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ABSTRACT

As foundation models continue to scale, the size of trained models grows expo-
nentially, presenting significant challenges for their evaluation. Current evaluation
practices involve curating increasingly large datasets to assess the performance of
large language models (LLMs). However, there is a lack of systematic analysis
and guidance on determining the sufficiency of test data or selecting informative
samples for evaluation. This paper introduces a certifiable and cost-efficient evalua-
tion framework for LLMs. Our framework adapts to different evaluation objectives
and outputs confidence intervals that contain true values with high probability. We
use “test sample complexity” to quantify the number of test points needed for a
certifiable evaluation and derive tight bounds on test sample complexity. Based on
the developed theory, we develop a partition-based algorithm, named Cer-Eval, that
adaptively selects test points to minimize the cost of LLM evaluation. Real-world
experiments demonstrate that Cer-Eval can save 20% to 40% of test points across
various benchmarks, while maintaining an estimation error level comparable to the
current evaluation process and providing a 95% confidence guarantee.

1 INTRODUCTION

In recent years, large-language-models (LLMs) have exhibited astonishing capabilities in natural
language processing. Evaluating LLMs in terms of their performance and trustworthiness, therefore,
is crucial for understanding their strengths and limitations, guiding their development, and ensuring
responsible deployment (Chang et al., 2024). Numerous benchmark datasets have been created
to assess different aspects of LLM performance. For example, the Massive Multitask Language
Understanding (MMLU) dataset (Hendrycks et al., 2021a) evaluates the knowledge and problem-
solving abilities of LLMs across multiple fields such as elementary math, law and history, identifying
areas in which an LLM is inferior to humans; TrustGPT (Huang et al., 2023) is proposed to assess
the potential of LLMs generating toxic or hateful contents, while PromptBench (Zhu et al., 2023)
and MMDT (Xu et al., 2025) test the vulnerability of LLMs to adversarial prompts that could lead to
misleading or unsafe responses.

Despite the increasing number of benchmark datasets, little attention has been paid to the evaluation
process itself. The current practice, which we call the static evaluation process, is simply reporting
the average score over the entire test dataset. This is the method used by widely adopted platforms
such as Gen AI on Vertex AI platform by Google, the open LLM leaderboard hosted by Huggingface,
and the Evals framework by OpenAI.

However, this static evaluation approach has two major drawbacks. First, it does not quantify or
guarantee the reliability of the result. Here, reliability means how close the evaluation result is to
the truth and how confident its conclusion is. In particular, there are two sources contributing to the
uncertainty in the evaluation results: the randomness in the model responses, and the randomness in
the dataset used for evaluation. The lack of reliability imposes difficulty in drawing a trustworthy
conclusion and further tasks such as model comparison.

Second, it is not sample-efficient and does not adapt to various evaluation scenarios. The static
evaluation has to evaluate all test points, making it expensive and time-consuming, as LLMs typically
have a numerous number of parameters. However, in many cases, evaluating a subset of the dataset
would suffice to reach a reliable conclusion. For example, if an LLM consistently performs poorly on
a randomly selected subset of a question-answering (QA) benchmark, we can confidently conclude
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that this model’s QA capability is below random guessing. Moreover, for users who want to evaluate
the model in a dynamic and evolving manner, the reliability of the static evaluation process is further
compromised. For instance, when new data points are introduced over time, we will need to re-
evaluate the model to accurately reflect its performance. However, for a static process, the chance of
drawing at least one wrong conclusion will approach one with repeated evaluations.

To address these challenges, we focus on two fundamental but underexplored problems in LLM
evaluation: for a given LLM, test dataset, and evaluation metric,

(P1) How to design an algorithm that adapts to different evaluation scenarios and goals and provides
a certifiable guarantee for its result?

(P2) How to strategically select test points to minimize evaluation cost while achieving a desired
conclusion, and what is the minimum number of test points needed?

To answer these questions, we propose a certifiable online evaluation process that sequentially
refines evaluation results until a user-defined estimation error and confidence level is reached, e.g.,
the difference between the estimation and true performance is below 0.01 with 95% probability;
otherwise, the algorithm will notify the user that additional data points are needed for the desired
estimation error and confidence level. Beyond early stopping, our approach reduces evaluation costs
by strategically selecting test points. We propose and study a concept named test sample complexity,
which quantifies the minimal number of test points needed to achieve an accurate and confident
conclusion. Inspired by the analysis of test sample complexity, we develop an online evaluation
algorithm, Cer-Eval, which dynamically partitions the input space into regions of low variance and
high probability mass. This allows the evaluation to focus on informative test points, significantly
reducing the number of samples needed. Our contributions are summarized as follows:

1. We introduce an online evaluation framework for LLMs that provides statistical guarantees on
evaluation results. Unlike static evaluation, our approach applies to various evaluation goals and
ensures validity within a user-specified estimation error and confidence level.

2. We propose the concept of test sample complexity, which characterizes the number of test points
required to evaluate a model to a desired level. Both upper and lower bounds are established for test
sample complexity when the only assumption is a bounded loss function. We also show that test
sample complexity can be greatly reduced when certain distributional assumptions hold.

3. Based on the developed theory, we propose Cer-Eval (outlined in Figure 1), an adaptive evalu-
ation algorithm that minimizes the evaluation cost through early stopping and dataset partitioning.
Compared to the static evaluation baseline, Cer-Eval uses only 30% ∼ 50% data points and achieves
a comparable evaluation accuracy in our simulation studies. When applied to real-world bench-
marks (MMLU, AlpacaEval, and MATH) to evaluate GPT-4o, Cer-Eval achieves the same evaluation
accuracy using only 60% ∼ 80% of the test data.

The rest of paper is organized as follows. Section 2 introduces the related literature. Section 3
formulates the problem setup and defines test sample complexity. Section 4 provides test sample
complexity bounds for general cases, while Section 5 presents how to improve those bounds when
distributional assumptions on the model and task are met, and proposes adaptive evaluation algorithms
motivated by the developed theory. Section 6 conducts extensive experiments on the proposed
algorithm compared to the baseline. We conclude the paper in Section 7.

2 RELATED WORK

LLM evaluation. Existing literature of LLM evaluation primarily focuses on (1) discussing what
aspects of LLM capability should be evaluated (Liu et al., 2023; Chang et al., 2024; Gao et al., 2024)
and (2) proposing appropriate datasets and criterion to assess LLM performance (Hendrycks et al.,
2021a; Lin et al., 2022; Chiang et al., 2024; Zhang et al., 2024b; Dubois et al., 2024; Chen et al.,
2025; 2024a;b). However, relatively little attention has been given to the evaluation process itself.
The standard practice for LLM evaluation remains simple: computing the average score over a test
dataset based on a selected evaluation metric. Recently, (Miller, 2024) proposed to add error bars to
quantify evaluation uncertainty, and (Chiang et al., 2024) constructs an approximate confidence level
using bootstrapping. Nevertheless, these methods are empirical and lack valid statistical guarantees
in finite-sample scenarios. As a result, the reliability of current evaluation practices is not formally
ensured. Addressing this gap is one of the key contributions of our work.
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Figure 1: Overview of Cer-Eval, a partition-based adaptive evaluation algorithm. It iterates through
four steps until the termination condition is met: (1) partition the dataset based on the evaluated points
to minimize evaluation uncertainty, (2) compute summary statistics for each partition, (3) identify the
partition that reduces uncertainty the most, and (4) sample and evaluate a new test point from the
selected partition.

Efficient evaluation. Researchers have recognized that evaluating LLMs on the full dataset can
be computationally expensive. To mitigate this, (Polo et al., 2025; Kipnis et al., 2024; Xu et al.,
2024) proposed to choose a representative subset of data points to approximate the full evaluation
result; (Zhang et al., 2024a) proposed to predict model performance using historical performance
trends of similar models and tasks; and (Boyeau et al., 2024; Fisch et al., 2024) adopted a stratified
sampling technique (Cochran, 1977) to improve evaluation accuracy, sharing a similar spirit to our
partition algorithm. However, (Boyeau et al., 2024; Fisch et al., 2024) required a known partition in
advance and needed to evaluate all data points. Moreover, these approaches lack formal guarantees
on their evaluation results. In contrast, by leveraging the properties of the model being evaluated,
Cer-Eval can adaptively find a partition and save evaluation cost by early stopping, leading to efficient
evaluations with guarantees.

Sequential hypothesis testing. Our proposed evaluation process involves a sequential selection of
test points and decision making, and we certify our evaluation results by constructing a sequence of
confidence intervals (CI) covering the truth with high probability. The problem of constructing valid
sequential CIs has been studied in the literature (Farrell, 1964; Karp & Kleinberg, 2007; Zhao et al.,
2016; Waudby-Smith et al., 2024), with key techniques relying on Hoeffding-type concentration
inequalities and a union-bound argument. However, existing methods do not incorporate model- and
dataset-specific structure, which we find crucial for improving evaluation efficiency. By incorporating
a Bernstein-type inequality and a partition-based approach, we prove that the needed test sample size
can be greatly reduced under certain conditions.

3 PROBLEM FORMULATION

Given a trained LLM f : X ∈ X → Y ∈ Y , we aim to evaluate its performance on a given
task. We assume that the input space X = Rdin consists of the embedding vector of tokens with
maximum length din, while the output space Y is general. The model f can be either deterministic or
non-deterministic. Throughout this paper, we consider a fixed evaluation task characterized by a joint
distribution PXY over (X,Y ). The model performance in task PXY is quantified by its prediction
error R(f, PXY ) := E(X,Y )∼PXY

ℓ(f(X), Y ) for some loss function ℓ. Examples of ℓ include the
zero-one loss for multiple-choice tasks, similarity-based metrics for natural language understanding
tasks, or human- or LLM-based scores for reasoning tasks. For notational simplicity, we denote
R(f, PXY ) as R when there is no ambiguity.

In practice, model performance is often assessed on a given test dataset Dn = {(Xi, Yi), i =
1, . . . , n}. In this case, we assume that Dn represents the underlying task distribution PXY . That is,
data points in Dn are independently and identically (IID) drawn from PXY . A concrete example of
LLM evaluation is provided below.
Example 3.1. Massive Multitask Language Understanding (MMLU) dataset (Hendrycks et al.,
2021a) includes more than 15,000 multiple choice questions covering 57 subfields. Each question
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has four answer choices, with only one being correct. Researchers evaluate LLMs’ natural language
understanding capability on this dataset by averaging the prediction accuracy across all subfields.
In this case, the output space is {1, 2, 3, 4}, and a zero-one loss is used as the evaluation metric. It
is found that a baseline human achieves an average accuracy of 34.5%, and many LLMs perform
near-randomly.

Evaluation Goal and Process. The goal of model evaluation is to obtain an accurate and confident
estimation of R. Here, accuracy means how close the estimation is to the truth, and confidence means
the probability that our claim is correct. The user can specify a desired confidence level 1− δ (δ is
also known as the failure probability) and estimation error level ϵ. Two common evaluation goals are:

(1) Estimate R within an error level of ϵ = 0.01 with 95% confidence.

(2) Determine whether R exceeds a threshold (e.g., 0.5) with 95% confidence.

Therefore, a certifiable evaluation algorithm should provide an estimate of R along with a confidence
interval (CI) of radius ϵ, which is guaranteed to contain the true error R with probability at least 1− δ.
Notably, the second goal above is equivalent to obtaining an estimate with ϵ implicitly determined by
R and the threshold. Moreover, users may wish to dynamically adjust ϵ during the evaluation process.
The current practice, which we call a static evaluation process, requires evaluating all test data at
once, described below.
Definition 3.2 (Static evaluation process). A static evaluation process tests all data points in a test
dataset Dn, and output a single estimated prediction error and CI.

Static evaluation is unable to handle an implicitly defined or flexible ϵ. To address this issue, we
propose an online evaluation framework, as defined below.
Definition 3.3 (Online evaluation process). An online evaluation algorithm A sequentially selects
test points until the desired evaluation error level ϵ is achieved, or all available test data points are
used. The number of evaluated test points at termination is denoted as N .
Definition 3.4 ((n, ϵ, δ)-certified evaluation algorithm). An algorithmA is called (n, ϵ, δ)-certified if

P(N ≥ n, or A produce at least one CI that does not contain truth) ≤ δ.

Remark 3.5 (Practical meaning of certified algorithms). For example, when the user’s goal is
estimating the model performance R, an estimation obtained from an (n, ϵ, δ)-certified algorithm is
guaranteed to be within ϵ of the true value with probability at least 1− δ.
Definition 3.6 (Test sample complexity). Consider any algorithm A that is (n, ϵ, δ)-certified for
evaluating a model f on task PXY . Test sample complexity n∗ := n(ϵ, δ, f, PXY ) is the smallest n
over all possible choices of algorithms A.

A (n, ϵ, δ)-certified test algorithm provides guarantees on how confident the evaluation result is and
how many test points are needed for this algorithm. Test sample complexity, which is the minimal
required number of test points to draw a confident and accurate conclusion, further characterizes the
fundamental difficulty of evaluating a model on a given task. The subsequent sections are dedicated
to obtain bounds on the test sample complexity, and propose efficient evaluation algorithms, thereby
answering the core research problems introduced in Section 1.
Remark 3.7. The static evaluation process can be regarded as a special online algorithm that only
yields a result after evaluating all n points.

4 INTRINSIC LIMITS OF TEST SAMPLE COMPLEXITY

In this section, we establish matching upper and lower bounds on test sample complexity, assuming
only that the loss function is bounded. Theorem 4.2 indicate the fundamental limit on the number of
test points needed for a certifiable evaluation across general models and tasks.
Assumption 4.1 (Bounded loss). We assume that the loss function ℓ is bounded. Without loss of
generality, let 0 ≤ ℓ(f(X), Y ) ≤ 1.

Theorem 4.2. Let ϵ > 0 be the desired estimation error level and 0 < δ < 1 be the failure probability.
Under Assumption 4.1, we have the following results:

• (Upper Bound) There exists an (n, ϵ, δ)-certified online evaluation process (Algorithm 3 in
Appendix C) with n ≤ O(ϵ−2{ln(1/δ) + ln ln(1/ϵ)})

4
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• (Matching Lower Bound) For any function n′(ϵ, δ, f, PXY ) such that

lim
ϵ,δ→0

n′(ϵ, δ, f, PXY )
ϵ2

ln(1/δ) + ln ln(1/ϵ)
> 0,

no algorithm can be (n′, ϵ, δ)-certified for all sufficiently small ϵ and δ.
The bounds in Theorem 4.2 depend on two key parameters, the estimation error level ϵ and failure
probability δ. Clearly, a smaller δ requires a higher level of confidence of the evaluation, thus a larger
test sample complexity is needed. A smaller ϵ demands a greater evaluation accuracy, leading to
a larger test sample complexity. Compared to training sample complexity, test sample complexity
focuses on a specific model and task instead of learning from a function class. Furthermore, in
real-world evaluations, ϵ may be implicitly determined or dynamically adjusted. This necessitates
a sequential evaluation and therefore introduces a sequential decision-making challenge, requiring
the additional iterated logarithm term ln ln(1/ϵ) to control the overall failure probability – an effect
absent in classical training sample complexity bounds.

Notably, even the vanilla online evaluation process (Algorithm 3) can significantly reduce the amount
of test points compared to the static evaluation process, particularly when the desired estimation error
level ϵ is not too small.

5 SAMPLE-EFFICIENT EVALUATION VIA PARTITION

In this section, we go beyond the intrinsic statistical bounds by incorporating additional knowledge
about the model and task. To further save test points, the key idea is to pay more attention to areas with
higher uncertainty, instead of drawing test points IID from the entire space. Two critical observations
drive this approach: (1) An area with smaller loss variance is less uncertain and requires fewer test
points for confident evaluation; and (2) Properly dividing the input space may lower the variance
within each partition, reducing the number of test points needed for evaluation. Thus, if we can divide
the task distribution PXY into K disjoint areas and reduce variance within each, we can achieve a
more sample-efficient evaluation than the general approach in Section 4. We formulate this idea in
Theorem 5.2.
Definition 5.1 (Benign Partition). Consider any partition {Ak}k=1,...,K on the support of PXY , and
vk = var{ℓ(f(X), Y ) | Ak} be the variance of the loss conditioned on Ak. Given a test dataset
Dn = {(Xi, Yi), i = 1, . . . , n}, let D̃k = Ak ∩ Dn and nk := |D̃k|. We say {D̃k}k=1,...,K is a
benign partition of Dn if the following holds:

nk/n ≥ ln(K + 1)max{vk, ϵ2/3}, k = 1, . . . ,K.

Theorem 5.2. Suppose Assumptions 4.1 holds, and let n = Θ(ϵ−2{ln(1/δ) + ln ln(1/ϵ)}) denote
the tight bound of Theorem 4.2 for some ϵ, δ. Then Algorithm 1 operating with a benign partition of
Dn (Definition 5.1) is (n′, ϵ, δ)-certified, such that

ρ :=
n′

n
= O

(
ln(K + 1)

K∑
k=1

max{vk, ϵ2/3}
)
.

Theorem 5.2 suggests that, with a benign partition, we can use only ρ percent of test points for
evaluation, compared to the vanilla evaluation algorithm in Section 4 where no additional knowledge
is available. Furthermore, as ϵ→ 0, allowing K to grow can lead to ρ→ 0, significantly reducing
the number of test points needed.

Illustration via examples. Benign partitions exist for a wide range of models and tasks, and we can
have a good estimate of the saving ratio ρ. We illustrate it by the following corollary and example.
Corollary 5.3 (Super-Gaussian loss distribution). Suppose the loss distribution satisfies h(z) :=
P(ℓ(f(X), Y ) = z) ≥ A exp{−z2/σ2} for z ∈ [0, 1] with constants A, σ2 > 0, then, we have
ρ = O(ln(K + 1)/K) for any K such that K/ ln(K + 1) ≥ exp(1/σ2)/A and K ≤ ϵ−1/3. As a
result, ρ = O(ϵ1/3 ln(1/ϵ)) when K = O(ϵ−1/3).
Example 5.4 (Equally distributed problem difficulty). Consider a dataset split into K difficulty
levels, each having an equal number of test points. Also, the prediction loss of f in Ak lies in
[(k − 1)/K, k/K] uniformly. For example, a dataset assessing LLMs on math problems may contain
questions collected from primary school, high school, undergraduate, and graduate levels. Since the
loss distribution is uniform on [0, 1], Corollary 5.3 applies, yielding ρ = O(ln(K + 1)/K).
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Algorithm 1 Certified Evaluation with Adaptive Partition (Cer-Eval)

Require: The estimation error level ϵ, the failure probability δ, test dataset D, warm start steps m,
and a partition subroutine.

1: Select the first m points S = {(Xi, Yi), i = 1, . . . ,m} from D ▷ Step 0: Warm-up sampling
2: Evaluate Zi = ℓ(f(Xi), Yi), i = 1, . . . ,m
3: while True do
4: Partition D to K areas D̃1, . . . , D̃K by the partition subroutine. ▷ Step 1: Partition dataset
5: for k = 1, . . . ,K do ▷ Step 2: Calculate summary statistics per group
6: Let Sk ← {(X,Y ) ∈ S : (X,Y ) ∈ D̃k}
7: Let nk ← |Sk|, Nk ← |D̃k| ▷ Sample size of group k

8: Let R̂k ← n−1
k

∑nk

i=1 Z
k
i ▷ Empirical mean in Sk

9: Let vk ← n−1
k

∑nk

i=1(Z
k
i − R̂k)

2 ▷ Empirical variance
10: Let ηk ←

√
{2 ln(log(nk) + 1) + ln(16K/δ)}/nk

11: Let ϵk ← 2η2k/3 + 2
√

(vk + ηk + η2k)η
2
k ▷ Confidence interval radius

12: end for
13: Let R̂←

∑K
k=1 NkR̂

k/N , ϵ̂ =
∑

j Njϵj/N ▷ Performance estimate and CI raduis
14: if ϵ̂ ≤ ϵ then ▷ Termination condition
15: Terminate and return R̂, ϵ̂
16: end if
17: Terminate if all points in D are evaluated
18: k ← argmax1≤j≤K,nj≤|Dj |

∂ϵj
∂nj
· Nj

N ▷ Step 3: Target sampling, identify group that
contributes most uncertainty

19: Select a data point (Xj , Yj) from D̃k\Sk ▷ Step 4: New sample evaluation
20: Let nk ← nk + 1, add (Xj , Yj) to S and evaluate Zk

nk
← ℓ(f(Xj), Yj)

21: end while
Output: The estimated loss R̂, confidence interval radius ϵ̂, and number of evaluated points

∑
k nk

Remark 5.5. The term max{vk, ϵ2/3} in Theorem 5.2 arises from estimating the unknown loss
variance in each partition. We can improve this term to max{vk, ϵ} if an upper bound asymptotically
equivalent to vk is known. Moreover, equally-space partition is a special partition that improves this
term to 1/K2, leading to ρ = O(ϵ ln(1/ϵ)) in the super-Gaussian example above.
Remark 5.6. Our developed theory provides support for similarity-based dataset pruning methods,
such as clustering. Those methods assume that the model performance is similar in a small neighbor-
hood of any point (X,Y ). If the loss function is continuous, then the performance at (X,Y ) suffices
to approximate local performance on an ϵ ball Bϵ(X,Y ) := {(X ′, Y ′) : ∥(X,Y ), (X ′, Y ′)∥ ≤ ϵ}
around it, reducing the number of required test points.

Finding effective benign partitions. As shown in Theorem 5.2, finding a benign partition that
simultaneously minimizes in-group variance and maximizes the probability mass of each group is
critical in enhancing test efficiency. However, such partition information may be unavailable in
practice. To address this concern, we design Cer-Eval (Figure 1), which dynamically partitions
the input space in a model- and data-driven manner to maximize the benefit brought by the benign
partition. Cer-Eval repeats the following steps until the desired estimation error level is achieved
or all points in Dn have been evaluated, with full details in Algorithm 1: (1) Adaptive partition.
Partition the input space based on the evaluated points by minimizing the uncertainty level. We
propose to adopt 1-nearest neighbor algorithm in the partition subroutine, as detailed in Algorithm 2.
(2) Estimation. Compute the sample mean and associated CI radius for each group. (3) Target group
selection. Identify the group that contributes most to uncertainty. (4) New sample evaluation. Sample
and evaluate a new test point from the target group.

6 EXPERIMENT

6.1 SIMULATION

Synthetic Data. We generate simulated datasets as follows. First, we choose K as the true number
of partitions. For each partition Ak, k = 1, . . . ,K, the query and response pairs follow a Gaussian
distribution (X,Y ) ∼ N(ck, σ

2I), where I is the identity matrix and ck = (λk, 0, 0, . . . ) ∈ Rd with

6
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Algorithm 2 Subroutine: Partition by 1-nearest neighbor

Require: The test dataset D, evaluated points S = {(Xi, Yi), i = 1, . . . } and the corresponding
loss values {Zi, i = 1, . . . }.

1: for k = 1, . . . , ⌈ln(|S|)⌉+ 1 do
2: Assign i-th data point (Xi, Yi) in S a label ⌊kZi⌋, i = 1, . . . , n
3: Train a 1-nearest neighbor classifier Ck on a random subset of S.
4: Partition D by the labels predicted using Ck.
5: for j = 1, . . . , k do
6: Calculate ϵj following lines 6-11 in Algorithm 1
7: end for
8: ϵ̃k ←

∑
j Njϵj/N

9: end for
Output: K ← argmink ϵ̃k, D̃k’s partitioned by CK
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Figure 2: Percentage of test points saved by Cer-Eval compared to the baselines on Synthetic Data
under (Left) the single partition scenario, (Middle) the easy-to-distinguish scenario, and (Right) the
hard-to-distinguish scenario.

some constants d, λ and σ2. The loss ℓ(f(X), Y ) | Ak follows a truncated Gaussian distribution with
mean (k− 1/2)/K and variance 1/K2. In particular, we consider the following three scenarios: (S1)
Single partition: K = 1. (S2) Multiple easy-to-distinguish groups: K = 3, λ = 5. (S3) Multiple
hard-to-distinguish groups: K = 3, λ = 1. For all scenarios, we set the failure probability δ = 0.05,
input dimension d = 10, variance σ2 = 1, and generate a test dataset of size n = 5000.

Evaluation algorithms. We compare three proposed online evaluation algorithms against a static
baseline: (1) Base: The static evaluation process that evaluates all data points and provide a confidence
interval. (2) Seq: The vanilla online evaluation process, detailed in Algorithm 3. (3) Cer-Eval: Our
proposed adaptive evaluation algorithm, as described in Algorithm 1. (4) Oracle: A special case of
Cer-Eval that uses the true partition as the partition subroutine, which is theoretically optimal.

Evaluation metric. We evaluate the average loss for various values of estimation error level
ϵ ∈ [ϵ∗, 0.1], where ϵ∗ =

√
log(1/δ)/(2n) is the estimation error level achieved by Base. For

each test algorithm and estimation error level, we report (1) the average saving ratio ρ, indicating
the proportion of test points saved compared to ‘Base’, and (2) the empirical failure probability,
measuring the frequency at which R falls outside the computed confidence interval. The experiment
is replicated 20 times in each scenario.
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Figure 3: Percentage of test points saved by Cer-Eval compared to baselines in Real-World Bench-
marks under GPT-4o: (Left) the MMLU dataset, (Middle) the AlpacaEval dataset, and (Right) the
MATH dataset.
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Findings. The saving ratios for all scenarios are reported in Figure 2, while the empirical failure
probability is zero across all methods. Each (ρ, ϵ) pair can be regarded as a feasible solution, and a
pair closer to the upper-left corner is preferred. The area under the ρ-ϵ curve therefore reflects the
evaluation efficiency of an algorithm. Specifically, we have the following key observations:

• Algorithms performing variance reduction partitions significantly improve test efficiency. In the
easy-to-distinguish scenario (Figure 2, middle panel), Cer-Eval and Oracle save nearly 60% of
test points compared to Base for ϵ = 0.02.

• Partition-based algorithms improve efficiency even for a single group. When K = 1, both Oracle
and Cer-Eval save about 20% of test points for ϵ = 0.02 and 70% for ϵ = 0.03, compared to Base.

• Partition quality is crucial. Cer-Eval evaluates more efficiently in the easy-to-distinguish scenario
than in the hard one, highlighting the importance of effective partitioning. Oracle is Cer-Eval with
the knowledge of perfect partitions, achieving even better performance.

• Partition-based algorithms outperforms Seq in all scenarios. This is because they effectively utilize
model- and dataset-specific information, while Seq does not take those information into account.

• All online evaluating algorithms guarantee the desired confidence level, successfully including the
truth in the reported CI with high probability.

In short, simulation results confirm that Cer-Eval can greatly save the needed test points by adapting
to the model and dataset of interest, with a controlled failure probability on the evaluation result.

6.2 REAL-WORLD BENCHMARKS

Datasets. We conduct experiments on the following three real-world datasets: (1) MMLU (Hendrycks
et al., 2021a): This dataset assesses an LLM’s knowledge on 14,042 multiple choice questions across
57 subjects, such as history and math. Zero-one loss is used as the evaluation metric and we are
interested in the model accuracy. (2) AlpacaEval (Dubois et al., 2024): An automated evaluation
benchmark that evaluates the LLM’s natural language generating capability. We focus on evaluating
the win rate of a target model’s generated text compared to a reference model. A voting probability
(or win rate score) is used as the evaluation metric. (3) MATH (Hendrycks et al., 2021b): A dataset
used to measure LLMs’ math problem solving abilities. We use the zero-one loss to evaluate the
model accuracy.

Algorithms, models, and results. Since real-world datasets lack a true partition, we only compare
three methods: Base, Seq, and Cer-Eval. The embedding vectors for Cer-Eval are obtained using a
pre-trained BERT model (Devlin et al., 2019), with an ablation study on embedding models provided
in Appendix D. The empirical failure probability is calculated as the proportion of trials where the
CI does not contain the model’s average performance across the entire dataset. Other experimental
settings follow those of the simulation study.

We assess four models across all datasets: GPT-4o, Llama3 8B, Mistral 7B, and Qwen2 7B. Figure 3
shows the experimental result for GPT-4o. Curves for other models are similar, hence are deferred to
Appendix D together with full experiment details. The empirical failure probability remains zero for
all methods. We find that:
• Adaptive partition algorithm improves evaluation efficiency but varies by datasets and models.

Aligning with the simulation study, the partition quality is crucial for Cer-Eval. As the partition is
found adaptive to each model and task, the saving ratio of Cer-Eval thus varies. On the MATH
and MMLU datasets, Cer-Eval reduces the required test samples by 30% ∼ 40% for ϵ = 1.5ϵ∗

and even 5% ∼ 10% for ϵ = ϵ∗. However, it achieves lower savings on AlpacaEval, reducing test
points by only 10% at ϵ = 1.5ϵ∗.

• Cer-Eval consistently outperforms ‘Seq’. By leveraging variance information, Cer-Eval uses fewer
test points than Seq and successfully identifies meaningful partitions. Notably, on both AlpacaEval
and MATH datasets, there is a change point of the ρ-ϵ curve for Cer-Eval. For example, on
AlpacaEval, the curve flattens when ϵ < 0.067. A closer investigation reveals that Cer-Eval has
detected two distinct data groups after this point, where the model performs well on one group and
performs poorly on the other. It leads to significantly reduced within-group variance, therefore
Cer-Eval obtains a confident evaluation result with fewer points. This observation aligns with our
theoretical findings.

• Cer-Eval helps determine the sufficiency of test data. Note that for MMLU and MATH dataset,
Cer-Eval do not evaluate all data points to achieve an estimation error level of ϵ∗. It indicates that
these two datasets already have sufficient data for even a smaller error level or higher confidence

8
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Figure 4: Number of needed test points v.s. model
size when evaluating models from multiple fam-
ilies using Cer-Eval, with estimation error level
ϵ = 0.07 and failure probability δ = 0.05.
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Figure 5: Number of needed test points v.s. model
accuracy when evaluating models from multiple
families using Cer-Eval, with estimation error
level ϵ = 0.07 and failure probability δ = 0.05.

level. In contrast, AlpacaEval dataset has to collect more test points for a more accurate evaluation.
• All methods maintain the desired confidence level. Across all model-dataset combinations, the

empirical failure probabilities remains below 0.05, corroborating the reliability of the proposed
algorithms.

Test scaling law. We further evaluated over 200 models on the AlpacaEval dataset to investigate
potential factors affecting test sample complexity, analogous to the training scaling law (Kaplan et al.,
2020; Hoffmann et al., 2022; Bahri et al., 2024). For multiple model families, Figure 4 shows the
relationship between model size and the needed test sample size for a certifiable evaluation within
error level ϵ = 0.06 when using Cer-Eval. At first glance, it seems a larger model requires more test
points, resembling the training scaling law. However, Figure 5 shows that the this trend is spurious:
larger models require more test points on the AlpacaEval dataset because their accuracy is closer to
0.5, leading to higher loss variance.

This finding suggests an intriguing connection between model performance and test sample complex-
ity, offering insights into leveraging the training scaling law. Suppose an LLM continues to scale and
achieves higher accuracy (above 0.5), fewer test points are sufficient for evaluation. In other words,
despite increasing model sizes, we may not need a growing test dataset for LLM evaluation with a
fixed estimation error level and confidence level. It therefore implies an encouraging prospect for
future LLM development and evaluation.
In summary, Cer-Eval is recommended as the default online algorithm for certifiable and cost-efficient
LLM evaluation. It effectively adapts to different datasets and models to minimize the evaluation cost
and offers high flexibility in evaluation goals.

7 CONCLUSION AND FURTHER DISCUSSIONS

In this work, we propose an online evaluation framework to assess LLM performance, allowing
users to determine their desired evaluation error and confidence level. This approach enables a
certified and efficient evaluation process, where users can stop the evaluation once their goal is met,
or continue collecting more test points if the current dataset is insufficient for a confident conclusion.
Our proposed algorithm, Cer-Eval, effectively reduces the number of required test points by adapting
to each model and dataset of interest.

There are three promising directions for future work. First, instead of evaluating a particular model,
our framework can be extended to compare the relative performance among multiple models, such
as providing a certified ranking. The required estimation error level for distinguishing between
models naturally depends on their performance differences, making our online evaluation process a
well-suited approach for cost-efficient ranking. Second, an attractive extension is evaluating a model’s
out-of-distribution generalization performance. It is worth studying the certified evaluation when the
collected dataset differs from the true underlying data distribution. Third, simultaneous evaluation
across multiple tasks presents another opportunity for improvement. Evaluation tasks are known to
be often correlated. Exploiting these relationships could further enhance evaluation efficiency.
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A MISSING PROOFS

General notations. We will use R for short of R(f, PXY ) when there is no ambiguity. Let
Xi, Yi, i = 1, . . . , n be IID sampled from PXY , and Zi = ℓ(f(Xi), Yi). Then Zi’s are IID with
0 ≤ Zi ≤ 1, E(Zi) = R(f, PXY ), and var(Zi) = var(Zi − 0.5) ≤ E{(Zi − 0.5)2} ≤ 1/4. Let
R̂n = n−1

∑n
i=1 Zi. The online evaluation process will produce a sequence of estimate R̂n and

confidence interval (CI), characterized by its radius ϵn, where n is the number of evaluated test points
so far.

Proof of Theorem 4.2

Proof. We first prove the upper bound by showing that Algorithm 3, denoted as Aseq, is a (n′, ϵ, δ)-
certified test algorithm with n′ ≤ 12ϵ−2{ln(1/δ) + ln ln(1/ϵ)}. Recall that N is the number of test
points evaluated when the algorithm terminates. The probability that Aseq yields a wrong claim is
bounded by Lemma B.3, an adaptive Hoeffding-type inequality, as follows:

P(Aseq makes a wrong decision) = P(R̂N − ϵN ≥ C) ≤ P({∃n, R̂n −R ≥ ϵn}) ≤ δ/2. (1)

As for the running time, let n′ = 12 ln(4/δ)+12 ln ln(1/ϵ)
ϵ2 . We can check that for any sufficiently small

ϵ,

ϵ2n′ =
2 ln(log(n′) + 1) + ln(4/δ)

n′ ≤ ϵ2/4.

Therefore, the probability that the algorithm does not terminate after drawing n′ samples is

P(N ≥ n′) ≤ P(R̂n′ + ϵn′ ≥ C) ≤ P(R̂n′ −R ≥ ϵn′) ≤ δ/2, (2)
where the last step is due to Eq. (1). Combining Eq.s (1) and (2) proves that Algorithm 3 is a
(n′, ϵ, δ)-certified test algorithm.

Now, we turn to prove the lower bound. Recall that ϵ can be implicitly determined by R, such as in
the second estimation goal introduced in Section 3. In particular, we have ϵ = |R−C| when the user
want to determine whether R is above a threshold C. In this case, Farrell (1964) proved that for any
algorithm that guarantees a δ failure probability, we have

lim sup
ϵ→0

EN ≥ O

(
ln ln(1/ϵ)

ϵ2

)
. (3)

It is also known that for an easier problem where ϵ is known in prior (Mannor & Tsitsiklis, 2004), the
expected test points for any δ-certified algorithm satisfies

lim
ϵ→0,δ→0

EN ≥ O

(
ln(1/δ)

ϵ2

)
. (4)

Suppose there exists an algorithm that is (n′, ϵ, δ)-certified, where n′ satisfies

lim
ϵ,δ→0

n′(C, δ, f, PXY )
ϵ2

ln(1/δ) + ln ln(1/ϵ)
= 0. (5)

As a result, for any fixed ϵ, there exists a δ0 such that for any δ < δ0, we have

P
(
N >

ln(1/δ) + ln ln(1/ϵ)

ϵ2

)
≤ δ.

Moreover, there exists an integer n0 = ln(1/δ0)+ln ln(1/ϵ)
ϵ2 such that for any n > n0, we have

P(N > n) ≤ exp{−nϵ2 + ln ln(1/ϵ)}.
Then, the following holds for any n′ > n0:

EN ≤ n′ +

∞∑
n=n′

P(N > n) ≤ n′ +

∫ ∞

n′
exp{−xϵ2 + ln ln(1/ϵ) dx ≤ n′ +

δ

ϵ2
. (6)

Finally, comparing Eq. (6) to Eq.s (3) and (4) yields that

n′ ≥ O

(
ln(1/δ) + ln ln(1/ϵ)

ϵ2

)
,

which contradicts with Eq. (5). We thus completes the proof.
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Proof of Theorem 5.2

Proof. First, Theorem 4.2 shows that for Aseq, the needed test sample size n satisfies that

n = O

(
ln(1/δ) + 2 ln ln(1/ϵ)

ϵ2

)
(7)

We prove that Algorithm 1 is a (n′, ϵ, δ)-certified test algorithm, where n′ will be specified below. In
particular, the known benign partition will be used as the partition subroutine in the algorithm input.
Let µk := P(Ai) be the probability mass of area Ak, for k = 1, . . . ,K. Without loss of generality,
we assume that µi is known. Otherwise, we can keeping drawing data points (without evaluating
them) until the estimation of µi is sufficiently accurate. When a dataset is given instead of the data
distribution PXY

, we have µk = Nk/n, where Nk is the number of test points in Ak.

When Algorithm 1 terminates and evaluate N points, we have

R̂N −R =

K∑
k=1

µk(R̂k −Rk),

where Rk = EAk
ℓ(f(X), Y ) is the prediction error on the area Ak, and R̂k = n−1

k

∑nk

i=1 Z
k
i is the

empirical loss.

The empirical variance of the loss on Ak is

v̂k := n−1
k

nk∑
i=1

(Zk
i − R̂k)

2 = n−1
k

nk∑
i=1

(Zk
i −Rk)

2 − (Rk − R̂k)
2.

Let ηk =
√
{2 ln(log(nk) + 1) + ln(16K/δ)}/nk, Lemma B.3 implies

P
(∣∣∣∣n−1

k

nk∑
i=1

(Zk
i −Rk)

2 − vk

∣∣∣∣ ≤ ηk

)
≥ 1− δ/(4K),

P(|Rk − R̂k| ≤ ηk) ≥ 1− δ/(4K).

Let E = {vk ≤ v̂k + ηk + η2k, v̂k ≤ vk + ηk, |Rk − R̂k| ≤ ηk}, we have P(E) ≥ 1− δ/2. Evoking
Lemma B.5 on event E , we have

P
(
R̂k −Rk ≥ ϵk, E

)
≤ δ/(8K),

where

ϵk = 2η2k/3 + 2
√
(v̂k + ηk + η2k)η

2
k.

As a result, a union bound gives

P(A makes a wrong decision) ≤ 1− P(E) + P(R̂N −R ≥
∑
k

µkϵk, E)

≤ δ/2 +
∑
k

P(∃k, R̂k −Rk ≥ ϵk) ≤ 5δ/8. (8)

Regarding the required sample complexity, let n′ = n ln(K + 1)
∑

k max{vk, ϵ2/3}. Suppose the
algorithm does not terminate after evaluating n′ points. Note that

ni/{v̂i, ηi} = nj/max{v̂j , ηj}, 1 ≤ i ≤ j ≤ K,
∑
k

nk = n′. (9)

Therefore, nk = n ln(K + 1)
∑

k max{vk,ϵ2/3}∑
k max{v̂k,ηk} max{v̂k, ηk}. Now, we can check that

nk = O(n ln(K + 1)max{vk, ϵ2/3}).
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To see it, when vk ≥ O(ϵ2/3), the above nk ensures ηk ≤ O(ϵ2/3), implying that max{v̂k, ηk} =
max{v̂k, ϵ2/3}. Similarly, when vk ≤ O(ϵ2/3), nk = O(n ln(K + 1)ϵ2/3) ensures ηk = O(ϵ2/3)
and therefore max{v̂k, ηk} = max{v̂k, ϵ2/3}. As a result, this nk is the solution of Eq. (9).

Finally, on the event E , the above n′, up to a universal constant, satisfies that ϵk ≤ ϵ/2, implying
that P(N ≥ n′, E) ≤ δ/8. Thus, Algorithm 1 is a (n′, ϵ, δ)-certified algorithm and we complete the
proof.

Proof of Theorem 5.3

Proof. Recall that the loss is bounded in [0, 1] by Theorem 4.1. Given a super-Gaussian loss
distribution, the probability mass of Ak is

µk = P(Ak) ≥ A

∫ k/K

(k−1)/K

exp(−z2/σ2)dz ≥ A

∫ k/K

(k−1)/K

exp(−z/σ2)dz

= Aσ2e−k/(Kσ2)(e1/(Kσ2) − 1) ≥ A

K
e−k/(Kσ2).

For an equally-spaced partition, we have vk ≤ 1/K2. Therefore, when K ≤ ϵ−1/3, Theorem 5.1 is
satisfied if

µk ≥ ln(K + 1)/K2, k = 1, . . . ,K

which is equivalent to

K/ ln(K + 1) ≥ exp{1/σ2}/A. (10)

Therefore, when K ≤ ϵ−1/3 and Eq. (10) holds, Theorem 5.2 implies

ρ = O

(
ln(K + 1)

K∑
k=1

max{vk, ϵ2/3}
)

= O(ln(K + 1)/K),

thus completes the proof.

B TECHNICAL LEMMAS

Lemma B.1 (Hoeffding Inequality (Boucheron et al., 2013, Theorem 2.8)). For independent obser-
vations X1, . . . , Xn such that ai ≤ Xi ≤ bi almost surely (a.s.), let Sn =

∑n
i=1{Xi − E(Xi)}, we

have that

P(Sn ≥ t) ≤ exp

{
−2t2∑n

i=1(bi − ai)2

}
.

Lemma B.2 (Bernstein Inequality (Boucheron et al., 2013, Equation 2.10)). Assume indepen-
dent observations X1, . . . , Xn such that Xi ≤ b a.s.. Let Sn =

∑n
i=1{Xi − E(Xi)} and

vn =
∑n

i=1 var(Xi), we have

P(Sn ≥ t) ≤ exp

{
−t2

2(vn + bt/3)

}
,

or equivalently,

P
(
Sn ≥

b ln(1/δ)

3
+

1

3

√
b2 ln2(1/δ) + 18vn ln(1/δ)

)
≤ δ.

Lemma B.3 (Adaptive Hoeffding Inequality (Zhao et al., 2016, Theorem 1)). Let ϵn =√
2 ln(log(n)+1)+ln(4/δ)

n . For independent observations X1, . . . , Xn such that 0 ≤ Xi ≤ 1 a.s.,
let Sn = n−1

∑n
i=1{Xi − E(Xi)}. Then, we have

P({∃n, Sn/n ≥ ϵn}) ≤ δ/2.
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Lemma B.4 (Maximal Form of Bernstein Inequality (Kevei & Mason, 2011)). Assume inde-
pendent observations X1, . . . , Xn such that Xi ≤ b a.s.. Let Sn =

∑n
i=1{Xi − E(Xi)} and

vn =
∑n

i=1 var(Xi), we have

P( max
1≤i≤n

Si ≥ t) ≤ exp

{
−t2

2(vn + bt/3)

}
,

or equivalently,

P
(

max
1≤i≤n

Si ≥
b ln(1/δ)

3
+

1

3

√
b2 ln2(1/δ) + 18vn ln(1/δ)

)
≤ δ.

Lemma B.5 (Adaptive Bernstein Inequality ). Let un = 2 ln(log(n) + 1) + ln(4/δ) and ϵn =

(bun +
√
b2u2

n + 18v2nun)/(3n). For independent observations X1, . . . , Xn such that 0 ≤ Xi ≤ 1
a.s., let Sn =

∑n
i=1{Xi − E(Xi)}. Then, we have

P({∃n, Sn/n ≥ ϵn}) ≤ δ/2.

Proof. Applying Lemma B.4 yields

P({∃n, Sn/n ≥ ϵn}) = P(∪∞n=1{Sn ≥ nϵn})
= P(∪∞l=0 ∪2l≤n≤2l+1 {Sn ≥ nϵn})
≤ P(∪∞l=0{ max

2l≤n≤2l+1
Sn ≥ 2lϵ2l})

≤
∞∑
l=0

P
[

max
1≤n≤2l+1

Sn ≥ 2lϵ2l

]

≤
∞∑
l=0

e−u
2l =

∞∑
l=0

(l + 1)−2δ/4 ≤ δ/2,

thus completes the proof.

C MISSING ALGORITHMS

Algorithm 3 Vanilla Online Evaluation (Seq)

Require: The estimation error level ϵ, failure probability δ, and test dataset D
1: Random shuffle D
2: for Round n = 1, 2, . . . do
3: Let ϵn ←

√
2 ln(log(n)+1)+ln(4/δ)

n

4: Evaluate the loss Zn ← ℓ(f(Xn), Yn)

5: Let R̂n ← n−1
∑n

i=1 Zi

6: if ϵn ≤ ϵ then
7: Terminate and return R̂n, ϵn
8: end if
9: end for

Output: The estimated loss R̂n, confidence interval radius ϵn, and number of evaluated points n

D EXPERIMENT DETAILS AND FURTHER EXPERIMENTS

Compute Resources

All experiments are conducted on a computing cluster equipped with 8 NVIDIA A100 GPUs, each
with 80 GB of HBM2e memory. While the GPUs are primarily used to serve the evaluated models,
our algorithm is lightweight and can be efficiently run on CPUs with minimal memory requirements.

Models. We categorize the HuggingFace links or endpoint specification of all the models used in the
evaluation as follows.
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Table 1: HuggingFace links or endpoint specifications of evaluated models.

Model Endpoint

GPT-4o https://platform.openai.com/docs/models/gpt-4o, gpt-4o-2024-11-20 endpoint
Llama3-8B https://huggingface.co/meta-llama/Meta-Llama-3-8B
Mistral-7B https://huggingface.co/mistralai/Mistral-7B-v0.3
Qwen2-7B https://huggingface.co/Qwen/Qwen2-7B

Table 2: Saving ratio ρ by ‘Subset’ and Cer-Eval for various ϵ values (Scenario 2).

ϵ 0.0177 0.0210 0.0255 0.0310 0.0377 0.0458 0.0557 0.0677 0.0821 0.0998

Subset ρ 0.048 0.322 0.541 0.689 0.789 0.857 0.903 0.934 0.955 0.969
Cer-Eval ρ 0.0004 0.611 0.719 0.794 0.849 0.888 0.916 0.937 0.954 0.969

Comparison with evaluating a randomly sampled subset. We compare Cer-Eval to a new baseline,
Subset, which randomly samples η proportion of the test points and reports the average score and
error level. The saving ratio is defined as ρ = 1− η. Below, we present results comparing Subset
and Cer-Eval under the same simulation settings as our Scenarios 2 (easy-to-distinguish) and 3
(hard-to-distinguish). We summarize how the achieved error level ϵ corresponds to the savings ratio ρ
in Tables 2 and 3.

Cer-Eval outperforms the Subset baseline in Scenario 2 due to its ability to adaptively explore the
variance structure of the dataset and model. However, in Scenario 3, where a benign partition is
difficult to identify, Cer-Eval may need to evaluate more points than Subset, a cost for providing an
any-time valid guarantee.

Break-even Analysis. Cer-Eval is mostly recommended when the user tolerates a moderate to larger
estimation error level or when the test dataset is large. It indicates that evaluating the full dataset
may not be necessary, thus an adaptive algorithm like Cer-Eval can reduce the evaluation cost by
early stopping. Additionally, Cer-Eval is especially effective when the test dataset exhibits a benign
group structure, such as difficulty levels in the MATH dataset. Theorem 5.2 implies that Cer-Eval can
exploit this structure to reduce estimation variance and improve evaluation efficiency.

Formally, Static Evaluation (current practice that evaluates all n points) achieves an error level
of ϵ1 =

√
ln(1/δ)/(2n), where δ is the failure probability. Seq achieves an error level of ϵ2 =√

[ln(1/δ) + ln ln(n)]/(2n) after all n points are evaluated. Seq can early stop before evaluating the
full dataset for any error level ϵ > ϵ2. We note that ϵ1 and ϵ2 are close in practice as they differ only
by an iterated logarithm term ln ln(n). Now, our proposed Cer-Eval saves cost through both early
stopping and partitioning. In the worst case where no benign partition is available, Cer-Eval matches
Seq’s performance. That said, Cer-Eval is guaranteed to be more efficient when the desired error
level ϵ is larger than ϵ2. Furthermore, for ϵ < ϵ2, Cer-Eval may still save test sample size compared
to static evaluation, and in the worst case achieves only a slightly larger error level ϵ2 (instead of ϵ1).

Ablation study for the influence on embedding models

We consider three embedding models: a pre-trained BERT, or text-embedding-3-large and text-
embedding-ada-002 model from OpenAI. With the same setting as the real-world experiments
performed in Section 6, we report the saving ratios for evaluating four models on three datasets
in Figures 6, 7 and 8. Also, the empirical failure probability is zero for all settings. We find that
using different embedding models leads to highly similar results. Nevertheless, it does not imply
that embedding model is unimportant. In contrary, the efficiency of Cer-Eval heavily depends on the
goodness of partition. This is confirmed by our simulation studies, where Cer-Eval performs better in
the easy-to-distinguish scenario. For these datasets, we conjecture that the proposed partition method,
Algorithm 2, does not extract enough information from the embedding vectors. We anticipate a

Table 3: Saving ratio ρ by ‘Subset’ and Cer-Eval for various ϵ values (Scenario 3).

ϵ 0.0177 0.0210 0.0255 0.0310 0.0377 0.0458 0.0557 0.0677 0.0821 0.0998

Subset ρ 0.048 0.322 0.541 0.689 0.789 0.857 0.903 0.934 0.955 0.969
Cer-Eval ρ 0.0006 0.28 0.510 0.665 0.770 0.843 0.890 0.926 0.946 0.963
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Figure 6: Percentage of test points saved by the proposed algorithms compared to Base when
evaluating models on the MMLU dataset.

higher saving ratio if more informative embeddings of the queries are available, or a more effective
partition algorithm is deployed. One potential direction is to use the intrinsic attributes of queries as
embedding vectors, such as the one used in (Polo et al., 2025).

Additional Models to Verify Test Scaling Law We plot the accuracy v.s. test sample size curve for
over 200 models on MATH dataset, as shown in Figure 9

Choice of partition numbers and partition subroutines A key advantage of Cer-Eval is that the
partition number K can be automatically determined by Algorithm 2, eliminating the need for manual
selection or fine-tuning. For example, our real-world experiments used adaptive partition without
fine-tuning K. However, users can opt for a fixed partition with a user-specified K. In this case, our
simulations show that an improper K may reduce evaluation efficiency, requiring more test points to
maintain the same error and confidence level. Thus, we recommend practitioners to run Algorithm 1
with the adaptive partition subroutine by default.

As for partition subroutines, technically speaking, any classification method can be used, though
partition quality affects evaluation efficiency. We chose k-NN for its simplicity and intuitive appeal –
test points close in the representation space should yield similar performance. We tried k-NN with
various values of k, including k = ln(n) and k = n−α for some α > 0. Compared to 1-NN, we
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Figure 7: Percentage of test points saved by the proposed algorithms compared to Base when
evaluating models on the AlpacaEval dataset.

found that these choices degraded evaluation efficiency, especially on imbalanced datasets. This
is likely because k-NN is susceptible to imbalanced data: a large k may lead to a biased classifier
that favors the majority class. We thus chose k = 1 in our experiments to mitigate bias and reduce
computational complexity.

In addition, the partition can be done on other representation of data, not only text embedding.
Representation quality affects partition effectiveness and therefore evaluation efficiency. We chose text
embeddings for clarity and accessibility, as they are available from open-source models. A promising
future direction is to explore alternative features that better capture performance complexity.

E IMPACT STATEMENT

Our work enables a certifiable and efficient assessment of various aspects of LLMs, including their
capabilities, robustness to adversarial prompts, and alignment with human values. We therefore
anticipate a positive societal impact, as timely and rigorous evaluation plays a crucial role in enhancing
AI responsibility, mitigating potential risks, and ensuring that AI technologies align with ethical and
safety standards.
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Figure 8: Percentage of test points saved by the proposed algorithms compared to Base when
evaluating models on the MATH dataset.

F THE USE OF LARGE LANGUAGE MODELS STATEMENT

Large language models were used solely as a writing aid. Their use was limited to minor language
editing, such as correcting grammar, improving clarity, and polishing the phrasing, without altering
the substantive content or analysis of the article.
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Figure 9: Number of needed test points v.s. model accuracy when evaluating models from multiple
families using Cer-Eval, with estimation error level ϵ = 0.07 and failure probability δ = 0.05.
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