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Abstract

Structural topology optimization (TO) is central to engineering design but remains
computationally intensive due to complex physics and hard constraints. Existing
deep-learning methods are limited to fixed square grids, a few hand-coded bound-
ary conditions, and post-hoc optimization, preventing general deployment. We
introduce Optimize Any Topology (OAT), a foundation-model framework that
directly predicts minimum-compliance layouts for arbitrary aspect ratios, reso-
lutions, volume fractions, loads, and fixtures. OAT combines a resolution- and
shape-agnostic autoencoder with an implicit neural-field decoder and a conditional
latent-diffusion model trained on OpenTO, a new corpus of 2.2 million optimized
structures covering 2 million unique boundary-condition configurations. On four
public benchmarks and two challenging unseen tests, OAT lowers mean compliance
up to 90% relative to the best prior models and delivers sub-1 second inference on a
single GPU across resolutions from 64 × 64 to 256 x 256 and aspect ratios as high
as 10:1. These results establish OAT as a general, fast, and resolution-free frame-
work for physics-aware topology optimization and provide a large-scale dataset to
spur further research in generative modeling for inverse design. Code & data can
be found at https://github.com/ahnobari/OptimizeAnyTopology.

1 Introduction

Foundation models—large models trained on broad data that can be adapted to many downstream
tasks—have transformed modern AI. They underpin advances in vision, language, and multimodal
reasoning, powering systems such as large language models (LLMs) and image generators that now
drive progress across domains, including scientific breakthroughs in protein folding [21] and drug
discovery [16]. In contrast, engineering design remains dominated by inverse problems, where the
goal is to infer a design that meets stated constraints while maximizing performance objectives.
Designing a bridge, for example, may require allocating a fixed mass of steel so the finished
span withstands specified loads with required stiffness. Because such performance maps are highly
nonlinear, data-intensive, and constraint-sensitive, the field continues to rely on direct optimization [6]
or narrowly scoped deep-learning surrogates and generative models [38]. Limited datasets and the
need for high precision have so far hindered the emergence of foundation models for engineering
design [38].
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Structural topology optimization (TO) exemplifies these challenges [49] and presents a good testbed
for developing engineering foundation models. TO seeks the optimal material distribution within a
design domain to maximize physics-based performance metrics such as stiffness or strength. Solving
TO conventionally involves repeated Finite Element Analysis (FEA) and gradient-based updates until
convergence [3, 41, 50]. This process is computationally expensive and must be entirely restarted
when boundary conditions, geometry, or load cases change, limiting its practicality in interactive or
large-scale design settings. Solving the underlying PDEs on arbitrary shapes and boundary conditions
also yields a huge, non-convex search space, where tiny design changes can trigger failure; high
precision is therefore essential.

To alleviate these costs, deep learning methods have emerged to accelerate or replace op-
timization [38, 49]. While comprehensive reviews detail this expansive field [49, 62],

Design Domain

Fixed in Both X and Y

Fixed in Y

Fi
xe

d 
in

 X

Boundary Conditions Forces

Target Volume Physics PDE

Optimize 
Physics-Based 

Objective

Optimized 
Material Distribution

Figure 1: In TO, the objective is to distribute material in
a domain (a density field ρ(x)) to obtain optimal physics-
based performance. Above, we show an example of TO
for maximum stiffness, given boundary conditions of
material supports and forces applied.

our focus is on the evolution of models that
directly predict near-optimal topologies from
problem specifications (boundary conditions,
forces, volume fraction) [13, 14, 20, 30, 33–
35]. By directly predicting optimal topolo-
gies, these aim to substitute the entire opti-
mization process with a rapid predictive frame-
work. These typically employ Deep Genera-
tive Models (DGMs)—such as Variational Au-
toencoders (VAEs), Generative Adversarial Net-
works (GANs) [2, 26, 32, 37, 48, 61, 63], and
more recently Denoising Diffusion Probabilistic
Models (DDPMs) [13, 14, 30]—to frame TO as
a conditional generation task. Despite numerous
innovations, these direct prediction approaches
have faced significant criticism by a few TO
researchers for their limitations [34, 35, 62].

The most significant issue, termed the generalizability challenge, is characterized by the inability of
current models to manage arbitrary boundary conditions and forces [62]. Current direct prediction
methods are trained on finite, often small, sets of predefined problem configurations (e.g., a maximum
of 210 unique setups [35]). Consequently, they fail to generalize to unseen or more complex settings,
fundamentally limiting their practical utility. Key limitations include: 1) Restricted domain geometry,
often confined to fixed square grids [13, 14, 30, 33], rendering many models limited proofs-of-
concept. 2) Simplistic problem representations, frequently adapting FEA fields as images for standard
vision models (e.g., CNNs) [34]. While recent works [34, 64] show promise in addressing some of
these domain and representation issues, a more critical limitation persists: 3) Poor generalizability.
Existing models are trained on narrow, controlled problem sets (e.g., only 42 boundary condition
configurations [14, 30, 34]) and fail on unseen conditions, considered a major hurdle by critics [62].

We introduce the Optimize Any Topology (OAT) framework, a pre-trained latent diffusion model
for general structural TO focused on minimum compliance. OAT represents the first attempt to
simultaneously address the representation and shape/resolution limitations noted in prior work, while
also tackling the generalizability challenge. It is positioned as a foundational step towards TO models
capable of handling any arbitrary boundary conditions and domain shape/resolution. Our foundational
scope refers specifically to the model’s ability to generalize across arbitrary boundary conditions,
forces, and resolutions—capabilities that have not been demonstrated in prior topology optimization
research. We emphasize that OAT is focused on the minimum-compliance problem under linear
elasticity and does not encompass all forms of physics-driven topology optimization. Thus, rather
than claiming a universal foundation model for physics-based design, we present OAT as the first
step toward such general frameworks: a foundation model that captures the minimum compliance
problem in its most general structural and geometric form.

The primary contributions of this work are as follows: 1) OpenTO Dataset: We introduce OpenTO,
the largest and first general-purpose topology optimization dataset, comprising 2.2 million optimized
structures with fully randomized boundary conditions, loads, shapes, and resolutions. OpenTO
establishes a scalable foundation for data-driven research in physics-based structural design. 2)
OAT Framework: We propose Optimize Any Topology (OAT), the first deep learning framework
capable of addressing the general topology optimization problem—handling arbitrary boundary
conditions and resolutions within a single model. 3) State-of-the-Art Performance: Through extensive
experiments, we demonstrate that OAT achieves up to 10x lower compliance error than prior models
on established benchmarks, outperforming all existing architectures even without post-optimization
refinement. It also performs better than existing methods on the foundational dataset of OpenTO. 4)
Scalable Inference: We show that OAT achieves sub-second inference on a single GPU and scales
efficiently to higher resolutions, maintaining nearly constant inference time from 64 x 64 to 256 x 256
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grids—where prior methods experience severe slowdowns—thus enabling near real-time topology
generation across diverse design problems.

2 Preliminaries

This section introduces the preliminaries of topology optimization and then examines the challenges
and criticisms leveled towards deep learning approaches for TO.

2.1 Topology Optimization

Structural Topology Optimization (TO) is the process of determining the optimal distribution of a
limited amount of material within a defined design space to maximize (or minimize) specific physics-
based performance metrics. Let Ω ⊂ Rd represent a bounded design domain with boundary Γ = ∂Ω.
The system’s physical behavior is described by a state field u : Ω→ Rm (e.g., displacement), which
is the solution to a governing partial differential equation (PDE). For simplicity, considering only
Dirichlet boundary conditions, this PDE takes the form:

L
(
ρ(x), u(x)

)
= f(x) in Ω, u(x) = g(x) on D ⊂ Ω (1)

Here, ρ(x) : Ω→ [0, 1] is the material density at each point x, acting as the design variable we seek
to optimize. L is a differential operator representing the underlying physics (e.g., elasticity), f(x)
represents applied forces or sources, and g(x) prescribes values for u(x) on a portion of the domain
D (which can be on the boundary Γ or within Ω). The general continuous TO problem is to find
the material density distribution ρ(x) that minimizes a performance objective J

(
u(ρ), ρ

)
, such as

structural compliance (inverse of stiffness) or thermal resistance. This is subject to the governing
PDE (Eq. 6) and a constraint on the total material volume Vmax:

min
ρ(·)

J
(
u(ρ), ρ

)
s.t. L

(
ρ, u

)
= f(x), u(x) = g(x) on D ,

∫
Ω

ρdx ≤ Vmax. (2)

This process and the overall problem are depicted in Figure 1. Analytical solutions to the PDE in
Eq. 6 are generally unobtainable for complex geometries and material distributions. These practical
difficulties necessitate a numerical approach to TO. This is usually done by discretizing the domain
into a mesh and solving the problem using Finite Element Analysis (FEA). In this paper, we focus on a
common type of topology optimization problem, the minimum compliance TO. The goal in minimum
compliance TO is to distribute material to minimize compliance (i.e., maximize stiffness) given
some boundary conditions and forces (Figure 1). We detail the underlying physics and optimization
scheme for minimum compliance in Appendix A. Despite the cost and complexities of conventional
optimization, optimizers such as SIMP [3, 41] are generalizable, meaning that the domain Ω can have
any arbitrary shape, loads may be applied at any node of the FEA mesh and in any direction/magnitude,
and the boundary conditions may also be applied in any location and for any direction. As such, a
general framework should, in theory, be able to handle these generalities. This, however, proves to be
rather difficult in deep learning frameworks built for TO.

2.2 Diffusion Models

Denoising Diffusion Probabilistic Models (DDPMs) [18] are a class of generative models that learn
to synthesize data by reversing a noise corruption process. Given a data sample x0 from a distribution
q(x0), a fixed forward diffusion process gradually adds Gaussian noise over T discrete time steps.
This process can be characterized by xt =

√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I) is random

noise, and ᾱt is a predefined noise schedule that decreases from ᾱ0 ≈ 1 to ᾱT ≈ 0, such that xT is
approximately distributed as N (0, I). Typically, a neural network, ϵθ(xt, t), is trained to reverse this
process by predicting the noise component ϵ added at time step t to the noisy sample xt. The standard
training objective, derived from a variational lower bound on the data log-likelihood, simplifies to
minimizing the mean squared error between the true and predicted noise:

LDDPM = Ex0,t,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
. (3)

Once trained, samples are generated by iteratively applying the learned reverse transition pθ(xt−1|xt),
starting from xT ∼ N (0, I). Alternative parameterizations for the reverse process exist. For instance,
the model can be trained to predict a “velocity” term vθ(xt, t), such as v =

√
ᾱtϵ −

√
1− ᾱtx0,

which can offer benefits in training stability, uniform signal to noise ratio and sample quality [22, 44].
The objective then becomes L(v) = Ex0,t,ϵ

[
||vθ(xt, t)− v||2

]
.
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For more efficient sampling, Denoising Diffusion Implicit Models (DDIMs) [53] introduce a non-
Markovian reverse process that allows for deterministic generation and significantly fewer sampling
steps. DDIMs achieve this by deriving an update rule that directly predicts an estimate of x0 (or uses
ϵθ) to take larger, deterministic steps towards the clean data sample. In this way, DDIMs enable fewer
sampling steps while retaining quality – crucial in the TO context, where the primary benefit of deep
learning is solution speed. In our work, we use the “velocity” term formulation and DDIM rather
than the vanilla DDPM objective.

3 Related Works

We now discuss prior works closely related to our framework, building upon the established TO
background and our paper’s motivation.

Diffusion Models and Resolution Free Variants. Originating with Sohl-Dickstein et al. [52],
diffusion models [54–56] are now state-of-the-art for conditional and unconditional image synthe-
sis [10, 19, 31, 42, 43], offering stable training over GANs [15] and utility for inverse problems [57],
an important feature for TO. Their iterative nature means slow inference, a drawback partially ad-
dressed by faster sampling [24, 29, 45]. Nevertheless, pixel-space diffusion remains intensive for
high resolutions, limiting prior TO works [34]; latent space compression offers a path to mitigate
these issues. Our work aligns with Latent Diffusion Models (LDMs) [40], which perform diffusion
in a compressed latent space typically learned via autoencoders [51, 59]. Critical to this paradigm is
the nature of the latent representation upon which the diffusion model operates. Most conventional
autoencoders work on fixed-resolution/shape images/domains, unsuitable for TO’s need for arbitrary
aspect ratios and resolutions, thus motivating resolution-free latent representations. Recent efforts
extend diffusion to arbitrary resolutions [5, 8, 12, 23, 27]. One such approach performs diffusion in
infinite-dimensional continuous spaces using neural operators [5, 12, 23, 25, 27], offering training
scalability but slow high-resolution inference as all cells/pixels must be sampled in inference. Alter-
natively, resolution-free autoencoders with finite-dimensional latents [8] preserve LDM efficiency,
often using Implicit Neural Representations (INRs) for decoding arbitrary resolutions. Given INRs’
promise in TO [34, 35], we are inspired by Image Neural Field Diffusion (INFD) [8]. INFD introduces
Convolutional Local Image Functions (CLIFs) for a high-quality, resolution-free autoencoder with
finite latents, relaxing INR’s pixel-independence. Our approach extends this idea beyond variable
resolution to arbitrary aspect ratios and domain geometries, integrating a conditional latent diffusion
model tailored for physics-based topology optimization.

Representations of TO Problems. Many prior DL TO works used image-based boundary con-
ditions and force representations [14, 20, 30, 33]. These often require FEA simulations, limiting
FEA-free inference, or offer lower performance if FEA-free [14], and invariably suffer from res-
olution/shape dependence. Nobari et al. [34] proposed the Boundary Point Order-invariant MLP
(BPOM), a point-cloud boundary condition representation that matches FEA-based input performance
without requiring FEA simulation (See in Figure 2) and mitigating the resolution/shape dependence
issues. We adopt BPOM for its generalizability and efficiency.

4 Methodology

Our method, OAT, a Latent Diffusion Model (LDM) [40], first employs an autoencoder to map
topologies to fixed-dimension latents (decoded by a neural field for arbitrary resolution), then a con-
ditional diffusion model generates topologies from these latents based on TO problem specifications
(Figure 2; Appendix F for implementation details).

4.1 Resolution- and Shape-Agnostic Autoencoder with Neural Fields.

To handle the variability of mixed resolutions and aspect ratios (Fig. 2), we employ an autoencoder
with a neural field renderer, inspired by INFD [8]. The encoder E maps topology T to latent
z = E(T ); decoder D converts z to a feature tensor ϕ = D(z); and renderer R, extending the CLIF
concept [8], reconstructs T̃ = R(ϕ, c, s) using ϕ, coordinates c, and cell/pixel sizes s.

Scalable Training and Inference. Inspired by VQ-VAE [60] in LDMs [40], our autoencoder
pads and resizes variable topologies to fixed 256× 256 inputs for encoder E (Fig. 2). Decoder D
then generates fixed resolution feature tensor ϕ. A key challenge in TO is high-frequency changes
with small changes in boundary conditions. To address this, we employ a convolutional renderer
R (unlike point-wise models [7, 34]) for better high-frequency details and scale consistency [8].
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Figure 2: OAT generative framework overview. A resolution-free autoencoder encodes variable OpenTO dataset
topologies into a fixed-resolution latent space. Latent diffusion models (LDMs) then conditionally generate
topologies. Problem specifications, including forces and boundary conditions represented as point clouds, are
processed by BPOM models and MLPs to form a fixed-size embedding to condition the LDM.

R’s local operator (inputs: nearest ϕ pixel, coordinates, cell sizes; Fig. 2) requires connected patch
sampling given its convolutional nature. Thus, scalable training is possible with random patches
from non-padding areas (Fig. 2). High-resolution inference is also possible by stenciled, overlapping
padded tiles (padding > R’s receptive field) when memory is limited.

Training Objective. This neural field design yields a resolution and shape-agnostic autoencoder that
gives us fixed-resolution latent representations. We train this autoencoder to minimize reconstruction
error. For a ground truth patch or topology TGT (with pixel positions c and cell sizes s) and its
reconstruction T̃ = R(ϕ, c, s), the objective is to minimize L1 norm, which has proven more
effective for reconstruction in prior works [7, 8]: LAE = ∥T̃ − TGT∥1.

4.2 Problem Representation

In topology optimization, a key challenge is to represent the underlying topology optimization
problem, which includes domain shape, boundary conditions, and loads. This is difficult, as the
number and position of these problem settings change in every configuration. We represent the TO
problem (Eq. 8) by encoding its primary components using different resolution and shape-independent
encoders. The problem domain, Ω (rectangular grid with regular cells in our dataset), is described by
its aspect ratio a ∈ R2 and its resolution via cell/pixel size s (Fig. 2). The target material volume,
Vmax, is represented as a scalar volume fraction V F = Vmax/VΩ, which indicates the ratio of allowed
material to total volume of the domain VΩ. The more complex components, forces, and boundary
conditions are handled as point clouds. Boundary conditions, which fix specific degrees of freedom,
are represented as a point set Sboundary with binary features indicating directional fixture (Fig. 2).
Similarly, applied forces are a point set Sforce with 2D vector features denoting load magnitude and
direction (Fig. 2). As these sets are order invariant, we employ the Boundary Point Order-invariant
MLP (BPOM) approach [34] to learn the embeddings of Sboundary and Sforce. The complete latent
problem embedding, P , is a concatenation of five embeddings from distinct neural networks:

P = concat(BPOMb(Sboundary),BPOMf(Sforce),MLPvf(V F ),MLPcell(s),MLPratio(a)), (4)

where BPOMb and BPOMf embed boundary conditions and forces, respectively, while Multi-Layer
Perceptrons (MLPs) embed the volume fraction (V F ), cell size (s), and aspect ratio (a). This
construction yields a fixed-size embedding P capable of representing TO problems with diverse
domain shapes, resolutions, and arbitrary boundary conditions and forces. For brevity, we denote this
entire encoding process as P = LP(P̂ ), where P̂ encompasses all raw problem inputs.
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4.3 Latent Diffusion and Classifier-Free Guidance

Having trained the autoencoder, we obtain latent representations z = E(T ) for each topology T .
Furthermore, the TO problem is encoded into a latent problem embedding P = LP(P̂ ). We then
train our diffusion model to predict the ‘velocity’ conditioned on the problem definition, P̂ , and train
it with the following modified diffusion objective:

LLDM = Ez∼E(T ),t,ϵ∼N (0,I)

[∥∥∥v − vθ

(
zt, t | P̂

)∥∥∥2] . (5)

where v =
√
ᾱtϵ −

√
1− ᾱtz. To enable classifier-free guidance [17], the problem inputs P̂ are

omitted for 50% of training samples, allowing the model to learn both conditional and unconditional
denoising. This allows us to control the influence of conditioning during inference as described by Ho
and Salimans [17]. Classifier-free guidance can be applied in our approach by adjusting the denoising
velocity. Normally, in conditional denoising, one would use the predicted velocity at time step t,
vθ(zt, t | P ), which predicts the velocity for the current noisy sample zt given problem embedding P .
When applying classifier-free guidance we can also compute the un-conditional denoising, namely
vθ(zt, t | ∅), and rather than just using vθ(zt, t | P ), we measure the shift in velocity direction as
a result of conditioning, vθ(zt, t | P ) − vθ(zt, t | ∅) and amplify this shift by an over-relaxation
factor, ω, leading to a final denoising velocity v̂θ(zt, t, P ) = vθ(zt, t | ∅) + w

(
vθ(zt, t |

P )− vθ(zt, t,∅)
)

, which can be used in place of vθ(zt, t | P ), mimicking what Ho and Salimans
[17] propose for classifier-free guidance.

4.4 Post Generation Optimizer Refinement.

Despite the ever-increasing quality of DGM-generated solutions and other deep learning methods
for TO, we observe that these models often lack precision in many cases and can lead to failed
designs. To address this, we follow the few-step direct optimization approach commonly used in
literature [14, 34]. A few optimization steps (5-10) of SIMP (small compared to 200-500 iterations for
full optimization) are equivalent to a local search operation and are applied to topologies synthesized
by OAT to improve the accuracy of the final samples. We also incorporate this into our framework;
however, as we discuss in our experiments, even without any direct optimization, OAT outperforms
other models that require optimization steps.

4.5 OpenTO Dataset

Existing datasets in DL for TO face four challenges that we have overcome in creating the OpenTO
dataset: 1) Most existing datasets are limited to one specific domain shape (square) and one resolution
(64 x 64), with the most expansive dataset including five different shapes and resolutions [34]; 2)
Most existing works are limited to a small set of pre-defined boundary conditions (a maximum of 42
in 2D dataset [34]); 3) Existing datasets typically feature only a single applied force; 4) All existing
datasets only apply forces and boundary conditions at the borders of the design space (boundary of
domain), and lack interior forcing and fixtures.

These limitations restrict the development of foundation models and are a key factor behind the
generalizability challenges. Thus, we see this as a major gap and introduce the largest open-source
Topology Optimization (OpenTO) dataset for general purpose topology optimization with 2.194M
samples. To enable a foundational scale of data, OpenTO comprises procedurally-created random
TO problems, running a SIMP solver, and obtaining optimal topologies from the solver. The data
generation is done such that OpenTO overcomes the aforementioned limitations of prior works. The
main features of what makes OpenTO effective are: 1) Design domains in OpenTO are fully random
in both resolution and shape with aspect ratios ranging from very narrow (10 to 1), to square (1 to
1), and pixel/cell size ranging from 1/64 to 1/1024, covering the exhaustive range of rectangular
domain shapes and resolution in most practical real-world applications of TO in 2D; 2) OpenTO
includes randomly sampled boundary conditions, including interior boundary condition point, with
every sample having a unique boundary condition configuration; 3) OpenTO includes fully random
forces including interior forces, and configurations with as many as 4000 loads (see Appendix D on
distributed forces) in one configuration. The exhaustive nature of OpenTO makes it the first dataset
to tackle the general TO problem and a starting point for the development of foundation models for
TO. OpenTO includes 5,000 test samples, with a fully randomized configuration not in the main
training data for testing the performance of models in a general problem setting. The full details of
the procedural data generation can be found in Appendix D.
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Finally, OpenTO additionally includes the prior datasets developed in limited settings (194,000
samples from Nobari et al. [34]). Overall, OpenTO includes 2.194M samples of topologies, with
894,000 samples being labeled (with defined P̂ ) and the rest only including the topology. We use all
samples to train our autoencoder, and only use the 894,000 samples with labels to train our LDM.

5 Experiments

In this section, we perform experiments to showcase OAT’s increased performance compared to prior
works trained on the smaller, limited datasets. This constitutes the first truly general TO benchmark
on fully randomized problems. Before detailing the experiments, we will first briefly describe the
evaluation metrics we use to measure the performance of each model.

Evaluation Metrics: As we described in Section 2.1, TO involves both a compliance objective
and a volume fraction constraint. Thus, we measure the performance of models with respect to these
two requirements of the TO problem. First, to measure how well the models perform in compliance
minimization, we measure compliance error (CE), which is calculated by subtracting the compliance
of a generated sample from the compliance of the SIMP-optimized solution for the corresponding
problem, then normalizing by the SIMP-optimized compliance value. Since the mean compliance
error tends to be dominated by just a few outlier samples, we also report the median compliance error.
We also report mean volume fraction error (VFE), which quantifies the absolute error between the
generated topology’s actual volume fraction and the target volume fraction for the given problem.
This benchmarking is standard practice for DGMs in TO [14, 30, 33, 34].

Table 1: Quantitative evaluation on 64 x 64
datasets. All models were only trained on 64
x 64 data, except OAT, which is trained on the
OpenTO dataset. w/ G: using a classifier and
regression guidance. CE: Compliance Error.
VFE: Volume Fraction Error. + 5 and + 10
indicate 5 and 10 steps of post-generation
direct optimization. OAT, without any post-
generation optimization, outperforms NITO
+ 10, the SOTA model that also uses 10 steps
of optimization.

Model CE % CE % Med VFE %

TopologyGAN [33] 48.51 2.06 11.87
cDDPM [14] 60.79 3.15 1.72
TopoDiff [34] 3.23 0.45 1.14
TopoDiff w/ G [34] 2.59 0.49 1.18
DOM w/o TA [14] 13.61 1.79 1.86
DOM w/ TA [14] 4.44 0.74 0.74
NITO [34] 8.13 0.47 1.40
OAT (Ours) 1.74 0.32 0.25
NITO + 5 [34] 0.30 0.12 0.40
TopoDiff + 5 [34] 3.55 0.42 0.67
TopoDiff w/ G + 5 [34] 2.24 0.44 0.69
OAT (Ours) + 5 0.22 0.041 0.39
NITO + 10 [34] 0.17 0.071 0.25
TopoDiff + 10 [34] 1.38 0.33 0.45
TopoDiff w/ G + 10 [34] 1.05 0.32 0.45
OAT (Ours) + 10 0.0503 0.014 0.27

Experimental Setup. Our experiments benchmark OAT
both on existing benchmarks with limited boundary con-
ditions and on our new OpenTO test set with generalized
problem configurations. In all experiments, we train OAT
exclusively on the OpenTO dataset, and never on any
benchmark-specific data. On existing benchmarks, we
compare against the specialized existing models trained
specifically for these benchmarks and report performance
metrics as reported by the original authors. On the
OpenTO benchmark, only one prior work, NITO [34], has
the architectural generalizability to be trained on this data.
Thus, we train OAT with a combined 729.94M (672.00M
for LDM and 57.94M for AE) parameters, training the
diffusion model for 50 epochs (349,219 steps). For a fair
baseline, we train a variant of NITO for the same number
of training steps, scaled to 732M parameters to approx-
imately match OAT. For each method, we then sample
solutions for each problem and test performance with and
without direct optimization. In all experiments, OAT sam-
pling is done with 20 DDIM deterministic denoising steps
with a classifier-free guidance scale of 2.0 (as informed
by our ablation studies presented in Appendix B. We sam-
ple 10 sets of solutions for each problem and report the
average across runs.

5.1 Comparison To State of The Art

Prior works are typically limited to specific domain shapes and resolutions. We first compare the
performance of OAT with prior state-of-the-art on their own test sets [30, 33, 34, 34].

The 64 x 64 Benchmark. The most common benchmark that previous state-of-the-art models [14,
33, 33, 34] have trained on and benchmarked against is TO problems with a single force, and only 42
distinct boundary condition configurations defined on a 64 x 64 domain. We evaluate OAT on this
benchmark with no specific training or fine-tuning. We also test post-generation optimization, which
some prior works [14, 34] explore. Table 1 shows the results on the 64 x 64 benchmark. We can see
that OAT has the lowest compliance error amongst models without direct optimization, with only
1.74% error compared to 2.59% from the best model (TopoDiff with classifier guidance), showing a
32% reduction in compliance error. Notably, OAT achieves this while maintaining stricter adherence
to the target volume fraction, demonstrating superior efficiency in material usage. Table 1 shows that
when post-generation optimization is applied, OAT continues to outperform all competing methods,
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Figure 3: Left: Samples from ground truth (top), NITO (middle), and OAT (bottom) on a random OpenTO
benchmark; compliance errors shown below. NITO outputs are noisy with many gray pixels, unsuitable for real-
world use. Right: Example highlighting sensitivity in TO; slight deviations by OAT led to material misplacement
at boundary conditions, causing design failure. This highlights the precision requirements of TO.

achieving the lowest compliance and volume-fraction errors across all settings. This represents the
first instance in topology optimization where a foundation-model-based approach not only generalizes
across problem configurations but also surpasses all specialized, task-specific models trained on
restricted datasets. This establishes OAT as a major milestone in advancing generalizable, data-driven
topology optimization.

Table 2: Quantitative evaluation on 256 x
256 datasets. Same settings as 64 x 64.

Model CE % CE % Med VFE %

TopoDiff [34] 16.62 0.59 2.92
NITO [34] 9.178 0.96 1.52
OAT (Ours) 1.51 0.51 -0.17
NITO + 5 [34] 0.25 0.09 0.34
OAT (Ours) + 5 0.54 0.37 -0.12
NITO + 10 [34] 0.033 0.012 0.130
OAT (Ours) + 10 0.081 0.16 -0.0502

The 256 x 256 Benchmark. Nobari et al. [34], in their neural field-based method, expand the prior
mentioned data by solving the same problems at a much higher resolution of 256 x 256 resolution
(still the same boundary conditions and single load) and test their method and the highest performing
prior work, TopoDiff [30], on this data by retraining a larger TopoDiff on this resolution. We report
the results of our model and the reported values for NITO and TopoDiff [34], in Table 2. The trends
here are similar to the 64 x 64 data, with an even larger gap in performance, with specialized models
unable to beat the general framework of OAT in this harder high resolution benchmark. However,
we do see that NITO, which predicts blurry gray samples [34], allows more freedom for direct
optimization, thus yielding marginally better compliance errors with few-step optimization. However,
note that OAT can perform nearly on par with these costly direct optimization methods without using
any direct optimization.

Table 3: Quantitative evaluation on the com-
bined 5 shape datasets. NITO results are only
available with direct optimization in the orig-
inal work [34].

Model CE % CE % Med VFE %

NITO + 10 [34] 0.56 0.13 0.39
OAT (Ours) 1.94 0.89 0.103
OAT (Ours) + 5 0.82 0.12 0.35
OAT (Ours) + 10 0.23 0.091 0.28

Extended five shape benchmark. Aside from extending
the dataset to higher resolution, Nobari et al. [34] also
expands the data by introducing three additional domain
shapes apart from 64 x 64 and 256 x 256. The authors add
data for 64x48, 64x32, and 64x16 domains, still with the
same boundary condition configuration adapted to these
new shapes. The authors then train their model on all of
this data and report the performance on this benchmark.
Unlike prior works, which could not handle this kind of
mixed shape/resolution data, our approach, like NITO [34],
can be adapted to this data easily. Table 3 shows how a
NITO model only trained on this dataset lags behind OAT,
as we saw in prior benchmarks.

5.2 The General Benchmark

The only prior work that can handle the OpenTO dataset
is the NITO [34] model, which is a non-generative neural
field model. As such, we train NITO on OpenTO and
report the performance of the model on our fully random
benchmark. Notably, even though we train a variant of
NITO with the same number of parameters, we observe
very poor visual quality in samples generated by NITO (Figure 3). The authors of the original
work had also observed non-sharp boundaries and suggested that this issue [34] may be due to the
deterministic (non-generative) nature of their model. OAT learns this more complex benchmark
significantly better. Figure 3 shows that the quality of samples generated by OAT is more realistic.
Nonetheless, OpenTO presents a challenging benchmark that both OAT and NITO struggle with.
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Table 4: Quantitative evaluation on the fully general benchmark of TO problems. It can be seen that OAT
outperforms NITO-L, which is the only existing model that could be trained on OpenTO. * Values are reported
for the non-failure samples.

Model CE* % CE* % Med VFE* % Failure Rate %

NITO 13.14 6.43 5.3861 60.01
OAT (Ours) 8.17 3.75 -0.12 39.22
NITO + 5 5.10 1.78 1.75 23.88
OAT (Ours) + 5 6.29 2.86 0.68 22.11

NITO + 10 3.56 1.33 0.83 16.39
OAT (Ours) + 10 4.31 2.24 0.57 15.90

Table 5: Inference time scaling results of generating multiple samples and reporting the results for the best of N
samples generated by OAT on the fully random benchmark.

Best of CE* % CE* % Med VFE* % Failure Rate %

2 7.40 3.02 -0.0021 32.95
4 5.50 2.65 0.041 27.50
8 4.14 2.41 0.096 21.50

16 1.97 1.58 0.14 16.15
32 1.76 1.55 0.15 12.92
64 0.4439 1.31 0.19 11.51

Failure Study. Given the precise nature of the topology optimization problem, small changes in
material distribution can cause catastrophic failures in the outcome. This often occurs when the model
fails to place material on boundary conditions or loads precisely. The example in Figure 3 shows how
a failed topology looks very similar to the ground truth topology but has poor physical performance.

Table 6: Average inference time at 64 x 64
and 256 x 256 resolutions on an RTX 4090
GPU (10-run average). Some timings include
10 refinement iterations (marked w/ Ref).
NITO-S and NITO-L are original and larger
variants [34]; OAT timings use 20 DDIM
steps. Parentheses show an increase factor
when elements scale by 16x. SIMP times
are reported using an Intel 14-900K CPU
(RTX4090 for SIMP-GPU). All SIMP infer-
ence speeds are measured for 150 steps of
optimization (average needed to converge).

Model Parameters (M) Inference Time (s)

64 x 64 Resolution

TopoDiff 121 1.86
TopoDiff w/ G 239 4.79
DOM 121 0.82
SIMP - 3.45
SIMP GPU - 9.13
NITO-S 22 0.005
NITO-S w/ Ref 22 0.14
NITO-L 732 0.05
NITO-L w/ Ref 732 0.18
OAT (Ours) 730 0.508
OAT (Ours) w/ Ref 730 0.637

256 x 256 Resolution

TopoDiff 553 10.81 (5.812×)
TopoDiff w/ G 1092 22.04 (4.601×)
DOM 553 7.82 (9.537×)
SIMP - 69.45 (20.13×)
SIMP GPU - 68.30 (19.80×)
NITO-S 22 0.16 (32.00×)
NITO-S w/ Ref 22 2.88 (20.57×)
NITO-L 732 0.67 (13.40×)
NITO-L w/ Ref 732 3.52 (19.56×)
OAT (Ours) 730 0.51 (1.003×)
OAT (Ours) w/ Ref 730 3.28 (5.129×)

Since DGMs often focus on distribution matching but fail
to capture the precise requirements of the problem, such
failures are common in DL-based TO. In this benchmark,
we define failure as having a compliance error greater than
100%, meaning that the generated topology has a compli-
ance more than double that of the conventional optimizer.
Despite OAT frequently incurring such failures, its failure
rate is still significantly lower than NITO’s, as shown in
Table 4. Given that the topologies in most failure cases
only need small corrections, 5 to 10 steps of optimization
reduce OAT’s failure rate from 39% to only 16%. This
confirms that these imprecisions can be healed with only
a handful of optimization steps. Further improvements
to failure rate may be addressed by larger models and
datasets, as well as more advanced paradigms emerging in
foundation model training, such as reinforcement learning
techniques [36, 47] or utilizing invalid data [39].

Generalized Performance. In addition to the failure
rate, we also report the compliance and volume fraction er-
rors for each method with and without direct optimization,
measured only on the successful samples. OAT signifi-
cantly outperforms NITO in both of these physics-based
performance metrics. Notably, OAT has a compliance
error of less than 10% on the fully random general data,
which reduces to only 5% after a few steps of optimization.
Comparing this to the first models for deep learning in TO,
such as TopologyGAN [33], which had over 50% error on
the limited 64 x 64 dataset, a 5% error on fully random
data marks a significant step forward for the community
and heralds a potential paradigm shift toward foundation
models.

Inference Time Scaling Study. The high failure rate observed in Table 4 may seem stark upon
first glance; however, we believe that the generative nature of OAT provides a clear path to alleviate
this issue. With generative models like OAT, one can generate vast numbers of candidates in a short
amount of time, considering batch inference of diffusion models scales better than sampling one
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problem at a time. In Table 5, we generate multiple candidates for each problem and measure the
performance of the best amongst all samples. These results clearly show how the failure rate goes
down rapidly as more samples are evaluated, with as few as eight samples yielding only 20% failure
and a CE that is half that of the single sample run in Table 4. We believe this shows how powerful
foundational generative frameworks like OAT can be for physical AI. Moreover, this favorable scaling
with more samples clearly shows how emerging approaches around reinforcement learning [36, 46]
in generative models can be employed here to further improve the performance of OAT.

5.3 Sampling Efficiency & Inference Speed

Inference speed is one of the key advantages of deep learning over iterative optimization. It’s
important to mention that a high-level analysis of computational cost in this case would result in an
O(N) complexity for OAT, where N is the number of pixels/elements for a given sample. This is
because the non-constant cost of OAT is in the neural field renderer, which would have a complexity
of O(N). This is compared to the expensive FEA simulations at each step of the optimization,
yielding an O(N3) complexity (Solving a linear system of equations). However, given that FEA
matrices in this setting are highly sparse and the meshes in our work are structured, specialized
multi-grid solvers can, in theory, reach an O(N) efficiency [1, 28, 58]. This high-level analysis is
however, fails to realize the inference efficiency of deep learning models compared to conventional
optimization, given that it does not take into account the highly parallelized inference of deep learning
models on the GPU compared to the iterative nature of linear system solvers. This makes inference
time an overall better measure of performance in practical consumer hardware. Thus, it is important
to analyze the inference time of different approaches. Table 6 shows the results of inference speed
for different models. NITO, the only model with comparable generalizability, is faster at 64 x 64
resolution, but requires the whole network for each sample point over the entire field, meaning that it
scales poorly with resolution. In contrast, the latent diffusion model, whose autoencoder only has
40M parameters, can be sampled at high resolution much more efficiently. NITO heavily relies on
post-sampling optimization, which often contributes the majority of inference cost. Even ignoring
this optimization case, OAT scales significantly faster than NITO and generates samples much faster
at higher resolutions, despite having the same number of parameters. OAT even outperforms similar
diffusion models in inference speed. For example, compared to TopoDiff’s 100 denoising steps,
OAT’s DDIM sampling requires only 20 denoising steps, significantly accelerating inference. Most
importantly, unlike some prior diffusion models, OAT remains faster than optimization even at low
resolution, where direct optimization is relatively fast. Overall, OAT is significantly faster than SIMP,
making it an attractive option for fast design space exploration.

It is important to note that some critics of generative models for TO point to the break-even analysis
of computational cost [62]. We estimate this and discuss this concern in more detail in Appendix G.

6 Conclusion & Future Work

We have introduced Optimize Any Topology (OAT), the first foundation-model approach to structural
topology optimization that is agnostic to domain shape, aspect ratio, and resolution. Trained on the
new OPENTO corpus comprising 2.2 million optimized designs, OAT couples a resolution-free latent
auto-encoder with a conditional diffusion prior and achieves much lower mean compliance error
than prior deep-learning baselines on the canonical 64× 64 benchmark (1.7 % versus 2.59 %) while
delivering sub-second inference. Moreover, OAT is easily extendable to different TO problems and
physics, such as heatsink optimization, given OAT’s auto-encoder has great zero-shot capability for
reconstructing such topologies without re-training (see Appendix C). This clearly solidifies the case
for OAT as a foundational framework for TO. On a fully general benchmark with random boundary
conditions and resolutions, OAT attains < 10% mean compliance error. These results demonstrate
that large-scale pre-training combined with resolution-free latent diffusion is a viable path towards
real-time, physics-aware design exploration. Despite the promising performance of OAT, significant
challenges remain. First, we note that OAT faces a notable failure rate on fully random benchmarks,
which future work will focus on addressing through directions such as reinforcement learning [36, 46]
based on optimizer guidance in diffusion models [11]. Future work should also focus on addressing
multi-physics objectives, and develop few-shot fine-tuning approaches to quickly adapt OAT or other
foundational frameworks to new physics such as stress-constrained and buckling TO problems.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: claims made by the paper are quantitative and justified by experiments. Claims
around the foundational nature of the model are made around a clear definition of what it
means to be foundational in this context.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: experiments clearly state failure rates and show where and how the model may
face challenges.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]
Guidelines:
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: details on training procedures and experiments are made clear in the appendix
and main body. Code is also provided for exact replication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
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(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: code is provided to replicate the results.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
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material.
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Answer: [No]
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Guidelines:
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We indicate the type of hardware used in training and experiments, however,
we do not have the exact measure of failed experiments and time spent on training and
developing different experimental settings. The resources used are indicated in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: we have verified adherence to the code of conduct.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The work here is purely engineering design work, which cannot be directly
used for content generation and the work does not use any data from public domain that
involves copyright or otherwise personal information. All experiments and works are on
generated data based on physics simulations.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All sources of external data are mentioned.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Link to anonymized code is made available.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: no crowd-sourcing is involved in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: no crowdsourcing or human subjects involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
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involve LLMs as any important, original, or non-standard components.
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for what should or should not be described.
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A Topology Optimization and The Minimum Compliance Problem

Structural Topology Optimization (TO) is the process of determining the optimal distribution of a
limited amount of material within a defined design space to maximize (or minimize) specific physics-
based performance metrics. Let Ω ⊂ Rd represent a bounded design domain with boundary Γ = ∂Ω.
The system’s physical behavior is described by a state field u : Ω→ Rm (e.g., displacement), which
is the solution to a governing partial differential equation (PDE). For simplicity, considering only
Dirichlet boundary conditions, this PDE takes the form:

L
(
ρ(x), u(x)

)
= f(x) in Ω, u(x) = g(x) on D ⊂ Ω (6)

Here, ρ(x) : Ω→ [0, 1] is the material density at each point x, acting as the design variable we seek
to optimize. L is a differential operator representing the underlying physics (e.g., elasticity), f(x)
represents applied forces or sources, and g(x) prescribes values for u(x) on a portion of the domain
D (which can be on the boundary Γ or within Ω). The general continuous TO problem is to find
the material density distribution ρ(x) that minimizes a performance objective J

(
u(ρ), ρ

)
, such as

structural compliance (inverse of stiffness) or thermal resistance. This is subject to the governing
PDE (Eq. 6) and a constraint on the total material volume Vmax:

min
ρ(·)

J
(
u(ρ), ρ

)
s.t. L

(
ρ, u

)
= f(x), u(x) = g(x) on D ,

∫
Ω

ρdx ≤ Vmax. (7)

This process and the overall problem are depicted in Figure 1. While the ideal outcome is a
distinct structure W ⊂ Ω with clear boundaries (binary densities), optimizing for such a structure
directly is challenging. Furthermore, analytical (closed-form) solutions to the PDE in Eq. 6 are
generally unobtainable for complex geometries and material distributions. These practical difficulties
necessitate a numerical approach to TO. This is usually done by discretizing the domain into a mesh
with finite elements/cells, and solving the problem in this discretized space using Finite Element
Analysis (FEA) [9].

So far, we described the general topology optimization problem in continuous space; however, as
we alluded to, this problem is often not approached in the continuous form. To make the problem
tractable, the continuous domain Ω is discretized into a finite element mesh Th, composed of N
small elements Th = {Ke}Ne=1. Within this framework, the continuous material density ρ(x) is
approximated by a vector of element densities ρh = [ρ1, . . . , ρN ]⊤, where each ρe ∈ [0, 1]. Similarly,
the state field u(x) becomes a vector uh = [u1, . . . , uM ]⊤ representing values at M discrete points
or "degrees of freedom" (DoFs) of the mesh (e.g., 2D displacements at nodes). Applied forces f(x)
and prescribed boundary values g(x) are also discretized into vectors fh and gh, where the boundary
conditions are applied at specific DoFs Dh. The local element operator (e.g., stiffness matrix) Ke is
derived from L for each element [9]. The numerical TO problem then becomes finding the optimal
discrete densities ρh:

min
ρh∈[0,1]N

Jh
(
uh(ρh), ρh

)
s.t.


K(ρh)uh = fh,
N∑
e=1

ve ρe ≤ Vmax,

ui = gi, i ∈ Dh,

(8)

where Jh is the discretized objective function, K(ρh) is the global system matrix (e.g., global
stiffness matrix) assembled from element contributions, which depends on the material densities
ρh, and ve is the volume of element e. The first constraint, K(ρh)uh = fh, is the discretized form
of the governing PDE (Eq. 6). Although the goal is often a binary design (ρe ∈ {0, 1}, indicating
presence or absence of material), directly solving this as a mixed-integer non-linear program is
computationally prohibitive for realistic problem sizes. Therefore, the optimization typically allows
continuous densities ρe ∈ [0, 1] and employs penalization techniques to encourage solutions that are
nearly binary. A widely used method is Solid Isotropic Material with Penalization (SIMP) [3, 41].
In SIMP, effective element densities are related to design variables ϕe ∈ [0, 1] by ρe = ϕp

e , where
p > 1 is a penalization factor that makes intermediate density values (between 0 and 1) structurally
inefficient, thus favoring ϕe values close to 0 or 1.

In our work, we focus on the minimum compliance problem, which involves solving the linear
elasticity problem and using an FEA solver and iteratively optimizing the topology in discrete space.
We detail this in the section below.
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A.1 Minimum Compliance Topology Optimization

This section details a prominent application of Topology Optimization (TO): minimum compliance
structural optimization, often referred to as stiffness optimization. The primary objective is to
determine the material layout that results in the stiffest possible structure under applied mechanical
loads, subject to a constraint on the total amount of material used. We will first describe the underlying
physics model for this class of problems.

A.1.1 The Physics Model: Static Linear Elasticity

In most structural topology optimization problems, including minimum compliance, the behavior
of a structure under load is modeled using linear elasticity. This model assumes that the structure is
composed of a material that exhibits linear elastic behavior (i.e., stress is proportional to strain via
Hooke’s Law) and that deformations are small.

The governing partial differential equation (PDE) for linear elasticity in its general dynamic form is
the Navier-Cauchy equation:

E

2(1 + ν)
∇2u+

(
Eν

(1 + ν)(1− 2ν)
+

E

2(1 + ν)

)
∇(∇ · u) + fbody = ρphysü, (9)

where u(x, t) is the displacement vector field (corresponding to u(x) in Eq. 6, where m would be
the number of spatial dimensions, e.g., m = 2 or m = 3), ü is its second derivative with respect to
time (acceleration), fbody(x) is the body force vector field (e.g., gravitational loads, corresponding to
f(x) in Eq. 6 if L is defined as the internal force operator), E is the Young’s modulus (a measure
of material stiffness), ν is the Poisson’s ratio (characterizing transverse contraction/expansion), and
ρphys is the physical mass density of the material.

For static or quasi-static analyses, which are typical in minimum compliance problems, we are
interested in the steady-state deformation under load. This allows us to set the inertial term ρphysü to
zero. The governing PDE for static linear elasticity then becomes:

E

2(1 + ν)
∇2u+

(
Eν

(1 + ν)(1− 2ν)
+

E

2(1 + ν)

)
∇(∇ · u) + fbody = 0. (10)

This equation, along with appropriate boundary conditions (such as prescribed displacements g(x)
on D as in Eq. 6), defines the structural response. In the context of TO, the Young’s modulus E is
not uniform throughout the domain Ω; instead, it varies spatially depending on the material density
distribution ρ(x), which is the design variable.

A.1.2 Finite Element Discretization and Compliance Calculation

As discussed in the general TO framework (leading to Eq. 8), analytical solutions to Eq. 10 are
generally intractable for complex domains and material distributions. Therefore, the Finite Element
Method (FEM) is employed. The continuous domain Ω is discretized into a mesh Th of N elements,
and the continuous displacement field u(x) is approximated by a vector of M discrete nodal displace-
ments uh ∈ RM . The body forces fbody(x) and any applied surface tractions are discretized into a
global force vector fh ∈ RM . Dirichlet boundary conditions (supports) are enforced by prescribing
values for certain components of uh.

The FEM discretization of Eq. 10 results in a system of linear algebraic equations:

K(ρh)uh = fh, (11)

where K(ρh) ∈ RM×M is the global stiffness matrix. This matrix depends on the vector of element
design variables (densities) ρh = [ρ1, . . . , ρN ]⊤, as these densities determine the material properties
(specifically, Young’s modulus) within each element.

The compliance C of the structure is a measure of its overall flexibility; minimizing compliance is
equivalent to maximizing stiffness. For the discrete system, compliance is calculated as the work
done by the external forces:

C(uh, fh) = fT
h uh. (12)

Using the equilibrium condition fh = K(ρh)uh, compliance can also be written as C = uT
hK(ρh)uh.
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A.1.3 Material Interpolation: The SIMP Model

To enable optimization, the material properties of each element must be related to the design variables
ρe. The new paper’s ρe ∈ [0, 1] are the design variables for each element e. A common approach is
the Solid Isotropic Material with Penalization (SIMP) method. In this scheme, the Young’s modulus
Ee of an element e is interpolated based on its normalized density ρe:

Ee(ρe) = Emin + ρpe(Esolid − Emin), (13)

where Esolid is the Young’s modulus of the solid material, Emin is a small positive Young’s modulus
assigned to void regions (e.g., ρe ≈ 0) to prevent the stiffness matrix K(ρh) from becoming singular,
and p is the penalization factor, typically p ≥ 3. This penalization makes intermediate densities
(e.g., ρe = 0.5) structurally inefficient, meaning they contribute less to stiffness than their “cost” in
material. This encourages the optimization process to yield designs with densities close to 0 (void) or
1 (solid). The element stiffness matrices Ke are computed using Ee(ρe) and then assembled into the
global stiffness matrix K(ρh). Note that the choice of Emin is purely to avoid singular values and is
selected to be 10−9 in our data generation compared to the much larger value of Esolid = 1.0. This
choice is informed by prior literature recommending such a value as a good balance between stable
optimization and accuracy of simulations [50]. Since in our implementation we set Emin = 10−9, the
choice of ρmin = 0 is used, although numerically any design element in a mesh which receives a zero
density will effectively have a Young’s modulus of 10−9 which given our choice Esolid = 1 would be
equivalent to setting Emin = 0 and ρmin = 10−9.

A.1.4 The Minimum Compliance Optimization Problem

The goal of minimum compliance topology optimization is to find the distribution of material densities
ρh that minimizes the compliance C (Eq. 12), subject to the static equilibrium constraint (Eq. 11) and
a constraint on the total volume of material used. This is a specific instance of the general discretized
TO problem (Eq. 8). The formulation is:

minimize
ρh

C(uh, fh) = fT
h uh

subject to: K(ρh)uh = fh (Static Equilibrium)
N∑
e=1

veρe ≤ Vmax (Volume Constraint)

ρmin ≤ ρe ≤ 1 for e = 1, . . . , N (Density Bounds),

(14)

where ve is the volume of element e, Vmax is the maximum permissible total volume of the material
(as defined in Eq. 7 and Eq. 8), and ρmin is a small positive lower bound for the element densities
(e.g., 10−9 or 10−6) to ensure Ee is always positive if Emin = 0 is chosen, or to represent a minimum
manufacturable material thickness. This formulation is widely used in structural optimization. The
aim of approaches like Neural Network based Inverse Topology Optimization (NITO), as alluded
to in your previous work, would be to predict the optimal densities ρh directly, given the problem
definition (loads fh, boundary conditions represented in K and fh, and the target volume fraction
Vmax/

∑
ve).
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B Ablation Studies

To determine the appropriate denoising steps and guidance scale, and the denoising strategy, we
perform ablation studies by sampling the model with different parameters and testing the performance
on the OpenTO benchmark mentioned in the experiments. Figure 4, shows the results of our ablation
study on sampling parameters. To study the effects of denoising steps, we run both DDPM and DDIM
denoising with a guidance scale of 2.0 with 5, 10, 20, and 40 denoising steps. We observe that DDIM
sampling largely achieves better performance despite initially having a larger absolute VFE. Thus,
we determine DDIM sampling to be more effective, especially for more efficient lower denoising step
counts, crucial for computational efficiency. From here, we can clearly see in Figure 4 that DDIM
sampling strikes the perfect balance of CE and VFE at 20 denoising steps, and any more comes with
no benefits and, in fact, slightly worse performance. Finally, to determine the optimal guidance scale,
we run DDIM sampling for guidance scales of 1, 2, 4, 6, 8, and 10 using the 20 denoising steps we
found to be most effective. As seen in Figure 4, a guidance scale of 2 strikes a good balance between
VFE and CE, which informs our final choice of DDIM denoising with 20 steps and a guidance scale
of 2.
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Figure 4: Top: Results of ablation studies on denoising steps. Observe that despite CE being lower in DDPM
sampling, this is largely due to DDPM sampling using significantly more material, as evidenced by the much
higher VFE values. Bottom: Ablation on the guidance scale shows that CE largely stays the same for the
guidance scale of 1 and 2, while VFE is optimal at a guidance scale of 2.0.
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C Out of Distribution Reconstruction

To further demonstrate potential downline adaptations of OAT as a foundational framework, we run
reconstruction using our auto-encoder on completely out-of-distribution data, involving optimized
topologies for heat sinks introduced by Bernard et al. [4]. This involves entirely different physics and
optimization in comparison to the data we train OAT on. Despite this, we see an Intersection over
Union (IoU) of 0.94 on these samples. The reconstruction quality is visualized in Figure 5. These
results show how OAT, as a pre-trained foundation model, can easily be extended to different TO
problems involving different physics and topologies, even without retraining the entire framework.

Ground Truth Reconstruction Ground Truth Reconstruction Ground Truth Reconstruction Ground Truth Reconstruction

Figure 5: Heatsink optimized topologies reconstructed using OAT’s auto-encoder without any additional training.
This demonstrates OAT’s zero-shot capability to extend to different physics and TO problems with relative ease.
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D OpenTO Dataset

Here we describe the details of the OpenTO dataset and the data generation specifics, and at the end,
provide visual examples of the topologies and boundary conditions in the problem.

The generation of each topology optimization problem within the OpenTO dataset follows a structured,
randomized pipeline designed to produce a diverse set of problems. This diversity manifests in the
domain discretization (resolution), aspect ratio, and the configuration of applied loads and boundary
conditions. The overarching aim is to construct a comprehensive dataset suitable for foundation
model training for TO.

D.1 Domain Definition and Discretization

The first step involves defining the physical domain of the topology optimization problem. This is
characterized by its resolution (total number of elements) and its aspect ratio.

1. Target Element Count (EC): The total number of discrete elements in the design domain
is sampled from a uniform distribution. Let EC be the target element count, then

EC ∼ U [212, 214]
This range ensures a variety of problem sizes, from 4096 to 16384 elements.

2. Aspect Ratio (AR): The aspect ratio of the design domain is sampled from a standard
log-normal distribution. Let AR be the aspect ratio, then

AR ∼ LogNormal(0, 1)

where the parameters (0, 1) represent the mean and standard deviation of the natural loga-
rithm of the variable, respectively. This choice allows for a wide range of domain shapes,
biased towards aspect ratios closer to unity but permitting more elongated or flattened
domains. The bias towards square domains is mainly because these problems are more
common and physically more stable, yielding fewer failed simulations in the optimization
process.

3. Problem Dimensions (Nx, Ny): Given the target element count EC and the sampled aspect
ratio AR, the dimensions of the problem domain, Nx (number of elements in the x-direction)
and Ny (number of elements in the y-direction), are determined. Assuming AR = Nx/Ny ,
we have Nx = AR · Ny. Since the total number of elements is EC ≈ Nx · Ny, we can
substitute to get EC ≈ (AR ·Ny) ·Ny = AR ·N2

y . Thus,

Ny ≈
√

EC

AR

Nx ≈ AR ·Ny

The values for Nx and Ny are then rounded to the nearest integers, ensuring that their
product Nx ·Ny is close to the target EC. Furthermore, if this leads to an element count
outside the intended distribution, one side is randomly adjusted to ensure this does not occur.

D.2 Load and Constraint Specification

Once the domain is defined, loads and boundary constraints are applied. This involves determining
the number of loads and constraints, their types, and their specific locations and orientations. Unlike
prior datasets, which hand-select a finite number of boundary conditions and apply a single load on
the boundary, OpenTO samples boundary conditions randomly and applies multiple random loads
of different kinds. Furthermore, unlike prior works, which limit forces and boundary conditions
to the edges of the domain, we sample internal boundary conditions and loads for full generality.
OpenTO also includes loads, which we refer to as distributed loads, which are typically characterized
formally as Neumann boundary conditions when loads are a result of stress/pressure applied at the
boundaries, and body forces when an internal load is applied to part of the domain interior (often seen
in electromagnetic forces or gravitational body forces). Below are details of how loads and boundary
conditions are sampled in OpenTO:

1. Number of Loads (NL): The number of applied loads is sampled from a geometric
distribution with parameter p = 0.3, shifted by +1 to ensure at least one load. Let NL be
the number of loads, then

NL ∼ Geom(0.3) + 1

26



2. Number of Constraints (NC): The number of boundary constraints (fixed degrees of
freedom) is sampled from a geometric distribution with parameter p = 0.2, shifted by +2 to
ensure at least two constraints. Let NC be the number of constraints, then

NC ∼ Geom(0.2) + 2

This ensures a baseline level of constraint necessary for a valid mechanical problem. If
fewer constraints are present, the FEA problem (Appendix A) will become singular and thus
not solvable.

3. Load and Constraint Types and Placement: For each of the NL loads and NC constraints,
a type is selected from a predefined discrete probability distribution. The available types
and their selection probabilities are:

• Internal point force (single force in the interior of the domain): 50%
• Edge point (a point on one of the four edges, not a corner): 10%
• Corner point (one of the four corners): 10%
• Distributed load/constraint (equal magnitude applied across many nodes of a line

segment on one edge) on a partial edge: 10%
• Distributed load/constraint on a full edge: 10%
• Internally distributed load/constraint (distributed on a line or area of a random ellipse):
10%

The specific placement of a load or constraint is then determined randomly based on the
selected type. For example:

• Internal point: A random coordinate (x, y) within the domain interior.
• Edge point: An edge (top, bottom, left, or right) is chosen uniformly at random, and

then a random position along that edge is selected.
• Corner point: One of the four domain corners ((0, 0), (Nx, 0), (0, Ny), (Nx, Ny) in

elemental coordinates, or corresponding nodal coordinates) is chosen uniformly at
random.

• Distributed on partial edge: An edge is chosen, and then a random sub-segment of that
edge is selected.

• Distributed on full edge: An edge is chosen.
• Internally distributed: A region (e.g., a rectangular or circular patch or line) is randomly

defined within the interior of the domain. The specific shapes and parameters for
these internal distributions are further randomized. For comprehensive details on the
implementation of these variations, readers are directed to the project’s codebase.

Loads are typically defined by a vector (e.g., magnitude and direction), which can also be
randomized.

4. Constraint Direction: Each of the NC constraints is assigned a direction of application.
The degrees of freedom (DOFs) to be constrained are chosen based on the following
probabilities:

• Constraint in the lateral (e.g., x-direction) direction only: 30%
• Constraint in the vertical (e.g., y-direction) direction only: 30%
• Constraint in both lateral and vertical directions: 40%

D.3 Problem Validation and Iteration

A critical final step in the generation pipeline is the validation of the constructed problem.

1. Validity Check: The problem, now fully defined by its domain, loads, and constraints, is
assessed to ensure it is:

• Fully constrained: The applied boundary conditions must be sufficient to prevent rigid
body motion (translation and rotation) of the structure under the applied loads. This is
typically checked by ensuring the global stiffness matrix is nonsingular.

• Not trivially solved: The problem should not be over-constrained to the point of having
an obvious or degenerate solution. For instance, applying a load and a fixed constraint
at the exact same degree of freedom might lead to issues or trivial (zero vector) forcing
terms.

2. Regeneration on Failure: If the generated problem fails the validity check (e.g., due to
coincident load and constraint application points, insufficient constraints, or other prob-
lematic configurations), the entire problem instance is discarded. The generation process,
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starting from the sampling of EC, is then re-initiated to produce a new, statistically inde-
pendent problem candidate. This iterative loop continues until a valid problem instance is
successfully generated.

This rigorous, multi-stage randomized procedure ensures the creation of a diverse and challenging set
of topology optimization problems, forming the basis of the OpenTO dataset.

D.4 Algorithm for Data Generation

Below is a summary of the data generation process in algorithmic form.

Algorithm 1 OpenTO Problem Instance Generation

1: Initialize: ProblemIsValid← false
2: while ProblemIsValid is false do
3: // Step 1: Domain Definition and Discretization
4: Sample target element count EC ∼ U [212, 214]
5: Sample aspect ratio AR ∼ LogNormal(0, 1)
6: Calculate Ny,float ←

√
EC/AR

7: Calculate Nx,float ← AR ·Ny,float

8: Set Ny ← round(Ny,float)
9: Set Nx ← round(Nx,float)

10: if Nx < 1 or Ny < 1 then
11: continue // Restart generation if dimensions are invalid
12: end if
13: // Step 2: Load and Constraint Specification
14: Sample number of loads NL ∼ Geom(0.3) + 1
15: Sample number of constraints NC ∼ Geom(0.2) + 2
16: Initialize empty lists: LoadsList, ConstraintsList
17: for i = 1 to NL do
18: Sample load type Ltype from

{InternalPt (0.5), EdgePt (0.1), CornerPt (0.1), PartialEdge (0.1), FullEdge (0.1), InternalDist
(0.1)}

19: Determine load placement Lplace based on Ltype and domain (Nx, Ny) (randomized selec-
tion)

20: Determine load magnitude and direction Lvec (randomized)
21: Add (Ltype, Lplace, Lvec) to LoadsList
22: end for
23: for j = 1 to NC do
24: Sample constraint type Ctype from {InternalPt (0.5), EdgePt (0.1), CornerPt (0.1), Par-

tialEdge (0.1), FullEdge (0.1), InternalDist (0.1)}
25: Determine constraint placement Cplace based on Ctype and domain (Nx, Ny) (randomized

selection)
26: Sample constraint direction Cdir from {Lateral (0.3), Vertical (0.3), Both (0.4)}
27: Add (Ctype, Cplace, Cdir) to ConstraintsList
28: end for
29: // Step 3: Problem Validation
30: Perform check for sufficient constraints (prevent rigid body motion).
31: Perform check for non-trivial solution (e.g., avoid coincident loads/constraints at same DOF if

problematic).
32: if problem is fully constrained AND not trivially solved then
33: ProblemIsValid← true
34: else
35: ProblemIsValid← false // Problem discarded, loop will reiterate
36: end if
37: end while
38: Output: Generated problem instance (Domain: Nx, Ny; Loads: LoadsList; Constraints: Con-

straintsList) =0
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E Further Visualization of Results

Here we visualize more samples from OAT and NITO on the fully general OpenTO benchmark. The
figures below clearly highlight how NITO fails to generate high-quality samples and generates largely
invalid, blurry topologies that are not mostly not binary as ideally would be in TO. NOTE: Samples
with CE higher than 100% are considered failed and do not enter CE computation in the reported
results.
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Figure 6: Samples generated on the OpenTO benchmark by NITO and OAT. Compliance error for each generated
sample is shown underneath.
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Figure 7: Samples generated on the OpenTO benchmark by NITO and OAT. Compliance error for each generated
sample is shown underneath.
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Figure 8: Samples generated on the OpenTO benchmark by NITO and OAT. Compliance error for each generated
sample is shown underneath.
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Figure 9: Samples generated on the OpenTO benchmark by NITO and OAT. Compliance error for each generated
sample is shown underneath.
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Figure 10: Samples generated on the OpenTO benchmark by NITO and OAT. Compliance error for each
generated sample is shown underneath.
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Figure 11: Samples generated on the OpenTO benchmark by NITO and OAT. Compliance error for each
generated sample is shown underneath.
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Figure 12: Samples generated on the OpenTO benchmark by NITO and OAT. Compliance error for each
generated sample is shown underneath.
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Figure 13: Samples generated on the OpenTO benchmark by NITO and OAT. Compliance error for each
generated sample is shown underneath.
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Figure 14: Samples generated on the OpenTO benchmark by NITO and OAT. Compliance error for each
generated sample is shown underneath.
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Figure 15: Samples generated on the OpenTO benchmark by NITO and OAT. Compliance error for each
generated sample is shown underneath.
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F Implementation Details

In this section, we describe the full details of the training and architecture of OAT. First, we discuss
the autoencoder training, then we will go over the LDM training.

F.1 Autoencoder Architecture

The autoencoder comprises an encoder, a decoder, and a neural field renderer.

Encoder The encoder maps an input topology T to a latent representation z = E(T ).

• Input Processing: Topologies are padded and resized to a fixed 256× 256 resolution with
1 input channel.

• Core Structure: A Convolutional Neural Network (CNN) with an initial convolution is
followed by three downsampling levels, each employing ResNet-style blocks.

• Middle Section: Features are further processed by a middle section containing additional
ResNet-style blocks and an attention mechanism.

• Output: Final convolutional layers produce a 1-channel latent tensor of size 64 x 64.

Decoder The decoder reconstructs a feature tensor ϕ = D(z) from the latent z.

• Input: The latent tensor z is processed by initial convolutional layers.
• Core Structure: Symmetrical to the encoder, it features a middle section with ResNet-style

blocks and an attention mechanism, followed by three upsampling levels composed of
ResNet-style blocks.

• Output: A fixed-resolution feature tensor (256 x 256) ϕ with 128 channels.

Neural Field Renderer The renderer reconstructs the topology T̃ = R(ϕ, c, s) from ϕ, pixel
coordinates c, and cell sizes s.

• Architecture: A convolutional renderer, inspired by Convolutional Local Image Functions
(CLIF), is employed. It processes the decoded features, coordinates, and cell sizes, with
optional positional encoding for the latter two.

• Network: The renderer consists of a sequence of convolutional and ResNet-style blocks,
terminating in an output convolution with a Tanh activation function.

• Scalability: Training utilizes patch sampling. High-resolution inference employs stenciled,
overlapping tiles.

Full details of the architecture can be found in our publicly available code.

F.2 Autoencoder Training

The autoencoder is trained on the OpenTO dataset (2.2 million pre-training samples).

• Dataset and Preprocessing:
– Input topologies are resized to 256× 256 for the encoder.
– The renderer is trained on 64× 64 patches sampled from topologies, along with their

coordinates and cell sizes. Training can also be performed on full images (full grid of
coordinates and cell sizes for any given topology).

• Batch Size and Epochs:
– Batch size: 128.
– Training epochs: 50.

• Distributed Training and Precision:
– Training utilizes Distributed Data Parallel (DDP) on 4 H100 GPUs.
– Automatic Pytorch mixed precision training is employed.

• Optimizer and Learning Rate Schedule:
– AdamW optimizer is used for training.
– A Cosine schedule is used for learning rate with 200 steps of warmup, linearly increas-

ing learning rate from 0 to 10−4, then gradually reducing it to 10−5 during training.
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F.3 Latent Diffusion Architecture

The latent diffusion model operates on the latent encodings of the autoencoder, which have a 64 x 64
resolution with 1 channel. The architecture of the model follows a UNet architecture, which can be
seen in full in our publicly available code. For conditioning of the LDM model, we use a problem
encoder architecture similar to what we described in the main body of the paper:

Conditioning Mechanism

• Time Embedding: Standard timestep embedding is used to encode the diffusion timestep t.

• Problem Embedding (P ): The TO problem definition P̂ (boundary conditions, forces,
volume fraction, aspect ratio, cell size) is encoded into a fixed-size problem embedding P
using a dedicated ProblemEncoder.

– Boundary conditions (Sboundary) and forces (Sforce), represented as point clouds, are
processed by separate BPOM modules (MLPs with mean/max/min pooling of point
features concatenated).

– Scalar and low-dimensional conditions (volume fraction V F , cell size s, aspect ratio
a) are processed by individual MLPs.

– The concatenated embeddings are passed through a final MLP to produce P .
• Combined Embedding: The problem embedding P is projected to the same dimension as

the time embedding and added to it. This combined embedding conditions the ResNet and
Attention blocks within the U-Net.

For full details of the architecture, please refer to the code we provide.

F.4 latent Diffusion Training

The LDM is trained on latent codes z obtained from the pre-trained autoencoder, paired with their
corresponding TO problem specifications P̂ .

• Dataset: Consists of latent tensors and their associated problem definitions (forces, bound-
ary conditions, volume fraction, etc.). The dataset loader handles stochastic dropping of
conditions for classifier-free guidance.

• Diffusion Process:
– A DDPM noise schedule is used with a ’velocity’ target, and a cosine noise schedule

for training.
– For inference, a DDIM noise scheduler is employed for faster sampling.

• Training Objective: The model is trained to predict the velocity v of the diffusion process,
conditioned on the problem embedding P . The objective is to minimize the mean squared
error between the true and predicted velocity, as described in Equation 6 of the main paper:

LLDM = Ez∼E(T ),t,ϵ∼N (0,I)[||v − vθ(zt, t|P )||2],

where v =
√
αtϵ−

√
1− αtz.

• Classifier-Free Guidance: Enabled by randomly setting the problem conditioning P to a
null embedding during training with a specified probability, specifically, we hide all of P
50% of the time and hide boundary conditions and forces each with a probability of 25%,
separate from the full 59% hiding.

• Optimizer and Learning Rate:
– AdamW optimizer.
– Initial learning rate: 10−4, with 200 warmup steps same as for the autoencoder.
– A cosine learning rate scheduler anneals the learning rate to a final value of 10−5.

• Batch Size and Epochs:
– Batch size: 64.
– Training epochs: 50.

• Distributed Training and Precision:
– Training utilizes Distributed Data Parallel (DDP) on 2 H100 GPUs.
– Mixed precision training is employed.
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F.5 Computational Resources

All experiments and training were conducted using 4 H100 GPUs. Autoencoder training takes 2 days
to complete on our implementation, and the diffusion model takes 4 days to train. We had multiple
training runs, but we do not have an exact estimate of the time needed. Inference time is indicated for
the RTX 4090 GPU in our model, which was used for inference experiments.

F.6 Dataset Visualization

Here we provide a few examples of the OpenTO dataset we generate. We visualize forces and
boundary conditions, and it can be seen that OpenTO contains samples that include non-repeating
complex problem definitions with internal, edge, distributed, and point boundary conditions and
forces.

Constrained in Y Constrained in X Applied Load

Figure 16: Samples from OpenTO Dataset.
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Constrained in Y Constrained in X Applied Load

Figure 17: Samples from OpenTO Dataset.
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Constrained in Y Constrained in X Applied Load

Figure 18: Samples from OpenTO Dataset.
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Constrained in Y Constrained in X Applied Load

Figure 19: Samples from OpenTO Dataset.
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Constrained in Y Constrained in X Applied Load

Figure 20: Samples from OpenTO Dataset.
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Constrained in Y Constrained in X Applied Load

Figure 21: Samples from OpenTO Dataset.
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Constrained in Y Constrained in X Applied Load

Figure 22: Samples from OpenTO Dataset.
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Constrained in Y Constrained in X Applied Load

Figure 23: Samples from OpenTO Dataset.
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Constrained in Y Constrained in X Applied Load

Figure 24: Samples from OpenTO Dataset.
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Constrained in Y Constrained in X Applied Load

Figure 25: Samples from OpenTO Dataset.
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F.7 Combining Prior Data With OpenTO

We generate 2M samples as described above and provide labels (configuration information) for
700,000 samples, and provide 10,000 test samples based on the same procedural generation process.
Finally, it is important to note that we also merge the 194,000 data points used in prior work [34]
into our dataset, expanding it to 2.2M total samples.

G Break-Even Analysis

Critics cite the break-even point [62], τ = Ctrain
CSIMP−Cinference

(where C is computational cost), which for
OAT-like models is dominated by data generation. Our data generation cost (168 H100-days) vastly
exceeded our final training run (16 H100-days). Ignoring minor preliminary development runs, the
data-generation-dominated calculation yields a break-even of τ ≈ 2.32 million uses. This cost seems
hard to justify; however, we argue that this metric does not capture the full picture of deep learning’s
computational efficacy. This is because it ignores the hardware efficiency of parallel data generation
and, more importantly, fails to capture the value of democratizing fast TO for users without large
compute, enabling greater design exploration and more experiments. This metric points to over 2
million uses to justify a total computational run time of less than one month. Although highlighting
high development costs, we believe this argument justifies the large break-even point.

H Code & Data

The code and data for OAT can be found at: https://github.com/ahnobari/OptimizeAnyTopology.
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