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Abstract

The success of sequential decision-making approaches, such as reinforcement
learning (RL), is closely tied to the availability of a reward feedback. However,
designing a reward function that encodes the desired objective is a challenging task.
In this work, we address a more realistic scenario: sequential decision making
with preference feedback provided, for instance, by a human expert. We aim
to build a theoretical basis linking preferences, (non-Markovian) utilities, and
(Markovian) rewards, and we study the connections between them. First, we
model preference feedback using a partial (pre)order over trajectories, enabling the
presence of incomparabilities that are common when preferences are provided by
humans but are surprisingly overlooked in existing works. Second, to provide a
theoretical justification for a common practice, we investigate how a preference
relation can be approximated by a multi-objective utility. We introduce a notion
of preference-utility compatibility and analyze the computational complexity of
this transformation, showing that constructing the minimum-dimensional utility is
NP-hard. Third, we propose a novel concept of preference-based policy dominance
that does not rely on utilities or rewards and discuss the computational complexity
of assessing it. Fourth, we develop a computationally efficient algorithm to approx-
imate a utility using (Markovian) rewards and quantify the error in terms of the
suboptimality of the optimal policy induced by the approximating reward. This
work aims to lay the foundation for a principled approach to sequential decision
making from preference feedback, with promising potential applications in RL
from human feedback.!

1 Introduction

In the last decade, reinforcement learning (RL, Sutton and Barto, 2018) has demonstrated great
success tackling sequential decision-making under uncertainty with notable results in industrial
plant control (Nian et al., 2020), robotics (Kober et al., 2013), clinical trials (Coronato et al., 2020),
autonomous driving (Kiran et al., 2021), videogames (Mnih et al., 2015), and, more recently, language
models (Du et al., 2023). In RL, the learning process is guided by a numerical feedback (i.e., a reward
function). The reward is often defined informally as “the most succinct description of a task” (Ng
and Russell, 2000). More formally, the power of a reward function is apparent since it allows, under
the Markovian property of the environment (Puterman, 2014), to approach the learning problem with
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desirable computational (Papadimitriou and Tsitsiklis, 1987; Littman, 1995) and statistical (Azar
et al., 2012) properties.

Nevertheless, the limits of learning with a reward are well known. In the common practice, the reward
function is typically designed by a system expert who leverages their domain knowledge to capture
the intuitive notion of “solving the task”. However, in many real-world scenarios, crafting a reward
function that appropriately encodes the desired objective can be challenging. Indeed, rewards should
go beyond merely capturing the desired behavior to enhance their generalizability, interpretability,
and transferability to new environments (Ng and Russell, 2000). Defining a reward, often referred
to as reward engineering (Dewey, 2014), is typically a trial-and-error process involving successive
refinements since the behavior learned by the agent can be highly sensitive to misspecifications of
the reward (Pan et al., 2022). As such, the choice of the reward function has a critical impact on the
success of the agent in learning how to solve the task. Even accepting the availability of a reward
function, the community has recently questioned whether a reward function is truly an appropriate
mathematical tool to encode the notion of a goal. The debate dates back twenty years, when Sutton
postulated that “all of what we mean by goals and purposes can be well thought of as maximization
of the expected value of the cumulative sum of a received scalar signal (reward)” (Sutton, 2004).
More recently, this hypothesis has been under investigation, although a definitive answer is currently
lacking (Silver et al., 2021; Glukhov, 2022; Vamplew et al., 2023; Bowling et al., 2023).

Why not get rid of the reward? One solution is to ask a human expert for feedback on the agent’s
behavior rather than requiring them to define a numerical reward function. The agent can then learn
a behavior that aligns with the expert’s preferences. In the literature, this paradigm is known as
preference-based reinforcement learning (PbRL, Fiirnkranz et al., 2012). Although PbRL dates back
more than twenty years, it has received renewed attention from the community thanks to the rise of
large language models (LLMs, Zhao et al., 2023a). Indeed, modern LLMs are (pre-)trained using
large amounts of data collected by eliciting pairwise human preferences (Ramachandran et al., 2017;
Radford et al., 2018). An established approach for leveraging human preferences is reinforcement
learning from human feedback (RLHF, Christiano et al., 2017; Stiennon et al., 2020; Bai et al., 2022;
Ouyang et al., 2022), which consists of two steps: first, preferences over trajectories are used to
learn a reward model, and then, RL is applied using the recovered reward function. In addition to
its remarkable empirical performance, RLHF has recently gained a theoretical understanding (Xu
et al., 2020; Chen et al., 2022; Saha et al., 2023; Zhan et al., 2024a,b). Nevertheless, these works are
closely tied to the assumption of the existence of an underlying (hidden) numerical signal (either a
proper reward function or a utility defined over trajectories), of which the preferences expressed by
the human are an indirect stochastic manifestation.> More in general, estimating a scalar numerical
signal, like in RLHF, from preferences hinders the complexity of the human feedback such as the
possible multi-objective nature of the human behavior (Hayes et al., 2022). Other approaches focus
on learning the policy directly from preferences without going through a reward model (An et al.,
2023; Zhao et al., 2023b; Rafailov et al., 2024; Azar et al., 2024). Despite the promising results,
these approaches, similar to RLHF, are based on a probabilistic model of human preferences that the
learned policy tries to replicate.

Despite the wide variety of approaches, to the best of the authors’ knowledge, there is still limited
theoretical understanding of the challenges and opportunities involved in learning from preference
feedback. In the PbRL literature (Wirth et al., 2017), an agent can roughly operate in three ways:
() learn the policy directly from preferences, (i7) estimate a surrogate utility (i.e., a non-Markovian
reward) defined over trajectories, or (iz) derive a (Markovian) reward function. Moving from (7) to
(#11), we trade off representational power with tractability. On the one hand, (i) constitutes a more
general approach where no numerical signal needs to be modeled, and as such, could inherently
represent incomparabilities (i.e., situations where the human expert is unable to compare certain pairs
of trajectories). However, the definition of optimality, as we will discuss later in the paper, may pose
important computational limitations. On the other hand, (¢¢) and (¢4¢) are based on a numerical signal
and, for this reason, introduce a bias® and the need for multi-objective signals (Hayes et al., 2022)
to model incomparabilities. The positive counterpart of using a numerical signal is that optimality
notions (e.g., Pareto optimality, Censor 1977) are well-defined. Nevertheless, planning with general

2A classical assumption is that the probability of one trajectory being preferred over another is proportional
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3Intuitively, with preferences, we can only say if a trajectory is better than another; whereas with a utility or
reward, we have to encode how much a trajectory is better than another.



utilities (z2) is still intractable, whereas when using rewards (¢7:) coupled with the Markov property,
the computation of the optimal policy can be done efficiently (Papadimitriou and Tsitsiklis, 1987).

In this paper, we aim to take a step toward the theoretical understanding of sequential decision-
making with preference feedback. Specifically, we seek to understand: (a) What can be learned
when no assumptions are made beyond the fact that the human provides preference feedback?
This involves introducing and studying notions of dominance and optimality. (b) How can we
approximate preferences with a utility, making the fewest assumptions? This requires defining a
notion of compatibility between preference relations and utilities (Evren and Ok, 2011) and studying
whether constructing a compatible utility can be done efficiently. (¢) How can we convert a utility
to a reward function? This includes analyzing the level of approximation and the computational
tractability of the conversion.

Unlike RLHF, we will make no assumptions about the existence of an underlying reward function or
the existence of a probabilistic model guiding the human preference-generation process. Our main
goal is to establish a theoretical basis to design, in future works, statistically efficient algorithms for
learning with preference feedback.

Original Contributions. The contributions of the paper are summarized as follows:

* In Section 3, we define three augmentations of the Markov decision process without rewards setting
to include preferences, utilities and rewards.

* In Section 4, we define the notion of compatibility between a (partial) preorder that we use to
represent preferences and a (multi-dimensional) utility function. We study the computational
complexity of constructing compatible utilities. Moreover, we propose a heuristic to compute a
compatible utility in polynomial time.

* In Section 5, we define the concepts of dominance and optimality for policies when only preferences
are involved, discussing their computational properties, and deriving a method to verify policy
dominance w.r.t. a preorder.

* In Section 6, we study the problem of jointly computing a (non-Markovian) compatible utility and
its (Markovian) approximation induced by rewards and we provide a bound to the distance of the
induced Pareto frontiers.

Related works are reported in Section 7 and omitted proofs can be found in Appendix A.

2 Preliminaries

In this section, we provide the background that will be employed in the following sections.

Notation. Given a,b € N with a < b, we define [a] := {1,2,...,a} and [a,?] := {a,a + 1,...,b}.
For ¢ € R, we use the notation (¢)* := max{0, ¢}. Given a finite set X', we denote as A(X) the
probability simplex over X, with P(X) its power set, and with | X| its cardinality. For a matrix A,
we indicate with | A | its Frobenius norm and with I the identity matrix of order d.

(Pre)Order Relations. Let X be a set and <y X x X be a (binary) relation, if (x,y) €<y, we
use the notation x <y y. A relation <y is a (partial) preorder if it is: (i) reflexive (i.e., x <y x)
and (¢7) transitive (i.e., t <y y Ay <y z = x <y 2). A (partial) order is a preorder that is (i:7)
antisymmetric (i.e., t <y y Ay <y x =z =1y). Wewritex <y yifr <y yandnoty <y =x.
x and y are incomparable, and we denote it as x ||y y, if neither z <y y nor y <y z; otherwise
they are comparable. Moreover, x and y are equivalent if x <y y and y <y x, and we denote it as
x =y y. =y is an equivalence relation that induces a partial order over the quotient set X'/ =y, i.e.,
[2] <[x1/=~ [¥]if 2 <x y. A (pre)order is total when every pair of distinct elements is comparable
(e, Vex,ye X : z <y y vy <y x). We sometimes denote total (pre)orders with the symbol < ».

Linear Extensions, Order Dimension, and Width. Let <ye X x X be an order relation and
<ye X x X be atotal order, <y is a linear extension of <y if <yCS<y (ie,r <y y=1z <y ¥y).
A set {éx,i}iem of total orders is a realizer of an order <y if <y= ﬂie[[d]] <x,; (which implies
that all <y ; are linear extensions of <y). The order dimension (Dushnik and Miller, 1941; Trotter,
1992) of the order <y is the least cardinality of a realizer of <y, i.e., dim(<y) := min{d € N :
I{<x.i}ie[q) realizer of <y}. If < is a preorder, we define its dimension as the dimension of
the partial order induced over the quotient set, i.e., dim(<x) := dim(<y/=,). It is known that
for |X| = 3, computing the order dimension is NP-hard (Yannakakis, 1982; Felsner et al., 2017).



Furthermore, unless NP = ZPP, there exists no polynomial-time algorithm to approximate the order
dimension with a factor of O(|X|!~¢), for every € > 0 (Chalermsook et al., 2013). An antichain
(resp. chain) is a subset of X’ such that any two distinct elements are incomparable (resp. all elements
are comparable). The width is the maximum cardinality of an antichain width(< y) := max{|}] :
Y Xst.Vo,yeY:z #y= x| x y} Itisknown that dim(<y) < width(<xy) (Dilworth,
1987).

Component-wise Order. For real vectors v, w € R, we define the component-wise (or Pareto)
partial order as v < w < Vi € [d] : v; < w;. According to previous definition, we have
v<w<eVYie[d: v<w Adje[d]: vy <w;.

Sorting function. Let <y be a total order, a bijection 1< : [|X|] — X is a sorting function if for
every i,j € [|X]], we have i > j < ¥« (i) <x ¥<(J). < (Which is unique) sorts the elements of
X according to the total order <y. Let f : X — R and <y be a total order, whenever clear from the
context, we abbreviate f(i) == f(1<, (7).

Markov Decision Process without Rewards. A finite-horizon Markov decision process without
reward (MDP\R, Abbeel and Ng, 2004) is a tuple (S, A, H,p, 1), where S and A are the finite
(|S] =: S and |A| =: A) state and action spaces, H € N is the horizon, p = (pp)nes) defined for
every h € [H] as pp, : S x A — A(S) is the transition model that for every state s € S, action
a € A, stage h € [H], and next state s’ € S provides the probability p, (s'|s, a) to reach s’ by playing
action a in state s at stage h, and p € A(S) is the initial-state distribution such that u(s) provides
the probability that the interaction starts in s. A trajectory of length h € [H] is 7 := (s, i)ie[n]»
representing sequence of state-action pairs belonging to the set of trajectories 75 < (S x A)" with
cardinality | 75| < (SA)". If the length is not specified, it is assumed to be h = H (i.e., T = Tg).
The agent behavior is modeled with a history-dependent policy m = (7,)er defined for every
he[H]asmp: Tho1 x S — A(A) that, for every trajectory 7 € Tj,_; of length h — 1, state s € S,
and action a € A, provides the probability 7 (a|T, s) to play action a after having observed trajectory
7 and state s. A policy is Markovian if it depends on the current state only and, in such a case, we
abbreviate with 7, (a|s). We denote with II the set of history-dependent policies. A policy 7 € II
induces a trajectory distribution:

H
de(7) = p(s1) [ | ma(anln1, sn)pn(snilsn, an), €]
h=1
where 7, = (s1,a1,...,8;,a;) denotes the prefix of length | € [H] of trajectory 7 =
(s1,a1,...,8H,aH).
3 Setting

In this section, we introduce three augmentations of MDP\R defined in terms of preference relations,
utility function, and Markovian cumulative reward function.

Preference-based MDP. Let <4< 7T x 7T be a preorder over trajectories 7. We define a preference-
based Markov decision process (PbMDP) as the tuple M = (S, A, H, p, i1, <7) obtained by pairing
an MDP\R with a preorder relation <7 defining preferences over the trajectories.* The use of a
preorder relation allows formalizing when a trajectory 7’ is preferred over 7, i.e., 7 <7 7/, but also
accounting for both equivalent 7 =1 7 and incomparable T ||7 7' trajectories with 7, 7" € T. We
will introduce the optimality conditions for a PbMDP in Section 5.

Utility-based MDP. Let m € N and uw : 7 — R™ be a multi-dimensional utility function, i.e., a
function mapping a trajectory 7 € 7 to a vector w(7) = (u1(7),..., %y, (7)) of m real numbers.
A utility-based Markov decision process (UtIMDP) is defined as the tuple M = (S, A, H, p, i1, u)
obtained by pairing an MDP\R with a utility function w. Let 7 € 11 be a policy, its expected utility is
defined as:

J(mu) = Y de(m)u(r) = {dx, u). @

TeT

“In agreement with the literature (Ok, 2002), we use preorders to represent the informal notion of “preference
relation”.



Let 7, 7 € II be two policies, we say that 7 w-Pareto strictly dominates 7' (resp. 7 u-Pareto weakly
dominates 7') if J(m;u) > J(n';u) (resp. J(m;u) > J(7';u)). We define the set of u-Pareto
optimal policies (i.e., the Pareto frontier) as the set of policies that are not w-Pareto strictly dominated
by any other policy, i.e., [I*(u) == {w € Il : =37’ € U s.t. J(7';u) > J(m;u)}. Given a utility
u, the u-Pareto dominance induces a partial preorder relation <,,€ II x II over the policy space, of
which the set of Pareto optimal policies II*(u) are the maximal elements. If m = 1, a u-optimal
policy is any policy maximizing the expected utility, i.e., 7* € IT*(u) = arg max,..y J(7; u).

Reward-based MDP. Let m € Nand let r = () e, defined forevery h e [H] as ), : Sx A —

R™, be a multi-dimensional reward function, i.e., a function mapping every stage h € [H], state

s € S, and action a € A to a vector r(s,a) = (rn1(8,a),...,Thm(s,a))T of m real numbers.
A (reward-based) Markov decision process (MDP) is defined as the tuple M = (S, A, H,p, u, )
obtained by pairing an MDP\R with a reward function r. It is always possible to define a utility from

a reward by means of the trajectory return, defined for every 7 = (s1,a1,...,8y,an) € T as:
H
Up(T) 1= Z rr(Sh, ap). 3)
h=1

Let 7 € II be a policy, its expected return is defined as J (7; 1) := J(m; u,.). The concept of r-Pareto
dominance, the set of r-Pareto optimal policies IT* (), and, in the case of m = 1, the set of optimal
policies IT*(r), are defined as for the UtiIMDP, by means of the return utility u,.. It is well-known
that in MDPs there always exist (Pareto) optimal policies which are Markovian (Puterman, 2014).

4 Representing Preferences with Utilities

In this section, we show how preferences can be represented using utilities. We define the notion of
compatibility between preferences and (possibly multi-dimensional) utilities, starting with the simpler
case of total preorders and, then, moving to partial preorders. We also discuss the computational
aspects of constructing a compatible utility from a preorder. The content of this section will be
necessary to define the notion of optimality presented in Section 5.

The use of utilities to represent preferences dates back to (Von Neumann and Morgenstern, 1947),
which shows that any rational agent defines their preferences in terms of an underlying utility function.
Then, (Debreu, 1954) shows the existence of a scalar utility that represents a total order. Subsequently,
(Ok, 2002; Evren and Ok, 2011) extend this result by proving the existence of a multi-dimensional
utility that represents a partial (pre)order relation.

Compatible Utilities. We start with the total preorder case.

Definition 4.1 (Compatible Utility — Total Preorder). Let <7 be a total preorder over T and let
u: T — R be a scalar utility function. u is compatible with <7 if for every 7,7’ € T it holds that
<77 o u(r) < u(r).

Thus, if 7 <7 7’ (i.e., 7’ is strictly preferred over 7) then u(7) < u(7’) and if 7 <7 7’ (i.e., 7/ and
T are equivalent) then u(7) = u(7’). Utilities compatible with total preorders clearly exist and a
simplistic way to derive a compatible utility is to order the trajectories according to <7 and map
each one to a real number, e.g., u(v<, (¢)) = u(i¢) = |T| — ¢. Similarly, given a utility w, it is simple
to derive the corresponding preorder by applying Definition 4.1. We now move to the partial preorder
case, following (Ok, 2002, Equation 2).

Definition 4.2 (Compatible Utility — Partial Preorder). Let <7 be a preorder over T and let
u T — R™ withm € N be a multi-dimensional utility. w is compatible with <t if for every
7,7 € T it holds that T <7 7" < u(T) < u(7’).

Some comments are in order. First, we note that, differently from Definition 4.1, we employ multi-
dimensional utilities made of m components. Second, we use the component-wise order of the utility
to define the compatibility. Precisely, if 7 <7 7/ (i.e., 7’ strictly preferred over 7) then Vi € [M] :
wi(7) < u;(7') and 35 € [m] : u;(7) < u;(7). If, instead, 7 =7 7’ (i.e., 7 and 7’ are equivalent),
we set the utilities to the same value Vi € [m] : u;(7) = w;(7’). Finally, 7 |7 7’ (i.e., 7 and 7’ are
incomparable) corresponds to the condition 34, j € [m] : ¢ # j A w;(7) > w;(7') A u; (1) < uj(7').

While deriving the preorder from the multi-dimensional utility can be done directly by applying
Definition 4.2; differently from the total preorder case, the construction of a compatible utility from
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(a) DAG G of <. (b) A minimum path () A realizer {<7 :};e[3] constructed from the
cover {Ci}ie[3]- minimum path cover {C;};e[3].
Figure 1: Example of a partial order on the set 7 = {74, ..., 77} having width w = 3, a minimum

path cover, and a realizer.

the preorder is not straightforward. The following result shows that the minimum value of m is the
order dimension of the preorder.

Theorem 4.1. Let <€ T x T be a preorder over T. Then:

(i) there exists a dim(=<7)-dimensional compatible utility;
(ii) no m-dimensional compatible utilities with m < dim (<) exist.

The proof of the theorem follows from the application of Definitions 4.1 and 4.2 and from the
definition of order dimension. Clearly, one can define utilities with more than dim (<) dimensions
and, in any case, having fixed m, infinitely many compatible utilities exist (e.g., by performing
translations or rescaling with positive factors). We call minimal a dim(<7)-dimensional utility. The
following result shows that computing minimal utilities is hard.

Theorem 4.2. Let < be a preorder over T. The construction of a minimal utility u compatible with
<7 is NP-hard.

The theorem follows from the NP-hardness of computing the order dimension. Due to the inapprox-
imability results, it is not possible to compute in polynomial time compatible utilities with a number
of dimensions O(|7|*~¢dim(<7)) for € > 0 in the worst case (Chalermsook et al., 2013).

Compatible Utility Heuristic. We propose a method to construct a multi-dimensional utility function
u that is compatible with < based on dividing the problem into three phases: (i) we construct a
realizer {<T,i}i6[[m]] (i.e., a set of linear extensions) of <7 of size m (which need not be minimal),
then, (7¢) we construct a scalar compatible utility for each <7 ; in the realizer set (which can be done
in O(|T) time) for every i € [m], finally, (¢i7) we juxtapose the scalar utilities into an m-dimensional
utility (which can be done in O(m) time).

We now introduce a tractable method for (3), i.e., to derive a realizer of cardinality w = width(<7)
given a partial order over trajectories.” We start by observing that < can be represented as a direct
acyclic graph (DAG) G = (T, &), where the set of nodes corresponds to the set of trajectories T
and the set of edges £ is such that its reflexive and transitive closure is the partial order <+.5 We
now solve a minimum path cover (MPC) problem to obtain a set of w chains (i.e., paths in the graph)
that covers all the trajectories (i.e., all the nodes). Caceres et al. (2022) proposes an algorithm that
runs in O(w?|T| + |€]). Letting {C;};c[.] represent the set of chains (i.e., sequence of nodes), we
now derive a realizer set {<7; };c[.,]. This is done by extending each chain C; with i € [w] to obtain
the linear extension <7 ; as follows: for every 71,75 € 7T, if 77 and 7» are incomparable in <7
(i.e., 71 |7 72) and 7 € C;, then 7y <7 ; 7». This procedure has cost of O (\’T|2) Overall, we can
compute a realizer of <7 with cardinality w in at most O(|7|(| 7| + w?)), having observed that
|€| < w|T| (Kritikakis and Tollis, 2022). An example of this procedure is reported in Figure 1.

Given Definitions 4.1 and 4.2, every UtiIMDP can be mapped to exactly one PbMDP defined with
the preorder <7 unambiguously constructed from the utility w, while a PbMDP can be mapped
to multiple (infinitely many) UtiIMDPs with any utility w compatible with the preorder <. This
observation motivates the need for evaluating optimality and dominance directly w.r.t. the preference
relation.

SWe consider only the case in which we have an order. Indeed, if we have a preorder, we can consider the
order induced over the quotient set by the equivalence relation =7, as for equivalent trajectories, we are forced
to set the same value of the utility.

SFormally, £ € T x T is the cover relation induced by the partial order <7 (Knuth, 2013).



5 Dominance and Optimality with Preferences

In this section, we introduce the novel concepts of dominance and optimality for policies defined by
means of the preorder <, and we discuss their computational properties. Similarly to UtiIMDPs and
MDPs, where (possibly multi-dimensional) utilities or rewards are present, we aim to characterize
the target when solving a PbMDP, i.e., a notion of a non-dominated set of policies. However, unlike
UtiIMDPs and MDPs, PbMDPs lack a numerical signal.

From now on, we only consider the case in which <7 is an order. Indeed, if <7 is a preorder, we can
consider the order induced over the quotient 7/ =, observing that equivalent trajectories correspond
to the same utility value.

Dominance for Total Orders. As discussed in Section 4, for every order <, there exist infinitely
many compatible utilities. However, the Pareto optimality of a policy 7 € II w.r.t. a certain compatible
utility w does not necessarily guarantee its Pareto optimality w.r.t. another compatible utility u’, as
shown in the following example.
Example 1. This holds even for scalar utilities. Let T = {11, 72, T3} and the total order < be
defined as:
T3 <7 T2 <T T1.

Let I = {m, 7'} be the policy space with the corresponding trajectory distributions d, =
(0.5,0.5,0)" and d,» = (0.8,0,0.2)". Consider the utilities u1 = (4,2,0)" and ug = (4,2, -2) "
both compatible with <. We have:

J(m;up) = J(mug) = 3, J(7'5up) = 3.2, J(7';ug) = 2.8.

Thus, ' ui-(Pareto) dominates 7 and m ua-(Pareto) dominates m'.

For this reason, we propose defining dominance between policies considering all compatible utilities.
This ensures that if a policy 7 dominates another policy 7’ (in the sense defined below), then 7 Pareto
dominates 7’ w.r.t. all compatible utilities. Let us begin with the case of total orders.
Definition 5.1 (Policy Dominance — Total Order). Let < be a total order over T, and let 7,7’ € TI
be two policies. m <-strictly dominates 7/, denoted as ©' <y 7 if, for every utility u : T — R
compatible with <7, we have:

J(myu) — J(n'5u) = {dy — dgryuy > 0.
If the inequality holds with =, we say that m <7-weakly dominates 7', denoted as ™ <y .

Since we are considering total orders and, consequently, scalar utilities, we require that 7 yields a
strictly better expected utility J(7; u) compared to that J (7'; u) of 7/, evaluated under any compatible
utility. Note that <yje II x Il is a partial preorder over the space of policies II. Indeed, even if the
order <7 is fotal, the induced preorder <y can be partial, as illustrated below.

Example 2. Let T = {71, 72,73, T4} be a trajectory space. Consider the following total order <7:

Ty <7 T3 <T T2 <T Ti. 4)
Let m,m' € 1II be two policies with trajectory distributions d, = (0.4,0.3,0.1,0.2)T and
dr = (0.3,0.2,0.4,0.1) . Now, let uy = (4,3,2,1)" and us = (10,9,8,1)T be two scalar utilities
both compatible with <. Thus, to determine whether T dominates 7', we need to verify if the
condition of Definition 5.1 holds for both utilities: {d; — d,u1y = 0.2 and {d; — dr,us) = —0.4.
Thus, 7 does not dominate 7' and vice versa (i.e., 7 |1 7), showing that <ry is partial.

Definition 5.1 requires testing the condition “for every compatible utility”” which is clearly infeasible.
We can easily overcome this issue, as shown in the following result.

Theorem 5.1. Let <7 be a total order over T, and let 7,7’ € I be two policies. m <7-weakly
dominates ' if and only if it holds that:

vn e [|T]] : Z (dr (i) — dy (i) = 0. )

Furthermore, m <-strictly dominates 7’ if and only if, in addition to the above, it holds that:

’
n

3 e [T Y (deli) — dus(3)) > 0, ©)

i=1



The proof is reported in Appendix A. To give an interpretation to the condition in Equation (5), con-
sider the vectors dr = (dr(1),...,d(|T]))" and d,» = (dx(1),...,dw(|T]))T of the trajectory
probabilities sorted in non-increasing order (from the most preferred to the least preferred trajectory)
according to the total order <. Equation (5) prescribes that the vectors of the cumulative sums Cd
and Cd, of the trajectory probabilities to satisfy Cd, > Cd, in the sense of the component-wise
order, where C is a lower triangular matrix of all 1s. Thus, we have reduced the problem of assessing
the dominance between policies (7' <y 7) to the problem of assessing dominance between real
vectors (Cd,» < Cdr). An immediate intuitive consequence is that for the most preferred trajectory,
we have d (1) = dn/(1), and for the least preferred trajectory, we have d(|7]) < d(|T|). The
computational complexity of verifying the condition of Equation (5) is O(|T).

Dominance for Partial Orders. Moving from total to partial orders, we directly generalize Defini-
tion 5.1 to the case of compatible (multi-dimensional) utilities.

Definition 5.2 (Policy Dominance — Partial Order). Let <+ be an order over T, and let w, 7' € I1
be two policies. m <r-strictly dominates 7', denoted as 7™ <11 7 if, for every utility u : T — R
compatible with <, it holds that:

J(mu) — J(r'su) = {dy — dpr,u)y > 0.

If the inequality holds with >, we say that m <7-weakly dominates 7/, denoted as ' <y 7.

Thus, we require that policy 7 u-Pareto dominates 7’ under any compatible utility u. As for the case
of total orders, <pe II x II represents a partial preorder over the space of policies. The following
result shows that Definition 5.2, i.e., dominance between policies w.r.t. a partial order <+, can be
equivalently stated by requiring that dominance holds for all the linear extensions (i.e., total orders),
according to Definition 5.1, for every realizer {<7 ;}ic[m] of <7

Theorem 5.2. Let <1 be a partial order over T and let 7w, ' € II be two policies. ™ <7-weakly
dominates 7' if and only if, for every realizer {<7 ;}ic[m) with m € N of <7, it holds that:
Vie[m]: = <p,m,

where ' <p; w (resp. © <n,; w) denotes that m weakly (resp. strictly) <t ;-dominates 7’
(Definition 5.1) w.r.t. the i-th total order in the realizer of <. Furthermore, m < -strictly dominates
7' if and only if, in addition to the above, it holds that:

Jjem]: = <n,m. @)
Thus, we have reduced the problem of assessing the dominance for partial orders to assessing the

dominance of a number of total orders. By a simple application of Theorem 5.1, we can state the
following equivalent condition.

Theorem 5.3. Let <1 be a partial order over T and let w, 7' € Il be two policies. m <7-weakly
dominates 7' if and only if, for every linear extension <1 of <7, it holds that:

Ve [IT]] : D (da(tb<y (i) = dur (b, (1)) = 0. (8)
=1

7 Z-strictly dominates ' if and only if, in addition to the above, there exists a linear extension <'r
of <7 such that:

Ine[|TN: Z(dw(wsg(i)) — dn (< () > 0. ©)

Although it resembles Theorem 5.1 for total orders, Theorem 5.3 cannot be leveraged to derive an
efficient algorithm. Indeed, a trivial application would require to enumerate all linear extensions that,
in the worst case, are |7 |!. We are currently unable to provide a polynomial-time algorithm to assess
policy dominance for partial orders but we conjecture that the problem is computationally hard.

Optimality. We now define a notion of optimality for policies in terms of the preference relation.
Following the same ideas as for Pareto-optimal policies, we call a policy optimal w.r.t. an order <
if there exists no other policy that strictly dominates it.

Definition 5.3 (Optimality). Let <7 be a partial order over T. * € 1l is <7-optimal if it is not
<r-strictly dominated by any other policy. We denote the set of <7-optimal policies as:

M*(=x7)={nell : -Ir’ eUst m<gn'}.



6 From (Non-Markovian) Utility to Markovian Reward

In this section, we study the problem of approximating a (non-Markovian) compatible utility with a
(Markovian) reward and discuss the approximation error.

Total Order Case. Consider a total order <7 over |7 trajectories that can be represented by a
scalar compatible utility u € R!71, as in Definition 4.1. We can arbitrarily choose the values of ()
so that for every i, j € [[|T] such that i < j we have u(i) < u(j) — e where € > 0 represents the
minimum utility gap between two trajectories. We want to find a reward vector r € R4 which
best represents the compatible utility vector. To this end, we jointly optimize the choice of utility «
and reward r to minimize the error due to the limited expressive power of the reward w.r.t. the utility,
by means of the following quadratic program (QP):

* = min |lu — Br|3
weRIT| reRSAH

st u(Y<, (i + 1) <ulpg, (1) —e, Vie[|T|—1]
u(h<(IT1)) =0

where B € {0, 1}!71*54H ig a binary matrix encoding, for every trajectory, which stages, states, and
actions are involved in it (the order in which we design this matrix will influence only the order the
elements in the reward vector).” The constraints on u(1) and u(|77|) just set the scale of the utilities
and the ones proposed above are an arbitrary valid choice. We can easily eliminate the variable r by
observing that it is not involved in any constraints, and solve the least-squares problem in closed form,

obtaining r = (BTB) ™' BTu.® Thus, by defining A := I;7; — B (BTB) ' B, the objective
function becomes |Aul? = u" AT Au, leading to a QP with |T| variables, a quadratic (convex)
objective, and |7'| + 1 linear constraints, that can be solved using convenient convex optimization
tools (Boyd and Vandenberghe, 2004).

Partial Order Case. The same rationale can be applied to partial orders <7 by considering a realizer

{<7,j}je[m] and a compatible m-dimensional utility u € RIT1m (also switching the Euclidean
norm with the Frobenious norm):

n* = min |Au|} (10)

ueRITIxm
st wier i+ 1) Suilber, (@) —c Vie [TI-1], j € [m]
ui(V<r,(IT]) =0, Vje[m]
ui(P<r,; (1)) =1, Vje [m]
Also in this case we are in the presence of a QP with m/|7 | variables and m(|7| + 1) linear constraints.

Approximation Error. When the partial order can be indeed represented via Markovian rewards,
then the QP presented above returns a value of the objective function n* = 0, otherwise, it returns
n* > 0. In the opposite case, the Markovian reward yields an approximated utility @& = u.., that
will induce a certain set IT* () < II of @u-Pareto optimal policies, whereas u will yield another set
IT*(w) < II of u-Pareto optimal policies. We now propose to evaluate the dissimilarity between the
two sets of policies with the following index:

L(w, 1) = max sup inf  AJY(m,7,u), sup inf AJY#, 7, },
( ) { mell* (u) TEIT¥ (@) ( ) Fell* (a) TEIT* (u) ( )
where:
AT (7,7, u) = Z (J(m,uj) — J(F,u) " . (11)
Jjelm]

This index is designed to account only for performance losses when we move from a u-Pareto
optimal policy 7 to a u-Pareto optimal policy 7 and does not allow for compensations when 7 better

"Formally, let 7 = (s1,a1,...,5m,am) € T, we have that B(7, (s;,a;,1)) = 1 for every | € [H] and all
other components of row 7 are equal to 0.
8The choice of the set of all trajectories |7| makes B full rank, thus ensuring that BT B admits an inverse.



optimizes some dimensions of u w.r.t. the Pareto optimal policy 7. The presence of the infimum
ensures picking the policy 7 in the Pareto frontier of u “closest” to 7, while the supremum forces the
worst-case choice of 7. Analogous reasoning holds for the second argument of the max by reversing
the roles of 7 and 7. In the following theorem, we upper bound the performance loss due to the
Markovian approximation.

Theorem 6.1. Letu,w : T — R™ be two m-dimensional utilities functions such that |u—al|/% < n*.

Then, it holds that L(u, ) < 2+/mn*.

It is worth noting that this result holds for arbitrary pairs of utilities, not necessarily derived with
the QP presented above. We can trivially verify that in the case of a total preorder, the difference in
performance is bounded by 24/n*.

7 Related Works

We summarize the relevant literature, focusing on feedback types, learning from preferences, and
results on bandits.

Types of Feedback. PbRL and RLHF approaches have been studied combined with several types
of feedback. Kaufmann et al. (2025) report and analyze several classes of feedback, presenting a
trade-off in terms of how the complexity is distributed between the human expert (i.e., difficulty
of providing a feedback) and the agent (i.e., difficulty of learning given the feedback). In our
framework, we consider only feedback over trajectories, the most common one, while allowing for
non-Markovianity in the implicit evaluation of the expert. Asking for a preference among a set of
objects (i.e., the type of feedback we consider in this work) is also referred to as comparison feedback.
Comparison feedback first appeared in the literature in terms of feedback over individual state-action
pairs (Cheng et al., 2011; Fiirnkranz et al., 2012), and was later extended to reward learning tasks
(Christiano et al., 2017; Ibarz et al., 2018).

Learning from Preferences. Our setting has connections with both PbRL and RLHF. Wirth et al.
(2017) propose the Markov decision process with preferences (MDPP) setting, aiming at unifying
some of the existing PbRL results under a common framework. MDPPs employ a stochastic
preference generation process. Although this is a relevant scenario when learning a policy given a set
of binary preferences, it deviates from the objective of studying the computational complexity of the
problem, thus, motivating the need to define our PbMDPs where the preferences are deterministic.
Moreover, MDPPs define preferences between trajectories in terms of the likelihood of them being
generated by a given policy. This assumption, although sensible w.r.t. the goal of the authors, is
stronger than what is required in this work that simply considers general preorders. Wirth et al. (2017)
and Kaufmann et al. (2025) survey several PbRL and RLHF approaches, ranging in methodology
from direct policy learning (Wilson et al., 2012; Rafailov et al., 2024), to learning a utility (Akrour
et al., 2012), to learning a reward function (Zucker et al., 2010; Christiano et al., 2017), all under the
probabilistic preference assumption.

Preference-Based Multi-Armed Bandits. Several multi-armed bandit (MAB, Lattimore and
Szepesvari, 2020) settings share some aspects with PbRL. For example, dueling bandits (DBs,
Yue et al., 2012) are the preference-based version of MABs, and can be interpreted as the one-state
version of PbRL. DBs can allow for non-order relations among arms (see, e.g., Zoghi et al., 2015). Xu
et al. (2020) employ a DB-based subroutine in their PbRL algorithm, and demonstrate the existence
of MDPs with non-transitive preferences between trajectories, leading to the absence of a unique
optimal policy. This scenario, however, is out of the scope of this work, as removing the assumption
of a (partial) preorder would change the basis of the analysis, with a notable loss of the properties
presented in this paper. A different example is (Azar et al., 2024), in which the authors define the
problem of learning from human feedback as an offline contextual bandit (Lu et al., 2010) problem.
We refer the interested reader to (Busa-Fekete and Hiillermeier, 2014) for a detailed survey of
preference-based learning in MABs.

8 Discussion and Conclusions

In this work, we defined the PbMDP setting, obtained by extending an MDP\R with a (partial)
preorder over trajectories, and compared it with UtiIMDPs and MDPs. We defined the notion
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of utility-preference compatibility and discussed the computational issues in constructing them.
Then, we defined the concepts of policy dominance, accounting for the fact that the true underlying
utility function is unknown. Finally, we discussed the need to move from utilities to Markovian
rewards, providing a QP optimization problem to compute the reward values, and quantifying the
approximation error.

Future Works. The computational limitations presented in the paper suggest the need for less
demanding notions of dominance when preferences are concerned. Furthermore, our work does not
tackle the statistical complexity of learning with preference feedback. Future works should address
these issues. Specifically, it would be interesting to investigate less demanding notions of dominance
that consider, e.g., a subset of all compatible utilities, and compare them with the one presented
in this paper from the computational perspective. Moreover, in realistic scenarios, the preference
relation is not given and should be learned from samples. Future studies could define methodologies
to address both the preference elicitation problem (see, e.g., Wilde et al., 2018), and the uncertainty
in the preference generation process. One such natural extension is to study the statistical complexity
of a multi-objective problem in terms of (z) the uncertainty due to a partial coverage of the preorder
relation and (¢¢) the error due to the approximation.
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A  Omitted Proofs

Theorem 4.1. Let <€ T x T be a preorder over T. Then:

(i) there exists a dim(<1)-dimensional compatible utility;
(ii) no m-dimensional compatible utilities with m < dim(<7) exist.

Proof. We limit the proof for the case in which we have an order. Indeed, if we have a preorder,
we can consider the order induced over the quotient set by the equivalence relation =7, as for
equivalent trajectories we are forced to set the same value of the utility. Let us start with (7). We
show the existence of a compatible dim(<7)-dimensional utility. Let D = dim(=<), for notational
convenience. To this end, we know that there exists a set {<7;}2, of D total orders such that
<7= ﬂfil <74 le,7 <77 < Vie[D]: 7 <y, 7. Since for total orders, compatible utilities
exist, let us consider u; : 7 — R, compatible with <7, for every i € [D]. Let us now construct the
D-dimensional utility w = (u1,...,up)". We show that u is compatible with the preorder <. Let
7,7 € T, we have:

u(t) < u(r') « Vie [D] : ui(r) < ui(7) (12)
<Vie[D]:7<r,; 7 (13)
777, (14)

where line (13) follows from the compatibilities of the scalar utilities u; with the corresponding
<7, and line (14) follows from the construction of the partial preorder from the intersection of
total preorders. For (i7), by contradiction, suppose there exists an m-dimensional compatible utility
w = (ug,...,uy) withm < D. Let {<7.:}i7, be the set of m total orders induced by w1, . .., U,

which is unique. We now show that <= (., <7, contradicting the definition of order dimension.
Let 7,7/ € T, we have:

7 <77 < u(r) <u(r) (15)
< Vie[m]:u(r) < u(r) (16)
eVie[m]: <5, 7, 17)

where line (15) follows from the compatibility of the multi-dimensional utility and line (17) follows
from the compatibility of the scalar utilities.

O

Theorem 4.2. Let < be a preorder over T. The construction of a minimal utility w compatible with
<7 is NP-hard.

Proof. We restrict to the case of orders. We reduce from the problem of deciding whether the order
dimension of an order is > k which is known to be NP-hard (Yannakakis, 1982; Felsner et al., 2017).

Decision Problems.

ORDER DIMENSION (OD): given an order << X x X and a natural number k € N, YES if the order
dimension is < k.

MINIMAL UTILITY (MU): given an order << X x X and a natural number k£ € N, YES if a minimal
compatible utility has dimensionality < k.

Reduction. We show that OD <, MU (<, denotes a Karp’s reduction). The instance of MU is
the same as for OD. It is trivial to show that the order dimension is < & if and only if a minimal
compatible utility has dimensionality < k. O

Theorem 5.1. Let <7 be a total order over T, and let w, 7' € II be two policies. m <7-weakly
dominates ' if and only if it holds that:

vne[ITI: ), (de(i) = dw (i) 2 0. 5)
im1
Furthermore, m <-strictly dominates 7’ if and only if, in addition to the above, it holds that:

’
n

3 e [T Y (deli) — dus(3)) > 0, ©)

i=1
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Proof. We prove the first statement, as the second one can be proved analogously.

If. We start showing that:

n

' <g7m™ =  min dr(1) —dm (1)) =0
! i 3% (0 o 0)

By contradiction, suppose the following condition to hold:
,n*
* . ) — (2 i — ’ 2 .
In* e [|T]] : ; (dr (i) —dar (i) <0 A ucompatilg}efwith ST<d,r dpryuy =0
Define the utility function % defined as:
(i) = M ifi < n*,
) if i > n*,

U

for some M > 0. We observe that u is compatible with <. Then, we can write:

7] n* 7]
Z (1) (dr (i) = drr () = ) 10(0) (dr (i) — dor () + Y, () (de(i) = dur (i)

<0,
where the last inequality holds under condition (7), which is absurd.

Only if. Let us now prove that:

n

min d:(i) —dw(i) =0 = 7« <pm. 18
min 3 (ds(0) ~ do () " 1s)

i=1
The LHS of Equation (18) implies that, for every n* € [[| 7], it holds that:

Y (dr(i) = d (i) 2 0, (19)
i=1
and consequently, that the following holds as well:

I7]

D1 (da(i) — dw (i) <0, (20)

i=n¥+1
since, by definition of the policy occupancy, it holds that:
7]

> (dx(i) = o (i) = 0. @1

i=1

Let u be a compatible utility function, and let m € [[|T|] be the index such that:
u(@) =0 ifi<m,
u(l) <0 ifi>m.

Then, we can rewrite:

m [T
DT u(i) (de(i) = dur(8)) + > uli) (da(i) = dpr (i)
i=1 i=m+1
m [T
> u(m) Y (de(i) = du (i) + u(m + 1) Y. (da(i) — dp(i)),
=1 i=m+1
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where Equation (22) is obtained by applying the following reasoning. On the one hand, un-
der Equation (19) and under the compatibility of w, it holds that u(1) (d,(1) —d. (1)) >
u(2) (dr(2) — dr(2)), and by applying a chain reasoning, we can demonstrate that:

Z (i) (dx (i) — dz (i) = u(m) Z (dr (i) — do: (1)) -

On the other hand, under Equation (20) and under the compatibility of w, it holds that
w(|T1) (d=(IT1) = dw (IT]) < u(|T]=1) (dx(|T] = 1) = dr'(|T] — 1)), and by applying a similar
chain reasoning as before, but in the opposite direction, we get that:

|71 [T]
D1 uli) (de(i) — dur (i) Zu(m+1) > (da(i) — dnr (i)
i=m+1 i=m+1

Finally, by applying Equation (21) to Equation (22) we get that:

e
—~
~.
S
3
~.
I
U
:‘\
—
-~
~—
S~—
A\

(u(m) = ulm + 1)) Y, (da(i) ~ du (1) > 0.

where the last inequality holds under the compatibility of w, thus demonstrating the implication and
concluding the proof.

O

Theorem 5.2. Let <1 be a partial order over T and let 7, 7' € II be two policies. m <7-weakly
dominates 7' if and only if, for every realizer {<7 ;}ic[m] with m € N of <7, it holds that:

Vie[m]: = <p,m,

where m' < ; 7 (resp. ® <n; m) denotes that ™ weakly (resp. strictly) <t ;-dominates '
(Definition 5.1) w.r.t. the i-th total order in the realizer of <. Furthermore, m <y-strictly dominates
7" if and only if, in addition to the above, it holds that:

Jjem]: = <u,m. @)

Proof. We prove the statement for the weak dominance, since the statement for the strict dominance
is analogous. We have:

o <npm (23)
< Yu compatible with <7: J(m;u) — J(7',u) =0 (24)
< V{<7i}ic[m] realizer of <7 Vi € [m]¥u; compatible with <7 ;: J(m;u;) — J (7', u;) =0
(25)
< V{<7i}ie[m) realizer of <7 Vie [m]: ' <m;m, (26)

where line (24) follows from Definition 4.2, line (25) follows from the fact that a multi-dimensional
utility w determines a unique realizer of <7 and from the component-wise order definition, and
line (26) is obtained from Definition 4.2. O]

Theorem 5.3. Let <1 be a partial order over T and let 7w, € II be two policies. ™ <7-weakly
dominates 7' if and only if, for every linear extension <+ of <7, it holds that:

v e [ITI] = X (dr(V<r (1) = du (<, (3))) 2 0. ®)

7 Zg-strictly dominates 7' if and only if, in addition to the above, there exists a linear extension <'r
of <7 such that:

Ine [T : ) (e () — du (Y, (0))) > 0. ©)
=1
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Proof. We prove the statement for the weak dominance, as for the strict dominance analogous
derivation holds. Recall that the set of all linear extensions of < is a realizer of <7 and that the
union of all the realizes of <7 is such a set. We have:

7' <n m < V{<7 i}iepm) tealizer of <7 Vie [m]: n’ <p;m 27

< V <7 linear extension of <7: 7' <y 7 (28)

<V <7 linear extension of <7 Vn € [|T]] : Z (de(i) —da (1)) 20,  (29)
i=1

where Equation (27) follows from Theorem 5.2, Equation (29) follows from Theorem 5.1. O

Theorem 6.1. Letu,w : T — R™ be two m-dimensional utilities functions such that |u—al|j% < n*.

Then, it holds that L(u, @) < 2+/mn*.

Proof. Let 7,7 € II be two Pareto optimal policies w.r.t. u and u, respectively. Let d; and dz be the
corresponding trajectory distributions. We consider matrices u and @ both in RI7 1% as constituted
by a set of m vectors (u;) jefm] and (iU;) jefm]. respectively. Then, for every component j € [m], it
holds:
J(m,uz) = J(@,u5) = (ujy de — da) = (ugy de — diz) £ Uy, de) £ (uy, dz)
= (uj = Uy, dr) + Uy — uy, dz) +(j, dr = dg)
(A4) (B)
< 2“@1 - uJ”OO +<aj7 d7r - dﬁ>,
L

(A)+(B)

where the inequality follows from the fact that both terms (A) and (B) can be bounded using Holder’s
inequality with || - |, and || - |1 and observing that |d, |1 = |dz|1 = 1. Now, we apply the infimum:

inf > ((ujde —da)t < inf M (2 — uyleo + (@ dr — di))

mell*(a) jelm] mell*(a) jelm]

<2ymlu—alp+ _inf > ((@,de—dz)t (30)
TE

@)

< 2vmlu — dlr, 31)

where line (30) follows from the application of Cauchy-Schwarz’s inequality after having observed
that such | - |, terms do not depend on 7, and line (31) is due to the fact that the removed term
is non-positive by definition of 7 which is Pareto optimal w.r.t. 2. Replicating the derivation by
reversing the roles of w and @ leads to the result. O
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