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Abstract

Large language models (LLMs) have demon-
strated impressive few-shot in-context learning
(ICL) abilities. Still, we show that they are
sometimes prone to a ‘copying bias’, where
they copy answers from provided examples in-
stead of learning the underlying patterns. In
this work, we propose a novel and simple
method to mitigate such copying bias. First,
we create a synthetic task and use the Inte-
grated Gradients method to identify neurons
that prioritize copying over generalization. We
demonstrate that pruning these neurons consis-
tently improves performance across a diverse
set of ICL tasks. We also show that our method
is applicable across various LLM architectures,
including Transformers and State-Space Mod-
els, without requiring modifications. In our
analysis, we adopt a task-recognition perspec-
tive on ICL and examine task vectors (Hendel
et al., 2023) induced by the model. We find that
pruning enhances the quality of these vectors,
suggesting that the pruned neurons previously
hindered effective task recognition.

1 Introduction

In-Context Learning (ICL) (Brown et al., 2020) has
emerged as a powerful and simple alternative to
traditional training and fine-tuning. ICL involves
presenting a Large Language Models (LLM) with a
“context” consisting of several example pairs, each
containing an input and its corresponding correct
output, followed by a test example for prediction.
For instance, consider the following prompt:

Dolphin — 2, Beautiful — 5, Octopus —

In this case, the model must leverage the contex-
tual information from the given examples to iden-
tify the pattern of mapping words to vowel counts;
based on this, it must then predict that the correct
answer for “Octopus” is “3”.

While ICL has shown considerable effectiveness,
its use in few-shot scenarios faces significant chal-
lenges (Zhao et al., 2021; Razeghi et al., 2022).

In these settings, the inherent scarcity of labeled
examples becomes a critical bottleneck, as ICL
often requires a substantial number of in-context
examples to generalize effectively. Moreover, the
performance of ICL is highly sensitive to various
aspects of the prompt and the presentation of the
examples. Factors such as the specific wording of
the prompt (Wang et al., 2024), the order in which
the examples are presented (Lu et al., 2021), and
their relevance to the target example can signif-
icantly influence the outcome. Consequently, in
domains where labeled data is limited, these chal-
lenges collectively hinder the reliable application
of ICL, emphasizing the need for strategies that
can mitigate sensitivity and make the most of the
scarce examples available.

Recent research has primarily addressed these
challenges by focusing on prompt formulation
strategies, including selecting optimal templates
and examples (Zhou et al., 2023b; Hao et al.,
2022; Lu et al., 2022), as well as calibration meth-
ods (Han et al., 2023; Zhao et al., 2021). However,
existing work has not yet explored how errors in
in-context learning (ICL) relate to the internal pro-
cesses of LLMs or how to correct them through
targeted model modifications.

Our study takes a novel approach by investigat-
ing activation patterns related to a common chal-
lenge in ICL: copying errors. Referring back to the
vowel-counting example, a copying error would
occur if the model were to output “2” or “5” for
Octopus, instead of the correct answer “3”. In these
cases, the model directly copy an answer from the
provided examples rather than generating the cor-
rect response based on the induced pattern.

In this work, we hypothesize that there is a small
subset of neurons in language models that prioritize
copying behavior over task recognition. We posit
that these mechanisms can be task-agnostic; that is,
the same neurons are responsible for this reasoning
shortcut across a range of tasks. We further hypoth-



esize that deactivating these neurons will make the
model less likely to follow shortcuts and encourage
it to focus on recognizing underlying regularities.

To identify these neurons, we employ the vowel-
counting task and apply the attribution method, In-
tegrated Gradients (IG) (Sundararajan et al., 2017),
to trace the copying errors to individual neurons.
We then select the top contributing neurons as
“copying neurons.” The vowel-counting task is par-
ticularly interesting, as it appears challenging for a
range of models and elicits the copying behavior in
these models. We demonstrate that deactivating the
neurons identified using this single task improves
results across a diverse range of ICL problems,
making our method practical — since the neurons
do not need to be selected for each individual task —
and confirming the existence of a general mecha-
nism prioritizing the shortcut over reasoning.

In summary, our contributions are fivefold: (1)
We identify the copying bias in ICL and demon-
strate that LLMs, particularly smaller ones, suf-
fer from a high percentage of these errors. (2)
We introduce a method to identify specific neu-
rons responsible for triggering the copying behav-
ior (copying neurons). (3) We show that pruning
these identified neurons leads to out-of-the-box im-
provement across a wide range of ICL tasks across
both single-token and multi-token output ICL tasks.
(4) Through comprehensive evaluation, we verify
that our method maintains or improves model per-
formance on standard benchmarks while reducing
copying bias. (5) We utilize the task vectors frame-
work introduced by (Hendel et al., 2023), quantify-
ing a model’s ability to recognize and adapt to tasks
during ICL. Using this framework, we provide evi-
dence that pruning the copying neurons enhances
the quality of task vectors, indicating improved task
representation. This finding explains the observed
performance gains across various ICL tasks.

2 Related Work

ICL, first introduced by (Brown et al., 2020), has
attracted significant interest in recent years due
to its ability to enable LL.Ms to perform complex
downstream tasks without explicit fine-tuning. By
leveraging contextual information provided within
the input prompts, these models can dynamically
adapt their behavior and generate contextually rel-
evant outputs across a wide range of tasks. While
it is commonly associated with Transformer ar-
chitectures, ICL has also been explored in other

model architectures, such as State-Space Models
and the RWKYV model (Grazzi et al., 2024b; Park
et al., 2024). Leading to a wide line of works that
seek to improve the effectiveness of ICL mecha-
nisms (Zhao et al., 2021; Wei et al., 2023; Chu et al.,
2023; Zhou et al., 2023a; Wei et al., 2024; Li et al.,
2024), as well as studies that aim to explain the
underlying processes and dynamics of how models
internalize and utilize context (Min et al., 2022; Liu
et al., 2022; Xie et al., 2022; Olsson et al., 2022;
Von Oswald et al., 2023; Dai et al., 2022b).

Works proposing methods to improve ICL have
mainly focused on prompt selection and prompt
formulation, Zhou et al. (2023a) propose a differ-
ent prompting strategy that breaks down a com-
plex problem into a series of simpler subproblems
and then solves them in sequence. Zhang et al.
(2022b) reformulate the example selection for ICL
as a sequential decision problem, and propose a
reinforcement learning algorithm for identifying
generalizable policies to select demonstration ex-
amples. Sorensen et al. (2022) introduces a method
for unsupervised selection of prompt templates by
maximizing the mutual information between the
input and the corresponding model output. Lu et al.
(2022) show that the order in which the samples
are provided can make a difference and propose a
method for finding the optimal permutation.

While the majority of approaches to improv-
ing ICL have focused on methods of prompt engi-
neering, such as prompt selection and formulation
strategies, our work takes a fundamentally different
approach. To the best of our knowledge, this is the
first attempt to enhance ICL through a neuron-level
analysis, specifically by identifying and pruning
neurons that contribute to copying (which we de-
fine in Section 3.1) within large language models.

Neuron-Level analysis involves examining neu-
rons within the model to determine their specific
roles. Relevant studies in this area have aimed
to understand and categorize neurons into groups
based on their functional roles. For example, Voita
et al. (2023) shows that individual neurons in LL.Ms
correspond to different groups such as dead neu-
rons, positional neurons, and N-gram neurons. Fur-
thermore, Gurnee et al. (2024) discusses an addi-
tional group of categories including entropy neu-
rons, syntax neurons, and semantic neurons. Chen
et al. (2024) identify safety neurons, which are re-
sponsible for safety behaviors. Neuron-level anal-
ysis was further expanded to study multilingual
LLMs. Tang et al. (2024) detect language-specific



and language-agnostic related neurons in multi-
lingual language models. Neuron-Level analysis
is typically performed through activation analysis,
where one examines the patterns of neuron acti-
vations across various inputs (Voita et al., 2023;
Gurnee et al., 2024; Stolfo et al., 2024). Attribution
methods, such as Integrated Gradients (Sundarara-
jan et al., 2017), are employed to quantify the con-
tribution of individual neurons to the model’s out-
put, thus, allowing the discovery of different neuron
familiess (Dai et al., 2022a; Shi et al., 2024).

3 Method

This section presents our method for detecting and
mitigating copying in ICL. First, in section 3.1 we
revisit the ICL setting, formally define what are
the copying errors, and introduce the Integrated
Gradients attribution method. In section 3.2 we
elaborate on how we create a synthetic dataset that
will be used as a proxy for our proposed detection
method, and in section 3.3 we present our method
for detecting and mitigating copying neurons.

3.1 Preliminaries

In-Context Learning ICL enables a model f to
adapt to downstream tasks without any parameter
updates. This is achieved by forming a prompt p
that includes concatenated training examples. In
ICL, a prompt p is constructed by linking the task
inputs with their labels as follows: p = z1 : y1, 22 :
Y2, Ty * Yn,Tpt1 . Using this prompt, the
model f predicts the most probable label y that
completes the prefix p according to the function
f. In this framework, few-shot learning is charac-
terized by the number of examples in the prompt.
Furthermore, we denote S = [y1, y2, . .. yn] as the
set of the in-context example answers for prompt p,
then we say p is an |S| = n-shot in-context prompt.
Copying Bias  Copying bias, refers to the case
where a language model f returns an incorrect an-
swer that is one of the labels in S of the in-context
samples provided in the prompt. In other words,
given a prompt p under the n-shot ICL settings, a
prediction ¥y, is called a copying prediction if (1)
Yn1 18 @ wrong prediction and (2) Y41 € S.

We hypothesize that there exists a small num-
ber of neurons, which we call copying neurons,
that trigger the model to copy responses from the
prompt examples S of the prompt p. The identi-
fication of these neurons is, therefore, crucial for
understanding how LLMs balance copying and gen-

eralization, and for enhancing the reliability and
interpretability of these models. We further hy-
pothesize that pruning these neurons by setting
their weights to zero would encourage the model to
reason rather than solely rely on copying, thereby
improving its ability to generalize under few-shot
ICL.

Integrated Gradients (IG) Integrated Gradients
(IG) is a popular technique in explainable Al (Sun-
dararajan et al., 2017) used to elucidate the relation-
ship between a model’s predictions and its input
features. It applies to any differentiable model
and is computationally efficient. Integrated Gra-
dients works by generating attributions based on
integrating the gradients as the input varies between
a baseline and the final input of interest (the path):
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where f(-) denotes the prediction of the model,
x is the input vector of interest that we want to at-
tribute, Z is the baseline input vector and ¢ is an in-
dex denoting the indices of features of interest. The
baseline represents a reference point against which
the input of interest is compared. More specifically,
the baseline is an input vector that is supposed to
reflect a neutral, missing, or reference state. The
idea behind using a baseline is to measure how the
model’s output changes as we transition from this
baseline state to the actual input of interest. This
change is quantified by integrating the gradients
along this path. In our experiments, we use the con-
stant zero baseline as proposed in the original paper
of Integrated Gradients. This baseline is straightfor-
ward to implement and often provides meaningful
attributions. The integral is practically computed
using the Riemann sum approximation:

IG(f,i'7$72) 7 @Zm W,
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where m is the total number of Riemann steps.

3.2 Proxy ICL Dataset Generation

The Integrated Gradients (IG) method operates by
backpropagating the probability of the prediction.
To effectively utilize IG within our framework, we
require a set of in-context examples with ground-
truth labels. We avoid relying on access to target
task data for neuron selection, as this would limit
the practicality of our approach. Instead, we uti-
lize a synthetic proxy dataset to identify and prune



neurons on evaluation tasks. This approach also
aligns with our research hypothesis that copying
neurons are largely task-agnostic. This synthetic
dataset is employed within the Integrated Gradients
framework to identify copying neurons.

The specific task we choose is vowel counting
since the mapping from a word to such structural
attributes requires reasoning. LL.Ms can occasion-
ally make errors on this and similar tasks,' poten-
tially outputting copying responses. The synthetic
samples we utilize simply map an arbitrary word
to its corresponding vowel counts (e.g., apple: 2).
To construct a diverse set of examples, we extract
words from a dictionary and calculate their respec-
tive vowel counts. In our work, we used two ex-
amples per prompt to keep the problem tractable
while still allowing us to study copying behavior.
To eliminate the possibility of label repetition, we
ensured that each prompt’s examples (.5) contained
distinct vowel counts, with the target word’s vowel
count always differing from those in .S. We sam-
pled words with vowel counts ranging from 1 to 8,
providing sufficient diversity while avoiding repeti-
tion within prompts. For dataset construction, we
generated 400 ICL prompts, each using a 2-shot
format: 300 examples were used for computing
neuron importance scores, and 100 were reserved
for validation to determine the optimal pruning
configuration. The test answers were carefully de-
signed to never appear in the prompt responses,
ensuring clear evaluation of copying behavior.

3.3 Copying Neurons Detection

Denote V' as the vocabulary space, p as the in-
context prompt of interest containing n in-context
examples, and S, = [y1,...y,| the set of labels
of the different examples in the prompt p. In our
detection process, we are only interested in prompts
p on which the model outputs a wrong prediction
y € Sp (hence the copying) and denote § ¢ S, as
the ground-truth answer. Let w' € R% %92 be the
weight matrix of the linear layer at block [ on which
our detection process operates. Furthermore, we
define the model output Pp(y|u?§-) as the probability
of predicting a certain answer y € V.

P(yld), p) = P(y|wh = @, p), 2)

0

where w; denotes the j-th intermediate neuron in

the [-th layer of interest, 0% ; 1s a given constant that

'See, e.g., https://community.openai.com/t/

incorrect-count-of-r-characters-in-the-word-strawber?

829618.

wé- is assigned to. We define [, = > " P(y = y; €
Sp]wg- = wé., p) as the probability of predicting an
answer which is provided in the prompt examples
(in S), we also define [, = P(y = g ¢ Sp|w§~ =
wé,p) as the probability of predicting the ground-
truth answer . Lastly, we define AL = [, — [, as
the prediction shift.

Copying, by definition, occurs when the model’s
prediction shifts from the true answer to one of
the responses provided in the prompt. Thus, copy-
ing neurons are those driving AL. By leveraging
IG, we can attribute AL to individual components.
This approach enables us to identify neurons re-
sponsible for copying bias.

To quantify the contribution of a neuron wé to
the prediction shift (AL), we gradually change
w]@ from O (the baseline) to its original value 11)](-[)
computed by the model and integrate the gradients:

A(r,wh, p) = P(y;|rih, p) — P(grih,p), (3)
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where m = 20 is the number of approximation
steps we use in our experiments, following (Sun-
dararajan et al., 2017).

Finally, we compute the final attribution scores
for the neurons |[w ] by averaging Attr(w ) across
all samples in the synthetlc dataset, resultlng ina
relevance score that quantifies the extent to which
a neuron contributes to copying.

. l
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where D is the synthetic dataset and py, is the k—th
sample of the synthetic dataset.

To mitigate the copying bias, we suppress the
weights of the detected copying neurons:

l 0, R(w}) > o,
w; = (7)
L R(wl) < 0.

(6)

j ) pk — Mmin

mmax mmln

19
)l}l)are o is the filtering threshold and is tuned using
a validation dataset.
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4 [Experiments

Our approach offers a generic method for detect-
ing copying neurons, applicable to any language
model. To demonstrate the generalizability of our
method across different models and tasks, we con-
duct extensive experiments on a diverse set of
LLMs. This includes the recent state-space mod-
els, such as Mamba (Gu and Dao, 2023) as well
as a broad spectrum of transformer-based models,
including OPT (Zhang et al., 2022a), GPT2 (Rad-
ford et al., 2019), Bloom (Le Scao et al., 2023) and
LLaMA Touvron et al. (2023); Dubey et al. (2024).
Data We follow Hendel et al. (2023) and (Grazzi
et al., 2024a) and study 18 tasks in 3 different
categories including algorithmic (to lowercase, to
uppercase, list first, list last, list max, list min,
and next letter), linguistic (present to past, present
to gerund, singular to plural, antonyms, and past
to perfect), and knowledge (landmark, currency,
country to capital, person to language, religion,
and continent), the algorithmic tasks are gener-
ated automatically, for the linguistic we use the
GitHub Repositries?>® and the knowledge data is
taken from (Meng et al., 2022). We also incorpo-
rate real-world datasets like sentiment classifica-
tion, including SST2, SSTS, and subsets from the
BIG-Bench Tasks (Suzgun et al., 2022). For more
information about the data, refer to Appendix A.

Implementation Details For each model, we
use the synthetic validation dataset introduced in
Section 3.2 to identify the optimal block and the
number of copying neurons to prune as follows.
IG, as defined in Equation 6, is applied across the
layers of interest (summarized in Appendix. B) in
all of the blocks in the model. As described in Sec-
tion. 3.3, this procedure quantifies which neurons
contribute most significantly to the copying errors.
Furthermore, we use the validation set introduced
in Section 3.2 in order to find the optimal pruning
rate and the optimal block that maximizes the vali-
dation accuracy over the proxy ICL validation set,
we apply multiple pruning rates ranging from 1%
to 10%, in 1% increments (i.e., [1%, 2%, 3%, ...,
10%]) over each layer in all of the blocks in the
model, and use the best validation accuracy per-
forming configuration to use for the unseen ICL
tasks. This allows us to determine the block and

2https://github.com/Drulac/
English-Verbs-Conjugates

3https://github.com/sindresor‘hus/
irregular-plurals

the number of neurons to prune for maximizing the
accuracy on the validation proxy ICL set. The lay-
ers we choose to apply the detection and pruning
procedures are summarized in Appendix B.

4.1 Tasks Evaluation

To demonstrate the generalizability of our approach
across architectures, we include a range of models:
(1) Transformers: OPT, GPT-2, BLOOM, LLaMA,
and (2) Mamba state space models of various sizes.

For each synthetic ICL task, we utilize the test
sets introduced by Hendel et al. (2023). We re-
port the mean accuracy across these test sets for
each model and task configuration over the differ-
ent shots (1, 2, 3, and 4) evaluated using various
seeds. Figure. 1 presents a scatter plot compar-
ing the performance of our pruned model against
the baseline (non-pruned) model. A diagonal line
representing equal performance is included for ref-
erence. Data points falling above this line indicate
instances where our pruned model achieves higher
accuracy than the baseline, while points below the
line represent cases where the baseline model out-
performs. As evident from the distribution of points
that is dominated by those above the diagonal, our
pruned model consistently demonstrates superior
accuracy across a wide range of ICL tasks for differ-
ent shot instances, underscoring the effectiveness
of our targeting neuron pruning strategy. We be-
lieve that the fact our technique rarely leads to a
performance drop — and when it does, the impact
is only marginal — makes it particularly appealing
for practical applications. For the exact numbers,
we refer the reader to Appendix D. Additionaly
we present experimental results using the ICLE-
val benchmark®, which provides a comprehensive
evaluation of ICL ability in LLMs across tasks that
target exact copying and rule learning. ICLEval
spans diverse categories, including Unstructured
and Structured copying, as well as Format, Order,
Statistics, and List Mapping rules. We evaluate
our pruning method on Llama-7B, Llama2-7B and
Llama3-8B before and after applying our approach.
As shown in Table 1, our method consistently im-
proves ICL performance across all task types and
models. Furthermore, the ICLEval benchmark in-
cludes multi-token output tasks, which allow us to
evaluate the effectiveness of our method beyond
single-token outputs. For a detailed analysis, please
refer to the results presented in Appendix E. While

*https://github.com/RUCBM/ICLEval
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Figure 1: Summary of the results over the synthetic ICL tasks, for more information on the tasks and the exact

numbers, refer to Appendix D.

Model Unstructured Structured Format Order Statistics List Map
Llama-7B 0.87 0.33 0.68 0.54 0.27 0.42
+Ours 0.91 0.38 0.70 0.58 0.35 047
Llama2-7B 0.89 0.45 0.61 0.63 0.32 0.45
+Ours 0.90 0.47 0.64 0.65 0.35 0.48
Llama3-8B 0.57 0.87 0.69 0.94 0.61 0.63
+Ours 0.59 0.89 0.71 0.94 0.64 0.65

Table 1: Performance of our pruning method on ICLE-
val benchmark across different models and task cate-
gories. Highest value for each row is bolded.

our pruning method demonstrates substantial im-
provements in ICL performance, it is important to
consider potential tradeoffs in other model capabil-
ities. For a detailed evaluation of these tradeoffs,
including the impact on language modeling and
knowledge-intensive reasoning tasks, please refer
to Appendix F. In order to test our approach beyond
this benchmark ICL tasks, we also test it on tasks
that are based on three datasets of collected data:
SST-2, SST-5, and the object counting sub-task
from the BBH benchmark (Suzgun et al., 2022). In
these cases, to allow a comparison with previous
work, we use Llama-2 (Touvron et al., 2023) and
Llama-3 (Dubey et al., 2024). The same synthetic
dataset is used for copying neurons detection.

We include two recent baselines. The first is
Weighted ICL (WICL) by Yang et al. (2023),
which improves the performance of LLMs on
downstream tasks by assigning and applying opti-
mal weights to demonstration examples during ICL.
The second, Automatic Prompt Engineer (APE)
by Zhou et al. (2023b), automatically generates and
selects optimal instructions for large language mod-
els to improve their performance on various ICL
tasks without relying on human-crafted prompts.

The results for these three benchmarks are pre-
sented in Figure 2. Evidently, our method signifi-
cantly improves over the baseline LLM as well as
over the two baselines. For a more comprehensive
analysis on the effect of shot count beyond the few-
shot regime, we conduct additional experiments
with up to 64 shots, reported in Appendix G. While
our method’s improvements are most pronounced
in the few-shot setting, it continues to yield consis-
tent benefits even with increased examples.

4.2 Tasks-Vector Analysis

Next, we build upon the recent task-vectors frame-
work of Hendel et al. (2023) to study the relation-
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Figure 2: Results of Llama-2 and Llama-3 over SST2, SSTS5, and Object Counting task from BBH benhmark

ship between copying neurons pruning and the qual-
ity of the emerged task vectors in ICL. By com-
paring the task vectors generated by pruned and
unpruned models across various ICL scenarios, we
seek to understand if our proposed targeted pruning
can enhance a model’s ability to distill task-relevant
information from demonstrations, specifically un-
der the few shots settings. Furthermore, we follow
the setup of Hendel et al. (2023) and report ICL
accuracy using the standard ICL promoting (de-
noted by ICL), the accuracy obtained by using the
emerged Task-Vectors without pruning the copying
neurons (denoted as Task-Vectors) and the accuracy
obtained by using task vectors obtained from the
model with the pruned copying neurons (denoted
as Task-Vectors-Pruned).

In Figure. 3, we show the results of OPT-2.7B
and Bloom-560M models over the “Singular Plu-
ral” and “Country Capital” ICL tasks. As can be
seen, pruning the copying neurons indeed yields
better Task-Vectors for ICL. This suggests that our
pruning strategy may be effectively identifying and
removing neurons that were interfering with the
model’s ability to infer the underlying task. For
more results and additional analysis on the relation
with Induction Heads, refer to Appendix H. .

4.3 Ablation Studies

We present multiple ablation studies to evaluate
the different components of our proposed detec-
tion and pruning methods. These ablation stud-
ies were conducted with the OPT-350M, GPT2-
Small, and Bloom-560M models, over the Linguis-
tic Antonyms, and Letter to Upper ICL tasks.

Our first experiment focuses on using “Predic-
tion Shift” within the IG framework. We aim to
determine whether applying IG to the prediction
shift, as defined in Section 3.3, is essential for our

proposed method. To this end, we compare our
approach with applying IG to the predicted prob-
ability (specifically, the maximum probability) in-
stead. Results are presented in Tab.2 (“Max IG”
row) clearly shows that the prediction shift is es-
sential for the success of our proposed method.

We further check the effect of min-max normal-
izing the IG scores across the samples from the
proxy ICL task we use in the detection process.
The results without this normalization are reported
under “w/o Norm”. As can be seen, normalizing
the scores across the samples can significantly en-
hance the detection process of the copying neurons.

Additionally, we explore a baseline case where
we randomly prune the same percentage of neurons
as in the best-performing version of our method.
This experiment, labeled as “Random” in Tab.2,
shows a degradation in ICL accuracy for some shot
settings, underscoring the importance of our tar-
geted pruning strategy. To further evaluate the gen-
erality of our copying neuron detection method, we
conducted experiments using various proxy ICL
tasks beyond vowel counting. The detailed anal-
ysis and results can be found in Appendix 1. Fur-
ther analysis of our method’s effectiveness across
different experimental settings, including combina-
tions with task descriptions, comparisons with fine-
tuning approaches, and evaluations on balanced
datasets, can be found in Appendix J.

5 Conclusions and Discussion

We presented a novel method to mitigate copying
bias in few-shot In-Context Learning by pruning
neurons that are linked to this behavior according
to the IG interpretability method. Our approach
consistently improved performance across a vari-
ety of ICL tasks and model architectures. These
findings highlight the potential of targeted neuron
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Figure 3: Task-Vectors accuracies over OPT-2.7B and Bloom-560M models tested on (1) Singular Plural and (2)
Country Capital ICL tasks. We show the Task-Vectors accuracies with and without pruning the detected copying
errors, as can be seen, pruning the copying errors improves the quality of the extracted Task-Vectors across the
different shots € [1, 2, 3, 4] for the two models and ICL tasks.

OPT-350M Bloom-560M

Shot
ICL
Ours
Max IG
w/o Norm
Random
ICL

urs
Random
ICL
Ours
Max IG
w/o Norm
Random

o

Linguistic Antonyms

0.20 0.29 0.18 0.22 0.20
0.32 0.38 0.30 0.34 0.30
0.33 0.37 0.33 0.34 0.30
0.29 0.33 0.27 0.31 0.27

B W —

0.06 0.19 0.17 0.15 0.08
0.10 0.29 0.29 0.21 0.12
0.11 0.27 0.25 0.23 0.11
0.11 0.25 0.25 0.22 0.13

0.57 0.61 0.55 0.59 0.57
0.68 0.68 0.68 0.68 0.67
0.71 0.71 0.70 0.70 0.70
0.73 0.77 0.73 0.77 0.75

Letter to Uppercase

0.24 0.51 0.30 0.37 0.23
0.72 0.87 0.72 0.81 0.72
0.850.94 0.85 0.90 0.84
0.92 0.97 0.91 0.94 0.92

BN =

0.24 0.53 0.37 0.45 0.34
0.96 0.96 0.95 0.96 0.96
1.00 1.00 0.98 0.99 1.00
1.00 1.00 0.99 1.00 1.00

0.76 0.81 0.77 0.78 0.76
0.92 0.96 0.91 0.95 0.90
0.96 0.98 0.96 0.96 0.96
0.96 0.98 0.95 0.95 0.95

Table 2: Ablation studies for the different components in
our method over OPT-350M, GPT2-Small, and Bloom-
560M models applied on the Linguistic Antonyms, and
Letter to Upper ICL tasks

pruning as an effective strategy for optimizing the
capabilities of large language models.

The “out-of-the-box” improvements provided by
our method, without the need for task-specific data
or fine-tuning, have significant practical implica-
tions for deploying more reliable few-shot learning
systems. Our approach allows for the enhancement
of LLM performance across a wide range of tasks
using only a simple, synthetic dataset for neuron
identification. Moreover, the consistent improve-
ments observed across different model architec-
tures suggest that this method could be broadly
applicable, potentially becoming a standard step
in LLM deployment pipelines. Importantly, our
targeted neuron pruning approach achieves these
improvements while introducing minimal perfor-
mance tradeoffs, as demonstrated through exten-
sive evaluation of the model’s general capabilities.

The success of our pruning method in improv-
ing performance across various tasks indicates that
“copying neurons” may be acting as a form of short-
cut, inhibiting the model’s ability to engage in a
better reasoning processes. This observation aligns
with recent work on shortcut learning in neural net-
works (Yom Din et al., 2024; Belrose et al., 2023)
and suggests that in-context learning quality could
potentially be improved by carefully modulating
the influence of different neuron groups.

Our results suggest that by pruning copying neu-
rons, we enhance the model’s ability to distill task-
relevant information from demonstrations, leading
to better task vectors. This raises interesting ques-
tions about the relationship between neuron-level
representations and the higher-level task embed-
dings captured by task vectors. Specifically, it may
be useful to consider the representation in a way
that disentangles multiple activation pathways.

6 Limitations

While our neuron pruning approach shows promis-
ing results in mitigating copying bias during in-
context learning, several important limitations
should be acknowledged: First, our evaluation pri-
marily focused on smaller-scale language models
(up to 8B parameters) due to computational con-
straints. Although our findings demonstrate con-
sistent improvements across model architectures,
the applicability to larger, state-of-the-art models
(>100B parameters) remains to be fully validated.
Second, our analysis does not fully explore how
these copying neurons emerge during pre-training,
which could provide deeper insights into prevent-
ing rather than mitigating copying bias.
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A Tasks Datasets

In all of our experiments, we follow Hendel et al.
(2023) and Grazzi et al. (2024a) and study 18
tasks in 4 different categories including algorith-
mic, translation, linguistic, and knowledge, the al-
gorithmic tasks are generated automatically, for the
linguistic we use the GitHub Repositories® and the
knowledge data is taken from (Meng et al., 2022).
More details on the datasets are shown in Table 3.
Beyond synthetic ICL tasks, we use sentiment
classification datasets like SST2, and SST5, in
SST?2 the task is to classify text sentences into one
of the two sentiments (negative or positive), while
in SST5 the task is to classify text sentences into
one of five sentiments (very positive, positive, neu-
tral, negative, very negative). Additionally, we also
incorporate the object-counting task from the BBH
benchmark (Suzgun et al., 2022), where the task
is to find out the total number of objects given in
a context sentence, a sample illustration from the
dataset is as follows:
“I have a car, and a toaster. How many objects do I
have? — 27

Category Reference Task Example

Tl To Lowercase A—a

T2 To Uppercase a— A

T3 List First g.bes —q
Algorithmic T4 List Last g.bes —s

T5 List Max 2,1,5—5

T6 List Min 2,1,5—1

T7 Next Letter abc—d

T8 Present to past go — went

T9 Present to gerund  go — going
Linguistic T10 Singular to plural ~ cat — cats

Tl11 Antonyms happy — sad

T12 Past to Perfect catch — caught

T13 Landmark Maybach — Germany

T14 Currency Azerbaijan — Manat
Knowledge T15 Country to Capital France — Paris

T16 Person to Language Macron — French

T17 Religion Muhammad — Islam

T18 Continent Swanson Mountains — Antarctica

Table 3: Summary of the synthetic ICL dataset used in

the experiments

B Target Layers

This section outlines the exact layers targeted by
our detection and pruning techniques. We concen-
trate on specific linear layers within each model
block, with GPT2 being an exception where we
focus on a CNN layer. Our approach encompasses

5https://github.com/Drulac/
English-Verbs-Conjugates
6https://github.com/sindresor‘hus/
irregular-plurals
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both transformer-based and Mamba-based archi-
tectural designs. For a detailed breakdown of the
exact layers our method operates on across various
model families, refer to Table 4. The hyperparam-
eters used in the pruning process including target
layer and the percentage of neurons to prune are
summarized in Table 5.

Family Layer type
OPT fcl linear
GPT2 mlp.c_fc cnn
Bloom  mlp.dense_h_to_4h linear
Llama mlp.gate_proj linear
Mamba  mixer.in_proj linear

Table 4: A summary of the specific layers on which we
apply our detection and pruning method for different
model families

Family Pruned Layer  Percentage
OPT 125M 5 5%
OPT 350M 0 5%
OPT 1.3B 14 7%
OPT 2.7B 19 3%
GPT2-Small 0 5%
GPT2-Medium 6 7%
Bloom 560M 11 8%
Bloom 1.1B 0 5%
Mamba 130M 0 8%
Mamba 370M 0 6%

Table 5: A summary of the meta-optimization procedure

C Additional Error Analysis Results

We believe copying errors dominate because it’s
a “safer” failure mode for the model - repeating a
previously seen answer rather than generating a po-
tentially incorrect novel response. This aligns with
the training objective of minimizing unlikely out-
puts. For the vowel-counting task, copying errors
occur at a similar rate to other tasks, suggesting that
copying behavior is a general phenomenon rather
than task-specific. This consistency between in-
distribution and out-of-distribution tasks supports
our hypothesis that we’re identifying fundamen-
tal copying mechanisms in the model architecture
rather than task-specific patterns.

Table 6 reports the ratio of copying errors to total
errors (Copying Error Rate / Total Error Rate) over
the vowel counting task for a single run, demon-
strating the prevalence of copying behavior across
model scales and architectures. To validate our
method’s effectiveness in mitigating copying er-
rors, we analyze the percentage of copying errors
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Model 1 Shot 2 Shot 3 Shot 4 Shot

GPT2-Small 0.936 0.566 0.669 0.733
GPT2-Medium 0.853 0.430 0.711 0.812
Bloom 560M 0.751 0.390 0.580 0.686
Bloom 1.1B 0.987 0.680 0.777 0.906
OPT 125M 0.802 0.657 0.689 0.680
OPT 350M 0.227 0.775 0.812 0.872
OPT 1.3B 0.951 0.378 0.682 0.800
OPT 2.7B 0.942 0.439 0.621 0.712
Llama3 8B 0.835 0.500 0.691 0.792

Table 6: Ratio of copying errors to total errors on the
vowel counting task.

among total errors on the BBH ICL task before and
after applying our pruning method. Table 7 shows
that our approach substantially reduces copying er-
rors even in larger models like Llama3 8B, with
reductions of up to 60% in some settings.

Model 1 Shot 2 Shot 3 Shot 4 Shot
Llama3 8B ICL 10% 16% 19% 24%
Llama3 8B ICL + Ours 4% 10% 12% 15%

Table 7: Percentage of copying errors in total errors on
the BBH ICL task.
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D More Results

Our experimental results demonstrate the effective-
ness of our proposed copying neuron pruning ap-
proach across multiple model architectures and
sizes. As shown in Table 8, GPT2 models ex-
hibit consistent performance improvements with
our method, particularly in linguistic transforma-
tion tasks, while Table 9 reveals similar patterns
for BLOOM models with significant gains in few-
shot learning scenarios. The comprehensive evalu-
ation in Table 10 confirms that our approach yields
the most substantial improvements in smaller OPT
models and lower-shot settings, with some gains
exceeding 20 percentage points. Finally, Table 11
validates that the benefits of our method extend
beyond Transformer architectures to state-space
models like Mamba, suggesting that copying neu-
rons represent a general phenomenon in sequence
models rather than being architecture-specific.
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Table 8: Results over the GPT2 model family. Results are averaged across 5 different runs.

GPT2-Small GPT2-Medium
Task 1-shot 2-shot 3-shot 4-shot 1-shot 2-shot 3-shot 4-shot
base ours base ours base ours base ours base ours base ours base ours base ours

Tl .35 .50 .94 .98 .98 1.0 .99 1.0 .36 72 91 .98 98 1.0 .99 1.0
T2 24 .53 .96 .96 1.0 1.0 1.0 1.0 .61 .78 .99 1.0 .99 1.0 1.0 1.0
T3 42 42 .62 .67 .63 .68 .62 .65 73 .87 .82 .87 .86 90 .87 92
T4 42 .62 .67 .67 .68 .68 .68 .68 .66 .62 .78 75 .82 .82 .83 .80
T5 .57 .61 .53 .59 52 57 .52 57 .54 54 51 .53 .52 54 54 .56
T6 .30 .30 34 .38 .38 44 .40 45 35 .39 37 42 41 49 44 52
T7 .02 A5 17 .55 34 .64 .46 .68 .40 .54 .38 .54 32 44 .35 45
T8 .10 17 25 .38 .26 38 28 40 .16 21 28 .38 32 45 .36 54
T9 .10 .30 .29 49 35 52 43 57 23 .30 47 .55 .55 .64 .63 72

T10 27 30 35 .39 .36 40 .37 42 34 38 45 48 .54 54 .59 .59
T11 .06 .19 .10 29 11 27 11 25 49 52 .62 .65 .67 .67 .67 .67
T12 .19 26 .33 44 .38 46 40 49 .26 31 .33 42 .36 47 .38 48
T13 18 18 .16 .16 18 18 .20 .20 17 17 24 24 .26 .26 .26 27
T14 28 30 .38 40 40 43 42 44 31 31 41 41 45 47 47 47
T15 A1 A1 22 22 24 24 25 .25 .19 22 .30 .30 32 32 .36 .35
T16 .26 30 .35 .35 .33 .33 .33 .33 41 45 47 47 47 45 49 A48
T17 49 54 .64 .68 .66 70 .67 71 41 45 .55 57 49 55 51 58
T18 52 54 48 53 .61 .63 .70 72 54 .54 .55 .55 .59 .60 .62 .64

Table 9: Results over the BLOOM models family. Results are averaged across 5 different runs.

Bloom-560M Bloom-1.1B
Task 1-shot 2-shot 3-shot 4-shot 1-shot 2-shot 3-shot 4-shot
base ours base ours base ours base ours base ours base ours base ours base ours

Tl .34 .57 .86 92 .98 1.0 .99 1.0 21 25 .66 .70 .85 90 93 95
T2 .76 81 92 .96 .96 .98 .96 .98 .65 .69 .99 .99 1.0 1.0 1.0 1.0
T3 .37 .46 71 77 .83 87 .87 90 43 48 .83 .85 92 93 93 95
T4 43 .54 .62 71 .68 .78 72 .83 52 .56 5 75 7 77 .83 .80
T5 51 .54 51 51 .56 .56 .57 .57 .58 .60 .62 .62 .60 .63 .60 .60
T6 22 27 33 .36 .38 42 .40 42 24 24 28 28 33 33 34 34
T7 15 19 24 .28 28 28 33 32 21 32 41 .60 44 .65 51 .73
T8 .36 47 44 .58 49 .62 .58 .67 48 57 .65 72 74 .76 .81 .83
T9 .35 42 45 .56 .56 .64 .57 .66 .53 .58 73 .76 81 85 .84 .84
T10 .30 .36 42 49 41 48 45 52 .40 44 52 .55 .56 .60 .62 .66
T11 42 47 .56 .61 .60 .64 .65 .65 .57 .61 .68 .68 1 71 73 77
T12 .39 .46 .38 .50 45 .54 42 S1 .40 A7 48 .56 .62 .68 .68 .74
T13 .16 .18 22 22 21 21 23 25 29 31 .40 .40 41 41 42 42

T14 .26 .28 .39 41 45 48 41 43 .36 .36 A48 48 44 46 47 47
T15 18 22 .26 29 .29 33 29 31 28 32 37 42 40 45 42 42
T16 24 26 .36 .39 32 34 .30 .30 52 52 .58 .58 57 .61 57 .62
T17 49 52 A5 44 57 .55 .63 .61 57 .60 .63 .67 .66 .66 .70 .70
T18 .59 .59 .55 .55 .64 .62 .66 .63 49 S1 .53 55 .64 .64 .65 .67
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Table 10: Results over the OPT models family. Results are averaged across 5 different runs.

OPT-125M OPT-350M
Task 1-shot 2-shot 3-shot 4-shot 1-shot 2-shot 3-shot 4-shot
base ours base ours base ours base ours base ours base ours base ours base ours

T1 .01 .18 37 .59 21 35 21 31 .02 15 23 .55 .52 81 72 90
T2 .02 17 27 49 25 .28 21 24 24 51 12 .87 .85 94 .92 97
T3 .19 34 .30 .38 32 .38 32 .39 21 .29 .55 .64 .62 .64 .61 .60
T4 18 37 .30 40 .30 40 .29 39 .55 .55 .36 .34 33 .30 27 27
T5 32 .39 33 33 30 .29 .30 .30 .49 51 46 .46 46 .46 47 49
T6 25 35 31 35 .30 34 33 35 30 .29 41 .39 40 .38 44 41
T7 .01 .07 .03 12 .03 .09 .04 .08 .03 .05 15 .30 15 .28 .19 31
T8 .01 .01 .03 .05 .04 .07 .04 .06 .05 07 12 A5 17 21 .19 30
T9 .01 .06 A1 .16 14 18 15 21 .07 .07 .19 22 23 25 23 .28

T12 02 09 12 16 16 16 16 .16 16 19 24 26 27 29 26 28
T13 .08 12 .07 12 .10 15 11 .16 14 .16 24 27 32 34 32 32
T14 .09 25 .26 34 31 33 31 34 33 37 48 .50 42 44 51 54
T15 .04 .09 13 .16 15 18 15 17 1 13 .20 .20 24 25 25 .26
T16 .19 24 .26 30 25 .28 24 .20 29 28 42 41 45 44 .46 45
T17 .54 54 .54 .57 .53 .55 .62 .62 51 .50 .64 .64 .67 .67 72 12
T18 .56 .56 .65 .63 .65 .65 .69 .69 51 .53 47 .50 .56 .58 .60 .67
OPT-1.3B OPT-2.7B
Task 1-shot 2-shot 3-shot 4-shot 1-shot 2-shot 3-shot 4-shot

base ours base ours base ours base ours base ours base ours base ours base ours

T1 .01 A3 24 83 .76 98 94 1.0 .09 A3 .89 98 .99 1.0 1.0 1.0
T2 .02 14 73 82 92 97 97 99 .04 A2 a2 93 .86 98 91 1.0
T3 18 93 91 91 .92 92 .89 .88 .84 90 .93 95 97 1.0 98 1.0
T4 37 .56 .62 74 .59 71 .68 74 47 57 .64 .76 17 .80 74 76
T5 .67 .70 .61 .64 .65 .67 .62 .68 .56 .56 49 49 54 .54 .55 .55
T6 29 31 43 45 S1 53 .54 59 .35 37 47 A7 S1 52 .54 54
T7 .28 34 52 .65 .53 .60 .56 .56 .14 23 44 .50 .50 58 44 49
T8 A1 .16 29 45 42 .60 57 70 .20 32 49 .65 .61 73 .68 75
T9 12 .14 27 45 49 .63 .59 71 28 39 .68 75 .80 83 .82 85

T10 34 .36 .36 41 42 45 45 49 .35 40 46 50 52 .56 .59 .62
T11 .60 .62 .70 71 74 74 75 5 .64 .64 5 77 76 .78 78 78
T12 27 30 .30 37 38 43 41 49 28 33 40 47 42 44 A7 52
T13 32 38 .38 42 46 48 45 49 42 46 .50 52 .55 57 .61 .61

TIS 55 55 61 61 65 6 71 71 48 50 59 59 69 69 73 73
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Table 11: Results over the Mamba models family. Results are averaged across 5 different runs.

Mamba-130M Mamba-370M
Task 1-shot 2-shot 3-shot 4-shot 1-shot 2-shot 3-shot 4-shot
base ours base ours base ours base ours base ours base ours base ours base ours

T1 77 97 1.0 1.0 1.0 1.0 1.0 1.0 .95 .99 1.0 1.0 1.0 1.0 1.0 1.0
T2 .09 73 .95 1.0 1.0 1.0 1.0 1.0 .55 .83 .88 92 1.0 1.0 1.0 1.0
T3 .39 72 .82 95 .89 1.0 .92 1.0 75 .79 .98 .99 .99 1.0 1.0 1.0
T4 73 73 .86 .88 92 .92 .93 93 49 53 .80 .80 .86 .86 0.91 93
T5 47 .50 .49 .53 .53 55 .53 .56 .53 .56 S1 .53 .62 .64 .60 .62
T6 32 35 46 48 47 .50 47 52 34 .38 41 43 51 .53 54 55
T7 .14 .14 .70 .70 73 .73 .81 83 .60 .69 .87 .89 .88 90 .85 .85
T8 .08 .20 .36 48 42 54 51 57 .38 45 .56 .59 .63 .63 .70 .70
T9 11 25 36 50 50 55 60 65 55 59 74 77 82 85 86 88
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E Multi Token Outputs

To validate our method’s effectiveness on multi-
token outputs, we evaluate performance on two
tasks: country-currency pairs (e.g., "Benin" —
"CFA Franc (XOF)") and national parks (e.g., "Bad-
lands National Park" — "South Dakota"). Despite
using single-token vowel counting as our proxy
task, we observe consistent improvements across
both tasks for Bloom 560M and GPT2-Small mod-
els in all shot settings Table 12 and Table 13 (re-
sults are averaged across 5 different seeds, with the
left number showing baseline performance and the
right number showing our method’s results. While
our method could be extended to explicitly han-
dle multi-token outputs by aggregating prediction
shifts across the sequence, our results suggest this
is unnecessary as the current approach already gen-
eralizes effectively to multi-token scenarios.

1 Shot 2 Shot 3 Shot 4 Shot

Model

base  ours base  ours base ours  base  ours

Bloom 560M  0.03  0.12 006 015 0075 019 0.07 020
GPT2-Small 0.04 0.09 009 014 0.10 012 0.10 0.14

Table 12: Results on National Parks task

modeling capabilities. For knowledge-intensive
reasoning, Table 15 shows that performance on
MMLU’s diverse categories (humanities, social sci-
ences, STEM, and other) remains stable or even im-
proves in certain cases. For instance, GPT2-Small
shows improved performance in social sciences
(+2.11%) and STEM (+0.37%), while Bloom-1.1B
demonstrates gains across humanities (+0.20%),
STEM (+0.16%), and other categories (+0.25%).
Notably, larger models like Llama3-8B maintain
their strong performance across all categories af-
ter pruning, with negligible changes in accuracy
(within £0.3%). The minimal impact on both per-
plexity and MMLU performance, combined with
the substantial improvements in ICL performance
demonstrated, indicates a favorable tradeoff.

Model Without Pruning With Pruning
GPT-Small 25.188 25.548
GPT-Medium 18.473 18.590
Bloom 560M 21.328 21.397
Bloom 1.1B 16.836 16.883
OPT 125M 26.119 26.432
OPT 350M 20.888 20.940
OPT 1.3B 13.889 13.904
OPT 2.7B 11.757 11.758
Llama2 7B 6.542 6.549
Llama3 8B 5.184 5.819

Table 14: Perplexity on WikiText test (lower is better)

1 Shot 2 Shot 3 Shot 4 Shot
Model
base ours base ours base ours base  ours
Bloom560M 006 0.10 0.12 015 012 017 0.11 0.15 Model Humanities Social Sciences STEM Other
GPT2-Small 0.06 0.10 0.08 0.12 0.09 0.12 0.09 0.13
GPT2-Small 02421 02171 02131 0.2382
GPT2-Small + Ours 0.2421 0.2382 0.2168 0.2128
Table 13: Results on Country-Currency task
GPT2-Medium 0.2290 02427 02350 02128
GPT2-Medium + Ours 0.2427 0.2379 0.2294 0.2144
Bloom-560M 02294 02419 02391 02138
F Tradeoffs Bloom-560M + Ours  0.2421 02308 02164 0.2141
Bloom-1.1B 0.2482 02626 02252 0.2347
F.1 MMLU and Perplexity Bloom-1.1B + Ours 0.2502 02620 02268 0.2372
. . . . OPT-2.7B 0.2670 02398 02470 0.2688
While our pruning method significantly improves OPT-2.7B + Ours 0.2648 02427 02457 02677
ICL performance, it is crucial to understand po- Llama2-7B 0.4329 0.5484 05297 0.3606
tential tradeoffs in other capabilities of the model. Llama2-7B + Ours 04327 05491 05297 03603
. Llama3-8B 0.5501 07078 07322 0.5373
To assess this, we evaluated the pruned models on e 8B + Ours 02486 07048 07329 05378

two fundamental downstream tasks: (1) base lan-
guage modeling capability through perplexity on
WikiText, and (2) knowledge-intensive reasoning
through the MMLU benchmark (Hendrycks et al.,
2020). As shown in Table 14, pruning the copying
neurons results in a minimal degradation in per-
plexity across all model sizes and architectures,
with the relative increase ranging from 0.008%
(OPT-2.7B) to 12.25% (LLlama3-8B). Most models
show less than 2% degradation, suggesting that our
targeted neuron pruning primarily affects copying
circuits while largely preserving general language

Table 15: MMLU Test Performance (accuracy)

F.2 Needle in A Haystack

To verify our pruning method preserves essential
model capabilities, we evaluated performance on
the needle-in-haystack benchmark’ over Llama2
7B model. This benchmark tests a model’s ability

7https: //github.com/gkamradt/LLMTest_
NeedleInAHaystack


https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack

to locate and extract specific information from long
contexts. In our experiments, we used PaulGra-
hamEssays as the context ‘high-stack’ and embed-
ded the sentence “The best thing to do in San Fran-
cisco is eat a sandwich and sit in Dolores Park on
a sunny day” as the ‘needle’. Our experiments in
Figure 4 show slight differences in performance be-
tween pruned and unpruned versions of the tested
model across varying context lengths. The high
consistency across context and depth length demon-
strates that while our pruning effectively mitigates
copying bias in ICL settings, it does not compro-
mise any model’s fundamental ability to process
and recall information from long contexts.
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Fact Retrieval Across Context Lengths ("Needle In A HayStack") - Unpruned Llama2
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Figure 4: Needle in A Haystack evaluation over Llama2 7B model. The upper plot shows the results for the
unpruned model while the lower plot shows the results for the pruned model.
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F.3 Evaluation on AlpacaEval2

We tested our approach on AlpacaEval28. Due to
computational constraints, we evaluated on half of
the test set. For reference, the original Llama2’s
performance on the full test set achieves 5.4% LC
win rate and 5.0% win rate. Results are shown in
Table 16. On our half-set evaluation, the unpruned
Llama?2 achieves 4.84% LC win rate and 2.69%
win rate, while our pruned version improves to
5.26% LC win rate and 3.21% win rate. This (along
with results on MMLU) suggests that our pruning
method preserves the model’s ability to handle both
general language tasks.

‘Win Rate
2.69%
3.21%

Model
Unpruned Llama2 (half test set)
Pruned Llama2 (half test set)

LC Win Rate
4.84%
5.26%

Table 16: Performance comparison on AlpacaEval2
(half test set)

To strengthen our evaluation and provide addi-
tional validation of capability preservation, we con-
ducted pairwise comparisons between the pruned
and unpruned models. In this setup, we used the
unpruned model’s outputs as the reference point
while still employing GPT-4 Turbo as the evaluator.
The pruned model achieved a win rate of 51.49% in
these comparisons, indicating essential parity with
the unpruned model.

These results, particularly the near-50% win rate
in pairwise comparisons, provide strong evidence
that our pruning method successfully preserves
model capabilities. While the standard evaluation
shows a slight improvement, the key finding is
the consistent performance between pruned and
unpruned versions, as demonstrated across both
evaluation approaches.

F.4 Evaluation on RULER Benchmark

To provide a more rigorous evaluation of our
pruning method’s impact on retrieval capabilities,
we adopted the RULER benchmark (Hsieh et al.,
2024), which offers a comprehensive assessment
framework beyond simple needle-in-haystack sce-
narios. We focused our evaluation on tasks specif-
ically designed to test retrieval and copying abili-
ties, including single and multi-key/value retrieval
tasks (niiah_single_1-3, niah_multikey_1-3,
niah_multivalue, and niah_multiquery).

We evaluated both the unpruned and pruned ver-
sions of LLaMA-3.1-Instruct (Dubey et al., 2024)

8https://github.com/tatsu-lab/alpaca_eval
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across different context lengths ranging from 4K to
128K tokens. Table 17 presents these results.

Length Unpruned Pruned

4K 99.9% 99.9%

8K 99.9% 99.9%
16K 99.8% 99.7%
32K 99.6% 99.4%
64K 98.7% 98.4%
128K 92.6% 92.1%
AVG 98.4% 98.2%

Table 17: Performance comparison between unpruned
and pruned models on RULER benchmark tasks focused
on retrieval capabilities.

The results demonstrate that our pruning method
maintains the model’s retrieval capabilities across
all context lengths. The pruned model achieves per-
formance nearly identical to the unpruned version,
with only a marginal difference of 0.2 percentage
points in the average score (98.2% vs 98.4%). This
minimal performance gap is particularly encour-
aging, as it suggests that our pruning approach ef-
fectively mitigates copy-bias while preserving the
model’s essential ability to accurately retrieve and
reproduce information from the input context.

G Beyond the Few-Shot Settings

To better understand the relationship between shot
count and copying behavior, we conducted an
expanded experiment examining performance be-
yond the few-shot setting. Figure 5 presents re-
sults averaged across all linguistic tasks over mul-
tiple seeds, with shot counts ranging from 1 to
64. Our findings demonstrate that the proposed
pruning method yields consistent improvements
across all shot counts, validating its effectiveness
beyond the few-shot regime. However, we observe
that the performance gap between pruned and un-
pruned models gradually narrows as the number
of shots increases, with the most substantial im-
provements occurring in the 1-20 shot range for
Bloom-560M. This pattern aligns with the intuition
that as models receive more examples, they become
better equipped to learn the underlying patterns
rather than relying on copying behaviors. These
results suggest that while copying bias naturally
diminishes with increased examples, our pruning
approach remains beneficial by promoting better
pattern recognition over copying strategies.


https://github.com/tatsu-lab/alpaca_eval
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Figure 5: Many-Shots results for Bloom-560M and OPT-350M, results are averaged across all of the linguistic tasks
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H Task Vectors

We provide additional results for the task-vectors
experiment, we include two additional models
(GPT2-Small and Bloom1.1B) over the Algorith-
mic Next Letter task and Linguistics Antonyms.
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Figure 6: Additional quantitative results for the task-
vectors experiment
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H.1 Relationship Between Pruned
Components and Induction Heads

To better understand the mechanism suppressed by
our pruning method, we analyze the relationship
between the pruned neurons and induction heads,
which are known to drive copying behavior via pre-
fix matching. While a full circuit-level analysis is
beyond the scope of this work, our experiments pro-
vide initial insights into the functional interactions
between these components.

Task vector analysis in Section 4.2 demonstrates
that pruning consistently improves the quality of
task vectors across ICL tasks, suggesting that the
removed neurons interfere with task-specific rep-
resentation formation. We hypothesize that these
neurons act as a "copying shortcut”"—a mechanism
triggered under uncertainty that leads the model
to reproduce input tokens instead of abstracting
generalizable rules.

To investigate whether these neurons correlate
with the behavior of induction heads, we follow the
methodology introduced by (Yin and Steinhardt,
2025) to identify the top 2% of attention heads
with the highest induction scores. We then measure
the contribution of each head to the model’s predic-
tions using Integrated Gradients (IG). Specifically,
we introduce a gating parameter o € [0, 1] into
the activation of each induction head and compute
attribution scores by integrating the gradient of the
model’s output with respect to « . This analysis
is conducted over 100 randomly selected prompts
from our linguistic ICL tasks, both before and after
pruning. As a control, we also evaluate the bottom
2% of attention heads based on induction score.

As shown in Table 18, the top 2% of induction
heads consistently exhibit higher IG scores than
the lower 2%, confirming their greater relevance
to ICL behavior. After pruning, these scores in-
crease modestly for the top heads, while the lower
heads remain unchanged. This suggests that prun-
ing does not directly target induction heads, but
rather suppresses neurons that bias the model to-
ward unconditional copying.

24

Model IG (Top 2%) 1G (Lower 2%)
LLaMA 2 (Base) 0.121 0.110
LLaMA 2 (Pruned) 0.129 0.113
LLaMA 3 (Base) 0.162 0.145
LLaMA 3 (Pruned) 0.171 0.145

Table 18: Average IG attribution scores for top and
lower 2% induction heads before and after pruning.



I Additional Proxy Task Analysis
I.1 Proxy Dataset Ablation

To investigate the generality of our copying neu-
ron detection approach, we conducted experiments
using different proxy ICL tasks beyond vowel
counting. We explored tasks from both linguistic
(e.g., antonyms T11) and knowledge (e.g., person-
language mapping T16) domains. Our results
demonstrate that neurons identified using any of
these alternative proxy tasks led to improvements
across our evaluations.

Through these experiments, we identified three
key criteria for an effective proxy task:

1. Clear, deterministic rules that require pattern
recognition rather than memorization

2. Ability to elicit copying behavior from the
model

3. Sufficiently constrained output space to reli-
ably detect copying errors

While vowel counting meets these criteria partic-
ularly well and enables straightforward synthetic
data generation, our results show it is not uniquely
special - other structured tasks with similar prop-
erties can serve as effective proxies for copying
neuron detection.

We evaluate the performance using different
proxy tasks for neuron detection, with results av-
eraged across several linguistic tasks (present sim-
ple to gerund, present to past simple, present to
past perfect, and singular to plural). Tables 19
and 20 show the results using linguistic antonyms
and knowledge person-language mapping as proxy
tasks, respectively.

Model 1 Shot 2 Shot 3 Shot 4 Shot

GPT2 Small 0.15]0.21 0.31]0.35 0.31]0.37 0.36]0.42
GPT2 Medium 0.24]0.30 0.39(0.47 0.43]0.52 0.50]0.58
Bloom 560M 0.33/0.37 0.4010.48 0.480.53 0.51]0.58
OPT 1.3B 0.20/0.23 0.30(0.32 0.40/0.42 0.49/0.51

Table 19: Results using linguistic antonyms as proxy
task. Each cell shows baseline | pruned accuracy.
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Model 1 Shot 2 Shot 3 Shot 4 Shot

GPT2 Small 0.15/0.17 0.31]0.34 0.31]0.37 0.36]0.43
GPT2 Medium 0.24[0.27 0.39]0.43 0.43]0.48 0.5010.55
Bloom 560M 0.33]0.38 0.40(0.49 0.48]0.56 0.51]0.61
OPT 1.3B 0.20/0.22 0.3010.35 0.40(0.47 0.49]0.53

Table 20: Results using knowledge person-language as a
proxy task. Each cell shows baseline | pruned accuracy.

The consistent improvements across different
proxy tasks and model architectures suggest that
our method successfully identifies copying neurons
regardless of the specific task used for detection,
provided it meets our identified criteria.

J Further Analysis and Ablation Studies

J.1 Role of Task Descriptions

First, we investigate how explicit task descrip-
tions interact with our copying neuron pruning
method. Task descriptions provide explicit instruc-
tions about the required transformation (e.g., "Con-
vert verbs from present to gerund form"). We com-
pare three configurations: (1) standard ICL without
task descriptions, (2) ICL with task descriptions,
and (3) our pruning method, both with and without
task descriptions.

Results show that while task descriptions im-
prove baseline performance, our pruning method
achieves substantially better results across all set-
tings. Moreover, combining task descriptions with
pruning (TD+Pruning) yields the best performance
across all models and shot settings, suggesting
these approaches are complementary in address-
ing different aspects of the copying bias problem.

Table 21 shows results averaged across linguistic
tasks (present simple to gerund, present simple to
past simple, present simple to past perfect, singular
to plural) over 5 different seeds.

Model 1 Shot 2 Shot 3 Shot 4 Shot
GPT2-Small+ICL 0.16 0.31 0.32 0.37
GPT2-Small+ICL+TD 0.19 0.35 0.37 0.41
GPT2-Small+ICL+Pruning 0.25 0.44 0.44 0.47
GPT2-Small+ICL+TD+Pruning 0.27 0.45 0.46 0.50
Bloom-560M+ICL 0.35 0.42 0.48 0.50
Bloom-560M+ICL+TD 0.37 0.46 0.43 0.55
Bloom-560M+ICL+Pruning 0.42 0.53 0.59 0.59
Bloom-560M+ICL+TD+Pruning  0.44 0.53 0.61 0.60
Llama3-8B+ICL 0.68 0.85 0.88 0.89
Llama3-8B+ICL+TD 0.70 0.88 0.89 0.90
Llama3-8B+ICL+Pruning 0.73 0.89 0.90 0.90
Llama3-8B+ICL+TD+Pruning 0.73 0.90 0.90 0.90

Table 21: Impact of Task Descriptions (TD) and Pruning
across different model sizes



J.2 Comparison with Alternative Training
Methods

To better understand the effectiveness of our prun-
ing approach, we compare it with traditional fine-
tuning on the vowel mapping task. We conduct a
comprehensive hyperparameter sweep for the fine-
tuning baseline, exploring learning rates [le-5, le-
4, 1e-3], batch sizes [4, 8, 16], and epochs [1, 3, 5],
selecting the best configuration using the validation
set.

Table 22 presents results averaged across all
linguistic tasks for 5 different seeds, comparing
baseline performance with both fine-tuning and our
pruning approach.

Model 1 Shot 2 Shot 3 Shot 4 Shot
Bloom-560M Baseline 0.35 0.42 0.48 0.50
Bloom-560M Finetuned 0.34 0.41 0.45 0.50
Bloom-560M Ours 0.42 0.53 0.59 0.59
GPT2-Small Baseline 0.16 0.31 0.32 0.37
GPT2-Small Finetuned 0.14 0.31 0.32 0.35
GPT2-Small Ours 0.25 0.44 0.44 0.47
OPT-1.3B Baseline 0.21 0.30 0.42 0.50
OPT-1.3B Finetuned 0.20 0.30 0.42 0.50
OPT-1.3B Ours 0.24 0.42 0.52 0.59

Table 22: Comparison of pruning with traditional fine-
tuning approaches

J.3 Balanced Demonstration Analysis

To investigate whether our method addresses fun-
damental copying mechanisms rather than dataset
biases, we evaluate performance on SST2 using
balanced demonstrations with equal representation
of positive and negative examples. Results in Ta-
ble 23 demonstrate that the improvements from
our pruning method persist even in this controlled
setting. These experiments demonstrate several

Model 2 Shot 4 Shot 6 Shot
Llama2-7B ICL 0.873 0.920 0.923
Llama2-7B ICL Balanced 0.881 0.920 0.924
Llama2-7B ICL Ours 0.898 0.922 0.926

Table 23: Performance on SST2 with balanced demon-
strations

key points about our pruning method: (1) it pro-
vides complementary benefits when combined with
task descriptions, (2) it outperforms traditional fine-
tuning approaches while requiring no gradient up-
dates, and (3) it addresses fundamental copying
mechanisms rather than surface-level dataset bi-
ases. The consistent improvements across different
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settings and model sizes suggest that our approach
successfully targets a core aspect of model behav-
ior.

J.4 Impact of Model Pre-training Objectives

To understand how different pre-training objectives
affect copying bias, we analyze the effectiveness of
our pruning method on both base and instruction-
tuned variants of the same model architecture. We
compare OPT-1.3B base model with its instruction-
tuned counterpart’.

Table 24 shows results averaged across linguistic
tasks (present simple to gerund, present simple to
past simple, present simple to past perfect, singular
to plural, and antonyms) over 5 different seeds.
For each model and shot setting, we report both
baseline and pruned performance.

Model 1 Shot 2 Shot 3 Shot 4 Shot
OPT-1.3B Base 0.28/0.32 0.38]/0.48 0.49]|0.57 0.55|0.62
OPT-1.3B Instruct  0.27|0.32 0.39]0.46 0.51]/0.57 0.55/0.64

Table 24: Performance comparison between base and
instruction-tuned models

Results demonstrate that our pruning method
yields consistent improvements regardless of the
model’s pre-training objective. Both base and
instruction-tuned variants show similar relative
gains across different shot settings, suggesting that
copying bias and the effectiveness of our mitiga-
tion strategy are inherent to the model architec-
ture rather than being specific to particular training
regimes.

We wuse OPT-IML-1.3B model from
//huggingface.co/facebook/opt-iml-1.3b

https:


https://huggingface.co/facebook/opt-iml-1.3b
https://huggingface.co/facebook/opt-iml-1.3b
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