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ABSTRACT

In Diffusion Transformer (DiT) models, particularly for video generation, atten-
tion latency is a major bottleneck due to the long sequence length and the quadratic
complexity. Interestingly, we find that attention weights can be decoupled into
two matrices: a small fraction of large weights with high rank and the remaining
weights with very low rank. This naturally suggests applying sparse acceleration
to the first part and low-rank acceleration to the second. Based on this finding, we
propose SLA (Sparse-Linear Attention), a trainable attention method that fuses
sparse and linear attention to accelerate diffusion models. SLA classifies attention
weights into critical, marginal, and negligible, applying O(/N?) attention to crit-
ical weights, O(NV) attention to marginal weights, and skipping negligible ones.
SLA combines these computations into a single GPU kernel and supports both
forward and backward passes. With only a few fine-tuning steps using SLA, DiT
models achieve a 20x reduction in attention computation, resulting in signifi-
cant acceleration without loss of generation quality. Experiments show that SLA
reduces attention computation by 95% without degrading end-to-end generation
quality, outperforming baseline methods. In addition, we implement an efficient
GPU kernel for SLA, which yields a 13.7 x speedup in attention computation and
a 2.2x end-to-end speedup in video generation on Wan2.1-1.3B.

1 INTRODUCTION

Among the operations in Transformers, attention (Vaswani et al.,2017) is the only one with quadratic
computation complexity, while others mostly scale linearly with the sequence length V. In Diffu-
sion Transformer (DiT) models (Peebles & Xiel 2022), especially for video generation, attention
becomes the primary computational bottleneck, as the sequence length typically ranges from 10K
to 100K. Reducing the cost of attention is therefore critical for improving the efficiency of DiT
models. Existing efficient attention methods for DiTs fall into two main categories: (1) numerous
sparse attention methods (Li et al.| [2025} [Zhang et al., 2025b; X1 et al., 2025; |Yang et al., |[2025a;
Zhang et al.2025¢c; Wu et al., [2025}; |Shen et al., [2025; Hassani et al., 2023} [Liu et al.| [2025), which
compute only a subset of attention scores, and (2) a few linear attention methods (Xie et al., 2024;
Zhu et al., 2025)), which reformulate the operation to achieve O(N) complexity.

Limitation. Despite recent progress, both approaches face challenges in substantially reducing
attention computation: (L1) Linear attention methods often fail in practice, especially on video
diffusion models. Existing work on linear attention in diffusion is rare and primarily limited to
image generation. Our experiments show that when applied to diffusion models, particularly video
generation, linear attention severely degrades video quality. (L.2) Sparse attention methods rarely
achieve very high sparsity and require a considerable fraction of the full complexity of attention. In
practice, they typically reach only 40—60% sparsity for sequence length below 50K. Although some
recent works (Yang et al.|[2025aj Li et al.,|2025)) report sparsity of 80-85%, such results are obtained
on very long sequences (e.g., 100K-300K), where achieving high sparsity is easier.

Key Observation. We find that attention weights in diffusion transformers can be decomposed into
two matrices: a small fraction of large weights with high rank and a large fraction of the remaining
weights with extremely low rank. This explains why sparse attention or linear attention alone cannot
achieve satisfactory results and naturally suggests applying sparse acceleration to the first part and
low-rank acceleration to the second.
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Our Method. Based on the observation above, we propose SLA, a trainable hybrid sparse and linear
attention for DiT models. Specifically, attention weights are partitioned into blocks and dynamically
classified into three categories: critical, marginal, and negligible. Critical blocks are computed
exactly using FlashAttention, negligible blocks are skipped, and, unlike existing methods, marginal
blocks are processed with linear attention. This design allows sparsity to increase dramatically
(e.g., 70%—95%) while maintaining accuracy. Since linear attention is computationally negligible,
costing less than 0.5% of full attention in video generation models, SLA is several times faster than
sparse attention alone. Furthermore, we implement efficient forward and backward passes for SLA.
With a few steps of fine-tuning, SLA significantly reduces the computation complexity and latency
of attention while preserving the quality of the generation results.

Result. SLA reduces attention computation by 95% without degrading video generation quality,
even at a moderate sequence length of 30K, which is the sequence length in Wan2.1-1.3B. In addi-
tion, our implementation achieves a 13.7 x speedup in the attention kernel and a 2.2 % end-to-end
acceleration for video generation, where the attention time becomes almost negligible. SLA consis-
tently surpasses baselines in both generation quality and efficiency.

2 PRELIMINARY

2.1 BLOCK SPARSE ATTENTION

Given queries, keys, and values @, K,V € RY*4 the standard attention computes the score matrix
S = QK" /v/d and the attention weights P = Softmax(.S) to obtain the output O = PV. This is
inefficient for large N as it requires O(NN2d) operations. The idea of sparse attention is to reduce
computation by applying a mask M € {0, 1}?V*¥ (o the attention weights: P + P ® M, where
© is the element-wise product. A common strategy is to choose a threshold 7 and set M;; = 1 if
P;; > 7. For entries with M;; = 0, the multiplications Q; K ]T and P;;V; can be skipped, where
Qi =Ql,:], K; = K[j,:],V; =VI[j,:].

However, element-wise sparse attention is inefficient on modern GPUs. Practical implementations
such as FlashAttention (Daol [2023) operate at the block level. Specifically, the sparse FlashAttention
first partitions @, K, V, S, P, M into blocks {Q;}, {K;}, {V;},{Si;}, {Pi;}, {M,;}, where Q; €
Rbaxd K;, V;c Rb%v*d and Sij, Pij, My; € Rba*brv  Each block mask M,; is fully filled with
either 0 or 1, and we skip the computations of Q; K and P;;V; if Mj;[:,:] = 0.

2.2 LINEAR ATTENTION

Linear attention methods reduce the complexity of standard attention from O(N2d) to O(Nd?). A
key idea is to decouple the softmax operation by introducing a feature map ¢(-) applied to @ and

K. Specifically, it replaces the attention weights in standard attention with % This

reformulation enables reordering of the matrix multiplications: instead of explicitly computing the
attention weights, it first computes ¢(/) TV, and then applies this intermediate result to ¢(Q):

P(QH
Q)2
The mapping ¢(-) is usually an activation function (e.g., ELU + 1 or ReLU (Clevert et al., 2016

Xavier et al., 2011))). This formulation avoids explicitly constructing the N x N matrices S, P and
achieves linear computational complexity.

H=¢K)"V, Z=rowsum(p(K)")ecR>™ 0O=

3 MOTIVATION AND ANLYSIS

3.1 MOTIVATION OF SLA

Due to the softmax operator, the attention weights P lie in [0, 1] with each row summing to 1.
Furthermore, because of the exponential scaling in softmax, only a small fraction of entries in P
are relatively large, while the vast majority are close to zero. Figure [I] (left) shows the typical
distribution of attention weights P sampled from the Wan2.1 model (Wan et al.,2025)). We highlight
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Figure 1: The left figure shows a typical distribution of attention weights sampled from the Wan2.1
model. The right figure shows the accuracy of sparse attention with different sparsity.

two key observations: (1) Only about 8.1% of the weights are larger than the average value 1/N.
(2) A considerable proportion of weights are extremely small. In our case, approximately 45% fall
below 1/(100N). As shown in Figure [1| (right), skipping these smallest 45% of weights in sparse
attention (i.e., setting the corresponding entries in M to 0) introduces a relative L1 error of less than
3% compared to the full attention output. In contrast, retaining only the largest 8.1% of weights
(sparsity = 92%) leads to a sharp increase in error, reaching about 33%. This explains why existing
sparse attention methods struggle to achieve a sparsity beyond 90%.

The intermediate values between 1/(100N) and 1/N (the yellow column in Figure |I)) present a
dilemma: omitting them introduces significant accuracy loss, yet computing them with full attention
causes a great decrease in sparsity. Fortunately, these values are far less critical than the largest ones.
This finding motivates us to categorize the attention weights into three types: critical, marginal,
and negligible. For critical weights, we use sparse FlashAttention to compute the output as they
dominate the attention distribution; For negligible weights, we skip the computation; For marginal
weights, we employ a linear attention method to reduce the computational complexity to O(Nd?)
and enhance the performance of sparse attention.

. ;‘ull Attention Linea Only ¥ Sparse Only ¢ SLA
(Sparsity = 0%) (Sparsity = 100%) (Sparsity = 90%) (Sparsity = 95%)

Figure 2: Video generation examples on Wan2.1 fine-tuned with full attention, linear attention,
sparse attention, and SLA. SLA could achieve a high sparsity of 95% and lossless video quality.

Empirical results. In Figure[2} we present some videos generated by Wan2.1 fine-tuned with different
attention methods: using only linear attention, sparse attention with 90% sparsity, and SLA with 95%
sparsity. Note that the computational complexity of SLA at 95% sparsity is nearly half that of 90%
sparse attention, since the cost of linear attention is almost negligible. For example, in the Wan2.1
model, linear attention accounts for less than 0.5% of the cost of full attention. These empirical
results show that SLA significantly outperforms the other two methods in video quality.

3.2 SEPARATING ATTENTION WEIGHTS: SPARSE FEW, LOW-RANK MANY

Observation. As shown in Figure 3| full attention weights can be decoupled into two parts: (1) a
small subset (< 10%) with rank comparable to full attention, and (2) a large subset (> 90%) with
very low rank. Since the methods for accelerating attention focus mainly on sparsity or low-rank
structure, this suggests a natural and elegant strategy: apply sparse attention to the first part and
low-rank approximation to the second.

Previous failures of linear attention are largely due to the high rank of full attention weights
2025), while linear attention is restricted to a rank at most d. Figure3](left) illustrates this with
a typical example using the notion of stable rank (Rudelson & Vershynin, 2006). We observe that




Under review as a conference paper at ICLR 2026

Full Attention Weights Top-8% Weights ttom-92% Weights ™)
NN NN
N \\ \.
N RN
NN
p— N Sparse _|_ Low-Rank
_— AR R 1
NN Attention (Linear) Attention
NN
AN\
I I — I —
10% 107 10  10°° 10® 107 10°¢ 10°° 10% 107 10  10°°
Rank = 6226 Top-8%, Rank = 6230 -/ Bottom-92%, Rank=9 _J

Figure 3: Decomposition of attention weights. We sample attention weights from the Wan2.1 model:
the left figure shows the full weights, the middle the top 8%, and the right the bottom 92%.

after removing the top values in the attention weights P, the remaining matrix becomes extremely
low-rank. This motivates the decomposition of P using the sparse mask M:

P= PoM +Po(l-M). (1)
S~—— —_———
sparse component  jow._rank component

Since linear attention is essentially a low-rank version of attention, we are provided with a possibility
to replace the low-rank component P ® (1 — M) with linear attention.

4 SLA

SLA effectively integrates sparse and linear attention within a unified framework, allowing them to
complement each other. In particular, we fuse both attention into a single efficient GPU kernel. In
this section, we introduce the sparse and linear attention components of SLA.

SLA first predicts a compressed attention weights matrix P, € RN/ba*N/bx.
P. = Softmax(pool(Q)pool(K) " /Vd). 2

where pool(-) is a mean pooling operator along the token dimension. For each element of P,
we classify it into three types and record the results in a compressed mask M, € RN/baxN/bkv,
Specifically, the top k5, % positions are marked as critical (labeled 1), the bottom k;% positions as
negligible (labeled —1), and the remaining positions as marginal (labeled 0). Formally,

M.[i,j] = {1 (top kn%), —1 (bottom k;%), O (otherwise)}. 3)
We apply different methods according to M.

4.1 SPARSE ATTENTION IN SLA

Guided by the mask M., sparse FlashAttention is used to compute the sparse attention output. For
each @ block Q;, we iterate over all K,V blocks K;, V; with j = 0,..., N/by,. Whenever
M.[i, j] = 1, we perform:

S,‘j = QlKJT/\/ﬁ, Pij = OnlineSoftmaX(Sij), Of = Of + PijVj. (4)

Here, OnlineSoftmax(+) operator (Milakov & Gimelshein, [2018) computes the softmax of a matrix
in a block-wise manner (see lines 10-11 of Algorithm [I| for implementation). The initial value
of each O is set to zero. Algorithm |I| describes the forward computation of the sparse attention
component, and we denote the final output of the sparse attention component O°.

4.2 LINEAR ATTENTION IN SLA

Inspired by the idea of low-rank approximation, we replace the low-rank component P ® (1 — M)
in Equation [T] with linear attention introduced in Section [2.2]as

P(Q)p(K) "
rowsum(¢(Q)d(K)T)

® (1 - M).

4
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Specifically, the entries of 0 in M, determine the blocks processed by linear attention. For each
query block Q;, we compute the corresponding linear attention output:

H; = Z (b(Kj)TVj, Z; = Z rowsum(gb(Kj)T), Oé = 7¢(Qi)Hi (5)

J:Mcli,j]=0 J:Mcli,j]=0 QS(Q )

Here, as mentioned in Section #(-) denotes the activation function, and H; € R4*? Z,; ¢ R4x!
are intermediate results similar to H and Z. Algorithm [T] describes the forward pass of the linear
attention component, and the final output of this component is denoted as O'.

Finally, the overall attention output of SLA is defined as:
O = O* 4 Proj(0Y). (6)

where Proj is a learnable linear transformation R? — R?. Applying this projection to O' helps
reduce the distribution mismatch between softmax and linear attention. Its computational cost is
O(Nd?), the same as computing O' and negligible compared with the O(N2d) cost of full attention.

Insight. Linear attention in SLA does not approximate the output corresponding to marginal at-
tention weights, but serves as a learnable compensation that enhances the effectiveness of sparse
attention. This is because linear attention alone struggles to approximate the output of full atten-
tion (Choromanski et al.,[2020; |Qin et al., [2022). Therefore, we need to fine-tune the parameters of
the target model, enabling it to adapt to the use of linear attention.

High-Level Idea Detailed Algorithm
Attention Weight Prediction KI K; K;— KI
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Figure 4: Overview of SLA. The left figure illustrates the high-level idea: attention weights are
classified into three categories and assigned to computations of different complexity. The right figure
shows the detailed forward algorithm of SLA using the predicted compressed attention weights.

5 FINE-TUNING USING SLA

To apply SLA to a diffusion model, we can simply replace the original attention with SLA and fine-
tune the model for a few steps on a dataset consistent with the pretraining data. In this section, we
describe the forward and backward passes of SLA. Moreover, we detail some additional efficiency
optimization for SLA in Appendix [A.3]

5.1 FORWARD PASS

The formulation of the forward computation was introduced in Section ] The complete algorithm
of the forward pass of SLA is presented in Algorithm [T} It’s worth noting that we precompute
h; = ¢(K;)TV, and z; = rowsum(¢(K;) ") for each pair (K, V;) (Line 4 in Algorithm. This
design ensures that, when M.[i, j] = 0, the corresponding operation only involves a single matrix
addition (Line 13 in Algorithm[I}), thereby improving efficiency. To simplify the notation, we denote
Q% = ¢(Q) and K¢ = ¢(K) in the following.
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Algorithm 1: Forward pass of SLA.

1: Input: Matrices Q, K, V, Q?, K¢ € RNV*? block sizes bg, biw, hyper-parameters ky,, k.

2: Divide Q, Q% to Ty, = N/b, blocks {Q,} and {Q?} ;

3: Divide K, V, K® to T}, = N/by,, blocks {K;}, {V,} and {K?} ;

4: h={h;} = {(Kj’)TV7} sz={z} = {rowsum((K‘f)T)} ;  // Precompute for linear attention
5: P. = Softmax(pool(Q)pool(K) " /v/d);  Initialize M, =0 ;
6
7
8

: Mc[i, j] = 1if Pe[i, j] € TopK(P:[i,:], kn) ; Mc[i, j] = 0 if P.[i, j] € BottomK(Pe[i,:], ki) ;
: fori =1to T}, do
for j = 1to T, do

9: if Mc[i, j] = 1 then

10: Sij = QZK;I—/\/E, mi; = max(mi,j,hrowmax(sij)) 5 Pij = eXp(Si]’ — mi]') 5

11: lLJ = em"’j*lim”li,jfl + I‘OWSUm(Pij) ; O:] = diag(emi’jflimu)Of,]-_l + PijVj )
12: else if M. [i, j] = O then

13: Hi<—Hi+hj; Zi<—Zi+Zj;

14: end if

15:  end for

16:  Of =diag(i")™'051,; Ol =QVH,;/(QCZ;); Li=mir, +log(lir,);
17: end for
18: return O° = {05}, O'={0Ol};

Algorithm 2: Backward pass of SLA.

1: Input: Q, K,V,Q% K? M., {L;},{H:},{Z:}, 0%, 0" from the forward, dO®, dO" € RV >,

2: D® = rowsum(dO® © O?), D' = rowsum(dOl ® Ol), divide D*, D' into T}, blocks {D;}, {Dﬁ} ;
3: fori=1toT,, do

4 dH; = (Q7/(Q{Z:))"dO}; dZ; = —(Q?/(QZ:)) D

5.

6

7

8

:dQf = (dOi(H,)" - DIZ)/(QZ:);
: end for
: for j =1to T, do
InitializedH = 0,dZ =0 ;
9: fori=1toT,, do

10: if M_.[i, 7] = 1 then

11: Sij = QK /Vd; Pij=exp(Si; —Li); dV;« dV;+PdO;; dP;; =dO;;V, ;
12: dSi]' = Pij ® (dPij — Df) ; sz — sz + dSin]' ; dKj — dKj + dS;;Ql ;

13: else if M. [i, j] = O then

14: dH +~ dH +dH;; dZ <« dZ+dZ;;

15: end if

16:  end for

17 dK? =V;(dH)" +(d2)"; dV, =K/dH;

18: end for

19: return dQ = {dQ,}, dK = {dK,}, dV = {dV.}, dQ? = {dQ?}, dK® = {dK?}:

5.2 BACKWARD PASS

The backward pass computes gradients for both the sparse and linear components, which are also
fused into a single GPU kernel for efficiency.

Gradient notation. The prefix d or d is used to denote gradients, e.g., dO%, dO" are the gradients
of 0%, O with respect to some loss function /, respectively.

Sparse attention gradients. The output gradient dO® is backpropagated to compute d@Q, dK, and
dV, following the same derivation as in FlashAttention (Dao, 2023)). Given dO?, the backward pass
is carried out as follows:

dP;; =dO;; V], D{=rowsum(dO; ® Of), dS;; =P;; © (dP;; — DJ), -
dQ, =dS;K;, dK;=ds/Q; dV,=PdO;.

Here, we consider D3 € Rb*1 as a column vector.
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Linear attention gradients. The gradient dO' yields dQ?, dK?,dV through the chain rule:

@ )’ Q)
dH; = | dO;, Dj=rowsum(dO; © O}), dZ; = — | — D!
Qi Zi Qi Zi

do!(H,)T — DlzZ]

(4O, (H,) G ), dK? = V,(dH,)" 4+ (dZ;)", dV; =K?%dH;
Q‘-bZ» J J J J

Here, dK;5 and dV; are obtained by aggregating dH; and dZ;. Similar to the forward pass, each

dH; and dZ; is precomputed so that the remaining computation reduces to simple matrix additions.
The detailed algorithm is provided in Algorithm

®)

dQ; =

6 EXPERIMENT

6.1 SETUP

Model and Datasets. We use the Wan2.1-1.3B model (Wan et al.| |2025) for video generation
experiments in the main text and LightningDiT (Yao et al.l 2025)) for image generation experiments
in the Appendix [A.2] For video experiments, we use a private dataset collected from websites such
as Pexels (Pexels) and Common Crawl (Common Crawl), consisting of 20,000 5-second videos at
480p resolution for fine-tuning. For image experiments, following LightningDiT (Yao et al., 2025,
we use the ImageNet (Deng et al., | 2009) dataset at a resolution of 512 x 512.

Baselines. We compare SLA with state-of-the-art sparse attention methods applicable to diffu-
sion models, including (1) VSA (Zhang et al.| 2025c), (2) VMoBa (Wu et al., 2025), and (3) the
training-free SparseAttn (Zhang et al., 2025b) (Sparge-F) and (4) a trainable implementation of
SpargeAttn (Sparge-T). For VSA and VMoBa, we use their official implementations, while for
Sparse-T, we implement the method ourselves because there is no official implementation. In
addition, we design several baselines for ablation studies: (5§) Linear Only, which applies only
linear attention; (6) Sparse Only, which applies only the sparse attention component of SLA;
and (7) L+S, which directly sums the attention outputs of the Linear Only and Sparse Only.

Metrics. For video quality, following [Zhang et al.| (2024a); [Yang et al.| (2025b)), we use four eval-
uation dimensions of VBench (Zhang et al, 2024a)): Imaging Quality (IQ), Overall Consistency
(0C), Aesthetic Quality (AQ), Subject Consistency (SC). We also use the Vision Reward (VR) (Xu
et al.,2024) for human preference evaluation, Aesthetic Video Quality (VA), and Techniqual Video
Quality (VT) (Liu et al., 2023). For image quality, following [Yao et al.| (2025)), we use FID. For
attention computation complexity, we use FLOPs (floating point of operations). For attention effi-
ciency, we use FLOP S (floating-point operations per second) for attention kernel efficiency. Specifi-
cally, FLOPS here is O(full attention)/t, where O(-) denotes the operation count and ¢ the attention
latency. We use seconds for end-to-end generation latency.

Hyper-parameters. We use a training batch size of 64 and fine-tune the Wan2.1 model for 2000
steps. For the activation function ¢, we use softmax according to our ablation experiments. kj%
is 5% and k;% is 10%. For block size, we use b, = by, = 64. The hyper-parameters for image
generation tasks are detailed in Appendix [A.72]

6.2 EFFECTIVENESS

Table [T] compares the video generation quality and efficiency of SLA with baseline methods on
Wan2.1-1.3B, fine-tuned separately with SLA, Full Attention, and each baseline. SLA delivers about
a 19.3x efficiency gain while maintaining video quality comparable to Full Attention. Moreover,
compared with the baselines, SLA consistently achieves higher quality even under greater sparsity.
For example, 95% (1-5%) sparsity in SLA is actually about 3 x more efficient than 85% (1-15%)
while still producing better video quality.

6.3 EFFICIENCY

Figure [6] compares the kernel speed and end-to-end latency of SLA on Wan2.1-1.3B with an
RTX5090. Note that even VSA in 89% sparsity and VMoBa in 85% sparsity, their generation quality
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Table 1: Quality and efficiency comparison of SLA and other baseline methods.

Method | Quality | Efficiency
| vat vIt 101t oct 2aQt sCct VR?T | FLOPs|  Sparsity 1

Full Attention \ 76.78 82.88 62.5 23.3 56.1 93.0 0.059 \ 52.75T 0%
Sparge-F 0.002  0.026 26.0 4.6 35.7 85.1 -0.216 791T 85%
Sparge-T 73.83  77.87 61.9 22.7 55.4 93.1 0.014 7.38T 84%
VMoBa 32.33  35.79 58.0 18.8 46.2 89.9 -0.175 791T 85%
VSA 55.37 64.61 60.6 22.4 51.9 83.6 -0.069 5.92T 89%
SLA 7696 83.92 62.2 23.6 559 93.1 0.048 2.74T 95 %

Table 2: Ablation results for STA.
Method | Quality | Efficiency
| vat vrt 101t oct 2ot sct VRT | FLOPs]  Sparsity T

Full Attention \ 76.78 82.88  62.5 23.3 56.1 93.0 0.059 \ 52.75T 0%
Linear Only | 0.042 0.099 39.5 3.6 28.8 90.7 -0.213 0.10T 100%
Sparse Only | 64.00 70.50 57.2 21.8 51.7 88.7 -0.073 791T 85%
L+S 29.65 41.15 58.6 18.8 453 87.1 -0.105 5.37T 90%

SLA (softmax) 76.96 8392 622 23.6 55.9 93.1 0.048 2.73T 95%
SLA (elu+1) 75.50 81.01 62.8 23.5 55.3 92.9 0.034 2.74T 95%
SLA (hedgehog) | 74.59  82.62 61.9 22.5 54.3 93.2 0.035 3.11T 95%
SLA (Top 5%) 76.96 8392 62.2 23.6 55.9 93.1 0.048 2.73T 95%
SLA (Top 10%) 75.29  82.20 62.5 22.6 55.8 93.5 0.057 5.38T 90%
SLA (Top 20%) 75.81 83.82 627 22.4 54.5 92.6 0.059 10.65T 80%

Full Attention (Sparsity = 0%) SLA (Sparsity = 95%)

Linear Only Sparse Only Sparge-F VMoBa
(Sparsity = 100%) (Sparsity = 85%) (Sparsity=85%) (Sparsity = 89%) (Sparsity = 85%)

Figure 5: Video examples using Wan2.1 fine-tuned with SLA and baselines. For Linear Only,
Sparse Only, Sparge-F, VSA, and VMoBa, only a single frame per prompt is shown, as their
video quality is not sufficient. The full visible comparison is in Figure [7]in Appendix [A-T]

is already worse than SLA, so higher sparsity settings (e.g., 95%) are not quality-matched compar-
isons. In the forward pass, SLA achieves a 13.7x speedup over FlashAttention2 and is 1.93 x faster
than VSA with 95% sparsity and 3.36 x faster than VMoBa with 95% sparsity. In the backward pass,
it delivers a 6.8 x speedup over FlashAttention2, still outperforming VSA and VMoBa. For end-to-
end video generation, SLA reduces attention latency from 97s to 11s (8.8 x reduction), resulting in
a 2.2x end-to-end speedup. For fine-tuning overhead, we train Wan2.1-1.3B for only 2,000 steps
with a batch size of 64, which is less than 0.1% of the cost of pretraining (typically 10°~10° steps

with a batch size of 103-10%) (Wan et al., 2025).
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(a) Attention GPU Kernel speed comparison on RTX5090. (b) End-to-end video generation latency comparison.

Figure 6: Attention kernel speed and end-to-end generation latency of SLA and baselines on Wan2.1-
1.3B with RTX5090. FlashAttn refers to FlashAttn2, the fastest available version on RTX5090.

6.4 ABLATION STUDY

Fusing sparse and linear attention. To evaluate the effectiveness of SLA in integrating sparse and
linear attention, we compare SLA with Sparse Only, Linear Only, and S+L on Wan2.1 in
terms of end-to-end generation quality and efficiency. As shown in Table 2] SLA achieves the best
generation quality and is more efficient than Sparse Only and S+L, confirming the effectiveness
of our fusion strategy.

Activation function in linear attention. To study the effect of the activation function ¢ in the linear
attention component of SLA, we evaluate softmax, elu+1, and hedgehog. Results in Table E] show
that softmax generally provides better generation quality and efficiency.

Impact of parameter k;. We vary kj, from 5% to 20% and report the results in Table[2] We find
that k;, = 5% already yields generation quality close to that of full attention. Since kj, = 5% saves
about half and a quarter of the computation compared with k;, = 10% and k;, = 20%, it offers the
best trade-off between efficiency and quality.

6.5 VISIBLE EXAMPLES

Figure [5and Figure[7]show video examples from Wan2.1-1.3B fine-tuned using SLA and baselines.
SLA produces videos comparable to full attention even at 95% sparsity, while other methods exhibit
noticeable distortions even at sparsity levels below 90%.

7 RELATED WORK

As sequence lengths in generative models (e.g., language and video) grow, the quadratic cost of
attention becomes a key bottleneck. Many studies aim to improve efficiency in two main directions:
sparse and linear attention. Most sparse attention methods (Xiao et al., [2024bja; |Jiang et al., [2024;
Gao et al.,|2024; |[Fu et al., [2024; |Xi et al., |2025; |Zhang et al.| 2025b} Ribar et al., 2023} |Yang et al.}
2025a)) speed up inference without training by masking computation at test time. Some (Zhang et al.,
2025¢; Wu et al., 2025) add sparsity during training, enabling higher sparsity. Linear attention meth-
ods (Wang et al.,2020; |Choromanski et al.| [2020; |[Katharopoulos et al., 2020;|Qin et al.||2024; |Yang
et al., 2024} Sun et al.|, 2023)) are mainly studied in language models. For DiT, SANA (Xie et al.,
2024)) and Dig (Zhu et al.} 2025) show linear attention works for image generation pre-training, but
in video generation, existing methods cannot rely on it alone for lossless quality. Another direction
is hardware-efficient attention (Dao et al., 2022} Dao, |2023}; [Shah et al.| [2024;|Zhang et al.,|2024c;bj
2025a)), which optimizes GPU execution through tiling, kernel fusion, and quantization.

8 CONCLUSION

We propose SLA, a trainable attention that unifies sparse and linear attention to accelerate Diffusion
Transformers. SLA assigns computation according to importance: it computes O(N?) attention
for critical weights, O(NN) attention for marginal weights, and skips negligible computations. This
design enables substantial reductions in attention cost while preserving effectiveness. Experiments
show that just a few fine-tuning steps enable SLA to accelerate models effectively. Specifically, SLA
achieves a 20 reduction in attention computation, along with a 13.7x GPU kernel speedup and a
2.2x end-to-end speedup on Wan2.1-1.3B, all without degrading the quality of video generation.
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Reproducibility Statement. We describe experimental details in Section [6.1] and Appendix [A.2}
which provide the implementation details. In our supplementary materials, we also include the
codes and a detailed reproducible description (README.md).

Ethics Statement. This work proposes a method for improving the efficiency of Diffusion Trans-
formers. The study does not involve human subjects, personally identifiable information, or sensitive
data. We believe the proposed method does not raise ethical concerns beyond standard considera-
tions in efficient model design.
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A APPENDIX

A.1 MORE VISIBLE EXAMPLES

Full Attention (Sparsity = 0%) SLA (Sparsity = 95%)

Linear Only (Sparsity = 100%) Sparse Only (Sparsity = 85%)

Figure 7: Full video examples generated by the Wan2.1 fine-tuned with SLA and baseline methods.
The first prompt is “A polar bear is playing guitar”. The second prompt is “Pacific coast, carmel
by the sea ocean and waves”. The third prompt is “a bird building a nest from twigs and leaves”.

Figure[7] demonstrates some additional video examples generated by the Wan2.1 model, fine-tuned
with SLA and other attention methods. We can find that SLA consistently achieves higher quality
even under bigger sparsity than baselines.

13



Under review as a conference paper at ICLR 2026

Table 3: Quality and efficiency comparison of SLA and other baselines on image generation.

Method | Quality | Efficiency
\ FID /| |  FLOPs | Sparsity 1

Full Attention \ 31.87 \ 12.88G 0%
SpargeAttn-F 206.11 3.66G 71.57%
SpargeAttn T 46.05 3.16G 75.45%
VSA ( 35.75 3.62G 75.00%
VMOBA 39.45 3.22G 75.00%
SLA 31.49 1.73G 87.50%

A.2 EXPERIMENTS FOR IMAGE GENERATION

Experimental setup. As described in Section [6.1] we evaluate SLA and the baselines on a pretrain-
ing task of LightningDiT (Yao et al.| [2025). Specifically, we use the LightningDiT-1p0OB/1
model, consisting of 1.03B parameters, trained on the ImageNet (Deng et al., |2009) dataset at a
resolution of 512 x 512.

Hyperparameters. All hyperparameters follow (Yao et al., 2025)), except that we train for 100000
steps with a batch size of 128. For SLA, we set ¢ to softmax and use a block size of b, = by, = 64.

Metrics. Following (Yao et al., [2025)), we adopt F ID to assess image quality and FLOPs to measure
computational complexity.

Results. The results are summarized in Table[3] At the highest sparsity level, SLA outperforms all
other baselines and even surpasses full attention on the FID metric, confirming the advantage of
SLA in preserving image quality. This finding is consistent with the video experiments on Wan2.1
reported in Section [6.2]

A.3 ADDITIONAL EFFICIENCY OPTIMIZATION

Since the efficiency of SLA depends heavily on the sparsity pattern, we introduce several comple-
mentary optimizations tailored to different sparsity levels. These optimizations lead to substantial
gains in computational efficiency:

Lookup table. When M. is highly sparse (e.g., sparsity > 90%), scanning entire rows or columns to
read mask values causes significant memory overhead. To mitigate this, we preprocess the nonzero
positions of each row and column and store them in a lookup table. During computation, only the
lookup table is accessed, substantially reducing memory traffic.

Pre-aggregation for linear attention. Although Line 13 in Algorithms |If and Line 14 in Algo-
rithm[2]require only a single matrix addition, repeatedly performing such additions incurs high over-
head when many entries of M, are 0 (e.g., > 90%). To address this, we precompute the row/column
sums - hj and ), z;, and then subtract the contributions corresponding to M.[i, j] # 0. In this

way, 90% of the additions can be replaced by only 10% subtractions.

Method of Four Russians. When the number of blocks with M. [i, j] = 0 is neither very small nor
very large (e.g., around 50%), we provide an efficient implementation for Line 13 in Algorithms
and Line 14 in Algorithm 2] Specifically, we adopt the Method of Four Russians (Arlazarov et al.|
1970). The key idea is to group h; and z; into segments of g consecutive blocks and precompute all
29 possible subset sums within each segment. During the forward pass, any subset of g blocks can
then be obtained by a single look-up, rather than summing them on the fly. This scheme allows a
theoretical computation reduction by 1/g.

USE OF LARGE LANGUAGE MODELS

We used a language model only for polishing English writing, while all ideas, experiments, results,
and interpretations are our own.
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