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Abstract
Machine learning models that offer excellent001
predictive performance often lack the inter-002
pretability necessary to support integrated hu-003
man machine decision-making. In clinical004
medicine and other high-risk settings, domain005
experts may be unwilling to trust model predic-006
tions without explanations. Work in explain-007
able AI must balance competing objectives008
along two different axes: 1) Models should ide-009
ally be both accurate and simple. 2) Explana-010
tions must balance faithfulness to the model’s011
decision-making with their plausibility to a do-012
main expert.013

We propose to train a proxy model that mimics014
the behavior of a trained model and provides015
control over these trade-offs. We evaluate our016
approach on the task of assigning ICD codes017
to clinical notes to demonstrate that the proxy018
model is faithful to the trained model’s behav-019
ior and produces quality explanations.020

1 Introduction021

Machine learning (ML) methods have demon-022

strated predictive success in medical settings, lead-023

ing to discussions of how ML systems can augment024

clinical decision-making (Caruana et al., 2015).025

However, a prerequisite to clinical integration is the026

ability for healthcare professionals to understand027

the justifications for model decisions. Clinicians028

often disagree on the proper course of care, and029

share their justifications as a means of agreeing on030

a treatment plan. Explainable Artificial Intelligence031

(AI) can enable models to provide the explanations032

needed for them to be integrated into this process.033

However, modern AI models that often rely on034

complex deep neural networks with millions or035

billions of parameters pose challenges to creating036

explanations that satisfy clinician’s demands.037

Similar concerns over model explanations across038

domains have inspired a whole field of interpretable039

ML. Work in this area considers two goals: faith-040

fulness (explanations that accurately convey the041

decision-making process of the model) and plau- 042

sibility (explanations that make sense to domain 043

experts). Balancing these goals can be challenging; 044

faithful explanations that accurately convey the rea- 045

soning of complex AI systems may be implausible 046

to a domain expert, and vice versa. Models must 047

also balance sophistication against transparency. 048

The sophisticated methods may yield the best per- 049

formance on a task, but be least able to provide 050

explanations. 051

We propose to disentangle these competing goals 052

by introducing a proxy model. We assume a trained 053

model exists that makes accurate predictions on 054

a dataset but that may not be interpretable. We 055

train a fundamentally-interpretable linear model 056

on the predictions of the trained ML model, so 057

that the behavior of the proxy model mimics the 058

trained model’s behavior, rather than independently 059

modeling the target task. We then rely on the inter- 060

pretable proxy model to create explanations, allow- 061

ing the trained model to use sophisticated methods 062

to achieve high accuracy. We pose two questions 063

to validate our approach: 1) Is the proxy faithful to 064

the workings of the trained model? and 2) Are the 065

produced explanations of high quality to domain 066

experts? 067

We demonstrate our approach on the task of 068

medical code prediction. While ML methods have 069

achieved predictive success on various versions of 070

ICD clinical code assignment, the best-performing 071

methods have been neural networks that are notori- 072

ously difficult to interpret. Mullenbach et al. (2018) 073

introduced DR-CAML, a method designed to pro- 074

duce explainable predictions, which outperformed 075

several baselines when evaluated by a clinical ex- 076

pert. 077

We reproduce this work and compare to our 078

proxy model.We use a linear logistic regression 079

proxy model that learns to mimic the behavior 080

of the trained DR-CAML model. We show that 081

the proxy model is faithful to the original model 082
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and produces plausible explanations, as measured083

on clinician annotations of generated explanations.084

We release the code both for our method and for085

reproducing Mullenbach et al. (2018).086

2 Background087

2.1 Interpretable ML088

Interpretable machine learning falls within the089

growing field of Explainable AI (Doshi-Velez,090

2017). We present an overview of major themes091

in the literature, and direct the reader to recent sur-092

veys for more details (Doshi-Velez, 2017; Guidotti093

et al., 2018; Gilpin et al., 2018).094

Past work distinguishes between “transparent”095

or “inherently interpretable” models that offer their096

own explanations, and “post-hoc” methods that pro-097

duce explanations for a separately-trained model.098

Methods such as logistic regression are often con-099

sidered transparent or inherently interpretable, be-100

cause their simplicity allows a domain expert to101

understand how a change in input would produce102

a different output (Guidotti et al., 2018). However,103

even simple models can prove difficult to interpret104

in certain settings, such as when the model’s fea-105

tures are complex (Lipton, 2018). LIME is an ex-106

ample of a post-hoc method (Ribeiro et al., 2016);107

given a trained model of arbitrary complexity it pro-108

duces explanations for individual predictions. The109

trade-off in the different methods is that inherently-110

interpretable methods are often limited in model111

complexity. Deep neural networks, for example,112

often demonstrate better performance but are not113

inherently interpretable (Feng et al., 2018), and114

typically rely upon post-hoc methods to derive ex-115

planations (Guidotti et al., 2018).116

Lipton (2018) critiques the idea of “inherent”117

interpretability and argues that methods that are118

intended to be transparently understood should pur-119

sue several traits. These include simulatability, or120

whether a human can reasonably work through each121

step of the model’s calculations to understand how122

a prediction is made; decomposibility, or whether123

each parameter of the model can be intuitively un-124

derstood on its own; and algorithmic transparency,125

or whether the model belongs to a class with known126

theoretical behaviors. Lou et al. (2012) highlights127

linear and additive models as particularly decom-128

posible (or intelligible) classes of models, because129

“users can understand the contribution of individ-130

ual features in the model.” Our proposed approach131

will use a linear model trained on bag-of-word fea-132

tures to provide a simulatible, decomposible, and 133

transparent method. 134

Interpretability methods are also distinguished 135

by the form and quality of the explanations they 136

produce. Two primary desiderata for explanations 137

of ML systems are “faithfulness” and “plausibil- 138

ity.”1 A faithful method accurately describes the 139

true machinery of the model’s prediction, while a 140

plausible model produces explanations that can be 141

interpreted by a human expert (Jacovi and Gold- 142

berg, 2020). A method could be faithful but not 143

plausible, if it accurately explains a model’s pre- 144

dictions but does so in terms of high-dimensional 145

feature vectors that a human cannot interpret. Sim- 146

ilarly, a method could be plausible but not faithful, 147

if it produces concise natural language summaries 148

that are unrelated to the calculations that produce 149

the model’s predictions. Methods should attempt 150

to achieve both goals, but there is a trade-off be- 151

tween the two; explanations typically cannot be 152

both concise and perfectly descriptive. Plausibility, 153

unlike faithfulness, necessarily requires an evalu- 154

ation based on human perception (Herman, 2017). 155

A strength of our proposed method is that it is 156

designed for plausibility and transparency, but opti- 157

mized for faithfulness. 158

2.2 Explainable prediction of medical codes 159

Our work closely follows that of Mullenbach et al. 160

(2018). We use the same dataset of clinical texts 161

and associated medical codes (described in § 4) 162

and compare against their method: Description- 163

Regularized Convolutional Attention for Multi- 164

Label classification (DR-CAML). DR-CAML is a 165

neural model that seeks to produce its own faithful 166

explanations using a per-label attention mechanism 167

that highlights n-grams in the input text that were 168

correlated with the model’s predictions. Because 169

DR-CAML has over six million learned parameters, 170

it does not fulfill simulatability or decomposabil- 171

ity; a single parameter cannot be understood in any 172

intuitive way. However, the attention mechanism 173

allows for some insight into the model’s decision- 174

making, as it indicates which regions of the input 175

text were given more weight in the prediction. 176

DR-CAML’s use of attention to produce expla- 177

nations has sparked discussion. Jain and Wallace 178

(2019) showed that attention mechanisms can pro- 179

1Faithfulness is also referred to as validity or complete-
ness; plausibility is alternatively referred to as persuasive-
ness (Herman, 2017) See Jacovi and Goldberg (2020) for a
longer discussion of alternate terminology.
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Figure 1: Relationship between trained DR-CAML model and proxy model. The proxy model is trained to predict
DR-CAML’s outputs, rather than the true ICD-9 codes. This optimizes the proxy model for faithfulness.

vide misleading explanations that are not faithful180

to the model’s true reasoning. Wiegreffe and Pinter181

(2019) argued that while the explanations produced182

by attention may not always be faithful, they are of-183

ten plausible. This discussion has continued in the184

interpretable ML literature, with methods demon-185

strating how attention mechanisms can be useful186

or deceptive (Zhong et al., 2019; Grimsley et al.,187

2020; Jain et al., 2020; Pruthi et al., 2020). Cre-188

ating models that are both faithful and plausible189

remains a challenge.190

3 Methods191

Our proposed method is post-hoc and seeks to192

balance faithfulness and plausibility. We assume193

that we have a trained model with good predictive194

performance but low interpretability. Given this195

trained model and a dataset on which it can be ap-196

plied, we train a proxy model that takes the same197

input from the dataset, but uses the trained model’s198

predictions as its labels. In other words, given the199

dataset’s input, the proxy model predicts the out-200

puts of the uninterpretable model. Figure 1 gives a201

visual representation of the proxy model setup. For202

the medical code classification task, the original203

model (DR-CAML) is trained on the text of dis-204

charge summaries and produces a probability for205

each of the 8,922 possible medical codes. We ap-206

ply DR-CAML to the texts in MIMIC III (Johnson207

et al., 2016) and save its continuous-valued proba-208

bilities as the labels for our proxy model. Training209

the proxy model on predictions from the existing210

model optimizes for faithfulness by design.211

We also want the proxy model to produce plausi-212

ble explanations and fulfill the criteria from Lipton 213

(2018): simulatibility, decomposibility, and algo- 214

rithmic transparency. To do so, we restrict our 215

proxy model to a class of models that fulfills these 216

desiderata. The fundamental trade-off here is that 217

if we restrict our model class too much, the proxy 218

will be unfaithful and unable to mimic the behav- 219

ior of the trained model. But if we allow for a 220

proxy model that is too complex, it may not pro- 221

vide plausible or otherwise desirable explanations. 222

The choice of proxy model requires some consid- 223

eration of the particular domain, as feature prepro- 224

cessing and similar details may affect its behavior 225

and explanations. 226

For the task of medical code prediction, we 227

use a linear regression model trained on a bag- 228

of-words representation of the clinical texts. We 229

train 8,922 proxy models, one for each medical 230

code in the dataset’s labels. We implement our 231

method using the linear SGDRegressor model 232

from sklearn (Pedregosa et al., 2011), and apply 233

a log transform to the model’s probability outputs 234

and train the proxy to minimize squared loss. We 235

include release the code for training and evaluating 236

our method as an Appendix. 237

Our approach is similar to LIME (Ribeiro et al., 238

2016) in that it learns a simple (linear) model to ex- 239

plain a pretrained model. However, whereas LIME 240

learns a linear model to post-hoc explain a single 241

prediction, our linear model is trained to predict 242

and explain the entire dataset of predictions. This 243

has several consequences. Unlike LIME, we do 244

not require sampling perturbed inputs that do not 245

exist in the training data, which can produce con- 246
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trasts which are misleading or unintuitive (Mittel-247

stadt et al., 2019). Slack et al. (2020) showed that248

LIME can be fooled into providing innocuous ex-249

planations for models that demonstrate racist or250

sexist behavior by exploiting its reliance on per-251

turbations. It also means that our proxy model is252

given a more difficult task than a LIME model – it253

may be that a given proxy model is insufficiently254

flexible to model the complexity of the pretrained255

model, in which case we can measure this failure256

in terms of our faithfulness evaluation (see § 4).257

Because LIME trains a model linear only in the258

neighborhood of a given instance, its feature im-259

portance scores are difficult to aggregate across260

a dataset, making extrapolation difficult (van der261

Linden et al., 2019). When our proxy model is262

faithful to the trained model, our approach gives us263

explanations that we can expect to apply to future264

predictions. If the proxy model demonstrates suffi-265

cient empirical performance, a domain expert may266

even prefer to use it in place of the original trained267

model, an option unsupported by LIME models.268

By applying our proxy model method to the DR-269

CAML model from Mullenbach et al. (2018), we270

enable an evaluation of both faithfulness and plau-271

sibility. We evaluate whether our model is faithful272

by seeing how closely its outputs match the predic-273

tions of DR-CAML. Because DR-CAML was de-274

signed to be interpretable using its attention mech-275

anism, we can compare its explanations against276

those produced by our proxy. In the next two sec-277

tions, we introduce our evaluation for the proxy278

model’s faithfulness to the DR-CAML model and279

the plausibility of its explanations.280

4 Faithfulness evaluation281

The MIMIC-III dataset contains anonymized282

English-language ICU patient records, includ-283

ing physiological measurements and clinical284

notes (Johnson et al., 2016). Following Mullenbach285

et al. (2018), we focus on discharge summaries286

which describe a patient’s visit and are annotated287

with ICD-9 codes. There are 8,922 different ICD-288

9 codes that describe procedures and diagnoses289

that occurred during a patient’s stay. The manual290

assignment of these codes to patient records are291

required by most U.S. healthcare payers (Topaz292

et al., 2013). We duplicate the experimental setup293

of Mullenbach et al. (2018) which uses the text of294

the discharge summaries as input to the DR-CAML295

model, which then is trained to predict all ICD-9296

codes associated with that document. After apply- 297

ing their pre-processing code to tokenize the text, 298

the dataset contains 47,724 discharge summaries 299

divided into training, validation, and test splits. 300

Our proxy model is the combination of 8,922 301

linear regression models trained to predict DR- 302

CAML’s log probability for each ICD-9 code. After 303

a brief grid search on the validation set, we chose 304

to apply L1 regularization with α = 0.0001 for 305

each regression. To establish that this collection 306

of linear regressions is faithful to the trained DR- 307

CAML model, we want to show that it makes simi- 308

lar predictions across all ICD-9 codes on held-out 309

data. Recall from Figure 1 that the proxy is trained 310

not to predict the true ICD-9 codes but to output 311

the same label probabilities as DR-CAML. In fact, 312

the proxy model never sees the true ICD-9 codes. 313

We evaluate faithfulness by comparing the outputs 314

of DR-CAML and the proxy model on the held- 315

out test set. If the two systems produced identical 316

outputs on held-out data, we would say that the 317

proxy was perfectly faithful. We make this compar- 318

ison in three different ways – first using regression 319

metrics that compare the continuous outputs of 320

the two models, then using classification metrics 321

with binarized DR-CAML predictions, and finally 322

by using the proxy model’s outputs as predictions 323

for the true ICD-9 codes. For all these compar- 324

isons, we use a logistic regression baseline that is 325

trained to directly predict the ICD-9 codes without 326

knowledge of DR-CAML’s predictions. While we 327

would expect the logistic baseline’s predictions to 328

be somewhat correlated with those of DR-CAML, 329

we would not expect the baseline to be faithful. 330

Our first evaluation uses regression metrics that 331

assess the correlation between the proxy’s predic- 332

tions and DR-CAML’s predicted probabilities. We 333

use Spearman and Pearson correlation coefficients 334

and the non-parametric Kendall Tau rank corre- 335

lation. These metrics range from -1 to 1 with 1 336

indicating perfect faithfulness. Regression results 337

are on the left side of Table 1. 338

Our second evaluation treats DR-CAML’s pre- 339

dictions as binary labels based on whether they ex- 340

ceed the threshold used by Mullenbach et al. (2018) 341

to compute F1 scores. We then evaluate the faith- 342

fulness of our proxy model by treating its outputs 343

as unnormalized probabilities and using classifica- 344

tion metrics such as F1 score. These metrics range 345

from 0 to 1, where perfectly faithful predictions 346

would have 1.0 AUC and F1 scores. The proxy 347
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Regression Classification
AUC F1

Model Spearman Pearson Kendall Macro Micro Macro Micro

Logistic 0.036 -0.195 -0.135 0.734 0.936 0.012 0.353
Proxy 0.498 0.794 0.608 0.980 0.995 0.052 0.416

Table 1: Comparison of the logistic baseline and the proxy model to the DR-CAML predictions. For the F1
evaluation, we threshold the unnormalized proxy outputs at 0.5. The logistic model was trained to predict the
ICD codes; the proxy model to predict DR-CAML’s predictions. As expected, the proxy model dramatically
outperforms the logistic baseline in terms of faithfulness to the DR-CAML model.

Logistic Proxy DR-CAML

Macro AUC 0.596 0.901 0.906
Micro AUC 0.889 0.967 0.972

Macro F1 0.033 0.142 0.224
Micro F1 0.278 0.326 0.536

Prec @ 8 0.547 0.483 0.701
Prec @ 15 0.413 0.407 0.548

Table 2: Comparison of the logistic baseline, the proxy
model, and DR-CAML to true ICD labels. Although
the logistic model was trained for this specific task
and the proxy model was not, the proxy model out-
performs the baseline in terms of AUC and F1. The
proxy model’s outputs are unnormalized, which par-
tially explains the gap between its F1 scores, which are
computed with a threshold of 0.5, and its AUC scores,
which are invariant to normalization. This lack of nor-
malization may also explain the proxy model’s low pre-
cision scores, as each code is predicted independently
of the others.

model is considered faithful if it correctly predicts348

whether DR-CAML will make a binary prediction.349

We again use the logistic regression baseline. Clas-350

sification results are on the right side of Table 1.351

Finally, we use the proxy model’s predictions352

to predict the ground-truth ICD code labels and353

compare its predictive performance against that of354

DR-CAML in Table 2. While the proxy model355

was not trained using these labels, we can use its356

predictions as unnormalized probabilities for these357

codes. By comparing against the logistic regression358

baseline (a linear model of equal complexity), we359

can see whether our training setup allows the proxy360

model to learn a better predictor.361

Our results show that the proxy model is quite362

faithful to the DR-CAML model. Compared to363

the logistic regression baseline, the proxy model is364

dramatically better on all metrics in Table 1. Com-365

bining the results from Tables 1 and 2 we can see 366

that on AUC metrics, the proxy model is closer 367

to the DR-CAML predictions than DR-CAML is 368

to the ground-truth labels. The proxy model also 369

outperforms the logistic regression baseline in the 370

classification metrics (AUC and F1), indicating that 371

the proxy model is more faithful to the DR-CAML 372

predictions. In Table 2, we see a large gap between 373

its performance on the AUC metrics and the F1 and 374

precision metrics. This is likely because the outputs 375

of the proxy model are not normalized to be valid 376

probabilities and AUC is invariant to normalization, 377

unlike F1 and precision. 378

Rudin (2019) critiques post-hoc methods in gen- 379

eral, arguing that “if we cannot know for certain 380

whether our [post-hoc] explanation is [faithful], we 381

cannot know whether to trust either the explana- 382

tion or the original model.” Because no post-hoc 383

method can ever be perfectly faithful to an origi- 384

nal model, we believe our approach to explicitly 385

measuring faithfulness provides a useful approach 386

for understanding whether the proxy is “faithful 387

enough” for a given application. It also allows for 388

a prediction-specific analysis – if we wish to use 389

the proxy model to explain a high-stakes predic- 390

tion made by DR-CAML, we can first check to see 391

whether the two models agree upon that specific 392

prediction. 393

In applications where explainability is essential, 394

our proxy model could be used as a more inter- 395

pretable replacement for a high-performing black- 396

box model. In such a case, a domain expert might 397

care less about the evaluation of faithfulness in Ta- 398

ble 1 and more about the ground-truth predictive 399

performance evaluated in Table 2. We leave for fu- 400

ture work the challenge of whether a proxy model 401

produced by our method could be fine-tuned to im- 402

prove its performance at predicting ground-truth 403

ICD codes. 404
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934.1: “Foreign body in main bronchus”

Mullenbach et al. (2018)
CAML (HI) ... line placed bronchoscopy performed showing large mucus plug on the left on transfer to ...
Cosine ... also needed medication to help your body maintain your blood pressure after receiving iv ...
CNN ... found to have a large lll lingular pneumonia on chest x ray he was ...
Logistic ... impression confluent consolidation involving nearly the entire left lung with either bronchocentric or

vascular ...
Ours
DR-CAML 0.38 ... line placed bronchoscopy performed showing large mucus plug on the left on transfer to ...
Logistic 0.28 ... tube down your throat to help you breathe you also needed medication to help ...
Proxy 0.38 ... a line placed bronchoscopy performed showing large mucus plug on the left on transfer ...

442.84: “Aneurysm of other visceral artery”

Mullenbach et al. (2018)
CAML (I) ... and gelfoam embolization of right hepatic artery branch pseudoaneurysm coil embolization of the

gastroduodenal ...
Cosine ... coil embolization of the gastroduodenal artery history of present illness the pt is a ...
CNN ... foley for hemodynamic monitoring and serial hematocrits angio was performed and his gda was ...
Logistic (I) ... and gelfoam embolization of right hepatic artery branch pseudoaneurysm coil embolization of the

gastroduodenal ...
Ours
DR-CAML 0.55 ... gelfoam embolization of right hepatic artery branch pseudoaneurysm coil embolization of the

gastroduodenal artery ...
Logistic 0.57 ... biliary stents hx cbd r colonic fistula r colectomy partial l nephrectomy for renal ...
Proxy 0.55 ...embolizationof righthepaticarterybranchpseudoaneurysmcoilembolizationof thegastroduodenal

artery history ...

428.20: “Systolic heart failure, unspecified”

Mullenbach et al. (2018)
CAML ... no mitral valve prolapse moderate to severe mitral regurgitation is seen the tricuspid valve ...
Cosine ... is seen the estimated pulmonary artery systolic pressure is normal there is no pericardial ...
CNN ... and suggested starting hydralazine imdur continue aspirin arg admitted at baseline cr appears

patient ...
Logistic (HI) ... anticoagulation monitored on tele pump systolic dysfunction with ef of seen on recent echo ...

Ours
DR-CAML 0.38 ... anticoagulation monitored on tele pump systolic dysfunction with ef of seen on recent echo ...
Logistic 0.36 ... seen the mitral valve leaflets are mildly thickened there is nomitral valve prolapse ...
Proxy 0.38 ... anticoagulation monitored on tele pump systolic dysfunction with ef of seen on recent echo ...

Table 3: Comparison of the clinical evaluation from Mullenbach et al. (2018) with our plausibility evaluation.
There are three examples above, each which contains the explanations produced by seven systems. The first
four systems for each example are directly copied from Table 1 of Mullenbach et al. (2018). The (HI) and (I)
labels in the second column indicate whether the clinician labeled those explanations as Highly Informative or
Informative. The three systems below the dotted line are from our evaluation, for which the second column
indicates the probability output of our plausibility classifier. Here, the proxy and DR-CAML produce almost
identical explanations; additional comparisons between DR-CAML and the proxy are shown in Table 4.

5 Plausibility Evaluation405

Explanations are considered plausible if they can be406

reasoned about by a person. Thus, evaluating plau-407

sibility is typically more difficult than faithfulness,408

because it requires input from annotators (Herman,409

2017). Furthermore, an explanation that is plausi-410

ble to a domain expert may not be plausible to a411

layperson. Mullenbach et al. (2018) evaluated the412

plausibility of CAML’s explanations by collecting413

annotations from a clinician. Wiegreffe and Pin-414

ter (2019) argued that the attention mechanism of415

CAML and DR-CAML generally provide plausible416

explanations, even if they at times are not faithful 417

to the model’s internal decision-making. For each 418

model they considered, they extracted an explana- 419

tion in the form of a 14-token subsequence taken 420

from the discharge summary. The clinician read 421

all (anonymized) four explanations and the cor- 422

responding ICD code and rated each explanation 423

as either “informative” or not. CAML was rated 424

slightly more informative than logistic regression 425

and CNN baselines. Table 3 shows explanations 426

produced by Mullenbach et al. (2018)’s methods as 427

well as the ones we consider in this work. 428

The format of Mullenbach et al. (2018)’s plausi- 429
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296.20: “Major depressive affective disorder, single episode, unspecified”

DR-CAML 0.47 ... diagnosis overdose of medications narcotics benzodiazepine suicide attempt chronic migraine
headaches depression stage iv ...

Proxy 0.33 ... up from the medications you were evaluated by psychiatry and will be transferred to ...

455.0: “Internal hemorrhoids without mention of complication”

DR-CAML 0.38 ... and she then underwent a colonoscopy with gi that also did not detect evidence ...
Proxy 0.52 ... past medical history diverticular disease diverticulitis sbo anxiety hemorrhoids past surgical history

s p ...

592.0 : “Calculus of kidney”

DR-CAML 0.30 ... if you develop any of these symtpoms please call the office or go to ...
Proxy 0.46 ... the colon gastroesophageal reflux asthma irritable bowel syndrome gastroparesis osteoporosis

anxiety and or depression ...

Table 4: Differing explanations and classifier scores between DR-CAML and the proxy.

Model Score Interval

Logistic 35 (31, 49)
Cosine 38 (32, 51)
CNN 42 (33, 52)
CAML 44 (33, 52)
DR-CAML 48 (34, 53)
Proxy 52 (34, 54)

Table 5: Binary plausibility evaluation using classifier
annotations. We collapse the Highly Informative and
Informative labels from Mullenbach et al. (2018) to a
single positive class. The Score column is out of 99;
we use a binary threshold of 0.45 so that the same total
proportion of explanations are deemed plausible. The
Interval column shows a 95% bootstrap interval from
sampling 1000 labels from the classifier probabilities.

bility evaluation does not easily lend itself to repli-430

cation. While the authors shared their annotations431

with us, missing metadata prevented a direct re-432

production of their analysis. Additionally, since433

the clinical annotator considered explanations in434

a comparative setting, we cannot easily add our435

proxy model as another method using the same an-436

notations. Therefore, we replicate this evaluation437

by using a classifier to predict synthetic labels as to438

whether the clinical domain expert would have la-439

beled our models’ explanations as plausible. Using440

BioWordVec embeddings released by Zhang et al.441

(2019), the text of the ICD-9 code description, and442

the 14-gram explanation produced by each model443

from Mullenbach et al. (2018), we train a classifier444

that predicts whether an explanation would have445

been rated as informative.2 This annotation clas-446

sifier achieves an accuracy of 67.2% and an AUC447

2We collapse the “informative” and “highly informative”
labels into a single positive class.

score of 0.726 on held-out explanations, indicating 448

it is a useful but noisy stand-in for the clinician. 449

Additional training details are in Appendix A.3. 450

To conduct our plausibility evaluation, we first 451

use or reproduce the baseline methods from Mul- 452

lenbach et al. (2018). Each model, including the 453

proxy, produces a 14-token explanation from the 454

discharge summary by first finding the 4-gram with 455

the largest average feature importance and then 456

including five tokens on either side of the 4-gram. 457

The logistic regression baseline is the same as in 458

§ 4, where feature importance is computed using 459

the coefficients of the logistic model. The proxy 460

model’s explanations are computed in the same 461

manner, finding the 4-gram with the largest aver- 462

age coefficient weights. For CAML, DR-CAML, 463

and the CNN models, we use the code released by 464

Mullenbach et al. (2018) to extract explanations. 465

The CNN baseline primarily differs from CAML 466

in that it does not use an attention mechanism. Fi- 467

nally, we reimplement their Cosine baseline which 468

picks the 4-gram with the highest cosine similarity 469

to the ICD-9 code description text. 470

We extract the model’s explanations for the 471

same3 discharge summaries as were evaluated by 472

Mullenbach et al. (2018). For each explanation, 473

we use the annotation classifier described above to 474

predict the probability that each explanation would 475

have been labeled as informative. If we set the 476

classifier threshold such that 45% of explanations 477

are rated as informative (matching the proportion 478

from the original annotations), we get the results 479

in the Score column of Table 5. The proxy model 480

produces the largest number of informative explana- 481

tions according to our classifier; however, the clas- 482

3Using the 99 (of 100) discharge summaries that could be
uniquely identified. See Appendix A for details.
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sifier’s inaccuracy introduces uncertainty. Rather483

than thresholding the outputs of the annotation clas-484

sifier, we can use its probability outputs to sample485

a set of informative labels for each explanation.486

We sample 1000 such sets of labels and report the487

95% confidence interval for each model’s score in488

the Interval column of Table 5. Accounting for this489

uncertainty dramatically reduces the differences be-490

tween the methods. Because 95% of all classified491

plausibility probabilities are between 24.1% and492

58.1%, these intervals skew towards lower scores.493

Despite the inherent uncertainty involved in extrap-494

olating plausible scores from a fixed set of clinical495

annotations, our evaluations suggest that the proxy496

model produces explanations that are at least as497

plausible as those of DR-CAML.498

Table 3 shows that for the three examples consid-499

ered in Mullenbach et al. (2018), DR-CAML and500

our proxy model produce very similar explanations.501

This is perhaps surprising because DR-CAML ex-502

tracts explanations using its attention mechanism,503

whereas the proxy model uses unigram feature im-504

portance values that do not vary between examples.505

For these examples, it appears that the proxy is506

faithful both in the predictions it makes and how507

it makes those predictions. Table 4 shows three508

examples where the proxy and DR-CAML diverge509

the most. These rare cases highlight two benefits510

of the proxy model. First, its feature importance511

weights are global across all predictions, providing512

an aggregate representation of the proxy’s behavior.513

Second, the approach for extracting proxy expla-514

nation n-grams is transparent and simulatible; it is515

just the average of n feature weights. These fac-516

tors may be particularly appealing in cases where517

explainability is paramount.518

6 Discussion519

We have introduced a method for post-hoc explana-520

tions that is designed to be interpretable and plau-521

sible while maintaining faithfulness to the trained522

model. By constraining the proxy to a class of523

models that is decomposible, simulatible, and algo-524

rithmically transparent, our optimization for faith-525

fulness gives us a clear way to evaluate several526

dimensions of interpretability. Furthermore, our527

proxy model has only 50K parameters, compared528

to CAML’s 6 million. A key benefit of our method529

is its simplicity and wide applicability. Even for530

a proprietary trained model for which the learned531

parameters are unknown, a proxy can be trained as532

long as we have a dataset that includes the trained 533

model’s predictions. Our approach has the ad- 534

ditional benefit of producing a standalone proxy 535

model that can provide global feature explanations. 536

Depending on the gap in predictive performance 537

between the proxy and original model, a skeptic 538

of post-hoc methods (e.g. Rudin (2019)) might 539

prefer to discard the original model altogether and 540

simply use the proxy’s predictions, for which its 541

explanations are faithful by design. 542

The present work has several limitations that are 543

left for future work. Though the task of medical 544

code prediction has important implications and has 545

been widely studied in interpretability research, we 546

only consider this single task on a single English- 547

language dataset. We believe this proxy model 548

approach is generally applicable as a post-hoc in- 549

terpretability method for arbitrary models, but this 550

must be further studied on new datasets and dif- 551

ferent trained models. It is possible that in some 552

domains, trained models might be more difficult to 553

mimic than DR-CAML. If so, the application may 554

require a trade-off between a less restrictive proxy 555

model class and a less faithful proxy. 556

Our evaluation is also limited in that it only con- 557

siders a single form of explanation: n-grams ex- 558

tracted via feature importances or attention weights. 559

Recent work has explored alternate formulations 560

for a quality explanation (Barocas et al., 2020); 561

some formulations may be more or less accommo- 562

dating of our proxy model method. Our plausibility 563

evaluations rely heavily on a single set of expert 564

annotations from which we extrapolate using a clas- 565

sifier. To demonstrate that our method can reliably 566

provide both plausible and faithful explanations, 567

additional evaluations must collect new plausibil- 568

ity annotations or build off of existing resources 569

(DeYoung et al., 2020). 570

As the ML community continues to explore new 571

directions for interpretable methods, definitions of 572

desiderata may continue to evolve. Such criteria 573

will always depend on the domain experts who 574

turn to an ML method for decision support. Inter- 575

pretable ML methods should clearly define how 576

they expect to satisfy a criterion such as faithful- 577

ness or plausibility. By designing for plausibility 578

and transparency and optimizing for faithfulness, 579

our proposed method is broadly applicable. We 580

release our code to enable future work. 581
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A (Re-)implementation details731

A.1 Reproducing CAML predictive732

performance733

The trained DR-CAML model released by Mul-734

lenbach et al. (2018) produced predictions that735

matched the published F1 and ROC scores. We736

were unable to precisely replicate the outputs of737

the CAML model. Table 6 shows the scores pub-738

lished by Mullenbach et al. (2018) as well as those739

for a CAML reimplementation done by Wiegreffe740

et al. (2019). We include the scores we observe741

using the model weights released on GitHub as742

well as the scores for a model we retrained from743

scratch. We use the released model instead of the744

retrained model as its performance is much closer745

to the published numbers.746

A.2 Reproducing plausibility scores747

The clinical plausibility annotations provided to us748

by the authors of Mullenbach et al. (2018) contains749

the text explanations and their corresponding an-750

notations, but was missing the crucial metadata of751

which models produced which explanations. The752

metadata also did not indicate from which specific753

discharge summary the texts were derived; while754

the text explanations were uniquely identifying for755

all but one of the 100 examples. For that one ex-756

ample, because some patients had multiple docu-757

ments sometimes containing duplicated segments758

of text, there were three discharge summaries from759

which the explanations could have been drawn. We760

thus excluded this example from our analyses. To761

replicate their analysis the best we could, we re-762

trained or reimplemented their logistic regression,763

vanilla CNN, and cosine similarity methods. We764

then looked at the attention or feature importance765

weights for each trained model and the text expla-766

nations that had been annotated, and assigned each767

model the text explanation for which it provided768

the highest weight. This assignment did not per-769

fectly align with past work: there were six cases770

(out of 99) where a text explanation was “chosen”771

by more models than times it appeared as an option.772

Ignoring that issue and then simply aggregating the773

Informative and Highly Informative clinician an-774

notations, we obtained the plausibility scores in775

the Ours column of Table 7. The Theirs column776

shows the published numbers from Mullenbach777

et al. (2018). While the numbers change substan-778

tially, the ordering is relatively stable with only two779

swaps: CAML and Cosine, and Logistic and CNN.780

The other columns of the table are described below. 781

A.3 Plausibility annotation classifier 782

To evaluate the plausibility of our proxy model’s 783

explanations, we trained a classifier to predict 784

whether an explanation would have been labeled 785

as plausible by the clinical domain expert. We 786

treat this as a binary classification task by grouping 787

the ”Informative” and ”Highly Informative” anno- 788

tations as a single ”plausible” label. Conscious of 789

the fact that we have only 99 examples with four 790

text explanations each, we use two approaches with 791

which to train and evaluate our classifier. The first 792

used leave-one-out cross validation at the exam- 793

ple level, such that the classifier was trained on 794

98 examples at a time and then evaluated on the 795

remaining one. We refer to this evaluation as ”E1” 796

in Table 7. The second also used leave-on-out cross 797

validation but at the explanation level; we held out 798

a single text explanation, trained on all other ex- 799

planations across all examples, and then evaluated 800

on the held-out explanation. When an explanation 801

appeared more than once in a single example, we 802

made sure to remove its duplicates from the train- 803

ing data for predicting that explanation. We refer 804

to this evaluation as ”E2” in Table 7. 805

The trained model is a simple logistic regres- 806

sion classifier trained on a fastText embedding of 807

both the explanation and the target ICD-9 code 808

description. Using the BioWordVec embeddings 809

released by Zhang et al. (2019), we embed each 810

both the explanation and code description into a 811

200-dimensional vector, concatenate the two vec- 812

tors, and pass it to the logistic regression. In the 813

E1 evaluation, the model achieves an accuracy of 814

60.6% and an ROC AUC score of .640. In the E2 815

evaluation, that increases to an accuracy of 67.2% 816

and an AUC score of .726, indicating that the ad- 817

ditional within-example explanations substantially 818

help the classifier. 819

When using these classifiers to label the explana- 820

tions generated by each model instead of the plau- 821

sibility scores derived in A.2, we get the results 822

shown in columns E1 and E2 of Table 7. 823

Finally, we retrain our final classifier on all the 824

explanations, leaving none held out. Rather than 825

using our classifier to evaluate the explanations that 826

were actually shown to the clinician, we instead use 827

our (re-)implementation of the four models to ex- 828

tract an explanation from each of the 99 discharge 829

summaries. These explanations thus may or may 830
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AUC F1 P@n

Macro Micro Macro Micro 8 15
Mullenbach et al. (2018) 0.895 0.986 0.088 0.539 0.709 0.561
Wiegreffe et al. (2019) 0.889 0.985 0.080 0.542 0.712 0.562
Ours (using released weights) 0.892 0.978 0.090 0.298 0.636 0.471
Ours (retrained) 0.628 0.884 0.001 0.024 0.042 0.027

Table 6: Published predictive performance of CAML and our replicated results. Our experiments throughout the
paper use the model with the released weights, which is closest to the published numbers (despite Micro F1).

Model Theirs Ours E1 E2 Full

Logistic 41 43 47 49 35
Cosine 48 48 41 40 38
CNN 36 46 51 47 42
CAML 46 54 47 43 44
DR-CAML – – 45 44 48

Table 7: Plausibility evaluations and comparison to
Mullenbach et al. (2018). The Theirs column shows
the published numbers; Ours shows our best attempt
at matching the clinical evaluation to the trained mod-
els. While the numbers change dramatically, the order-
ing only changes by two swaps. The clinical evalua-
tion did not include DR-CAML. E1 and E2 show the
results with predicted plausibility labels under the two
evaluation settings described in A.3. Full duplicates the
results from Table 5 for comparison.

not appear in the training data for the classifier. For831

the Full evaluation we are not worried about the832

classifier overfitting, as the classifier functions as a833

direct replacement for the clinician who produced834

the training data. The results of this analysis are835

the numbers shown in Table 5 in § 5, reproduced in836

Table 7 in the ”Full” column. The Logistic model837

does much worse on the Full evaluation than in838

either E1 or E2. This may be because the expla-839

nations selected by the trained model were worse840

than those selected by the model which was used841

for the original clinical evaluation.842
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