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ABSTRACT

In Diffusion Transformer (DiT) models, particularly for video generation, atten-
tion latency is a major bottleneck due to the long sequence length and the quadratic
complexity. Interestingly, we find that attention weights can be decoupled into
two matrices: a small fraction of large weights with high rank and the remaining
weights with very low rank. This naturally suggests applying sparse acceleration
to the first part and low-rank acceleration to the second. Based on this finding, we
propose SLA (Sparse-Linear Attention), a trainable attention method that fuses
sparse and linear attention to accelerate diffusion models. SLA classifies attention
weights into critical, marginal, and negligible, applying O(N2) attention to crit-
ical weights, O(N) attention to marginal weights, and skipping negligible ones.
SLA combines these computations into a single GPU kernel and supports both
forward and backward passes. With only a few fine-tuning steps using SLA, DiT
models achieve about 20× reduction in attention computation, resulting in sig-
nificant acceleration without loss of generation quality. Experiments show that
SLA reduces attention computation by about 95% without degrading end-to-end
generation quality, outperforming baseline methods. In addition, we implement
an efficient GPU kernel for SLA, which yields a 13.7× speedup in attention com-
putation and a 2.2× end-to-end speedup in video generation on Wan2.1-1.3B.

1 INTRODUCTION

Among the operations in Transformers, attention (Vaswani et al., 2017) is the only one with quadratic
computation complexity, while others mostly scale linearly with the sequence length N . In Diffu-
sion Transformer (DiT) models (Peebles & Xie, 2022), especially for video generation, attention
becomes the primary computational bottleneck, as the sequence length typically ranges from 10K
to 100K. Reducing the cost of attention is therefore critical for improving the efficiency of DiT
models. Existing efficient attention methods for DiTs fall into two main categories: (1) numerous
sparse attention methods (Li et al., 2025; Zhang et al., 2025b; Xi et al., 2025; Yang et al., 2025a;
Zhang et al., 2025c; Wu et al., 2025; Shen et al., 2025; Hassani et al., 2023; Liu et al., 2025), which
compute only a subset of attention scores, and (2) a few linear attention methods (Xie et al., 2024;
Zhu et al., 2025), which reformulate the operation to achieve O(N) complexity.

Limitation. Despite recent progress, both approaches face challenges in substantially reducing
attention computation: (L1) Linear attention methods often fail in practice, especially on video
diffusion models. Existing work on linear attention in diffusion is rare and primarily limited to
image generation. Our experiments show that when applied to diffusion models, particularly video
generation, linear attention severely degrades video quality. (L2) Sparse attention methods rarely
achieve very high sparsity and require a considerable fraction of the full complexity of attention. In
practice, they typically reach only 40–60% sparsity for sequence length below 50K. Although some
recent works (Yang et al., 2025a; Li et al., 2025) report sparsity of 80–85%, such results are obtained
on very long sequences (e.g., 100K–300K), where achieving high sparsity is easier.

Key Observation. We find that attention weights in diffusion transformers can be decomposed into
two matrices: a small fraction of large weights with high rank and a large fraction of the remaining
weights with extremely low rank. This explains why sparse attention or linear attention alone cannot
achieve satisfactory results and naturally suggests applying sparse acceleration to the first part and
low-rank acceleration to the second.
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Our Method. Based on the observation above, we propose SLA, a trainable hybrid sparse and linear
attention for DiT models. Specifically, attention weights are partitioned into blocks and dynamically
classified into three categories: critical, marginal, and negligible. Critical blocks are computed
exactly using FlashAttention, negligible blocks are skipped, and, unlike existing methods, marginal
blocks are processed with linear attention. This design allows sparsity to increase dramatically
(e.g., 70%→95%) while maintaining accuracy. Since linear attention is computationally negligible,
costing less than 0.5% of full attention in video generation models, SLA is several times faster than
sparse attention alone. Furthermore, we implement efficient forward and backward passes for SLA.
With a few steps of fine-tuning, SLA significantly reduces the computation complexity and latency
of attention while preserving the quality of the generation results.

Result. SLA reduces attention computation by about 95% without degrading video generation
quality, even at a moderate sequence length of 30K, which is the sequence length in Wan2.1-1.3B.
In addition, our implementation achieves a 13.7× speedup in the attention kernel and a 2.2× end-
to-end acceleration for video generation, where the attention time becomes almost negligible. SLA
consistently surpasses baselines in both generation quality and efficiency.

Contribution. We summarize our main contributions as follows. (1) We find that the attention
weights in diffusion models can be perfectly decomposed into two parts: a highly sparse matrix
with high rank and a dense matrix with very low rank. (2) We propose the first attention method
that effectively fuses sparse attention and linear attention. (3) Our method achieves about 95%
attention sparsity, corresponding to approximately a 20× reduction in attention computation, while
maintaining video generation quality. (4) We implement efficient GPU kernels for SLA.

2 PRELIMINARY

2.1 BLOCK SPARSE ATTENTION

Given queries, keys, and values Q,K, V ∈ RN×d, the standard attention computes the score matrix
S = QK⊤/

√
d and the attention weights P = Softmax(S) to obtain the output O = PV . This is

inefficient for large N as it requires O(N2d) operations. The idea of sparse attention is to reduce
computation by applying a mask M ∈ {0, 1}N×N to the attention weights: P ← P ⊙M , where
⊙ is the element-wise product. A common strategy is to choose a threshold τ and set Mij = 1 if
Pij > τ . For entries with Mij = 0, the multiplications QiK

⊤
j and PijVj can be skipped, where

Qi = Q[i, :],Kj = K[j, :], Vj = V [j, :].

However, element-wise sparse attention is inefficient on modern GPUs. Practical implementations
such as FlashAttention (Dao, 2023) operate at the block level. Specifically, the sparse FlashAttention
first partitions Q,K, V, S, P,M into blocks {Qi}, {Kj}, {Vj}, {Sij}, {Pij}, {Mij}, where Qi ∈
Rbq×d, Kj ,Vj ∈ Rbkv×d, and Sij ,Pij ,Mij ∈ Rbq×bkv . Each block mask Mij is fully filled with
either 0 or 1, and we skip the computations of QiK

⊤
j and PijVj if Mij [:, :] = 0.

2.2 LINEAR ATTENTION

Linear attention methods reduce the complexity of standard attention from O(N2d) to O(Nd2). A
key idea is to decouple the softmax operation by introducing a feature map ϕ(·) applied to Q and
K. Specifically, it replaces the attention weights in standard attention with ϕ(Q)ϕ(K)⊤

rowsum(ϕ(Q)ϕ(K)⊤
. This

reformulation enables reordering of the matrix multiplications: instead of explicitly computing the
attention weights, it first computes ϕ(K)⊤V , and then applies this intermediate result to ϕ(Q):

H = ϕ(K)⊤V, Z = rowsum(ϕ(K)⊤) ∈ Rd×1, O =
ϕ(Q)H

ϕ(Q)Z
.

The mapping ϕ(·) is usually an activation function (e.g., ELU + 1 or ReLU (Clevert et al., 2016;
Xavier et al., 2011)). This formulation avoids explicitly constructing the N ×N matrices S, P and
achieves linear computational complexity.
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Figure 1: The left figure shows a typical distribution of attention weights sampled from the Wan2.1
model. The right figure shows the accuracy of sparse attention with different sparsity.

3 MOTIVATION AND ANLYSIS

3.1 MOTIVATION OF SLA

Due to the softmax operator, the attention weights P lie in [0, 1] with each row summing to 1.
Furthermore, because of the exponential scaling in softmax, only a small fraction of entries in P
are relatively large, while the vast majority are close to zero. Figure 1 (left) shows the typical
distribution of attention weights P sampled from the Wan2.1 model (Wan et al., 2025). We highlight
two key observations: (1) Only about 8.1% of the weights are larger than the average value 1/N .
(2) A considerable proportion of weights are extremely small. In our case, approximately 45% fall
below 1/(100N). As shown in Figure 1 (right), skipping these smallest 45% of weights in sparse
attention (i.e., setting the corresponding entries in M to 0) introduces a relative L1 error of less than
3% compared to the full attention output. In contrast, retaining only the largest 8.1% of weights
(sparsity = 92%) leads to a sharp increase in error, reaching about 33%. This explains why existing
sparse attention methods struggle to achieve a sparsity beyond 90%.

The intermediate values between 1/(100N) and 1/N (the yellow column in Figure 1) present a
dilemma: omitting them introduces significant accuracy loss, yet computing them with full attention
causes a great decrease in sparsity. Fortunately, these values are far less critical than the largest ones.
This finding motivates us to categorize the attention weights into three types: critical, marginal,
and negligible. For critical weights, we use sparse FlashAttention to compute the output as they
dominate the attention distribution; For negligible weights, we skip the computation; For marginal
weights, we employ a linear attention method to reduce the computational complexity to O(Nd2)
and enhance the performance of sparse attention.

Full Attention

(Sparsity = 0%)

SLA

(Sparsity = 95%)

Linear Only

(Sparsity = 100%)

Sparse Only

(Sparsity = 90%)

Figure 2: Video generation examples on Wan2.1 fine-tuned with full attention, linear attention,
sparse attention, and SLA. SLA could achieve a high sparsity of 95% and lossless video quality.

Empirical results. In Figure 2, we present some videos generated by Wan2.1 fine-tuned with different
attention methods: using only linear attention, sparse attention with 90% sparsity, and SLAwith 95%
sparsity. Note that the computational complexity of SLA at 95% sparsity is nearly half that of 90%
sparse attention, since the cost of linear attention is almost negligible. For example, in the Wan2.1
model, linear attention accounts for less than 0.5% of the cost of full attention. These empirical
results show that SLA significantly outperforms the other two methods in video quality.

3.2 SEPARATING ATTENTION WEIGHTS: SPARSE FEW, LOW-RANK MANY

Observation. As shown in Figure 3, full attention weights can be decoupled into two parts: (1) a
small subset (< 10%) with rank comparable to full attention, and (2) a large subset (> 90%) with

3
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Full Attention Weights Top-8% Weights Bottom-92% Weights

Rank = 6226 Top-8%,  Rank = 6230 Bottom-92%,  Rank = 9

Low-Rank 
(Linear) Attention

Sparse 
Attention

Figure 3: Decomposition of attention weights. We sample attention weights from the Wan2.1 model:
the left figure shows the full weights, the middle the top 8%, and the right the bottom 92%.

very low rank. Since the methods for accelerating attention focus mainly on sparsity or low-rank
structure, this suggests a natural and elegant strategy: apply sparse attention to the first part and
low-rank approximation to the second.

Previous failures of linear attention are largely due to the high rank of full attention weights (Fan
et al., 2025), while linear attention is restricted to a rank at most d. Figure 3 (left) illustrates this with
a typical example using the notion of stable rank (Rudelson & Vershynin, 2006). We observe that
after removing the top values in the attention weights P , the remaining matrix becomes extremely
low-rank. This motivates the decomposition of P using the sparse mask M :

P = P ⊙M︸ ︷︷ ︸
sparse component

+ P ⊙ (1−M)︸ ︷︷ ︸
low-rank component

. (1)

Since linear attention is essentially a low-rank version of attention, we are provided with a possibility
to replace the low-rank component P ⊙ (1−M) with linear attention.

4 SLA

SLA effectively integrates sparse and linear attention within a unified framework, allowing them to
complement each other. In particular, we fuse both attention into a single efficient GPU kernel. In
this section, we introduce the sparse and linear attention components of SLA.

SLA first predicts a compressed attention weights matrix Pc ∈ RN/bq×N/bkv :

Pc = Softmax(pool(Q)pool(K)⊤/
√
d). (2)

where pool(·) is a mean pooling operator along the token dimension. For each element of Pc,
we classify it into three types and record the results in a compressed mask Mc ∈ RN/bq×N/bkv .
Specifically, the top kh% positions are marked as critical (labeled 1), the bottom kl% positions as
negligible (labeled −1), and the remaining positions as marginal (labeled 0). Formally,

Mc[i, j] = {1 (top kh%), −1 (bottom kl%), 0 (otherwise)}. (3)

We apply different methods according to Mc.

4.1 SPARSE ATTENTION IN SLA

Guided by the mask Mc, sparse FlashAttention is used to compute the sparse attention output. For
each Q block Qi, we iterate over all K,V blocks Kj ,Vj with j = 0, . . . , N/bkv . Whenever
Mc[i, j] = 1, we perform:

Sij = QiK
⊤
j /
√
d, Pij = OnlineSoftmax(Sij), Os

i = Os
i +PijVj . (4)

Here, OnlineSoftmax(·) operator (Milakov & Gimelshein, 2018) computes the softmax of a matrix
in a block-wise manner (see lines 10-11 of Algorithm 1 for implementation). The initial value
of each Os

i is set to zero. Algorithm 1 describes the forward computation of the sparse attention
component, and we denote the final output of the sparse attention component Os.

4
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4.2 LINEAR ATTENTION IN SLA

Inspired by the idea of low-rank approximation, we replace the low-rank component P ⊙ (1−M)
in Equation 1 with linear attention introduced in Section 2.2 as

ϕ(Q)ϕ(K)⊤

rowsum(ϕ(Q)ϕ(K)⊤)
⊙ (1−M).

Specifically, the entries of 0 in Mc determine the blocks processed by linear attention. For each
query block Qi, we compute the corresponding linear attention output:

Hi =
∑

j:Mc[i,j]=0

ϕ(Kj)
⊤Vj , Zi =

∑
j:Mc[i,j]=0

rowsum(ϕ(Kj)
⊤), Ol

i =
ϕ(Qi)Hi

ϕ(Qi)Zi
. (5)

Here, as mentioned in Section 2.2, ϕ(·) denotes the activation function, and Hi ∈ Rd×d,Zi ∈ Rd×1

are intermediate results similar to H and Z. Algorithm 1 describes the forward pass of the linear
attention component, and the final output of this component is denoted as Ol.

Finally, the overall attention output of SLA is defined as:

O = Os + Proj(Ol). (6)

where Proj is a learnable linear transformation Rd → Rd. Applying this projection to Ol helps
reduce the distribution mismatch between softmax and linear attention. Its computational cost is
O(Nd2), the same as computing Ol and negligible compared with theO(N2d) cost of full attention.
Specifically, O(Nd2) = 0.004 × O(N2d), when N = 32K, d = 128 in the Wan2.1-1.3B. In this
case, 95% sparsity in the sparse attention component means 94.7% attention complexity reduction.

Insight. Linear attention in SLA does not approximate the output corresponding to marginal at-
tention weights, but serves as a learnable compensation that enhances the effectiveness of sparse
attention. This is because linear attention alone struggles to approximate the output of full atten-
tion (Choromanski et al., 2020; Qin et al., 2022). Therefore, we need to fine-tune the parameters of
the target model, enabling it to adapt to the use of linear attention.

Detailed AlgorithmHigh-Level Idea
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Figure 4: Overview of SLA. The left figure illustrates the high-level idea: attention weights are
classified into three categories and assigned to computations of different complexity. The right figure
shows the detailed forward algorithm of SLA using the predicted compressed attention weights.

5 FINE-TUNING USING SLA

To apply SLA to a diffusion model, we can simply replace the original attention with SLA and fine-
tune the model for a few steps on a dataset consistent with the pretraining data. In this section, we
describe the forward and backward passes of SLA. Moreover, we detail some additional efficiency
optimization for SLA in Appendix A.6.
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Algorithm 1: Forward pass of SLA.
1: Input: Matrices Q,K, V,Qϕ,Kϕ ∈ RN×d, block sizes bq, bkv , hyper-parameters kh, kl.
2: Divide Q,Qϕ to Tm = N/bq blocks {Qi} and {Qϕ

i } ;
3: Divide K,V,Kϕ to Tn = N/bkv blocks {Ki}, {Vi} and {Kϕ

i } ;
4: h = {hj} = {(Kϕ

j )
⊤Vj} ; z = {zj} = {rowsum((Kϕ

j )
⊤)} ; // Precompute for linear attention

5: Pc = Softmax(pool(Q)pool(K)⊤/
√
d) ; Initialize Mc = 0 ;

6: Mc[i, j] = 1 if Pc[i, j] ∈ TopK(Pc[i, :], kh) ; Mc[i, j] = 0 if Pc[i, j] ∈ BottomK(Pc[i, :], kl) ;
7: for i = 1 to Tm do
8: for j = 1 to Tn do
9: if Mc[i, j] = 1 then

10: Sij = QiK
⊤
j /
√
d ; mij = max(mi,j−1, rowmax(Sij)) ; Pij = exp(Sij −mij) ;

11: lij = emi,j−1−mij li,j−1 + rowsum(Pij) ; Os
ij = diag(emi,j−1−mij )Os

i,j−1 +PijVj ;
12: else if Mc[i, j] = 0 then
13: Hi ← Hi + hj ; Zi ← Zi + zj ;
14: end if
15: end for
16: Os

i = diag(lTn
i )−1Os

i,Tn
; Ol

i = Qϕ
i Hi/(Q

ϕ
i Zi); Li = mi,Tn + log(li,Tn) ;

17: end for
18: return Os = {Os

i}, Ol = {Ol
i} ;

5.1 FORWARD PASS

The formulation of the forward computation was introduced in Section 4. The complete algorithm
of the forward pass of SLA is presented in Algorithm 1. It’s worth noting that we precompute
hj = ϕ(Kj)

⊤Vj and zj = rowsum(ϕ(Kj)
⊤) for each pair (Kj , Vj) (Line 4 in Algorithm 1). This

design ensures that, when Mc[i, j] = 0, the corresponding operation only involves a single matrix
addition (Line 13 in Algorithm 1), thereby improving efficiency. To simplify the notation, we denote
Qϕ = ϕ(Q) and Kϕ = ϕ(K) in the following.

Algorithm 2: Backward pass of SLA.
1: Input: Q,K, V,Qϕ,Kϕ,Mc, {Li}, {Hi}, {Zi}, Os, Ol from the forward, dOs, dOl ∈ RN×d.
2: Ds = rowsum(dOs ⊙Os), Dl = rowsum(dOl ⊙Ol), divide Ds, Dl into Tm blocks {Ds

i}, {Dl
i} ;

3: for i = 1 to Tm do
4: dHi = (Qϕ

i /(Q
ϕ
i Zi))

⊤dOl
i; dZi = −(Qϕ

i /(Q
ϕ
i Zi))

⊤Dl
i ;

5: dQϕ
i = (dOl

i(Hi)
⊤ −Dl

iZ
⊤
i )/(Q

ϕ
i Zi) ;

6: end for
7: for j = 1 to Tn do
8: Initialize dH = 0,dZ = 0 ;
9: for i = 1 to Tm do

10: if Mc[i, j] = 1 then
11: Sij = QiK

⊤
j /
√
d ; Pij = exp(Sij −Li) ; dVj ← dVj +P⊤

ijdO
s
i ; dPij = dOs

ijV
⊤
j ;

12: dSij = Pij ⊙ (dPij −Ds
i ) ; dQi ← dQi + dSijKj ; dKj ← dKj + dS⊤

ijQi ;
13: else if Mc[i, j] = 0 then
14: dH← dH+ dHi; dZ← dZ+ dZi ;
15: end if
16: end for
17: dKϕ

j = Vj(dH)⊤ + (dZ)⊤; dVj = Kϕ
j dH ;

18: end for
19: return dQ = {dQi}, dK = {dKi}, dV = {dVi}, dQϕ = {dQϕ

i }, dKϕ = {dKϕ
i } ;

5.2 BACKWARD PASS

The backward pass computes gradients for both the sparse and linear components, which are also
fused into a single GPU kernel for efficiency.

Gradient notation. The prefix d or d is used to denote gradients, e.g., dOs, dOl are the gradients
of Os, Ol with respect to some loss function ℓ, respectively.
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Sparse attention gradients. The output gradient dOs is backpropagated to compute dQ, dK, and
dV , following the same derivation as in FlashAttention (Dao, 2023). Given dOs, the backward pass
is carried out as follows:

dPij = dOs
ijV

⊤
j , Ds

i = rowsum(dOs
i ⊙Os

i ), dSij = Pij ⊙ (dPij −Ds
i ),

dQi = dSijKj , dKj = dS⊤
ijQi, dVj = P⊤

ijdO
s
i .

(7)

Here, we consider Ds
i ∈ Rbq×1 as a column vector.

Linear attention gradients. The gradient dOl yields dQϕ, dKϕ, dV through the chain rule:

dHi =

(
Qϕ

i

Qϕ
i Zi

)⊤

dOl
i, Dl

i = rowsum(dOl
i ⊙Ol

i), dZi = −
(

Qϕ
i

Qϕ
i Zi

)⊤

Dl
i

dQϕ
i =

(dOl
i(Hi)

⊤ −Dl
iZ

⊤
i )

Qϕ
i Zi

, dKϕ
j = Vj(dHi)

⊤ + (dZi)
⊤, dVj = Kϕ

j dHi

(8)

Here, dKϕ
j and dVj are obtained by aggregating dHi and dZi. Similar to the forward pass, each

dHi and dZi is precomputed so that the remaining computation reduces to simple matrix additions.
The detailed algorithm is provided in Algorithm 2.

6 EXPERIMENT

6.1 SETUP

Model and Datasets. We use the Wan2.1-1.3B model (Wan et al., 2025) for video generation
experiments in the main text and LightningDiT (Yao et al., 2025) for image generation experiments
in the Appendix A.2. We also conduct experiments on a private MM-DiT (Esser et al., 2024) model
in the Appendix A.4. For video experiments, we use a private dataset collected from websites such
as Pexels (Pexels) and Common Crawl (Common Crawl), consisting of 20,000 5-second videos at
480p resolution for fine-tuning. For image experiments, following LightningDiT (Yao et al., 2025),
we use the ImageNet (Deng et al., 2009) dataset at a resolution of 512× 512.

Baselines. We compare SLA with state-of-the-art sparse attention methods applicable to diffu-
sion models, including (1) VSA (Zhang et al., 2025c), (2) VMoBa (Wu et al., 2025), and (3) the
training-free SparseAttn (Zhang et al., 2025b) (Sparge-F) and (4) a trainable implementation of
SpargeAttn (Sparge-T). For VSA and VMoBa, we use their official implementations, while for
Sparse-T, we implement the method ourselves because there is no official implementation. In
addition, we design several baselines for ablation studies: (5) Linear Only, which applies only
linear attention; (6) Sparse Only, which applies only the sparse attention component of SLA;
and (7) L+S, which directly sums the attention outputs of the Linear Only and Sparse Only.

Metrics. For video quality, following Zhang et al. (2024a); Yang et al. (2025b), we use four eval-
uation dimensions of VBench (Zhang et al., 2024a): Imaging Quality (IQ), Overall Consistency
(OC), Aesthetic Quality (AQ), Subject Consistency (SC). We also use the Vision Reward (VR) (Xu
et al., 2024) for human preference evaluation, Aesthetic Video Quality (VA), and Techniqual Video
Quality (VT) (Liu et al., 2023). For image quality, following Yao et al. (2025), we use FID. For
attention computation complexity, we use FLOPs (floating point of operations). For attention effi-
ciency, we use FLOPS (floating-point operations per second) for attention kernel efficiency. Specifi-
cally, FLOPS here isO(full attention)/t, whereO(·) denotes the operation count and t the attention
latency. We use seconds for end-to-end generation latency.

Hyper-parameters. We use a training batch size of 64 and fine-tune the Wan2.1 model for 2000
steps. For the activation function ϕ, we use softmax according to our ablation experiments. kh%
is 5% and kl% is 10%. For block size, we use bq = bkv = 64. The hyper-parameters for image
generation tasks are detailed in Appendix A.2.

6.2 EFFECTIVENESS

Table 1 compares the video generation quality and efficiency of SLA with baseline methods on
Wan2.1-1.3B, fine-tuned separately with SLA, Full Attention, and each baseline. SLA delivers about
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a 19.3× efficiency gain while maintaining video quality comparable to Full Attention. Moreover,
compared with the baselines, SLA consistently achieves higher quality even under greater sparsity.
For example, 95% (1-5%) sparsity in SLA is actually about 3× more efficient than 85% (1-15%)
while still producing better video quality.

Table 1: Quality and efficiency comparison of SLA and other baseline methods.

Method Quality Efficiency

VA ↑ VT ↑ IQ ↑ OC ↑ AQ ↑ SC ↑ VR ↑ FLOPs ↓ Sparsity ↑
Full Attention 76.78 82.88 62.5 23.3 56.1 93.0 0.059 52.75T 0%

Sparge-F 0.002 0.026 26.0 4.6 35.7 85.1 -0.216 7.91T 85%
Sparge-T 73.83 77.87 61.9 22.7 55.4 93.1 0.014 7.38T 84%
VMoBa 32.33 35.79 58.0 18.8 46.2 89.9 -0.175 7.91T 85%
VSA 55.37 64.61 60.6 22.4 51.9 83.6 -0.069 5.92T 89%
SLA 76.96 83.92 62.2 23.6 55.9 93.1 0.048 2.74T 95%

Table 2: Ablation results for SLA.

Method Quality Efficiency

VA ↑ VT ↑ IQ ↑ OC ↑ AQ ↑ SC ↑ VR ↑ FLOPs ↓ Sparsity ↑
Full Attention 76.78 82.88 62.5 23.3 56.1 93.0 0.059 52.75T 0%

Linear Only 0.042 0.099 39.5 3.6 28.8 90.7 -0.213 0.10T 100%
Sparse Only 64.00 70.50 57.2 21.8 51.7 88.7 -0.073 7.91T 85%

L+S 29.65 41.15 58.6 18.8 45.3 87.1 -0.105 5.37T 90%
SLA (softmax) 76.96 83.92 62.2 23.6 55.9 93.1 0.048 2.73T 95%
SLA (elu+1) 75.50 81.01 62.8 23.5 55.3 92.9 0.034 2.74T 95%

SLA (hedgehog) 74.59 82.62 61.9 22.5 54.3 93.2 0.035 3.11T 95%
SLA (Top 5%) 76.96 83.92 62.2 23.6 55.9 93.1 0.048 2.73T 95%
SLA (Top 10%) 75.29 82.20 62.5 22.6 55.8 93.5 0.057 5.38T 90%
SLA (Top 20%) 75.81 83.82 62.7 22.4 54.5 92.6 0.059 10.65T 80%

Table 3: Quality of SLA in the zero-shot and limited finetuning settings.

Method Quality

VA ↑ VT ↑ IQ ↑ OC ↑ AQ ↑ SC ↑ VR ↑
Full Attention 76.78 82.88 62.5 23.3 56.1 93.0 0.059

SLA (0 step) 41.11 51.79 58.3 21.4 46.7 81.0 -0.1105
SLA (250 steps) 64.46 78.06 59.0 22.8 55.7 88.5 -0.0244
SLA (1000 steps) 74.58 80.09 61.8 23.7 56.1 92.3 0.0429
SLA (2000 steps) 76.96 83.92 62.2 23.6 55.9 93.1 0.0483

6.3 EFFICIENCY

Figure 6 compares the kernel speed and end-to-end latency of SLA on Wan2.1–1.3B with an
RTX5090. Note that even VSA in 89% sparsity and VMoBa in 85% sparsity, their generation quality
is already worse than SLA, so higher sparsity settings (e.g., 95%) are not quality-matched compar-
isons. In the forward pass, SLA achieves a 13.7× speedup over FlashAttention2 and is 1.93× faster
than VSA with 95% sparsity and 3.36× faster than VMoBa with 95% sparsity. In the backward pass,
it delivers a 6.8× speedup over FlashAttention2, still outperforming VSA and VMoBa. For end-to-
end video generation, SLA reduces attention latency from 97s to 11s (8.8× reduction), resulting in
a 2.2× end-to-end speedup. For fine-tuning overhead, we train Wan2.1-1.3B for only 2,000 steps
with a batch size of 64, which is less than 0.1% of the cost of pretraining (typically 105–106 steps
with a batch size of 103–104) (Wan et al., 2025). The finetuning of SLA requires approximately 9
hours on 8 NVIDIA H200 GPUs.

In Appendix A.7, we compare the efficiency of SLA and FlashAttention on more GPUs, while in
Appendix A.9, we explore LoRA (Hu et al., 2022) as a more efficient finetuning paradigm.
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Full Attention (Sparsity = 0%) SLA (Sparsity = 95%)

Sparge-T (Sparsity = 84%)S+L (Sparsity = 90%)

Linear Only

(Sparsity = 100%)

Sparse Only

(Sparsity = 85%)

VMoBa

(Sparsity = 85%)

Sparge-F

(Sparsity=85%)

VSA

(Sparsity = 89%)

Figure 5: Video examples using Wan2.1 fine-tuned with SLA and baselines. For Linear Only,
Sparse Only, Sparge-F, VSA, and VMoBa, only a single frame per prompt is shown, as their
video quality is not sufficient. The full visible comparison is in Figure 7 in Appendix A.1.

(a) Attention GPU Kernel speed comparison on RTX5090. (b) End-to-end video generation latency comparison.

62s 97s

1162s

62s 16s

62s 28s

Others Attention

Original

VMoBa
(Sparsity=95%)

VSA
(Sparsity=95%)

SLA
(Sparsity=95%)

VSA
(Sparsity=89%)

VMoBa
(Sparsity=85%)

62s 47s

62s 26s 2.2x E2E 
Speedup

13.7x

Figure 6: Attention kernel speed and end-to-end generation latency of SLA and baselines on Wan2.1-
1.3B with RTX5090. FlashAttn refers to FlashAttn2, the fastest available version on RTX5090.

6.4 ABLATION STUDY

Fusing sparse and linear attention. To evaluate the effectiveness of SLA in integrating sparse and
linear attention, we compare SLA with Sparse Only, Linear Only, and S+L on Wan2.1 in
terms of end-to-end generation quality and efficiency. As shown in Table 2, SLA achieves the best
generation quality and is more efficient than Sparse Only and S+L, confirming the effectiveness
of our fusion strategy.

Activation function in linear attention. To study the effect of the activation function ϕ in the linear
attention component of SLA, we evaluate softmax, elu+1, and hedgehog. Results in Table 2 show
that softmax generally provides better generation quality and efficiency.

Impact of parameter kh. We vary kh from 5% to 20% and report the results in Table 2. We find
that kh = 5% already yields generation quality close to that of full attention. Since kh = 5% saves
about half and a quarter of the computation compared with kh = 10% and kh = 20%, it offers the
best trade-off between efficiency and quality.

Impact of parameters kl, bq and bkv . These parameters appear to have a smaller influence com-
pared with kh. We conduct ablation experiments on the LightningDiT model, and the results are
reported in Appendix A.3.

Zero-shot and limited finetuning. Table 3 presents the performance of SLA under zero-shot (0-
step finetuning) and limited finetuning budgets. The quality of videos generated by SLA steadily
improves as finetuning progresses. After only 1K finetuning steps, the quality is already close to
that of full attention, and 2K steps yield the best results.
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6.5 VISIBLE EXAMPLES

Figure 5 and Figure 7 show video examples from Wan2.1-1.3B fine-tuned using SLA and baselines.
SLA produces videos comparable to full attention even at 95% sparsity, while other methods exhibit
noticeable distortions even at sparsity levels below 90%.

7 RELATED WORK

As sequence lengths in generative models (e.g., language and video) grow, the quadratic cost of
attention becomes a key bottleneck. Many studies aim to improve efficiency in two main directions:
sparse and linear attention. Most sparse attention methods (Xiao et al., 2024b;a; Jiang et al., 2024;
Gao et al., 2024; Fu et al., 2024; Xi et al., 2025; Zhang et al., 2025b; Ribar et al., 2023; Yang et al.,
2025a) speed up inference without training by masking computation at test time. Some (Zhang et al.,
2025c; Wu et al., 2025) add sparsity during training, enabling higher sparsity. Linear attention meth-
ods (Wang et al., 2020; Choromanski et al., 2020; Katharopoulos et al., 2020; Qin et al., 2024; Yang
et al., 2024; Sun et al., 2023) are mainly studied in language models. For DiT, SANA (Xie et al.,
2024) and Dig (Zhu et al., 2025) show linear attention works for image generation pre-training, but
in video generation, existing methods cannot rely on it alone for lossless quality. Another direction
is hardware-efficient attention (Dao et al., 2022; Dao, 2023; Shah et al., 2024; Zhang et al., 2024c;b;
2025a), which optimizes GPU execution through tiling, kernel fusion, and quantization.

8 CONCLUSION

We propose SLA, a trainable attention that unifies sparse and linear attention to accelerate Diffusion
Transformers. SLA assigns computation according to importance: it computes O(N2) attention
for critical weights, O(N) attention for marginal weights, and skips negligible computations. This
design enables substantial reductions in attention cost while preserving effectiveness. Experiments
show that just a few fine-tuning steps enable SLA to accelerate models effectively. Specifically, SLA
achieves about 20× reduction in attention computation, along with a 13.7× GPU kernel speedup
and a 2.2× end-to-end speedup on Wan2.1-1.3B, all without degrading the quality of video genera-
tion.

Reproducibility Statement. We describe experimental details in Section 6.1 and Appendix A.2,
which provide the implementation details. In our supplementary materials, we also include the
codes and a detailed reproducible description (README.md).

Ethics Statement. This work proposes a method for improving the efficiency of Diffusion Trans-
formers. The study does not involve human subjects, personally identifiable information, or sensitive
data. We believe the proposed method does not raise ethical concerns beyond standard considera-
tions in efficient model design.
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Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). In Proceedings of the International Conference on
Learning Representations (ICLR), 2016.

Common Crawl. Common crawl. https://commoncrawl.org/.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

10

https://commoncrawl.org/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Re. Flashattention: Fast and
memory-efficient exact attention with IO-awareness. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Patrick Esser, Sumith Kulal, A. Blattmann, Rahim Entezari, Jonas Muller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
glish, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified
flow transformers for high-resolution image synthesis. ArXiv, abs/2403.03206, 2024. URL
https://api.semanticscholar.org/CorpusID:268247980.

Qihang Fan, Huaibo Huang, and Ran He. Breaking the low-rank dilemma of linear attention. In
CVPR, 2025.

Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
Zixiao Huang, Shiyao Li, Shengen Yan, Guohao Dai, Huazhong Yang, and Yu Wang. Moa:
Mixture of sparse attention for automatic large language model compression. arXiv preprint
arXiv:2406.14909, 2024.

Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Hayden Kwok-Hay So, Ting Cao, Fan Yang,
and Mao Yang. Seerattention: Learning intrinsic sparse attention in your llms. arXiv preprint
arXiv:2410.13276, 2024.

Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. Neighborhood attention trans-
former. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 6185–6194, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Huiqiang Jiang, YUCHENG LI, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhen-
hua Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. MInference
1.0: Accelerating pre-filling for long-context LLMs via dynamic sparse attention. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Xingyang Li, Muyang Li, Tianle Cai, Haocheng Xi, Shuo Yang, Yujun Lin, Lvmin
Zhang, Songlin Yang, Jinbo Hu, Kelly Peng, et al. Radial attention: o(n\log n)
sparseattentionwithenergydecayforlongvideogeneration.arXiv preprint arXiv:2506.19852, 2025.

Akide Liu, Zeyu Zhang, Zhexin Li, Xuehai Bai, Yizeng Han, Jiasheng Tang, Yuanjie Xing, Jichao Wu,
Mingyang Yang, Weihua Chen, et al. Fpsattention: Training-aware fp8 and sparsity co-design for
fast video diffusion. arXiv preprint arXiv:2506.04648, 2025.

Yaofang Liu, Xiaodong Cun, Xuebo Liu, Xintao Wang, Yong Zhang, Haoxin Chen, Yang Liu, Tiey-
ong Zeng, Raymond Chan, and Ying Shan. Evalcrafter: Benchmarking and evaluating large video
generation models. arXiv preprint arXiv:2310.11440, 2023.

Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax. arXiv preprint
arXiv:1805.02867, 2018.

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

Pexels. Pexels: Free stock photos and videos. https://www.pexels.com/.

11

https://api.semanticscholar.org/CorpusID:268247980
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://www.pexels.com/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
Bl8CQrx2Up4.

Zhen Qin, Weigao Sun, Dong Li, Xuyang Shen, Weixuan Sun, and Yiran Zhong. Lightning attention-
2: A free lunch for handling unlimited sequence lengths in large language models. arXiv preprint
arXiv:2401.04658, 2024.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient llm inference. arXiv preprint arXiv:2312.04985, 2023.

Mark Rudelson and Roman Vershynin. Sampling from large matrices: an approach through geometric
functional analysis, 2006. URL https://arxiv.org/abs/math/0503442.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024.

Xuan Shen, Chenxia Han, Yufa Zhou, Yanyue Xie, Yifan Gong, Quanyi Wang, Yiwei Wang, Yanzhi
Wang, Pu Zhao, and Jiuxiang Gu. Draftattention: Fast video diffusion via low-resolution attention
guidance. arXiv preprint arXiv:2505.14708, 2025.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming
Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang,
Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi Zhang,
Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing
Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou,
Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou,
Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu,
Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han,
Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models. arXiv
preprint arXiv:2503.20314, 2025.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Jianzong Wu, Liang Hou, Haotian Yang, Xin Tao, Ye Tian, Pengfei Wan, Di Zhang, and Yunhai Tong.
Vmoba: Mixture-of-block attention for video diffusion models. arXiv preprint arXiv:2506.23858,
2025.

Glorot Xavier, Bordes Antoine, and Bengio Yoshua. Deep sparse rectifier neural networks. In Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp.
315–323, 2011.

Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai,
Jintao Zhang, Dacheng Li, et al. Sparse videogen: Accelerating video diffusion transformers with
spatial-temporal sparsity. arXiv preprint arXiv:2502.01776, 2025.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu,
and Maosong Sun. Infllm: Training-free long-context extrapolation for llms with an efficient context
memory. In First Workshop on Long-Context Foundation Models@ ICML 2024, 2024a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming lan-
guage models with attention sinks. In The Twelfth International Conference on Learning Represen-
tations, 2024b.

12

https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Bl8CQrx2Up4
https://arxiv.org/abs/math/0503442


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang Li,
Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution image synthesis with linear diffusion
transformers. arXiv preprint arXiv:2410.10629, 2024.

Jiazheng Xu, Yu Huang, Jiale Cheng, Yuanming Yang, Jiajun Xu, Yuan Wang, Wenbo Duan, Shen
Yang, Qunlin Jin, Shurun Li, et al. Visionreward: Fine-grained multi-dimensional human preference
learning for image and video generation. arXiv preprint arXiv:2412.21059, 2024.

Shuo Yang, Haocheng Xi, Yilong Zhao, Muyang Li, Jintao Zhang, Han Cai, Yujun Lin, Xiuyu Li,
Chenfeng Xu, Kelly Peng, et al. Sparse videogen2: Accelerate video generation with sparse attention
via semantic-aware permutation. arXiv preprint arXiv:2505.18875, 2025a.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with delta
rule. arXiv preprint arXiv:2412.06464, 2024.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with
an expert transformer. In The Thirteenth International Conference on Learning Representations,
2025b.

Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimization
dilemma in latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2025.

Fan Zhang, Shulin Tian, Ziqi Huang, Yu Qiao, and Ziwei Liu. Evaluation agent: Efficient and prompt-
able evaluation framework for visual generative models. arXiv preprint arXiv:2412.09645, 2024a.

Jintao Zhang, Haofeng Huang, Pengle Zhang, Jia Wei, Jun Zhu, and Jianfei Chen. Sageattention2:
Efficient attention with thorough outlier smoothing and per-thread int4 quantization. arXiv preprint
arXiv:2411.10958, 2024b.

Jintao Zhang, Jia Wei, Haofeng Huang, Pengle Zhang, Jun Zhu, and Jianfei Chen. Sageattention:
Accurate 8-bit attention for plug-and-play inference acceleration. arXiv preprint arXiv:2410.02367,
2024c.

Jintao Zhang, Jia Wei, Pengle Zhang, Xiaoming Xu, Haofeng Huang, Haoxu Wang, Kai Jiang, Jun
Zhu, and Jianfei Chen. Sageattention3: Microscaling fp4 attention for inference and an exploration
of 8-bit training. arXiv preprint arXiv:2505.11594, 2025a.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei Chen.
Spargeattn: Accurate sparse attention accelerating any model inference. In International Conference
on Machine Learning (ICML), 2025b.

Peiyuan Zhang, Yongqi Chen, Haofeng Huang, Will Lin, Zhengzhong Liu, Ion Stoica, Eric Xing,
and Hao Zhang. Vsa: Faster video diffusion with trainable sparse attention. arXiv preprint
arXiv:2505.13389, 2025c.

Lianghui Zhu, Zilong Huang, Bencheng Liao, Jun Hao Liew, Hanshu Yan, Jiashi Feng, and Xinggang
Wang. Dig: Scalable and efficient diffusion models with gated linear attention. In Proceedings of
the Computer Vision and Pattern Recognition Conference, pp. 7664–7674, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 MORE VISIBLE EXAMPLES

SLA (Sparsity = 95%)

Sparge-T (Sparsity = 84%)S+L (Sparsity = 90%)

Full Attention (Sparsity = 0%)
95\%

VMoBa (Sparsity = 85%)

VSA (Sparsity = 89%)Sparge-F (Sparsity=85%)

Sparse Only (Sparsity = 85%)Linear Only (Sparsity = 100%)

Figure 7: Full video examples generated by the Wan2.1 fine-tuned with SLA and baseline methods.
The first prompt is “A polar bear is playing guitar”. The second prompt is “Pacific coast, carmel
by the sea ocean and waves”. The third prompt is “a bird building a nest from twigs and leaves”.

Figure 7 demonstrates some additional video examples generated by the Wan2.1 model, fine-tuned
with SLA and other attention methods. We can find that SLA consistently achieves higher quality
even under bigger sparsity than baselines.
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A.2 EXPERIMENTS FOR IMAGE GENERATION

Experimental setup. As described in Section 6.1, we evaluate SLA and the baselines on a pretrain-
ing task of LightningDiT (Yao et al., 2025). Specifically, we use the LightningDiT-1p0B/1
model, consisting of 1.03B parameters, trained on the ImageNet (Deng et al., 2009) dataset at a
resolution of 512 × 512. We introduce a new baseline block diagonal as a representative of static
pattern methods. It splits the sequence into blocks and computes attention only within each block.

Hyperparameters. All hyperparameters follow (Yao et al., 2025), except that we train for 100000
steps with a batch size of 128. For SLA, we set ϕ to softmax and use a block size of bq = bkv = 64.

Metrics. Following (Yao et al., 2025), we adopt FID to assess image quality and FLOPs to measure
computational complexity.

Results. The results are summarized in Table 4. At the highest sparsity level, SLA outperforms all
other baselines and even surpasses full attention on the FID metric, confirming the advantage of
SLA in preserving image quality. This finding is consistent with the video experiments on Wan2.1
reported in Section 6.2.

Table 4: Quality and efficiency comparison of SLA and other baselines on image generation.

Method Quality Efficiency
FID ↓ FLOPs ↓ Sparsity ↑

Full Attention 31.87 12.88G 0%

SpargeAttn-F 206.11 3.66G 71.57%
SpargeAttn-T 46.05 3.16G 75.45%

VSA(2D) 35.75 3.62G 75.00%
VMoBA(2D) 39.45 3.22G 75.00%

SLA 31.49 1.73G 87.50%
Block Diagonal 55.06 3.22G 75.00%

A.3 ABLATION STUDY ON IMAGE GENERATION

In addition to the ablation study conducted on the Wan2.1-1.3B model in Section 6.4, we further in-
vestigate the impact of the parameters kl, bq and bkv on the LightningDiT model. Table 5 shows that
varying bq and bk leads to only marginal changes in performance, while increasing kl consistently
degrades generation quality.

Table 5: Ablation Study on kl, bq and bkv .

bq bkv kl FID ↓
64 64 0% 31.49
128 64 0% 31.49
128 32 0% 31.74
64 64 6.25% 32.94
64 64 12.5% 34.04
64 64 25% 37.31

A.4 EXPERIMENTS ON MM-DIT MODEL

Experimental setup. To demonstrate that SLA can be applied to models with different attention
layouts, we evaluate SLA and the baseline on a finetuning task using a private MM-DiT model.

Hyperparameters. All hyperparameters are the same as those in Section 6.1.

Metrics. Following Section 6.1, we use VA, IQ, OC, AQ, and SC to measure video quality.
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Results. The results are summarized in Table 6. SLA has almost no loss in end-to-end metrics
compared to full attention, indicating that SLA generalizes well to MM-DiT architectures.

Table 6: Quality comparison of SLA and baseline on MM-DiT model.

Method Quality

VA ↑ IQ ↑ OC ↑ AQ ↑ SC ↑
Full Attention 57.81 0.58 7.88 55.77 86.89

SLA (ours) 55.18 55.97 8.28 56.11 88.50

A.5 EXPERIMENTS USING TOP-CDF

Because top-CDF (Zhang et al., 2025b) is a common alternative for top-k when forming the sparse
mask Mc, particularly to improve robustness against the inaccuracies in Pc, we compare the two
approaches in Table 7. Our results demonstrate that top-k consistently delivers better video quality,
suggesting that SLA is not overly sensitive to small errors in Pc.

Table 7: Experiments of combining SLA and additional tricks.

Method Quality

IQ ↑ OC ↑ AQ ↑ SC ↑ VR ↑
Full Attention 62.5 23.3 56.1 93.0 0.059

SLA (Top-k) 62.2 23.6 55.9 93.1 0.0483
SLA (Top-CDF) 60.8 22.2 53.8 91.2 -0.0263

A.6 ADDITIONAL EFFICIENCY OPTIMIZATION

Since the efficiency of SLA depends heavily on the sparsity pattern, we introduce several comple-
mentary optimizations tailored to different sparsity levels. These optimizations lead to substantial
gains in computational efficiency:

Lookup table. When Mc is highly sparse (e.g., sparsity > 90%), scanning entire rows or columns to
read mask values causes significant memory overhead. To mitigate this, we preprocess the nonzero
positions of each row and column and store them in a lookup table. During computation, only the
lookup table is accessed, substantially reducing memory traffic.

Pre-aggregation for linear attention. Although Line 13 in Algorithms 1 and Line 14 in Algo-
rithm 2 require only a single matrix addition, repeatedly performing such additions incurs high over-
head when many entries of Mc are 0 (e.g., > 90%). To address this, we precompute the row/column
sums

∑
j hj and

∑
j zj , and then subtract the contributions corresponding to Mc[i, j] ̸= 0. In this

way, 90% of the additions can be replaced by only 10% subtractions.

Method of Four Russians. When the number of blocks with Mc[i, j] = 0 is neither very small nor
very large (e.g., around 50%), we provide an efficient implementation for Line 13 in Algorithms 1
and Line 14 in Algorithm 2. Specifically, we adopt the Method of Four Russians (Arlazarov et al.,
1970). The key idea is to group hj and zj into segments of g consecutive blocks and precompute all
2g possible subset sums within each segment. During the forward pass, any subset of g blocks can
then be obtained by a single look-up, rather than summing them on the fly. This scheme allows a
theoretical computation reduction by 1/g.

A.7 EFFICIENCY TEST ON MORE DEVICES

While SLA achieves substantial speedups over FlashAttention on the RTX5090, we further evaluate
its performance across a broader range of GPUs to demonstrate its generality. Table 8 reports the
speedup of SLA over FlashAttention on RTX4090, A800, L20, and H800 at 95% sparsity. Across all
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devices, SLA delivers at least a 10x acceleration in attention computation, highlighting its consistent
efficiency gains across diverse hardware.

Table 8: Speedup of SLA on more devices.

GPU Speedup
RTX4090 11.20x

A800 10.76x
L20 13.18x

H800 12.94x

A.8 MEMORY FOOTPRINTS OF SLA

To provide more hardware details for the SLA kernels, we report the memory footprints of SLA at
kh = 10% in Table 9, including MFU, L2 cache I/O utilization, DRAM I/O utilization, and peak
memory usage relative to FlashAttention for both the forward and backward passes. The profiling
results indicate that SLA is a compute-bound workload, with no evident memory bottlenecks.

Table 9: Memory footprints of SLA.

Kernel MFU L2 Cache Util. DRAM Util. Memory Usage
SLA Foward 75.5% 63.8% 2.9% 1.12x
SLA Backward 54.2% 57.4% 1.8% 1.15x

A.9 COMBINING SLA WITH LORA

We evaluate the combination of SLAwith LoRA (r = 8, α = 4) to explore more efficient fine-tuning
strategies. The results, summarized in Table 10, show there is a clear performance gap between the
LoRA setup and full-parameter finetuning.

Although more aggressive hyperparameter tuning (e.g., larger ranks) might reduce this gap, the
current results indicate that full finetuning is a more reliable way for SLA.

Table 10: Experiments of combining SLA with LoRA.

Method Quality

IQ ↑ OC ↑ AQ ↑ SC ↑
Full Attention 62.5 23.3 56.1 93.0

SLA 62.2 23.6 55.9 93.1
SLA + LoRA 85.0 56.3 51.8 22.9

USE OF LARGE LANGUAGE MODELS

We used a language model only for polishing English writing, while all ideas, experiments, results,
and interpretations are our own.
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