrepancy may stem from initialization variability: LassoNet consistently transitions from a dense
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starting point to a regularized endpoint, whereas NeuroFS and EntryPrune begin with randomized
sparsity patterns. Furthermore, EntryPrune demonstrates slightly lower JI values than NeuroFS,
likely due to differences in feature selection mechanisms—gradient-based selection (NeuroFS) versus
random regrowth (EntryPrune). Input neurons with high gradients may be more consistently selected
across runs in NeuroFS. In summary, our analysis shows that feature selection stability in EntryPrune
is comparable to NeuroFS and can be adjusted via the cratio parameter.

D ENTRYPRUNE FLEX

To address sensitivity to the cratio hyperparameter, we introduce EntryPrune flex, which dynamically
adjusts the input layer size during training based on the behavior of the loss function. It extends
Algorithm 1 between Steps 12 and 13, i.e., prior to selecting new candidate features, and is detailed
in pseudocode in Algorithm 2.

Algorithm 2 EntryPrune flex
1: Initialize: Loss before the last change of the network size lchange, running loss l, and set the

initial adjustment direction to shrinking.
2: if l has not decreased for 10 rotations then
3: if l > lchange then
4: Change the direction: shrink ↔ grow
5: end if
6: lchange = l
7: if direction is shrink then
8: cratio = max( 12cratio,

1
5

K
N−K )

9: else if direction is grow then
10: cratio = min(2 cratio, 1)
11: end if
12: end if

Key mechanism. EntryPrune flex monitors the running loss, l, and compares it with the loss
recorded at the time of the last input layer size change, lchange. If the loss stagnates (i.e., does not
decrease for a fixed number of rotations), the algorithm adjusts the input layer size. Specifically:

1. Direction adjustment: If the loss increases compared to lchange, the direction of change
(shrink or grow) is reversed

2. Size adjustment: Depending on the direction, cratio is halved or doubled, bounded by
predefined limits. The upper limit of cratio = 1 represents using the maximum number of
candidates, N −K, while the lower limit ensures a minimum input layer size of 6

5K. These
adjustment factors and bounds were found to work well in our preliminary experiments.

Rationale. A well-balanced input layer size allows the network to explore a sufficient pool of
candidate features in the presence of random regrowth. Shrinking the input layer promotes stability,
while growing it enables exploration of additional candidates. The dynamic adjustment ensures that
the network can escape suboptimal configurations.

Practical considerations. The running loss l as well as the loss at the time of input layer change,
lchange, can be either a training or validation loss, depending on whether the algorithm is used with a
validation set. In our experiments, we use a validation set, which is detailed in Appendix E.2.

E EXPERIMENTAL SETUP

This appendix outlines the general experimental setup, including dataset characteristics, evaluation
procedures, and model configurations used throughout our study. Each experimental configuration
(i.e., a combination of dataset, feature selection method, and number of selected features) was run five
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times, except for NeuroFS on the CIFAR datasets, where the number of runs was limited to a single
iteration to ensure that runtime remained within feasible limits (below 12 hours per configuration).

The datasets and their dimensions and domains are summarized in Table 2. They provide a com-

Table 2: Dataset dimensions and domain

Cases Features Domain Reference

Long Datasets
CIFAR-10 60000 3072 Image Krizhevsky (2009)
CIFAR-100 60000 3072 Image Krizhevsky (2009)

COIL-20 1440 1024 Image Nene et al. (1996)
HAR 10299 561 Smartphone Sensor Anguita et al. (2013)

ISOLET 7797 617 Speech Fanty & Cole (1990)
MNIST 70000 784 Image Deng (2012)

Fashion-MNIST 70000 784 Image Xiao et al. (2017)
USPS 9298 256 Image Hull (1994)

Wide Datasets
ARCENE 200 10000 Genomics Guyon et al. (2004)

BASEHOCK 1993 4862 Text Lang (1995)
GLA-BRA-180 180 49151 Genomics Sun et al. (2006)

Prostate-GE 102 5966 Genomics Nie et al. (2010)
SMK 187 19993 Genomics Spira et al. (2007)

prehensive basis for comparison through their overlap with previous experiments (Yamada et al.,
2020; Lemhadri et al., 2021; Liu et al., 2024). We categorize datasets as long if they have more
cases than features, and vice versa as wide. The datasets all represent classification tasks and span
different content domains, including speech processing (ISOLET), image recognition (MNIST), and
smartphone sensor data (HAR). They are all freely available.

To ensure a fair comparison between embedded and filter methods, all experimental configurations
include downstream learners. Initially, the data is split into training and test sets. Feature selection is
performed using the training data, followed by training a downstream predictive model on the training
data using only the selected features. The accuracy of the downstream learner is then evaluated on
the test data. The number of selected features, K, is set to 25, 50, 75, and 100 in our experiments,
following the values used by Atashgahi et al. (2023) and remaining consistent with ranges commonly
adopted in related studies.3 The downstream learners are classifiers based on a Support Vector
Machine (SVM, Chang & Lin, 2011), K-Nearest Neighbors (KNN), and ExtraTrees (ET, Geurts et al.,
2006). To align with the protocol of Atashgahi et al. (2023), the SVM classifier is used for all values
of K, while KNN and ET are only used for K = 50. Experiments are conducted on an NVIDIA
GeForce RTX 3060 GPU with 6GB of memory.

E.1 BASELINES

The methods compared against our approach are as follows. Their specific implementations are
detailed in Atashgahi et al. (2023):

• Fisher Score (Gu et al., 2011): A classic filter method that selects feature sets based on their
ability to separate data points.

• CIFE (Conditional Infomax Feature Extraction, Lin & Tang, 2006): A filter method that
aims to maximize the class-relevant information of the feature set.

• ICAP (Interaction Capping Criterion, Jakulin, 2005): A filter method that considers the
complementary relationship between features.

• RFS (Robust Feature Selection, Nie et al., 2010): A method embedded in regression that
uses joint L1 and L2 regularization of the weights.

3Atashgahi et al. (2023) also used higher values for K which are omitted in this study since there was little
variance in the results between the different methods.
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• QS (Quick Selection, Atashgahi et al., 2022): A method embedded in sparse neural networks
that combines denoising autoencoders and the L1 norm of first layer neuron weights.

• STG (Stochastic Gates, Yamada et al., 2020): A method embedded in neural networks that
controls the input layer neurons using a trainable probabilistic gate.

• LassoNet (Lemhadri et al., 2021): A method embedded in neural networks that adds a
regularized residual connection from the input layer to the output. The residual connection
controls the sizes of first layer weights.

• RigL (Evci et al., 2020): A method embedded in sparse neural networks that rotates features
by pruning based on parameter weights and regrowing based on gradients. Feature selection
can be performed by investigating first layer weights after training (Atashgahi et al., 2023).

• NeuroFS (Atashgahi et al., 2023): A method embedded in sparse neural networks that
extends the ideas used in RigL to input neurons.

Due to computational constraints, we conducted only a subset of baseline comparisons for the datasets
added in our experiment (CIFAR-10, CIFAR-100, SMK, BASEHOCK).

E.2 ENTRYPRUNE SETUP

The parameters used for EntryPrune in the main experiment are as follows. We employ a single
hidden layer neural network with 100 neurons and a ReLU activation function. For training, we use a
batch size of 1024 and a learning rate of 0.001 for the Adam optimizer. If there are fewer cases in the
dataset, full batches are used instead. The hyperparameters specific to our method are: cratio = 0.2
and nmb = 100 for long datasets, and cratio = 0.5 and nmb = 5 for wide datasets.

Stopping is based on a combination of validation loss and the identified feature set. For this, the
training data is split again into a training and a validation set. Training continues on the training set
until the validation loss does not decrease for 100 input layer rotations or the set of K features with the
highest values in e remains unchanged for 100 rotations. Afterwards, the training is again performed
on the complete training data for the determined number of rotations. For the flex algorithm, during
this final training phase, the input layer is scaled from its initial size to the final size using a total of
ten size change steps. We explore different stopping criteria and their hyperparameter settings in
Appendix H, providing further insights into how they impact performance.
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F DETAILED RESULTS

Table 3: Resulting accuracy of the studied methods for different numbers of selected features K
and long datasets using the SVM downstream learner. Our proposed methods are "EntryPrune" and
"EntryPrune flex". "All" is the accuracy using all features in the dataset. The best and second-best
methods for each combination of K and dataset are marked in bold and underlined, respectively.
Entries represent the mean ± standard deviation of the downstream learner accuracy across five
runs. Datasets marked with an asterisk were evaluated with a limited set of baseline methods (see
Appendix E), while baseline results for the other datasets are reproduced from Atashgahi et al. (2023).

CIFAR-10* CIFAR-100* COIL-20 HAR ISOLET MNIST Fashion-MNIST USPS

All 54.36 26.39 100.00 95.05 96.03 97.92 88.30 97.58

K = 25
NeuroFS 40.40 17.40 95.86 ± 1.31 87.46 ± 0.79 86.22 ± 0.84 87.86 ± 1.77 79.38 ± 0.96 93.98 ± 0.87
LassoNet 23.30 ± 0.96 9.58 ± 1.05 92.72 ± 0.85 93.00 ± 0.31 76.48 ± 0.39 86.40 ± 1.26 78.68 ± 0.55 94.04 ± 0.38
STG 36.88 ± 0.59 11.74 ± 0.76 97.02 ± 1.41 87.48 ± 0.80 77.16 ± 4.34 85.24 ± 1.89 77.44 ± 0.53 94.04 ± 0.46
QS - - 91.00 ± 4.21 87.14 ± 1.74 72.56 ± 6.53 85.25 ± 1.47 71.57 ± 1.97 93.00 ± 0.81
Fisher 18.55 ± 0.00 4.60 ± 0.00 24.70 ± 0.00 77.10 ± 0.00 57.40 ± 0.00 74.40 ± 0.00 53.10 ± 0.00 82.00 ± 0.00
CIFE - - 50.70 ± 0.00 80.20 ± 0.00 56.00 ± 0.00 80.90 ± 0.00 63.40 ± 0.00 50.20 ± 0.00
ICAP - - 94.40 ± 0.00 84.50 ± 0.00 67.10 ± 0.00 81.60 ± 0.00 50.10 ± 0.00 89.90 ± 0.00
RFS - - 88.20 ± 0.00 88.90 ± 0.00 76.50 ± 0.00 - - 94.80 ± 0.00
RigL - - 92.38 ± 3.20 86.46 ± 1.47 79.98 ± 2.25 82.06 ± 0.99 74.12 ± 1.59 93.10 ± 0.62
EntryPrune 40.71 ± 1.75 15.33 ± 0.84 98.75 ± 0.31 92.07 ± 1.42 88.45 ± 1.16 93.04 ± 0.41 83.05 ± 0.40 95.82 ± 0.49
EntryPrune flex 41.82 ± 0.64 15.26 ± 1.09 98.89 ± 0.71 92.06 ± 0.97 88.28 ± 1.41 93.10 ± 0.25 82.70 ± 0.32 95.68 ± 0.08

K = 50
NeuroFS 46.30 21.10 98.78 ± 0.29 91.46 ± 0.72 92.62 ± 0.40 95.30 ± 0.41 83.78 ± 0.64 96.78 ± 0.17
LassoNet 28.77 ± 5.00 10.55 ± 0.50 97.16 ± 1.06 93.74 ± 0.39 84.90 ± 0.22 94.46 ± 0.21 82.58 ± 0.10 95.94 ± 0.15
STG 42.70 ± 0.42 14.08 ± 1.25 99.32 ± 0.40 91.22 ± 1.23 85.82 ± 2.83 93.20 ± 0.62 82.36 ± 0.52 96.62 ± 0.34
QS - - 96.52 ± 1.53 91.96 ± 1.04 89.78 ± 1.80 93.62 ± 0.49 80.82 ± 0.51 95.52 ± 0.27
Fisher 20.52 ± 0.00 5.21 ± 0.00 74.00 ± 0.00 79.80 ± 0.00 67.40 ± 0.00 81.90 ± 0.00 67.80 ± 0.00 91.00 ± 0.00
CIFE - - 59.40 ± 0.00 84.20 ± 0.00 59.80 ± 0.00 89.30 ± 0.00 66.90 ± 0.00 61.30 ± 0.00
ICAP - - 99.30 ± 0.00 88.70 ± 0.00 75.10 ± 0.00 89.00 ± 0.00 59.50 ± 0.00 95.20 ± 0.00
RFS - - 95.80 ± 0.00 94.00 ± 0.00 91.50 ± 0.00 - - 95.80 ± 0.00
RigL - - 97.86 ± 1.32 91.82 ± 0.30 89.58 ± 1.24 93.94 ± 0.63 81.92 ± 0.87 96.04 ± 0.58
EntryPrune 46.65 ± 0.60 18.98 ± 0.90 99.58 ± 0.29 93.74 ± 0.62 93.41 ± 0.25 96.69 ± 0.19 85.95 ± 0.22 96.83 ± 0.17
EntryPrune flex 47.23 ± 0.87 19.13 ± 1.34 99.51 ± 0.19 93.65 ± 0.36 93.46 ± 0.19 96.79 ± 0.11 85.84 ± 0.36 97.06 ± 0.23

K = 75
NeuroFS 50.30 22.10 99.06 ± 0.12 93.16 ± 0.79 94.04 ± 0.34 96.76 ± 0.22 85.70 ± 0.28 97.06 ± 0.15
LassoNet 30.22 ± 1.54 12.41 ± 2.15 99.46 ± 0.35 94.62 ± 0.17 91.00 ± 0.62 96.00 ± 0.09 83.92 ± 0.13 96.36 ± 0.08
STG 46.20 ± 0.72 16.21 ± 0.60 99.68 ± 0.22 92.42 ± 1.11 90.10 ± 2.17 95.52 ± 0.22 84.14 ± 0.43 96.88 ± 0.23
QS - - 98.17 ± 1.16 93.50 ± 0.77 93.04 ± 0.46 95.98 ± 0.33 83.80 ± 0.53 96.85 ± 0.05
Fisher 22.08 ± 0.00 6.05 ± 0.00 76.00 ± 0.00 81.70 ± 0.00 76.00 ± 0.00 87.10 ± 0.00 74.30 ± 0.00 94.40 ± 0.00
CIFE - - 63.20 ± 0.00 84.80 ± 0.00 74.30 ± 0.00 92.70 ± 0.00 67.70 ± 0.00 68.00 ± 0.00
ICAP - - 99.00 ± 0.00 89.20 ± 0.00 79.70 ± 0.00 92.40 ± 0.00 67.20 ± 0.00 95.30 ± 0.00
RFS - - 99.70 ± 0.00 94.90 ± 0.00 93.90 ± 0.00 - - 97.20 ± 0.00
RigL - - 99.20 ± 0.43 93.34 ± 0.47 92.32 ± 0.56 95.98 ± 0.51 84.52 ± 0.72 96.90 ± 0.24
EntryPrune 49.28 ± 0.47 20.40 ± 0.63 99.93 ± 0.16 95.31 ± 0.37 94.60 ± 0.49 97.49 ± 0.13 86.75 ± 0.25 97.15 ± 0.19
EntryPrune flex 49.65 ± 0.38 21.52 ± 0.58 99.93 ± 0.16 94.60 ± 0.65 94.88 ± 0.31 97.53 ± 0.11 86.76 ± 0.14 97.19 ± 0.10

K = 100
NeuroFS 49.50 23.20 99.18 ± 0.50 94.18 ± 0.29 95.06 ± 0.31 97.32 ± 0.17 86.64 ± 0.21 97.22 ± 0.12
LassoNet 32.12 ± 0.56 13.25 ± 2.22 99.30 ± 0.00 95.14 ± 0.29 93.18 ± 0.22 96.64 ± 0.14 84.98 ± 0.18 97.04 ± 0.12
STG 47.42 ± 0.40 18.34 ± 0.63 99.76 ± 0.12 92.82 ± 0.74 92.64 ± 0.56 96.38 ± 0.35 85.20 ± 0.58 97.08 ± 0.18
QS - - 98.28 ± 1.15 94.06 ± 0.48 94.22 ± 0.28 96.85 ± 0.09 85.52 ± 0.15 97.00 ± 0.14
Fisher 23.72 ± 0.00 6.62 ± 0.00 80.20 ± 0.00 83.80 ± 0.00 79.80 ± 0.00 90.70 ± 0.00 79.60 ± 0.00 96.50 ± 0.00
CIFE - - 67.70 ± 0.00 85.30 ± 0.00 81.20 ± 0.00 95.10 ± 0.00 69.20 ± 0.00 78.00 ± 0.00
ICAP - - 100.00 ± 0.00 92.10 ± 0.00 82.80 ± 0.00 95.00 ± 0.00 77.70 ± 0.00 95.40 ± 0.00
RFS - - 100.00 ± 0.00 95.40 ± 0.00 94.40 ± 0.00 - - 97.40 ± 0.00
RigL - - 99.40 ± 0.43 94.08 ± 0.26 93.66 ± 0.58 96.88 ± 0.22 85.82 ± 0.23 97.14 ± 0.10
EntryPrune 50.58 ± 0.40 22.34 ± 0.43 99.93 ± 0.16 95.61 ± 0.25 95.73 ± 0.46 97.80 ± 0.10 87.32 ± 0.15 97.34 ± 0.15
EntryPrune flex 50.73 ± 0.34 23.19 ± 0.18 100.00 ± 0.00 95.19 ± 0.19 95.21 ± 0.23 97.79 ± 0.07 87.21 ± 0.08 97.37 ± 0.13
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Table 4: Resulting accuracy of the studied methods for different numbers of selected features K
and wide datasets using the SVM downstream learner. Our proposed methods are "EntryPrune" and
"EntryPrune flex". "All" is the accuracy using all features in the dataset. The best and second-best
methods for each combination of K and dataset are marked in bold and underlined, respectively.
Entries represent the mean ± standard deviation of the downstream learner accuracy across five
runs. Datasets marked with an asterisk were evaluated with a limited set of baseline methods (see
Appendix E), while baseline results for the other datasets are reproduced from Atashgahi et al. (2023).

ARCENE BASEHOCK* GLA-BRA-180 Prostate-GE SMK*

All 77.50 94.24 72.22 80.95 84.21

K = 25
NeuroFS 63.00 ± 4.85 85.46 ± 2.10 73.88 ± 3.80 88.58 ± 2.35 77.34 ± 5.76
LassoNet 69.00 ± 2.55 89.82 ± 1.21 76.12 ± 4.19 88.58 ± 2.35 74.74 ± 3.00
STG 69.00 ± 5.15 78.90 ± 3.17 67.22 ± 4.78 85.72 ± 3.00 76.84 ± 5.06
QS 73.75 ± 8.20 - 69.45 ± 2.75 71.43 ± 12.16 -
Fisher 65.00 ± 0.00 54.64 ± 0.00 58.30 ± 0.00 90.50 ± 0.00 76.32 ± 0.00
CIFE 67.50 ± 0.00 - 61.10 ± 0.00 61.90 ± 0.00 -
ICAP 77.50 ± 0.00 - 69.40 ± 0.00 47.60 ± 0.00 -
RFS 77.50 ± 0.00 - - 90.50 ± 0.00 -
RigL 74.50 ± 4.30 - 66.10 ± 3.22 78.08 ± 6.46 -
EntryPrune 78.50 ± 6.52 82.31 ± 1.82 75.00 ± 2.78 90.48 ± 0.00 82.63 ± 6.06
EntryPrune flex 80.50 ± 5.12 81.40 ± 0.88 77.78 ± 1.96 88.57 ± 2.61 77.89 ± 6.34

K = 50
NeuroFS 76.50 ± 2.55 88.08 ± 0.70 80.54 ± 4.96 90.50 ± 0.00 81.56 ± 2.65
LassoNet 71.00 ± 2.00 91.98 ± 1.16 74.46 ± 4.78 88.58 ± 2.35 80.53 ± 3.99
STG 71.00 ± 2.55 84.41 ± 3.20 70.00 ± 4.08 84.78 ± 3.55 81.58 ± 1.86
QS 74.38 ± 4.80 - 72.20 ± 2.80 76.20 ± 7.53 -
Fisher 67.50 ± 0.00 62.16 ± 0.00 63.90 ± 0.00 90.50 ± 0.00 78.95 ± 0.00
CIFE 52.50 ± 0.00 - 58.30 ± 0.00 47.60 ± 0.00 -
ICAP 70.00 ± 0.00 - 72.20 ± 0.00 57.10 ± 0.00 -
RFS 77.50 ± 0.00 - - 90.50 ± 0.00 -
RigL 77.00 ± 3.32 - 70.54 ± 4.16 79.06 ± 7.11 -
EntryPrune 72.50 ± 5.59 86.47 ± 1.45 73.33 ± 1.52 90.48 ± 0.00 83.68 ± 4.32
EntryPrune flex 76.00 ± 6.75 84.56 ± 1.67 74.44 ± 2.32 89.52 ± 2.13 82.11 ± 3.43

K = 75
NeuroFS 82.00 ± 4.00 90.86 ± 2.20 82.24 ± 3.31 89.54 ± 1.92 78.40 ± 3.89
LassoNet 70.50 ± 2.45 91.88 ± 1.01 76.64 ± 5.44 90.50 ± 0.00 78.42 ± 7.54
STG 75.00 ± 2.74 86.42 ± 3.36 71.08 ± 1.37 84.78 ± 3.55 81.58 ± 3.22
QS 76.88 ± 2.72 - 73.60 ± 1.40 72.62 ± 9.78 -
Fisher 70.00 ± 0.00 65.16 ± 0.00 66.70 ± 0.00 90.50 ± 0.00 84.21 ± 0.00
CIFE 72.50 ± 0.00 - 58.30 ± 0.00 47.60 ± 0.00 -
ICAP 72.50 ± 0.00 - 72.20 ± 0.00 57.10 ± 0.00 -
RFS 80.00 ± 0.00 - - 90.50 ± 0.00 -
RigL 81.50 ± 4.64 - 72.22 ± 4.98 79.06 ± 8.83 -
EntryPrune 71.00 ± 7.42 87.47 ± 1.59 77.78 ± 3.40 90.48 ± 0.00 82.63 ± 2.35
EntryPrune flex 82.00 ± 4.81 86.87 ± 1.69 75.56 ± 3.04 90.48 ± 0.00 83.16 ± 3.53

K = 100
NeuroFS 82.00 ± 1.87 91.62 ± 2.08 81.12 ± 2.05 89.54 ± 1.92 79.48 ± 5.69
LassoNet 72.00 ± 4.30 92.08 ± 0.52 79.46 ± 2.83 90.50 ± 0.00 78.42 ± 2.20
STG 75.50 ± 3.67 86.67 ± 1.66 72.20 ± 3.07 85.72 ± 3.00 82.63 ± 3.99
QS 78.12 ± 1.08 - 73.60 ± 1.40 78.58 ± 9.82 -
Fisher 65.00 ± 0.00 64.91 ± 0.00 66.70 ± 0.00 90.50 ± 0.00 84.21 ± 0.00
CIFE 65.00 ± 0.00 - 58.30 ± 0.00 71.40 ± 0.00 -
ICAP 82.50 ± 0.00 - 69.40 ± 0.00 52.40 ± 0.00 -
RFS 80.00 ± 0.00 - - 90.50 ± 0.00 -
RigL 80.00 ± 4.47 - 73.90 ± 3.76 81.92 ± 8.18 -
EntryPrune 74.00 ± 2.85 87.22 ± 1.42 77.22 ± 3.62 90.48 ± 0.00 82.11 ± 2.88
EntryPrune flex 77.50 ± 3.06 87.72 ± 2.56 77.78 ± 4.39 90.48 ± 0.00 85.26 ± 1.44
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Table 5: Resulting accuracy of the studied methods for different downstream learners and long
datasets using K = 50 selected features. Our proposed methods are "EntryPrune" and "EntryPrune
flex". "All" is the accuracy using all features in the dataset. The best and second-best methods for
each combination of learner and dataset are marked in bold and underlined, respectively. Entries
represent the mean ± standard deviation of the downstream learner accuracy across five runs. Datasets
marked with an asterisk were evaluated with a limited set of baseline methods (see Appendix E),
while baseline results for the other datasets are reproduced from Atashgahi et al. (2023).

CIFAR-10* CIFAR-100* COIL-20 HAR ISOLET MNIST Fashion-MNIST USPS

Learner: ET
All 45.49 ± 0.23 20.77 ± 0.17 100.00 ± 0.00 93.53 ± 0.15 94.05 ± 0.32 97.10 ± 0.05 87.19 ± 0.13 96.29 ± 0.16
NeuroFS 39.70 17.30 99.94 ± 0.12 85.48 ± 1.46 91.46 ± 0.73 93.68 ± 0.43 84.26 ± 0.55 95.44 ± 0.27
LassoNet 28.05 ± 3.60 9.53 ± 0.37 99.76 ± 0.12 91.12 ± 0.30 84.94 ± 0.62 92.96 ± 0.15 83.68 ± 0.13 94.86 ± 0.22
STG 37.75 ± 0.35 12.77 ± 1.11 100.00 ± 0.00 88.68 ± 0.42 88.50 ± 2.15 90.38 ± 0.42 82.05 ± 0.48 94.32 ± 0.21
QS - - 99.25 ± 0.47 87.86 ± 0.72 88.78 ± 1.86 91.95 ± 0.58 81.28 ± 0.54 94.28 ± 0.40
Fisher 22.03 ± 0.13 5.87 ± 0.17 96.86 ± 0.43 85.50 ± 0.30 81.42 ± 0.59 84.86 ± 0.15 72.06 ± 0.08 90.94 ± 0.24
CIFE - - 74.70 ± 0.00 85.30 ± 0.00 55.40 ± 0.00 87.60 ± 0.00 68.40 ± 0.00 82.70 ± 0.00
ICAP - - 99.70 ± 0.00 89.20 ± 0.00 70.60 ± 0.00 87.80 ± 0.00 65.50 ± 0.00 93.50 ± 0.00
RFS - - 98.30 ± 0.00 89.70 ± 0.00 90.40 ± 0.00 - - 94.70 ± 0.00
EntryPrune 40.73 ± 0.26 16.52 ± 0.48 100.00 ± 0.00 90.32 ± 1.26 92.65 ± 0.52 95.30 ± 0.12 85.70 ± 0.22 95.76 ± 0.13
EntryPrune flex 40.99 ± 0.55 16.60 ± 0.48 100.00 ± 0.00 91.12 ± 1.33 92.19 ± 0.47 95.41 ± 0.21 85.49 ± 0.29 95.91 ± 0.18

Learner: KNN
All 35.39 17.55 100.00 87.85 88.14 96.91 84.96 97.37
NeuroFS 32.80 15.30 99.80 ± 0.28 84.64 ± 1.77 85.96 ± 1.53 91.64 ± 0.57 80.12 ± 0.87 96.18 ± 0.49
LassoNet 21.18 ± 2.78 7.31 ± 0.30 98.84 ± 0.20 88.70 ± 0.57 79.22 ± 0.47 91.38 ± 0.36 79.30 ± 0.20 95.70 ± 0.26
STG 30.79 ± 0.60 10.40 ± 0.92 99.94 ± 0.12 87.86 ± 0.39 83.16 ± 3.42 87.16 ± 0.64 77.65 ± 0.48 95.14 ± 0.45
QS - - 98.80 ± 0.38 85.88 ± 1.13 82.38 ± 3.12 89.30 ± 0.76 76.65 ± 0.51 95.17 ± 0.45
Fisher 17.01 ± 0.00 4.89 ± 0.00 95.80 ± 0.00 81.10 ± 0.00 74.10 ± 0.00 80.20 ± 0.00 63.70 ± 0.00 88.80 ± 0.00
CIFE - - 71.20 ± 0.00 71.80 ± 0.00 44.60 ± 0.00 82.90 ± 0.00 61.60 ± 0.00 59.60 ± 0.00
ICAP - - 98.60 ± 0.00 82.70 ± 0.00 59.00 ± 0.00 83.40 ± 0.00 59.30 ± 0.00 94.00 ± 0.00
RFS - - 97.20 ± 0.00 90.30 ± 0.00 87.20 ± 0.00 - - 95.40 ± 0.00
EntryPrune 32.70 ± 0.68 13.86 ± 0.56 99.93 ± 0.16 86.43 ± 0.93 88.21 ± 0.46 94.48 ± 0.20 82.01 ± 0.20 96.65 ± 0.20
EntryPrune flex 33.21 ± 0.71 13.98 ± 0.52 99.79 ± 0.31 86.40 ± 1.14 87.12 ± 0.69 94.62 ± 0.24 82.10 ± 0.56 96.48 ± 0.39

Learner: SVM
All 54.36 26.39 100.00 95.05 96.03 97.92 88.30 97.58
NeuroFS 46.30 21.10 98.78 ± 0.29 91.46 ± 0.72 92.62 ± 0.40 95.30 ± 0.41 83.78 ± 0.64 96.78 ± 0.17
LassoNet 28.77 ± 5.00 10.55 ± 0.50 97.16 ± 1.06 93.74 ± 0.39 84.90 ± 0.22 94.46 ± 0.21 82.58 ± 0.10 95.94 ± 0.15
STG 42.70 ± 0.42 14.08 ± 1.25 99.32 ± 0.40 91.22 ± 1.23 85.82 ± 2.83 93.20 ± 0.62 82.36 ± 0.52 96.62 ± 0.34
QS - - 96.52 ± 1.53 91.96 ± 1.04 89.78 ± 1.80 93.62 ± 0.49 80.82 ± 0.51 95.52 ± 0.27
Fisher 20.52 ± 0.00 5.21 ± 0.00 74.00 ± 0.00 79.80 ± 0.00 67.40 ± 0.00 81.90 ± 0.00 67.80 ± 0.00 91.00 ± 0.00
CIFE - - 59.40 ± 0.00 84.20 ± 0.00 59.80 ± 0.00 89.30 ± 0.00 66.90 ± 0.00 61.30 ± 0.00
ICAP - - 99.30 ± 0.00 88.70 ± 0.00 75.10 ± 0.00 89.00 ± 0.00 59.50 ± 0.00 95.20 ± 0.00
RFS - - 95.80 ± 0.00 94.00 ± 0.00 91.50 ± 0.00 - - 95.80 ± 0.00
RigL - - 97.86 ± 1.32 91.82 ± 0.30 89.58 ± 1.24 93.94 ± 0.63 81.92 ± 0.87 96.04 ± 0.58
EntryPrune 46.65 ± 0.60 18.98 ± 0.90 99.58 ± 0.29 93.74 ± 0.62 93.41 ± 0.25 96.69 ± 0.19 85.95 ± 0.22 96.83 ± 0.17
EntryPrune flex 47.23 ± 0.87 19.13 ± 1.34 99.51 ± 0.19 93.65 ± 0.36 93.46 ± 0.19 96.79 ± 0.11 85.84 ± 0.36 97.06 ± 0.23
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Table 6: Resulting accuracy of the studied methods for different downstream learners and wide
datasets using K = 50 selected features. Our proposed methods are "EntryPrune" and "EntryPrune
flex". "All" is the accuracy using all features in the dataset. The best and second-best methods for
each combination of learner and dataset are marked in bold and underlined, respectively. Entries
represent the mean ± standard deviation of the downstream learner accuracy across five runs. Datasets
marked with an asterisk were evaluated with a limited set of baseline methods (see Appendix E),
while baseline results for the other datasets are reproduced from Atashgahi et al. (2023).

ARCENE BASEHOCK* GLA-BRA-180 Prostate-GE SMK*

Learner: ET
All 79.50 ± 4.85 97.09 ± 0.34 75.00 ± 4.97 88.57 ± 3.81 80.00 ± 5.16
NeuroFS 75.00 ± 5.24 90.44 ± 1.86 75.46 ± 6.71 90.50 ± 0.00 78.96 ± 4.55
LassoNet 73.50 ± 4.64 93.43 ± 0.41 76.12 ± 3.80 89.54 ± 1.92 74.21 ± 6.81
STG 79.00 ± 3.39 87.22 ± 3.91 71.08 ± 2.24 83.84 ± 3.80 77.89 ± 3.00
QS 73.75 ± 4.15 - 75.00 ± 0.00 77.38 ± 5.19 -
Fisher 60.00 ± 1.58 64.66 ± 0.18 63.90 ± 0.00 90.50 ± 0.00 80.53 ± 2.35
CIFE 50.00 ± 0.00 - 69.40 ± 0.00 52.40 ± 0.00 -
ICAP 80.00 ± 0.00 - 63.90 ± 0.00 81.00 ± 0.00 -
RFS 75.00 ± 0.00 - - 90.50 ± 0.00 -
EntryPrune 72.50 ± 9.35 88.47 ± 0.69 76.11 ± 1.52 90.48 ± 0.00 77.37 ± 3.99
EntryPrune flex 78.00 ± 6.71 86.02 ± 0.91 75.00 ± 3.40 90.48 ± 0.00 82.11 ± 3.43

Learner: KNN
All 92.50 80.95 69.44 76.19 73.68
NeuroFS 74.00 ± 5.15 88.48 ± 1.54 64.42 ± 5.38 85.86 ± 4.67 76.82 ± 2.18
LassoNet 67.50 ± 7.75 91.13 ± 0.46 68.90 ± 4.07 82.86 ± 3.80 62.11 ± 3.00
STG 75.00 ± 5.24 83.16 ± 2.31 58.90 ± 7.52 81.00 ± 0.00 74.74 ± 3.99
QS 75.00 ± 3.54 - 66.70 ± 0.00 65.47 ± 8.37 -
Fisher 70.00 ± 0.00 55.89 ± 0.00 50.00 ± 0.00 85.70 ± 0.00 81.58 ± 0.00
CIFE 70.00 ± 0.00 - 44.40 ± 0.00 57.10 ± 0.00 -
ICAP 65.00 ± 0.00 - 61.10 ± 0.00 66.70 ± 0.00 -
RFS 85.00 ± 0.00 - - 90.50 ± 0.00 -
EntryPrune 73.00 ± 7.37 87.62 ± 1.45 58.89 ± 4.12 87.62 ± 2.61 71.58 ± 6.00
EntryPrune flex 76.50 ± 2.24 83.06 ± 3.51 62.22 ± 6.09 89.52 ± 2.13 71.05 ± 3.22

Learner: SVM
All 77.50 94.24 72.22 80.95 84.21
NeuroFS 76.50 ± 2.55 88.08 ± 0.70 80.54 ± 4.96 90.50 ± 0.00 81.56 ± 2.65
LassoNet 71.00 ± 2.00 91.98 ± 1.16 74.46 ± 4.78 88.58 ± 2.35 80.53 ± 3.99
STG 71.00 ± 2.55 84.41 ± 3.20 70.00 ± 4.08 84.78 ± 3.55 81.58 ± 1.86
QS 74.38 ± 4.80 - 72.20 ± 2.80 76.20 ± 7.53 -
Fisher 67.50 ± 0.00 62.16 ± 0.00 63.90 ± 0.00 90.50 ± 0.00 78.95 ± 0.00
CIFE 52.50 ± 0.00 - 58.30 ± 0.00 47.60 ± 0.00 -
ICAP 70.00 ± 0.00 - 72.20 ± 0.00 57.10 ± 0.00 -
RFS 77.50 ± 0.00 - - 90.50 ± 0.00 -
RigL 77.00 ± 3.32 - 70.54 ± 4.16 79.06 ± 7.11 -
EntryPrune 72.50 ± 5.59 86.47 ± 1.45 73.33 ± 1.52 90.48 ± 0.00 83.68 ± 4.32
EntryPrune flex 76.00 ± 6.75 84.56 ± 1.67 74.44 ± 2.32 89.52 ± 2.13 82.11 ± 3.43
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G ARCHITECTURE COMPATIBILITY

One contributing factor to the performance gap between EntryPrune and NeuroFS on the most
complex dataset studied, CIFAR-100, is their architectural differences. While NeuroFS employs a
sparse MLP with three hidden layers of 1000 neurons each, the original EntryPrune configuration
used a single hidden layer with only 100 neurons. To assess the impact of architecture on EntryPrune’s
performance, we investigate its compatibility with a larger model.

Specifically, we evaluate EntryPrune using a deeper architecture with two hidden layers, each
containing 1000 neurons. We found that training for 500 epochs and increasing the number of
mini-batches before rotation (nmb = 1500) worked well.

The results, shown in Table 7, indicate that EntryPrune is generally compatible with larger architec-
tures, and that increasing model complexity can improve performance on challenging datasets. In
this configuration, ’EntryPrune large’ outperforms the other methods across most values of K.

Table 7: Accuracy for different numbers of selected features K on the CIFAR-100 dataset. The best
method for each K is marked in bold. Entries represent the mean ± standard deviation of SVM
downstream accuracy over five runs.

Method K=25 K=50 K=75 K=100 Average

NeuroFS 17.40 21.10 22.10 23.20 20.95
LassoNet 9.58 ± 1.05 10.55 ± 0.50 12.41 ± 2.15 13.25 ± 2.22 11.45
Fisher 4.60 5.21 6.05 6.62 5.62
EntryPrune 15.33 ± 0.84 18.98 ± 0.90 20.40 ± 0.63 22.34 ± 0.43 19.26
EntryPrune flex 15.26 ± 1.09 19.13 ± 1.34 21.52 ± 0.58 23.19 ± 0.18 19.77
EntryPrune large 16.82 ± 0.87 21.49 ± 0.22 23.17 ± 0.31 24.17 ± 0.33 21.41

One architectural limitation of our approach is its incompatibility with networks that use weight shar-
ing in the first layer. This includes convolutional neural networks and transformer-based architectures
such as Vision Transformers (Khan et al., 2022). Weight sharing makes it infeasible to estimate the
relative impact of individual features using the change-based scoring used by EntryPrune. However,
this limitation is shared by other neural network-based approaches such as LassoNet and NeuroFS.
Addressing feature selection in the presence of weight sharing remains an important direction for
future work.

H STOPPING CRITERIA

In this section, we provide an explorative analysis to evaluate the performance of various stopping
criteria and hyperparameters. While the main experiment employed a single stopping protocol across
all conditions—consistent with the baseline methods for comparison—this exploration highlights
feasible parameter ranges and assesses whether fine-tuning stopping rules for specific configurations
can lead to improvements.

We analyze three stopping criteria:

• Epochs: The number of training epochs.
• Ident: The number of updates without changes to the identified feature set.
• Validation: A combination of updates without improvements in validation loss and updates

without changes to the identified feature set, as used in the main experiment.

Identifying suitable parameters. To evaluate these criteria, we performed an initial analysis on
a long dataset (ISOLET) and a wide dataset (ARCENE), using K = 50 selected features. The
corresponding hyperparameters were varied as follows: Epochs between 1 and 5000, Ident patience
between 1 and 400, and Validation patience between 1 and 200.

For each criterion, 30 hyperparameter configurations were tested, selected using Optuna (Akiba
et al., 2019) to balance exploration and exploitation. All other settings were consistent with the
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Figure 12: Accuracy by stopping criterion for K = 50 selected features. The red line indicates a
LOWESS interpolation.

main experiment. In each configuration, the resulting SVM accuracy was averaged over three runs.
Figure 12 presents the results by dataset and criterion. The results suggest that all stopping criteria
can perform well with appropriately chosen hyperparameters. However, the ident criterion appears
highly dataset-dependent and may require fine-tuning using validation data. Similarly, specific epoch
values do not generalize well across datasets: for instance, while 2000 epochs performed well for
ISOLET, it was suboptimal for ARCENE. The validation criterion, in contrast, demonstrated greater
robustness across datasets, with the patience value around 100 yielding consistent performance.

Assessing variance across configurations. A second case study investigated the performance
variance of stopping rules across different numbers of selected features. The GLA-BRA-180 dataset
was chosen for this analysis, as EntryPrune underperformed in the K = 50 configuration. Table 8
provides a detailed breakdown of stopping performance on the GLA-BRA dataset for all studied
numbers of selected features. Note that, to compare the criteria, the validation criterion with a

Table 8: Accuracy by stopping criterion for different numbers of selected features K for the GLA-
BRA-180 dataset. Entries corresponding to the stopping criterion and hyperparameter used in the
main experiment are marked in bold. Values represent the mean SVM accuracy across five runs.

Validation Epochs

K 50 100 150 200 400 500 250 500 1000 2500 5000

25 73.33 75.0 73.33 74.44 76.11 74.44 73.89 74.44 73.89 78.89 73.33
50 75.0 73.33 76.11 76.11 78.89 72.78 72.78 72.78 76.11 74.44 72.22
75 76.67 77.78 73.33 75.56 76.11 76.11 72.78 76.11 82.22 72.78 73.33
100 75.0 77.22 78.33 80.56 76.11 76.11 76.11 76.11 76.11 75.0 75.0

patience value of 100 corresponded, on average, to approximately 500 epochs. The analysis shows
that increasing the validation patience to 400 improves performance for K = 50, approaching the
state of the art. However, this improvement is not consistent across all K values, as performance
stagnates for 75 and 100 selected features. Similarly, no general trend emerges for the Epochs
criterion to improve the performance consistently across all K. Consequently, while Valdation
stopping using a patience of 100 delivers good performance, fine-tuning the stopping parameter using
validation data for specific numbers of selected features can further improve results.
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I LARGE LANGUAGE MODEL USAGE

We utilized Large Language Models (LLMs) to assist with grammar correction, typo fixing, and
improving overall text flow. The models were employed solely for polishing language and did
not influence the technical content, experimental design, or interpretation of results. This process
enhanced clarity and readability while preserving the authors’ original contributions.
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