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Abstract

Stereo depth estimation is a critical task in autonomous driving and robotics, where
inaccuracies (such as misidentifying nearby objects as distant) can lead to danger-
ous situations. Adversarial attacks against stereo depth estimation can help reveal
vulnerabilities before deployment. Previous works have shown that repeating opti-
mized textures can effectively mislead stereo depth estimation in digital settings.
However, our research reveals that these naively repeated textures perform poorly
in physical implementations, i.e., when deployed as patches, limiting their practical
utility for stress-testing stereo depth estimation systems. In this work, for the first
time, we discover that introducing regular intervals among the repeated textures,
creating a grid structure, significantly enhances the patch’s attack performance.
Through extensive experimentation, we analyze how variations of this novel struc-
ture influence the adversarial effectiveness. Based on these insights, we develop
a novel stereo depth attack that jointly optimizes both the interval structure and
texture elements. Our generated adversarial patches can be inserted into any scenes
and successfully attack advanced stereo depth estimation methods of different
paradigms, i.e., RAFT-Stereo and STTR. Most critically, our patch can also attack
commercial RGB-D cameras (Intel RealSense) in real-world conditions, demon-
strating their practical relevance for security assessment of stereo systems. The code
is officially released at: https://github.com/WiWiN42/DepthVanish

1 Introduction

Depth estimation is a crucial component in safety-critical embodied systems like autonomous
driving [6] and robotics [3], where accurate perception of the 3D environment is essential for
reliable operation. Investigating the errors in depth estimation, such as mistaking nearby objects as
distant ones in safety-critical embodied systems [30, 5, 38, 8, 20, 42, 41], can provide critical insights
for safety practices. Most existing works focus on the security vulnerabilities of monocular depth
estimation, which relies heavily on scene priors from single images. Stereo depth estimation, on the
other hand, utilizes geometric constraints and typically provides more robust and metrically accurate
results, making it attractive for high-stakes applications.

However, despite this inherent advantage, recent studies revealed that DNN-based stereo pipelines
remain vulnerable to adversarial attacks, as carefully crafted pixel-level perturbations [31, 1] can cause
substantial disparity estimation errors. Nevertheless, previous works have primarily addressed digital
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Figure 1: Baseline (Stereoscopic [1]) vs. our DepthVanish on attacking RAFT-Stereo [19] and Intel RealSense.

attacks utilizing full-image noise, which are impractical in real-world contexts due to constraints like
limited patch size, varying viewing angles, and dynamic lighting conditions, etc. As illustrated in the
first row of Fig. 1, when applied as a physical patch, the existing Stereoscopic [1] fails to effectively
attack RAFT-Stereo and Intel RealSense. This lack of physically realizable and generalizable attack
methods presents a significant limitation in evaluating the robustness of stereo systems, particularly
as stereo estimation continues to be deployed in real-world, safety-critical applications.

In this study, we address these limitations by introducing the first adversarial patch attack that is
effective in both digital and physical settings against widely deployed deep stereo depth estimation
models (Fig. 1 second row). Fundamentally, we discover that adding regular intervals among repeated
textures to form a spatial structure shows great potential for improving the attack effectiveness and
enables digital-to-physical transferability. Through systematic analysis, we show how interval spacing
influences the attack success. These insights inform a novel optimization pipeline that jointly designs
patches’ texture and structure to achieve high attack effectiveness across models and deployment
settings. Thus, we propose a novel optimization pipeline that co-designs both texture elements and
interval structure for generating adversarial patches that ❶ remain effective when physically printed
and inserted into real scenes, ❷ work across diverse datasets and environments and ❸ generalize
across different stereo depth estimation models, including commercial RGB-D sensors, i.e., Intel
RealSense. In summary, our contributions are as follows,

• We introduce the first adversarial attack that is both digitally and physically effective for
deep stereo estimation models including the advanced RAFT-Stereo and Stereo Transformer.

• By conducting a comprehensive empirical study, we discover that regular interval spacing
among repeated textures significantly improves the patch attack effectiveness and its real-
world transferability over naive texture repetitions.

• We develop a joint optimization algorithm, i.e. DepthVanish, that co-designs the texture and
its spatial structure within the patch to maximize the digital and physical attack effectiveness.

• By physically evaluating our patch, we expose severe safety concerns of existing stereo depth
estimation systems and highlight the emergency of practical model robustness enhancement.

2 Related Work

Stereo depth estimation. Stereo-based depth estimation is a technique that infers scene depth from
visual correspondences, which captured as disparity maps, between pairs of stereo images in various
applicable settings [23, 35, 2, 25, 24, 15]. Traditional methods typically follow a multi-stage pipeline
involving the computation of matching costs, cost aggregation, and optimization to predict and refine
disparities [26, 4, 33, 10]. In contrast, recent advances have incorporated deep neural networks [29],
enabling end-to-end learning of feature representations for correspondence matching and direct
prediction of disparity and/or depth. In particular, CNN-based methods [4, 12, 34, 39, 22, 27] typically
build 3D cost volumes from shared-weight feature encoders, attention-based models [18, 11, 28, 14]
employ vision transformers to model global correspondences and disambiguate difficult regions, and
iterative refinement methods [19, 16, 32] apply a recurrent update operator to progressively converge
on the final disparity, avoiding the memory-intensive 3D cost volumes. Compared to monocular
methods [36, 37], stereo offers improved robustness by leveraging geometric constraints from dual
viewpoints, but still faces challenges in low-texture and repetitive areas [40, 21].

Depth estimation attack. Due to their effectiveness and capability for real-time performance,
depth estimation systems have become essential components of safety-critical applications such
as autonomous driving [6] and robotic navigation [3]. Monocular depth estimation models, in
particular, have been extensively studied under both digital [30, 5, 38] and physical adversarial
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Figure 2: Adversarial effect of interval spacing on depth prediction. (a) Mean predicted depth (solid lines) and
variance (shaded regions) for different interval spacing strategies, averaged over interval widths of 2− 10 px.
The gray dashed band indicates ±1.5m from the ground truth. (b) Visualization of depth prediction results for
typical different interval spaced patches where the ground truth depth is 7m.

attacks [8, 20, 42, 41]. These evaluations have revealed various system vulnerabilities and led to the
development of tailored defense strategies [13, 9, 7], including adversarial training and robust feature
learning. In contrast, despite their geometric soundness and widespread deployment, stereo depth
estimation systems [19, 17] have received limited attention in adversarial research. Existing research
has focused primarily on digital, white-box attacks [1, 31], overlooking potential vulnerabilities in the
physical world. This gap is particularly concerning, as stereo systems rely on precise correspondence
between left and right images. Failures in such systems can lead to serious consequences, especially
in autonomous applications where accurate and reliable 3D perception [35] is critical.

3 Motivation

3.1 Naive Repetition Fails in Realistic Patch Attacks

Stereo depth estimation recovers 3D structure by identifying correspondences between left and right
images [43], typically formulated as a pixel-wise optimization along epipolar lines:

d∗(x) = argmin
d

C(x, d), (1)

where d ∈ Z represents the horizontal disparity between pixel x in the left image and pixel x− d in
the right image, and C(x, d) denotes the matching cost between them. When repetitive patterns are
presented, the cost volume exhibits periodic ambiguity [26]:

C(x, d) ≈ C(x, d+ ns), ∀n ∈ Z, (2)

where s denotes the spatial repetition period. This periodicity produces multiple equally plausible
matches, thereby increasing the likelihood of incorrect or unstable depth estimations.

Previous adversarial attacks [1, 31] inject repetitive optimized noise over the entire image to exploit
such periodic ambiguities. Since global injection is impractical in real-world scenarios, we instead
explore attacks using localized adversarial patches. As shown by the black curve in Fig. 2(a), we
deploy the repetitive noise from [1] as patch into a real-world scene at different ground-truth depth
and plot the corresponding predicted mean depth. It can be seen that simply repeating the noise
within patches results in predicted depth that remains same to the ground truth, indicating limited
adversarial effectiveness. This is visually confirmed in Fig. 2(b) (top left), where a naive repeated
patch yields a predicted depth of 7.1m, which is almost identical to the ground truth of 7m. This
observation reveals a key limitation of existing studies: naive repetition fails to generate sufficient
ambiguity within practical patches, which motivates the need for more structured pattern designs.

3.2 Structured Intervals: Enhancing Patch Adversarial Effectiveness

To address the limitation, we propose introducing regular intervals into the repetitive pattern to
amplify the matching ambiguity as Eq.(2), thereby enhancing the adversarial effect of the patch.
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Figure 3: RAFT-Stereo depth prediction performance under various interval structures and patch rotation
degrees. (a) Illustration of rotation around the X and Y axes. (b) Depth prediction performance at different
rotation degrees around X axis. (c) Depth prediction performance at different rotation degrees around Y axis.

As demonstrated in Fig. 2(b), given the patch with basic repetitive pattern from [1] (top left), we
add vertical (top right), horizontal (bottom left) and grid (bottom right) space to form patches with
structured intervals. We systematically evaluate the impact of different interval configurations on
the RAFT-Stereo model using the KITTI dataset. As shown in Fig. 2(a), structured intervals notably
enhance attack effectiveness. ❶ Basic Repeat (black): the predicted patch depth remain close to the
ground truth depth indicating minimal adversarial influence, which is also verified by the visualization
in Fig. 2(b) (top left). ❷ Horizontal Interval (blue): moderate overestimation beyond 15 m (e.g., a
20 m true depth yields a ∼ 24 m prediction). Visual results (Fig. 2(b), bottom left) confirm a slight
increase to 7.2m. ❸ Vertical Interval (green): produces larger errors, frequently reaching ∼ 30m at
a 20 m ground truth. In Fig. 2(b) (top right), the predicted depth surges to 12.7 m. ❹ Grid Interval
(red): combining intervals in both directions produces the strongest adversarial effect, with depth
predictions surpassing 40 m at a 23 m ground truth. In the visual result (Fig. 2(b), bottom right), the
predicted depth reaches 14.1 m, demonstrating a significant adversarial effectiveness.

In summary, structuring the patch with both horizontal and vertical intervals (i.e., grid spacing)
greatly increases the adversarial effect of patches, far exceeding the impact of simple repetition.
However, we also observe two critical limitations: ❶ the overall attack performance remains limited,
especially when the patch is placed close to the camera. ❷ the significant variation in performance
across different interval configurations suggests that a single fixed interval structure is insufficient.

3.3 Structured Intervals: Improving Attack Robustness across Viewpoints

A practical adversarial patch must maintain its effectiveness even when the patch is rotated or viewed
from different orientations. This is particularly important under real-world deployment conditions,
where precise placement is difficult to control. To this end, we systematically evaluate the impact of
interval structure on attack robustness against patch rotation. As shown in Fig. 3(a), we rotate the
patch along two axes (i.e., X and Y) and summarize the predicted mean depth in Fig. 3(b) and (c).

For X-axis rotation (Fig. 3(b)): ❶ the horizontal (blue) and vertical (green) intervals exhibit angle-
dependent performance, succeeding only at certain angles; ❷ the grid interval (red) is more robust,
demonstrating more consistent effectiveness across different angles. For Y-axis rotation (Fig. 3(c)),
although all configurations show moderate attack robustness across viewpoints, adding intervals still
yields improvements. These results show that structured intervals improve attack robustness to patch
rotation, which is essential for reliable adversarial attacks in real-world scenarios.

In summary, the above findings underscore the promise of structured intervals but also reveal their
limitations under varying depths and configurations. These observations highlight the need for further
optimization of the patch’s texture and structure to achieve more effective attacks.

4 Problem Formulation

To formalize the stereo depth estimation task and define our attack objective, we begin with the
following setup. Given a stereo image pair (Il, Ir) where Il, Ir ∈ R3×H×W of a specific scene,
a pretrained stereo depth estimation model F(·) predicts the pixel-wise disparity map dpred =
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F(Il, Ir) ∈ RH×W . The corresponding depth map is computed as z = f×B
dpred

where f and B denote
the focal length and baseline of the stereo camera rig respectively.

In general, the objective of adversarial patch attack is to construct a patch P ∈ R3×hp×wp such that
the stereo depth estimation model F(·) produces an incorrect disparity output for the patch:

Fp(̂Il, Îr) ̸= Fp(Il, Ir) (3)

where Îl and Îr denote the stereo images with the adversarial patch P, and p indicates the correspond-
ing pixel region occupied by the patch within the prediction results. As analyzed in Sec. 3, interval
spacing can trigger critical depth estimation failures, i.e., the disappearance attack. To expose the
severity of such vulnerability, we define a more destructive attack objective:

Fp(̂Il, Îr) = 0, s.t. dp
gt = c, (4)

where the model predicts zero disparity for the patch region (i.e., infinite depth), despite the ground
truth disparity of the patch, dp

gt, indicating a fixed, close distance (f ×B)/c. This attack objective
reveals more severe vulnerabilities than Eq. (3) and poses substantial safety risks, particularly when
the patch is physically realizable and effective in real-world deployments.

5 Methodology

In this work, we build upon our novel findings in Sec. 3 and propose realizing the attack goal in
Eq. (4) by exploiting the attack capability of interval spacing. However, this is a non-trivial problem
since ❶ Eq. (4) requires the patch’s ground-truth depth to be close but Fig. 2 (a) indicates that interval
spacing exerts only a limited adversarial effect when the patch is deployed closely. Moreover, ❷ the
robustness against rotation is a critical requirement for the patch to be physically attack effective.
Yet we observed in Fig. 3 that the robustness provided by the naive interval strategy is rather limited
especially against the rotation of Y axis. As a result, it is obvious that an advanced interval spacing
strategy is required to realize our attack goal as defined in Eq. (4).

Fundamentally, interval spacing induces a mask M that partitions the patch P into interval structure
Ps = M⊙P and texture content Pt = (1−M)⊙P, such that P = Ps +Pt. Hence, we propose
to optimize these components to reveal their adversarial effects. Beginning with the naive interval
spacing strategy, and thus the mask M, in Sec. 3, we first focus on optimizing the texture content Pt,
which composed of tiled texture elements E, forming the basis of our Grid-based Attack. We then
introduce the DepthVanish Attack, which jointly optimizes both Ps and Pt for maximal effect.

5.1 Grid-based Attack

In general, it is straightforward to setup an optimization pipeline for optimizing the texture element
with grid intervals, where the patch is formed by repeating the texture elements over the grid.
Fundamentally, there two main aspects that need to be considered: ❶ the physical constraint required
for the texture element to form a patch and ❷ the objective function adopted for optimization.

Given our primary goal is to achieve physical attack effectiveness, the patch must comply with the
physical geometry constraints during the optimization. Specifically, given a user pre-defined physical
patch size (u, v) and physical distance to the camera e in meters, we first find the corresponding pixel
size of the patch (hp, wp) with the help of stereo calibration information (See details in Sec. 6.1).
Then, we empirically adopt the optimal interval width o and number of repetition k from Sec. 3 to
determine the texture element E size (ht, wt) as

ht =
hp − k · o
k + 1

, wt =
wp − k · o
k + 1

. (5)

Based on the size of the texture element, the texture component Pt, and consequently the full patch
P, is constructed by tiling the base texture unit E in a regular grid pattern as illustrated in Fig. 2(b)
(bottom right). With the correctly assembled and deployed grid-based patch, we set the optimizing
objective function as regional mean square error (rMSE) which is formulated as

LrMSE =
1

hp · wp

hp∑
i=1

wp∑
j=1

(F (̂Il, Îr)−F(Il, Ir))2. (6)
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LetR be the set of k × k grid locations on where E is repeated. The texture element is updated with
average gradients: E← E− η · 1

|R|
∑

(i,j)∈R∇EL(i,j)
rMSE , where η is the learning rate. Gradients

are only applied to the repeated texture regions while the interval areas remain untouched.

5.2 DepthVanish Attack

As we will see in Fig. 5, the above grid-based optimization can successfully mount an attack against
various stereo systems but the results are still far from our attack goal defined in Eq. (4). Thus
we further consider optimizing the interval structure Ps simultaneously during the updating of
the texture element E. Practically, optimizing the interval structure on patch level will break the
texture repetitions as the interval will be updated to have irregular size. To keep the repetitions and
incorporate the interval’s attack capability, we propose to jointly optimize the interval structure within
the texture element and, following [1], tile the optimized texture element E to form the final patch.

Same to grid-based attack, given a user pre-defined patch physical size (u, v) and physical distance
to the camera e in meters, we first find the corresponding pixel size of the patch (hp, wp). Then we
calculate the texture element size (ht, wt) by simply dividing (hp, wp) to the repetition times k. In
order to optimize the texture element so that the interval structure integrated as part of the texture,
we propose to regularize the texture element E during optimization with two objectives. First, we
directly cast entropy constraint on the texture element for regularizing its values to be binary, so that
a crisp separation is formed to serve as the required interval structure:

Lentropy =
1

ht · wt

ht∑
i=1

wt∑
j=1

−Eij log(Eij + ϵ)− (1−Eij)log(1−Eij + ϵ). (7)

However, we experimentally found that the texture element cannot form a clear pattern with only
entropy regularization. As a result, we further integrate the total variation loss to penalizes local
pixel-level variation, encouraging the formation of smooth areas:

Ltv =
1

ht · wt

ht∑
i=1

wt∑
j=1

|Ei+1,j −Eij |+ |Ei,j+1 −Eij |. (8)

With the entropy and total variant constraints, we arrived at an objective function that can shape a
clearly interval pattern for the texture element. In summary, the overall objective function adopted
for optimization is formulated as

L = LrMSE + α ∗ Lentropy + β ∗ Ltv, (9)

where α and β are the hyper-parameters balancing the sharp border and coherent region requirements.
Hence, we update with E← E− η · 1

|R|
∑

(i,j)∈R∇EL(i,j) where η is the learning rate.

5.3 Implementation Details.

During the optimization for the Grid-based and DepthVanish attacks, we use a patch with a physical
size (u, v) = (0.891 m, 1.26 m) and specify the physical ground-truth depth e = 5m. To assemble
the texture element into a patch, we empirically set the number of repetition as 5 for horizontal and 4
for vertical, i.e., k = (4, 5). For the optimization and corresponding evaluation results with different
patch physical setup, we provide them in the supplemental material. When the patch is optimized as
grid-based attack, the optimal interval size o = 10 px from Sec. 3 is applied. As for the loss weights
adopted during the depth vanish attack, we keep setting α = 0.1 and β = 10. Please find more details
of implementation for both Grid-based and DepthVanish attack in the supplemental material.

6 Experiments

6.1 Experimental Setup

Dataset. For the evaluation of digital attack effectiveness, we adopt the stereo images from KITTI
scene flow (KITTI-scene) [23] and DrivingStereo [35] datasets. Both datasets are composed of stereo
images of urban traffic scenes where the image size of KITTI-scene is (1242, 375) and DrivingStereo
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Table 1: Statistical attack performance of our DepthVanish, grid-based patch and existing baselines for PSMNet,
DeepPruner, AANet, RAFT-Stereo and STTR on KITTI-scene dataset. The best results are highlighted in bold.

KITTI-scene PSMNet DeepPruner AANet RAFT-Stereo STTR

D1 EPE D1 EPE D1 EPE D1 EPE D1 EPE

Stereoscopic Patch 6.23±1.13 5.28±0.88 8.29±10.23 3.29±2.05 6.79±2.30 3.69±0.39 5.79±9.88 3.58±6.73 4.58±2.83 1.30±5.37

Stereopognosia Patch 2.17±0.09 2.18±0.58 5.40±11.16 1.62±2.33 3.42±2.59 1.96±0.44 4.18±11.27 2.09±12.66 3.02±3.00 1.28±8.79

Grid-based Patch (ours) 3.35±1.09 48.21±8.24 55.39±10.77 38.60±3.03 60.59±8.90 53.84±4.93 40.09±5.87 67.24±7.90 5.23±7.49 45.34±7.30

DepthVanish (ours) 55.30±6.85 50.71±9.71 97.07±12.42 67.19±4.85 66.42±10.10 56.54±5.26 89.31±6.56 66.01±6.18 92.38±8.76 69.25±6.62

Figure 4: Attack performance of our DepthVanish, grid-based patch and existing baselines for PSMNet (M1),
DeepPruner (M2), AANet (M3), RAFT-Stereo (M4) and STTR (M5) on the sub-sets of DrivingStereo dataset.

is (1758, 800). In more detail, we adopt the four sub-sets of DrivingStereo that were captured under
different weather conditions (i.e., sunny, foggy, rainy, cloudy) where we report the attack performance
for each of them respectively. Following [1], 40 stereo image pairs for each (sub-)dataset are selected
to verify the effectiveness of different patches. For the physical evaluation, we manually capture
stereo images with i3DStreoid 2 where various safety critical situations are considered. We refer
readers to the supplemental material for the details of how the physical stereo images are captured
and the pipeline we adopted for physical deployment.

Attack targets. Following [31, 1], we apply our attack method to PSMNet [4], DeepPruner [10]
and AANet [33] for validating the general attack effectiveness. Moreover, we empirically found that
they are out-of-date and can be easily disturbed, thus we further select RAFT-Stereo [19] and STereo
TRansformer (STTR) [17] which represent the promising iterative optimization-based methods and
transformer-base methods as our main attack targets. For the detail hyper-parameter setting and the
pretrained checkpoint adopted during the attack, please find all of them in supplemental material.

Digital deployment. During the digital optimization and evaluation, the patch needs to be placed in-
side the scene according to physical constraints. To achieve this, we apply the calibration information
provided by the KITTI and DrivingStereo dataset. In specific, given a patch with a predefined physical
size in meters, we first set the homogeneous 3D coordinates of the patch’s corners with respect to the
reference camera coordinate system. Then we calculate the corresponding pixel coordinates with the
help of the rectified projection and rotation matrix. The full calculation is detailed in supplement.

Evaluation metrics. Following the convention, we adopt bad pixel error (D1-error) and End-Point
Error (EPE) for evaluating the prediction performance which are calculted as follows:

D1 =
# of bad pixels
# of total pixels

× 100%, EPE =
1

N

N∑
i=1

|di
pred − di

gt|, (10)

2http://stereo.jpn.org/eng/iphone/help/index.html
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Figure 5: Visualization of different digital patch attack baselines and our DepthVanish patch against different
target models on KITTI-scene dataset. Note that the original and clean depth are estimated by RAFT-Stereo.

where the bad pixel is one that satisfy |dpred − dgt| > max(3, 0.05 · dgt). To evaluate patch attack
effectiveness, we first follow Eq. (4) to set the ground-truth disparity of the patch as dgt = c. Then,
we define the bad pixels as those satisfying |dpred − c| > max(3, 0.05 · dgt) and |dpred − 0| < c

n ,
where n defines how many times deeper than the actual depth will a patch be considered to be attack
effective. In summary, we report the average D1-error and EPE with standard deviation where higher
values indicate better attack performance.

6.2 Digitally Attack Stereo Estimator

We first conduct digital attack experiments with our proposed DepthVanish patch on KITTI-scene
dataset and the four sub-sets of DrivingStereo, i.e., sunny, foggy, rainy, cloudy.

Setting: Due to the lack of existing works on attacking stereo matching using patches, we use the
results from existing digital attack studies (i.e., Stereoscopic [1] and Stereopagnosia [31]) as patches
and deploy them into the scene as the first set of baselines. However, it should be noted that such
comparison is not fair enough as existing works [1, 31] are not specifically designed for patch attack.
Thus we further setup our own baseline (i.e., grid-based patch from Sec. 5.1) for a fair comparison.

Results: ❶ We report the attack results for the five attack target models on KITTI-scene dataset in
Tab. 1. It can be seen that existing digital attacks are ineffective under the patch attack setup, while
our Grid-based Patch significantly outperforms them. Notably, DepthVanish achieves strong attack
performance, especially against DeepPruner, RAFT-Stereo and STTR. We illustrate the results on
DrivingStereo dataset in Fig. 4. It is evident that similar attack performance can be observed on all
four sub-sets. ❷ In addition to the standard evaluation, Fig. 5 shows a KITTI sample comparison.
Compared to the Clean Depth, we first note that existing attack works fail to mislead all the five target
models, where only the Stereoscopic Patch shows limited influence against PSMNet. However, as
the results shown in the last column, our DepthVanish patch casts strong influence where it almost
disappeared within the depth results. More surprisingly, our patch enjoys significant transferability
over models where the patch optimized with PSMNet shows strong attack effect on other four models.
Based our experimental experience, all patches with such clear interval patterns are transferable across
models, a capability we attribute to the insights analyzed in Sec. 3. Please refer to the supplement for
the comprehensive experimental results of attack transferability.

6.3 Physically Attack Stereo Estimator

In this section, we conduct physical evaluation for our DepthVanish patches that optimized with
different stereo estimators to highlight the importance and emergency of research on stereo matching
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Figure 6: Visualization of physical attack results of our DepthVanish patches against different stereo depth
estimators. Note that the clean depth is estimated with RAFT-Stereo.
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Figure 7: Visualization of DepthVanish attack performance against Intel RealSense depth camera (D435i).

reliability. As shown in Fig. 6, we host our DepthVanish patches on a white board for the purpose
of highlighting the depth inconsistency. ❶ It can be observed from the results that our DepthVanish
patch consistently preserves its attack effectiveness after deployed into the physical environment.
Compared to the Clean Depth, the board region occupied by our DepthVanish patches are predicted as
far away in general. ❷ However, it should be noted that the induced depth error are limited compared
to the digital effectiveness in Fig. 5. We ascribe such performance degradation to the lighting variation
and imprecise photo-capturing process, where the left and right images are captured manually and
separately. Therefore, we further conduct evaluation for our patch against a commercial stereo depth
camera in the next section. In summary, despite of the imprecise stereo image capturing process, our
DepthVanish patches successfully attack advanced DNN-based stereo estimators with consistency.

6.4 Attack Commercial Stereo System

To further assess the practicality and robustness of our DepthVanish patch, we evaluate its performance
on a commercial stereo camera system, specifically the Intel RealSense D435i depth camera. We focus
on evaluating the patch’s robustness from three aspects: model generalization, viewing orientation,
and distance variation. ❶ Model generalization: we deploy the patches that optimized with five
stereo models over KITTI dataset and evaluate their attack effective against D435i camera. As shown
in Fig. 7, the patch consistently disrupts D435i predictions regardless of which model is optimized
for, demonstrating strong attack transferability. ❷ Orientation robustness: we physically rotate
the patch along the X and Y axes (see Fig. 3(a)). As visualized in Fig. 8, the patch (optimized
with PSMNet on KITTI) remains effective under different viewing angles, confirming its robustness
to rotation. ❸ Distance robustness: our method also shows robustness under varying distances.
Corresponding visual results are provided in the supplementary material.

6.5 Ablation Study

Figure 9: Attack performance of DepthVanish against RAFT-
Stereo under different α and β on KITTI dataset.

In this section, we conduct ablation anal-
ysis on the DepthVanish attack to assess
the impact of the hyperparameters α and
β in the objective function of Eq. (9).
As shown in Fig. 9, both parameters are
critical for optimal attack performance.
Specifically, it can be seen that the per-
formance degraded significantly when
α = 0, i.e., theLentropy is removed from
Eq. (9), which highlights the importance
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(a) Rotate DepthVanish Patch around X Axis

(b) Rotate DepthVanish Patch around Y Axis

Clean Depth
rotate upward 15orotate upward 45o 0o rotate downward 15o rotate downward 45o

0orotate right 45o rotate right 15o rotate left 45orotate left 15o

Figure 8: Visualization of DepthVanish attack performance with different rotation degrees around both X and Y
axes against Intel RealSense depth camera (D435i).

of the clear interval spacing for attack effectiveness. Moreover, the total variation constraint Ltv is
also important where a clear performance degradation can be observed when β decreases below 9. In
summary, the synergistic combination of entropy and total variation regularization effectively ensures
that our DepthVanish patches achieve the maximal attack performance

7 Conclusion

In this work, we present DepthVanish, a significant advancement in physical adversarial attack that
jointly optimizes both texture element and interval structure of a patch to fool stereo depth estimation
systems. By thoroughly analyzing the influence of regular spacing on naive texture repetition, we
introduce a novel insight into enhancing the attack effectiveness and digital-to-physical transferability
of the patch. To demonstrate the potentially dangerous consequences of depth estimation failure, we
design the patch to be "disappear", where the patch is estimated as far away despite being physically
close. Unlike previous methods limited to digital environments, our approach succeeds in both
digital and physical settings, when evaluated against widely applied depth estimation models and
commercial RGB-D cameras. These findings reveal critical vulnerabilities in current depth estimation
technologies and raise concerns about their reliability in safety-critical autonomous systems.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing
issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: The
papers not including the checklist will be desk rejected. The checklist should follow the references and follow
the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each
question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area
chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions)
with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While
"[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a proper
justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or
"we were unable to find the license for the dataset we used"). In general, answering "[No] " or "[NA] " is not
grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is
often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting
evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer
[Yes] to a question, in the justification please point to the section(s) where related material for the question can
be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction are fully supported by both theoretical
and experimental results throughout the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of our approach are discussed in the supplementary material.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: This paper does not contain formal theorems or proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Sec. 5.3 and Sec. 6.1 provide all critical information needed to reproduce the main
experimental results. Additional instructions and settings are included in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We will release the anonymized code and sufficient instructions for reproducing our
main experimental results in the supplementary material upon submission. This ensures that reviewers
and future readers can faithfully replicate and verify the findings.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The paper specifies all relevant training, evaluation, and test details in Sec. 5.3 and
Sec. 6.1. Additional information is provided in supplemental materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
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Justification: The paper reports error bars (mean ± standard deviation) for the quantitative results and
describes how they are calculated. Variability is reported, and figures or tables are referenced in the
text to clarify the sources of error.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The information about compute resources is detailed in the supplemental materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research follows the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: The potential positive and negative societal impacts of this work are discussed in detail
in the supplementary material.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: The paper poses no high risk of dual use or misuse upon release, as it focuses on methods,
not on releasing highly sensitive models or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All used datasets and code are properly cited and are released under their respective
public licenses as referenced in the paper and supplement.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses
for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
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13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: The paper does not release new datasets or code assets. All methods are described for
reproduction only.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or research on human subjects is involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: No experiments requiring IRB approval are conducted or reported.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: The research, methodology, and results do not make use of LLMs as a core component.

Guidelines:
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• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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