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ABSTRACT

We study black-box detection of machine-generated text under practical constraints:
the scoring model (proxy LM) may mismatch the unknown source model, and
per-input contrastive generation is costly. We propose SurpMark, a reference-
based detector that summarizes a passage by the dynamics of its token surprisals.
SurpMark discretizes surprisals into interpretable states, estimates a state-transition
matrix for the test text, and scores it via a generalized Jensen–Shannon (GJS) gap
between the test transitions and two fixed references (human vs. machine) built
once from existing corpora. Theoretically, we derive design guidance for how the
discretization bins should scale with data and provide a principled justification
for our test statistic. Empirically, across multiple datasets, source models, and
scenarios, SurpMark consistently matches or surpasses baselines; our experiments
on hyperparameter sensitivity exhibit trends that our theoretical results help to
explain, and are consistent with the method’s underlying intuitions.

1 INTRODUCTION

Rapid advancements in LLMs have driven their text generation capabilities to near-human levels.
This has blurred the boundary between human-written and machine-generated text, posing multiple
concerns. These include susceptibility to fabrications (Ji et al. (2023)) and outdated or misleading
information, which can spread misinformation, or facilitate plagiarism (Lee et al. (2023)). LLMs are
also vulnerable to malicious use in disinformation dissemination (Lin et al. (2022)), fraud(Ayoobi et al.
(2023)), social media spam (Mirsky et al. (2021)), and academic dishonesty (Kasneci et al. (2023)).
Moreover, the increasing use of LLM-generated content in training pipelines creates a recursive
feedback loop (Alemohammad et al. (2023)), potentially degrading data quality and diversity, which
poses long-term risks to both society and academia. These concerns motivate the development of
detectors that reliably distinguish human-written from machine-generated text and can be deployed
at scale across domains.

Prior work on text detection can be grouped into two categories: classifier-based and statistics-
based. Classifier-based detectors require training a task-specific model, which in turn hinges on
collecting high-quality, domain-balanced labeled data (Guo et al. (2023); Tian (2023); Guo et al.
(2024)); this process is costly, time-consuming, and must be repeated when the target domain or
generator shifts. Statistics-based methods fall into two categories: global statistics and distributional
statistics. The first relies on global statistics such as likelihood or rank (Solaiman et al. (2019);
Gehrmann et al. (2019)), which can be inaccurate or unstable under calibration mismatch, text-length
variability, and domain shift. The second relies on distributional statistics, which are constructed by
regenerating a neighborhood around the test passage, via sampling, perturbation, or continuation,
thereby tying the detector to that particular input (Yang et al. (2023); Su et al. (2023b); Mitchell et al.
(2023)). Such per-instance pipelines demand substantial compute and latency and are unrealistic when
resources are constrained or throughput is high. Black-box constraints exacerbate calibration drift in
global-statistic and regeneration-based detectors due to proxy-model mismatch. This motivates the
development of detectors that avoid retraining and per-instance regeneration while remaining reliable
under distribution shift in the black-box setting.

Accordingly, we pursue a design that sidesteps both training-classifier and per-instance regeneration
by focusing on stable, dynamics-aware signals, that can be reused across test samples. Viewed through
a black-box perspective, the problem naturally invites a likelihood-free hypothesis testing formulation
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GJS score
∆GJS = GJS(𝑀𝑚𝑎𝑐ℎ𝑖𝑛𝑒,𝑀𝑡𝑒𝑠𝑡, Τ𝑁 𝑛)-

GJS(𝑀ℎ𝑢𝑚𝑎𝑛,𝑀𝑡𝑒𝑠𝑡, Τ𝑁 𝑛)
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Figure 1: SurpMark framework. Offline, we build human/machine reference transition matrices by
scoring corpora with a proxy LM, discretizing surprisal via a shared qk, and counting state transitions.
Online, a test passage is summarized the same way and assigned a GJS score to measure proximity to
human vs. machine references. Details are in Algorithm 1 and 2 in Appendix A1.

(Gutman (1989); Gerber & Polyanskiy (2024)): when the true likelihood is unknown, we compare
the empirical summary statistics of a test text against human and machine references. Our summary
statistic design is guided by two principles. First, because the references are existing corpora whose
contexts differ from the test passage, the summary must be abstract and calibration-robust; second,
decisions should exploit token dynamics which expose rich local patterns (Xu et al. (2025)). We
therefore quantize token surprisal into interpretable states and summarize texts by their state-transition
patterns, allowing decisions to depend on relative structure rather than absolute likelihood levels. This
representation captures token dynamics and provides a stable, interpretable basis for likelihood-free
comparison to human and machine references.

In this paper, we present SurpMark, a black-box, reference-based detector that frames attribution as a
likelihood-free hypothesis test. For each test text, token surprisals from a proxy LM are quantized
into k interpretable states. The text is summarized by its state-transition matrix and is then assigned
a generalized Jensen-Shannon (GJS) divergence score that measures its proximity to the human
or machine reference transitions. These design choices motivate the theoretical analysis: Under
an idealized first-order Markov model fitted to the discretized surprisal states, we analyze how
discretization affects the estimation of GJS and study the properties of our decision statistic.

1.1 MAIN CONTRIBUTIONS

• We propose SurpMark, a reference-based detector that requires no per-instance regeneration,
as shown in Figure 1.

• A theoretical analysis, deriving design guidance for how the discretization bins should scale
with data and providing a principled justification for the proposed test statistic.

• A comprehensive experimental evaluation of SurpMark demonstrates its effectiveness across
multiple models and domains.

2 RELATED WORK

Prior work on text detection can be broadly categorized into classifier-based and statistics-based
methods. Classifier-based detectors train task-specific classifiers to distinguish between human-
written and machine-generated text(Guo et al. (2023); Tian (2023); Guo et al. (2024)). While effective
with sufficient training data, they are costly to build and must be retrained whenever the domain or
generator shifts.

Statistics-based approaches can be divided into two groups based on their design of decision statistics.
The first global-statistic methods rely on overall features of the text such as likelihood (Solaiman
et al. (2019)), LogRank (Solaiman et al. (2019)) that measures the log of each token’s rank in a
model’s predicted distribution , or entropy (Gehrmann et al. (2019)) that measures the uncertainty of
a model’s next-token distribution. Distributional-statistic methods generate a neighborhood around
the test passage via perturbation, continuation, or sampling, and then measure divergence between
the test instance and this synthetic distribution. DetectGPT (Mitchell et al. (2023)) leverages the local
curvature of log-probability function, comparing original passages with perturbed variants to enable
detection of machine-generated text. Fast-DetectGPT (Bao et al. (2024)) introduces conditional
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probability curvature for faster detection. DNA-GPT (Yang et al. (2023)) truncates passages, and
analyzes n-gram divergences of the regeneration. DetectLLM-NPR (Su et al. (2023a)) leverages
normalized perturbed log-rank statistics, showing that machine-generated texts are more sensitive
to small perturbations. Lastde++ (Xu et al. (2025)) combines global likelihood with local diversity
entropy, where discretization of token probabilities stabilizes the entropy feature. In contrast, our
framework discretizes token surprisals to build surprisal-state Markov transitions, enabling likelihood-
free hypothesis test. Our method lies between global- and distributional-statistic approaches: it
scores each text in a single pass without regeneration, yet makes comparative decisions by measuring
alignment with fixed human and machine references.

Recent work has explored kernel-based statistical tests for machine-generated text detection (Zhang
et al. (2024),Song et al. (2025)). Song et al. (2025) introduced R-Detect, a relative test framework
that reduces false positives by comparing whether a test text is closer to human-written or machine-
generated distributions. Our method shares a common foundation with Song et al. (2025) in that it can
also be viewed as a relative test framework. Notably, while the decision rules of these kernel-based
approaches are non-parametric and do not rely on supervised classifiers, their optimized variants
require training kernel parameters on reference corpora, which increases computational cost. Our
approach only requires an lightweight data discretization stage.

3 SURPMARK: DETAILED METHODOLOGY

In this section, we introduce the proposed detector SurpMark.

Surprisal Sequence Estimation via Proxy Model. Given a fixed text passage t and a proxy
model Fθ, we first tokenize t with the tokenizer associated with Fθ to obtain a token sequence
x = (x1, . . . , xn) of length n. We then run a single forward pass of Fθ on this fixed sequence to
compute the token-level surprisal sequence {st}nt=1.

{st}nt=1 = {s1, s2, . . . , sn}
= {− log pθ(x2|x1),− log pθ(x3|{xt}2t=1), . . . ,− log pθ(xn|{xt}n−1

t=1 )}

where pθ(· | ·) is the conditional probability estimated by the proxy model Fθ.

Surprisal Discretization by K-means. Since surprisal values from the proxy model are continuous,
we discretize them into a finite set of surprisal states to enable robust statistical modeling. We employ
k-means clustering to partition the surprisal distribution into k levels, denoted as A = {1, . . . , k}.
For example, when k = |A| = 4, the clusters correspond to interpretable states such as “Predictable,”
“Slightly Surprising,” “Significantly Surprising,” and “Highly Surprising.” This abstraction simplifies
modeling while preserving the essential structure of predictive uncertainty.

Effectively, this step converts the initial sequence of continuous surprisal values, {st}nt=1, into a
discrete state sequence, {at}nt=1, where at ∈ A.

Modeling State Transitions as Markov Chain. After discretizing surprisal values into finite
states, we model the resulting sequence as a Markov chain. Notably, LLMs often produce a highly
predictable token after a highly surprising one, a recovery effect driven by perplexity minimization,
as illustrated in Figure 2(a). To capture this structure, we summarize each text by its empirical first-
order transition frequencies. Formally, given a discretized surprisal state sequence {a1, a2, . . . , an},
we estimate a transition probability matrix M̂ , where each entry M̂(j|i) represents the empirical
probability of transitioning from state i to state j, with i, j ∈ A.

M̂(j|i) =
∑n−1

t=1 1{at = i, at+1 = j}∑n−1
t=1 1{at = i}

, i, j ∈ A (1)

Here, 1{·} is the indicator function.

Figure 2(b) varies the order of the state-transition summary while keeping the reference and test sets
fixed. AUROC deteriorates as the order increases, which we attribute to state-space explosion with
limited data: higher-order transition counts on both the reference and test side become extremely
sparse, so higher-order summaries bring no notable gains over the first-order one. More details and
further empirical and theoretical justification are in Section 4.1 and Appendix A2.
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(a)                                                             (b)                                                          (c)

Figure 2: (a) Visualizes the key feature driving our detector by comparing the conditional probabilities
of transitioning into and out of the "Highly Surprising" state under a 4-bin discretization. This reveals
distinct dynamic patterns, including a stronger recovery tendency and a more pronounced spiking
tendency from low-surprisal contexts in LLM-generated text. (b) A heatmap illustrating the detector’s
performance (AUROC) on SQuAD across different hyperparameter settings, using a fixed amount
of reference and test data. Higher orders suffer from state-space explosion and sparse transitions,
yielding no notable gains beyond the first-order model. (c) The final score distributions of our
detector.

Reference-based Detection with Generalized JS Divergence. We frame the task of distinguishing
between human-written and LLM-generated text as a binary likelihood-free hypothesis testing
(LFHT) problem (Gutman (1989); Gerber & Polyanskiy (2024)). To adapt LFHT for this specific
domain, we introduce three key methodological modifications: (1) we utilize token-level surprisals
from a fixed proxy LM as observable features; (2) we employ k-means quantization to transform
continuous values into statistically tractable discrete state sequences; and (3) we propose a novel test
statistic, ∆GJSn. Crucially, unlike standard LFHT which typically evaluates divergence from a single
reference distribution Gutman (1989), ∆GJSn leverages a two-sided comparison against both human
and machine references to enhance discriminative power. In this framework, the null hypothesis H0

posits that the text is machine-generated, while the alternative H1 suggests it is human-written. Since
the true source distributions (P and Q) are unknown, our approach remains strictly reference-based,
relying on historical corpora to approximate the underlying statistics.

Specifically, given reference texts tP , tQ from both model source P and human source Q, we
first compute their empirical surprisal transition probability matrices, denoted by M̂P and M̂Q,
respectively. For a given test text t coming from either P or Q, we similarly compute its surprisal
transition probability matrix M̂T using the surprisal state levels estimated from reference texts. We
then calculate two separate divergence scores using the generalized Jensen-Shannon Divergence (GJS):
one measuring the distance between the test text and the machine reference model GJS(M̂P , M̂T , α)

and another measuring the distance to the human reference model GJS(M̂Q, M̂T , α), where α denotes
the reference–test length ratio. The GJS divergence between MA and MB with weight α is defined as

GJS(MA,MB , α) =
α

1+α DKL(MA,Mα) +
1

1+α DKL(MB ,Mα), Mα = α
1+αMA + 1

1+αMB ,

where DKL denotes the Kullback–Leibler divergence. We score each test passage with ∆GJSn =

GJS
(
M̂P , M̂T , α

)
− GJS

(
M̂Q, M̂T , α

)
. We classify via a tunable threshold τ .

Ω =

{
H0 if ∆GJSn ≤ τ,
H1 if ∆GJSn > τ

(2)

See Algorithm 1 and 2 in Appendix A1 for details.

4 ANALYSIS

This section theoretically grounds our design choices. First, we justify the first-order Markov
modeling of discretized surprisals, supported by Gray’s approximation theory and empirical evidence
that second-order gains are negligible. Second, we justify ∆GJSn to be a principled choice and
analyze it under this idealized framework to characterize how discretization and sample size influence
its behavior.
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4.1 THEORETICAL JUSTIFICATION FOR FIRST-ORDER MARKOV MODELING

Our detector models the discretized surprisal sequence with a first-order Markov chain. Gray’s
Markov approximation theory (Gray, 2011) shows that, for any stationary discrete-time process, the
canonical K-th order Markov chain is the best K-th order approximation in relative-entropy-rate
sense. Specializing this to our discretized surprisal process and K = 1, the gain from moving from
first order to second order is governed by the conditional mutual information term I(at; at−2 | at−1).
Empirically, we observe this term to be negligible in our data—at most 0.0076 bits/token (perplexity
reduction≈ 0.5%; see Appendix A2.2). This indicates that a first-order chain already captures almost
all useful temporal dependence for our purposes.

4.2 ANALYSIS UNDER IDEALIZED FIRST-ORDER MARKOV MODELING

Let {sPt }Nt=1 and {sQt }Nt=1 be the surprisal sequences produced by a fixed proxy LM on reference
corpora from the model source P and the human source Q, respectively. For the purpose of analysis,
we work with a first-order Markov approximation to these surprisal processes on the real line R,
and write SP and SQ for the corresponding transition kernels. This should be viewed as a stylized
model for the discretized surprisal dynamics, rather than a literal assumption that the underlying
language model is exactly first-order Markov. For an integer k ≥ 2, let qk : R→ A = {1, . . . , k} be
a shared quantizer with boundaries b1 < · · · < bk−1, and define discretized states aPt = qk(s

P
t ) and

aQt = qk(s
Q
t ). The induced k-state Markov chains have transition kernels

MP (j | i) = Pr[aPt+1 = j | aPt = i], MQ(j | i) = Pr[aQt+1 = j | aQt = i],

and their plug-in estimators M̂P , M̂Q are formed from transition counts as in Eq. 1. We assume the
discretized chains are ergodic with well-behaved mixing, which is standard in Markov-chain analyses
and matches our empirical observations on the surprisal-state sequences. Finally, we observe an
independent test surprisal-state sequence aT1:n = {aTt }nt=1 whose source MT is either MP (null H0)
or MQ (alternative H1), and all three sequences share the same quantizer qk.

4.2.1 DISCRETIZATION EFFECT

How should we choose the number of bins k? Too few bins lose structural information, while too
many, given a fixed-length reference, lead to sparse counts, higher estimation noise, and bias from
zero-count corrections. Thus, k must balance information preservation and statistical reliability.

Following Pillutla et al. (2023), we analyze discretization through a two-term decomposition. Dis-
cretization error is a deterministic bias from projecting the continuous object onto k bins, while
the statistical error is the finite-sample discrepancy when estimating the discretized object. Pillutla
et al. (2023) study IID samples, and control the statistical error by splitting observed vs. unobserved
mass and derive non-asymptotic bounds when balanced with their quantization error. Rather than
assuming IID samples, we focus on Markov sources and examine empirical transition counts from
their sequences.

For a divergence functional Df (we use row-wise GJS), the empirical estimator is Df (M̂P , M̂Q).
Our goal is to develop a non-asymptotic bound on the absolute error of the empirical estimator relative
to the true target, decomposed as

|Df (SP ,SQ)−Df (MP ,MQ)|︸ ︷︷ ︸
discretization error

+ |Df (M̂P , M̂Q)−Df (MP ,MQ)|︸ ︷︷ ︸
statistical error

(3)

where SP ,SQ denote the underlying Markov transition kernels. For simplicity we take both references
to have the same total transitions N . C denotes an absolute constant that may change from line to
line.

Discretization Error and Statistical Error. At a high level, we decompose the total error into
a discretization bias and a finite-sample statistical term. The discretization bias is controlled by
adapting Pillutla et al. (2023) to our Markov setting and yields an O(1/k) bound. Theorem 4.2
then bounds the statistical error by tracking three sources—row-wise transition noise, missing-mass
from unseen transitions, and an additional stationary-weight estimation error specific to Markov
chains—showing how the overall error trades off k and N .
Proposition 4.1. Let SP ,SQ be the population first-order Markov transition kernels on the continuous
surprisal space R. Consider a shared k-bin quantizer qk : R→ A and, from it, form the discretized

5
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k-state Markov chains MP ,MQ. For any row-aggregated f -divergence functional D, there exists
such a shared k-bin partition satisfying

|Df (SP ,SQ)−Df (MP ,MQ)| ≤
C

k
(4)

See AppendixA3.2.4 for the proof.
Theorem 4.2. Suppose we are in the setting described in Section 4.2. Assume each dis-
cretized chain is ergodic with bounded mixing time, πmin ≳ 1/k, and maximum hitting time
max{T (MP ), T (MQ)} = O(1). It holds that

|Df (M̂P , M̂Q)−Df (MP ,MQ)| ≤ C
(
logN ·

√
k3 log(kN)

N
+
k3

N
log
(
1 +

N

k

)
+

k√
N

)
(5)

See Appendix A3.2.3 for the proof.

Balancing Two Errors. We balance k by trading off the discretization bias against the finite-sample
statistical error. The discretization term decays as O(k−1), while the leading statistical term from
row-wise transition estimation grows like k

3
2 /
√
N up to logs, with smaller contributions O(k/

√
N)

and O(k3/N) for k ≪ N
1
3 . Neglecting logs and lower-order terms, the dominant balance is between

c1k
3
2 /
√
N and c2/k, yielding k∗ = Θ(N

1
5 ).

4.2.2 DECISION STATISTIC ANALYSIS

Building on this discretized Markov approximation, we next analyze the decision statistic ∆GJSn.
The goal is to understand why the proposed score behaves well under this idealized model, providing
intuition for the empirical results in Section 5. Our detector extends Gutman’s universal hypothesis
test (Gutman (1989)) from a single-reference setting to a two-reference setting. In Gutman’s test, the
test sequence is compared against one reference source; here we leverage two calibrated references P
(LM) and Q (human) and decide by ∆GJSn. Our choice of GJS is not ad hoc. Algebraically, ∆GJSn

is the log–likelihood ratio (LLR) between the two hypotheses.

∆GJSn as Log-Likelihood Ratio. Proposition 4.3 shows that ∆GJSn exactly equals the nor-
malized log-likelihood ratio Λn,N . Here, the log-likelihood ratio represents the maximized data
likelihood under the two hypotheses H0 and H1. See Appendix A3.3.2 for the proof.
Proposition 4.3. Assume the setting of Section 4.2. Let Fk be the family of stationary first-order
Markov models on A := [k]. For sequences aP1:N , aQ1:N , and aT1:n, define the concatenations
(aP1:N , a

T
1:n) and (aQ1:N , a

T
1:n). Consider the generalized log-likelihood ratio Λn,N

Λn,N =
1

n
log

sup
M,M ′∈Fk

M
(
(aP1:N , a

T
1:n)
)
M ′(aQ1:N)

sup
M,M ′∈Fk

M
(
aP1:N

)
M ′((aQ1:N , aT1:n)) (6)

where the suprema are attained at the empirical Markov models on the respective concatenated
sequences. Then, ∆GJSn = Λn,N.

In Appendix A3.3.3, we further prove the asymptotic normality of our statistics ∆GJSn, and empiri-
cally verify it through experiments in Appendix A4.2.3.

5 EXPERIMENTS

Datasets, Configurations and Models. We evaluate our method on XSum (Narayan et al. (2018)),
WritingPrompts (Fan et al. (2018)), SQuAD (Rajpurkar et al. (2016)), WMT19 (Barrault et al. (2019)),
and HC3 (Guo et al. (2023)). Unless otherwise noted, we construct the reference corpora and test
set as follows. For each dataset, we randomly sample 300 human-written texts to form the human
reference, then generate paired machine outputs by prompting the source model with the first 30
tokens of each human text. For the test set, we sample another 150 human-written texts and create
their machine-generated counterparts using the same procedure. We select 9 open-source models and
3 closed-source models as our source model. More details are in Appendix A4.1. Unless otherwise
specified, we use GPT2-Large as our proxy model.
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Baselines. We benchmark against 13 detectors, including Likelihood (Solaiman et al. (2019)), Lo-
gRank (Solaiman et al. (2019)), Entropy (Gehrmann et al. (2019); Ippolito et al. (2020)), DetectLRR
(Su et al. (2023a)), and Lastde (Xu et al. (2025)), DetectGPT (Mitchell et al. (2023)), Fast-DetectGPT
(Bao et al. (2024)), DNA-GPT (Yang et al. (2023)), DetectNPR (Su et al. (2023a)), Lastde++ (Xu
et al. (2025)), R-Detect (Song et al. (2025)), Binoculars Hans et al. (2024), and FourierGPT Xu et al.
(2024).

GPT2-XL GPT-J-6B GPT-Neo-2.7B GPT-NeoX-20B OPT-2.7B Llama-2-13B Llama-3-8B Llama-3.2-3B Gemma-7B Avg

Likelihood 85.02 74.82 73.32 72.03 77.22 94.39 93.93 65.22 65.8 77.97
LogRank 88.2 79.25 78.29 75.37 81.99 95.9 95.05 71.04 69.18 81.59
Entropy 51.1 47.15 50.94 45.94 48.88 29.03 29.31 53 46.85 44.69
DetectLRR 91.07 85.81 87.12 80.27 88.48 96.43 94.85 81.54 75.5 86.79
Lastde 95.97 85.88 89.09 80.16 88.89 93.29 94.29 72.99 69.48 85.56
Lastde++ 99.46 91.54 94.29 85.13 94.15 95.5 95.9 77.47 76.9 90.04
DNA-GPT 81.98 70.68 72.69 70.42 73.86 95.91 96.54 64.79 65.32 76.91
Fast-DetectGPT 97.94 86.83 89.15 83.17 90.55 98.21 97.98 74.32 73.95 88.01
DetectGPT 94.45 79.55 84.71 75.71 82.88 86.51 86.28 64.23 69.05 80.37
DetectNPR 94.93 81.91 86.4 77.93 84.06 95.19 93.67 69.45 71.49 83.89
R-Detect 74.38 63.58 67.7 63.35 65.83 79.98 81.64 62.22 55.46 68.24
Binoculars 99.19 85.76 87.5 82.02 86.9 96.93 96.41 68.36 73.57 86.19
FourierGPT 54.72 54.28 56.5 56.51 52.47 72.43 72.06 54.83 55.84 59.07
SurpMarkk=6 98.07 92.96 95.19 86.78 94.49 97.41 97.06 81.74 77.40 91.23
SurpMarkk=7 98.35 93.1 95.42 86.40 94.88 97.58 97.17 80.74 76.89 91.17

Table 2: Detection results for text generated by 9 open-source models under the black-box setting.
The AUROC reported for each model are averaged across three datasets: Xsum, WritingPrompts, and
SQuAD. See Table 12, 13, 14 in Appendix for details.

5.1 MAIN RESULTS

Gemini-1.5-Flash GPT-4.1-mini GPT-5-Chat Avg

Likelihood 56.49 66.77 49.62 57.63
LogRank 53.87 66.8 49.83 46.53
Entropy 58.36 38.72 46.99 48.02
DetectLRR 44.51 63.29 49.83 62.11
Lastde 48.13 57.28 41.96 49.12
Lastde++ 71.72 68.23 43.51 61.15
DNA-GPT 62.06 56.71 49.82 56.2
Fast-DetectGPT 72.49 68.32 43.39 61.4
DetectGPT 69.19 70.08 54.6 64.75
DetectNPR 64.96 70.83 54.99 63.59
R-Detect 69.25 71.64 67.75 69.55
Binoculars 74.51 71.12 49.65 65.09
FourierGPT 61.25 63.05 64.82 63.04
SurpMarkk=6 74.57 80.25 78.33 77.72
SurpMarkk=7 75.14 78.48 81.33 78.32

Table 1: Detection results for text generated by 3 closed-
source models under the black-box setting. The AUROC
reported for each model are averaged across three datasets:
Xsum, WritingPrompts, and SQuAD. See Table 9, 10, 11 in
Appendix for details.

Table 1 and 2 present the detection
results under black-box scenario. Ta-
ble 1 shows that SurpMark achieves
the best performance on 3 commercial,
closed-source LLM. Performance is
especially strong on GPT-5-Chat. Ta-
ble 2 shows that SurpMark ranks first
on 6 of 9 open-source models and
within the top two on 7 of 9. These re-
sults highlight SurpMark’s robustness
on proprietary systems and its suit-
ability for real-world commercial de-
ployments. Please note that compared
with distribution-based detectors that
generate a neighborhood per input at
test time, SurpMark builds reference
corpora once and reuses them for all
test passages. Under a reference-per-
test budget B = #references

#tests , in Ta-
ble 1 and 2, SurpMark operates at
B = 2, whereas DNA-GPT uses B = 10, DetectGPT, DetectNPR require B = 100. Thus
SurpMark’s reference cost is 5×–50× lower, while avoiding any per-input contrastive generation at
test time, enabling real-time detection as discussed later.

We attribute SurpMark’s superior performance on closed-source models (e.g., GPT-5-chat) to its
ability to capture transitional dynamics. As detailed in Appendix A4.2.12, stronger models exhibit a
vanishingly small gap in marginal surprisal distributions compared to humans, rendering marginal
statistics ineffective. However, the ’transition gap’ remains significant, which SurpMark effectively
exploits.

5.2 ABLATION AND SENSITIVITY ANALYSIS

Effect of bins k. Figure 3 shows the effect of the number of bins k. Across both models, increasing
the number of bins k leads to clear improvements in AUROC up to a moderate range, after which the
gains saturate or slightly decline. The best results across datasets are generally observed at k = 6− 7.
Our theory yields an optimal bin count of the form k∗ = CN1/5 for some constant C, where N is
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the total number of transitions of the reference samples. We empirically calibrate the constant C in
Appendix A4.2.2. Next, we further investigate how varying N shift the empirical optimum k∗.

Figure 3: Effect of the number of bins k on de-
tection performance for source models including
GPT-J-6B (left) and Llama-3.2-3B (right).

Effect of Number of Reference Samples.
Figure 4 (a) shows that AUROC improves
sharply as the reference grows from very small
number of reference samples to 100 reference
samples; beyond 100 reference samples the
gains are minor. The k-optimized curve picks
the best k ∈ {4, . . . , 12} at each number of ref-
erence. The annotated k values grow mildly
with the number of reference samples, and using
large k for small number of reference hurts per-
formance. This trend aligns with our theoretical
intuition: a larger number of reference samples
reduces reference-side estimation error and thus
allows for a slightly larger k.

(a)                                                               (b)                                                        (c)

Figure 4: (a) AUROC vs. number of reference samples. The blue curve (“k-optimized”) picks the
best k at each number of reference. orange/green curves fix k ∈ {7, 8}. (b) AUROC vs. test length n
under different reference lengths. Solid lines are k-optimized for each reference sample truncated to
50/100/200 tokens; shaded bands show the attainable range across k at each n. (c) Detection results
of 7 detection methods on 6 test lengths.

Effect of Length of Test Sample. In Figure 4 (b), we fix the number of reference samples and study
the effect of sample length. AUROC climbs rapidly as test length n grows from 50 to about 150–200.
Longer reference lift the curves and make the bands across k ∈ {4, . . . , 12} tighter, indicating greater
stability. The k-optimized curves show that the optimal k is driven more by reference length than
by test length. In Figure 4 (c), we evaluated detection performance of baselines across varying test
length (tokens), focusing on WritingPrompts generated by Gemma-7B. All methods improve with
longer texts. SurpMark is competitive at short lengths and becomes the top method for test length
larger than 150. Comparison on more source models are presented in Figure 8 in Appendix.

Reference–Test Length Trade-Offs. Figure 5 (a) and (b) show AUROC contours over reference
length and test length n at fixed bins k. Performance improves toward the upper-right, and the up-right
tilt shows a reference-test length trade-off: larger reference length can compensate for smaller test
length at similar accuracy.

Effect of Proxy Model. In Figure 5 (c), x-axis lists the proxy LM used to compute scores. Across
both datasets, most baselines improve with stronger proxy models, especially on WritingPrompts
with GPT-5-Chat as the source model. SurpMark is consistently top and stable across proxy models.
It already performs strongly with the smallest proxy and improves only modestly with larger ones,
whereas several baselines are highly sensitive to the proxy choice, some even degrade when the
proxy changes. In short, SurpMark achieves strong and reliable performance without expensive proxy
models, making it a better default in low-resource deployments.

Throughput. Figure 6 (Left) plots throughput (items/s) against the number of test texts. Baseline
methods appear as horizontal lines because their per-item latency is constant. SurpMark improves
monotonically as the one-time preprocessing cost is amortized. The curve crosses the Fast-DetectGPT
line at roughly n ≈ 298, after which SurpMark maintains higher throughput.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a)                                                      (b) (c)

Figure 5: (a-b) AUROC contour maps (WritingPrompts/Gemma-7B). Left: k = 7; right: k = 8. The
x-axis is reference length (tokens) and the y-axis is test length (tokens). Colors encode AUROC. In
both panels, contours tilt up-right, indicating a trade-off: larger reference length allows smaller test
length at similar performance. (c) AUROC vs. proxy model.

Figure 6: Left: Throughput (items per second) versus the number of test texts for SurpMark compared
to baseline methods (proxy LM: GPT-2 Large; GPU: NVIDIA RTX 4090). Right: AUROC on
non-English datasets (HC3-Chi-psy/qa/med and WMT-De). Error bars denote standard deviation.
Higher is better.

Non-English Scenarios. In Figure 6 (Right), we evaluate on German and Chinese corpora. For
German, we use WMT19 with GPT-4o-mini as the source model and Llama-3.2-1B as the proxy
model. For Chinese, we use HC3 across multiple domains (psychology, medicine, openqa), which
provides paired human and ChatGPT answers to the same questions, and adopt Qwen-2.0-0.5B as the
proxy model. SurpMark ranks first on all four datasets, with large margins on HC3-Chi-med.

Necessity of k-means. In Table 3, we evaluate the effect of different discretization schemes,
including k-means, equal-width, and equal-mass binning. Across all datasets and k values, k-means
is the most robust quantization scheme: it consistently reaches or matches the best AUROC, while
equal-mass can degrade sharply on XSum@GPT-4.1-mini and equal-width is unstable and often
much worse.

Necessity of GJS. In Table 4, we evaluate the effect of different distance metrics including GJS
divergence, L1 and L2 norm distance. GJS achieves the best AUROC on most dataset and source
model. This suggests that GJS is a more robust similarity measure than L1 and L2.

5.3 GENERALIZATION

Cross-Domain Generalization. We evaluated cross-domain generalization og detector in Table 5.
We compared self-ref (in-domain reference) to Out-Of-Domain (OOD) reference (associate with
the corresponding generator). Even when we deliberately use out-of-domain reference corpora to
estimate transition probabilities, the impact is small. Changes remain moderate and can even be
positive sometimes. See Table 19 for more comparison.

Cross-Generator Generalization. To evaluate robustness without recomputing transitions per
model, we propose SurpMark-MC, a multi-class variant using a single shared quantizer (derived from
pooled corpora) and distinct Markov chains for human and each reference generator. We classify
test texts by assigning them to the source with the minimal GJS divergence (i.e., a nearest-neighbor
rule). In a multi-class setting with GPT-J-6B, GPT-4.1-mini, and LLaMA2-13B, SurpMark-MC
achieves 82.3% overall accuracy, with 78.7% accuracy for human texts, 78.0% for GPT-J-6B, 84.0%
for GPT-4.1-mini, and 96.0% for LLaMA2-13B. We further collapse the multi-generator setting into
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Dataset@Source model Method k = 7 k = 8 Best

k-means 80.42 79.32 81.79
XSum@GPT-4.1-mini equal-width 80.41 76.20 80.41

equal-mass 71.40 74.22 74.22

k-means 82.05 84.86 84.86
WritingPrompts@GPT5-chat equal-width 62.90 72.06 72.06

equal-mass 84.42 83.59 84.42

Table 3: AUROC of different discretization schemes under
varying number of states k.

GPT-4.1 mini
XSum WritingPrompts SQuAD

GJS 82.52 83.64 69.27
L1 73.51 82.17 62.28
L2 73.58 83.04 59.14

Table 4: Comparison of different
distance metrics across datasets.

Test self-ref WritingPrompts-as-ref XSum-as-ref SQuAD-as-ref

XSum@Llama2-13b 97.09 97.22 – 96.45
WritingPrompts@Llama2-13b 99.53 – 99.71 99.33
SQuAD@Llama2-13b 96.13 94.36 95.67 –
XSum@Llama3-8b 97.09 97.25 – 95.13
WritingPrompts@Llama3-8b 99.86 – 99.95 99.88
SQuAD@Llama3-8b 94.17 93.77 93.90 –

Table 5: AUROC of SurpMark under different reference choices across datasets and models.

a binary classification task (LM-generated vs. human-written), defining the score as the difference
between the GJS to the human reference and the minimum GJS to any machine reference. As shown
in Table 6, this approach generalizes effectively even to unseen models (e.g., Llama-3-8B, GPT-5-chat,
GPT-neo-20B), matching or surpassing baselines like Lastde++ and Fast-DetectGPT.

WritingPrompts LLaMA2-13B GPT-4.1-mini GPT-J-6B LLaMA3-8B GPT-5-chat GPT-neo-20B

Lastde++ 99.14 68.49 95.96 99.56 30.64 92.68
Fast-DetectGPT 99.56 70.23 93.80 99.84 30.01 92.22
SurpMark self-ref 99.59 87.27 96.85 99.87 83.56 93.93
SurpMark-MC 99.72 90.01 95.61 99.77 64.27 92.84

Table 6: AUROC on WritingPrompts when the reference transition probabilities (LLaMA2-13B,
GPT-4.1-mini and GPT-J-6B) are held fixed and not re-estimated for each test-time generator

More Results. We provide additional experimental results in the Appendix, including: (1) ab-
lation study on decoding strategies (Appendix A4.2.8) (2) evaluations under paraphrasing attack
(Appendix A4.2.9) (3) evaluations under prompt-engineered adversarial attacks (Appendix A4.2.10)
(4) ablation on the necessity of first-order markov chain (Appendix A4.2.11) (5) discussion for
threhold τ selection (Appendix A4.2.13).

6 CONCLUSION

We presented SurpMark, a reference-based detector for black-box detection of machine-generated
text. By quantizing token surprisals into interpretable states and modeling their dynamics as a Markov
chain, SurpMark reduces each passage to a transition matrix and scores it via a GJS score against
fixed human/machine references. It avoids per-instance regeneration and enabling fast, scalable
deployment. Our analysis establishes a principled discretization criterion and proves asymptotic
normality of the decision statistic. Empirically, across diverse datasets, source models, and scenarios,
SurpMark consistently matches or surpasses strong baselines.
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ETHICS STATEMENT

This work focuses on developing methods for the detection of large language model (LLM)-generated
text. Our aim is to enhance transparency and accountability in AI systems rather than to enable
misuse. All datasets used in this study are publicly available benchmark corpora, and no personally
identifiable or sensitive information was included. we consider our framework as a tool for improving
the responsible development and governance of generative AI.

REPRODUCIBILITY STATEMENT

All experimental projects in this paper are reproducible. The details of experiments are in Section 5
and Appendix A4.1

LLM USAGE

Large Language Models (LLMs) were employed solely for paraphrasing and minor language polish-
ing. They were not used for idea generation, proof writing, data analysis, or experiment design. All
technical contributions, theoretical results, and empirical evaluations in this paper are original and
independently produced by the authors.
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A1 ALGORITHM

Algorithm 1 SurpMark (Offline): Build Human/Machine Reference Transitions

Require: Proxy LM Fθ; human corpus DQ; machine/LLM corpus DP ; number of bins k
Ensure: Shared surprisal quantizer qk; reference transition matrices M̂P , M̂Q; total reference length

N
1: Score references. For every t ∈ DQ ∪ DP , run Fθ to obtain token sequence x1:N and surprisals
s1:N with

st = − log pθ(xt | x1:t−1) .

2: Fit shared quantizer. Pool all reference surprisals and fit k-means to obtain qk : R →
{1, . . . , k}.

3: Discretize to states. Map each reference sequence to the corresponding state sequence at =
qk(st), t ∈ {1, . . . , N}.

4: Estimate transitions. For each corpus C ∈ {P,Q}, estimate the empirical first-order transition
matrix M̂C by counts:

M̂C(j | i) =
∑n−1

t=1 1{at = i, at+1 = j}∑n−1
t=1 1{at = i}

, i, j ∈ {1, . . . , k}.

5: Record length. Let N be the total number of reference transitions used to form M̂P and M̂Q

(sum over sequences).
6: return qk, M̂P , M̂Q, N .

Algorithm 2 SurpMark (Online): Decision via GJS score against References

Require: Proxy LM Fθ; test text t; shared quantizer qk; reference transitions M̂P , M̂Q; reference
length N

Ensure: Score ∆GJSn and label Ω ∈ {MACHINE,HUMAN}
1: Score test text. Run Fθ on t to get tokens x1:n and surprisals s1:n.
2: Discretize. Map to surprisal states at = qk(st), t ∈ {1, . . . , n} and estimate the test transition

matrix M̂T using the same formula as Offline.
3: Set mixing weight. α← N/n.
4: Compute divergence.

∆GJSn = GJS(M̂P , M̂T , α) − GJS(M̂Q, M̂T , α).

5: Decision rule.

Ω =

{
MACHINE, ∆GJSn ≤ τ,
HUMAN, ∆GJSn > τ.

6: return ∆GJSn, Ω.

A2 JUSTIFICATION FOR FIRST-ORDER MODELING

A2.1 EMPIRICAL FINDINGS

All AUROC values in Figure 2(b) are computed using exactly the same amount of reference data and
test data. As in our main experiments, we use 300 human paragraphs and 300 machine-generated
paragraphs, each with length about 100-200 tokens as reference data. We use 150 human paragraphs
and 150 machine paragraphs as test data. Intuitively, increasing the Markov order makes the state
space explode while the amount of reference data is fixed, so transition estimates become very sparse
and noisy.

The degradation with larger order is a sparsity effect that arises both on the reference side and on
the test side: (i) state-space explosion: A first-order chain with k bins has k2 transitions; an order-v
chain effectively has kv+1 transitions. With only 300 human + 300 machine paragraphs of 100-200
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Reference size
Order 300 600 900 1200

1 86.51 86.17 86.69 86.89
2 81.49 82.08 82.77 82.80
3 74.98 74.74 75.84 75.85
4 64.72 69.51 71.20 73.00

(a) AUROC vs. reference size

Test length
Order 150 200 250 300

1 90.59 92.66 94.60 94.58
2 89.42 90.67 92.21 92.60
3 88.67 90.57 91.40 91.40
4 62.29 65.59 68.46 68.33

(b) AUROC vs. test length

Table 7: Effect of reference size and test length on AUROC for different Markov orders.

tokens, many high-order contexts in the reference data are observed only a few times or not at all,
so the estimated transitions become extremely noisy. (ii) Short test sequences. Each test paragraph
is itself only 100-200 tokens long. Even if the reference transitions were perfectly estimated, an
order-v model on a 100-200-token sequence can observe only a very small number of distinct v-length
contexts. The higher-order model is severely under-sampled on each individual test example.

To isolate the effect of reference sparsity, in the XSum@GPT-J-6B dataset, we fixed k = 6 and the
test set (150 human + 150 machine paragraphs, 100-200 tokens each), and increased the reference
size from 300 to 1200 paragraphs per side. As shown in Table 7(a), AUROC for higher-order models
improves only slightly and remains clearly below the first-order model.

To further evaluate the effect of test sparsity, in another WritingPrompts@Genmma-7B dataset, we
vary the test passage length from 150 to 300 tokens while keeping the reference size fixed (300
passages per side, each with fixed 300 tokens). As in Table 7(b), AUROC consistently increases for
all orders, but the first-order model remains clearly best, and higher orders still lag behind by several
points.

Taken together, these ablations reflect practical text-detection settings with limited reference data
and short passages. In this regime, the first-order model offers the best bias-variance tradeoff, so we
believe it is the most reasonable default choice.

A2.2 THEORETICAL JUSTIFICATION

We clarify our reasoning by (i) starting from Gray’s Markov approximation theory, (ii) explaining
how the gain from order K to K + 1 is governed by conditional mutual information, (iii) mapping
this theory to our discretized surprisal process, and (iv) presenting empirical measurements showing
that the additional benefit of a second-order approximation over a first-order one is very small.

(1) Best finite-order Markov approximation in Gray’s theory.

Following Gray’s Entropy and Information Theory [Gray (2011), Sec. 6.4, Cor. 6.4.1–6.4.2; Sec.
7.4, Cor. 7.4.2–7.4.3], consider a stationary discrete-time source {Xn}. Gray constructs, for each
order K, a canonical K-th order Markov chain MK whose conditional distributions match those
of the source given the last K symbols. He shows that MK is optimal in the sense that it uniquely
minimizes the relative entropy rate between the true source and any K-th order Markov chain on the
same alphabet. In other words, the family of finite-order Markov chains {MK} provides a sequence
of best approximations to the stationary process in the relative-entropy-rate sense. Formally,

Hp∥pK ({Xn}) = inf
MK∈MK

Hp∥MK
({Xn}) = I(X0;X

−K−1
−∞ |X−1

−K) (7)

where p is the true stationary source, pK is the canonical K-th order Markov approximation to
p, MK is the class of stationary K-th order Markov sources on the same alphabet, Hp∥q({Xn})
is the relative entropy rate of p with respect to q, X−K−1

−∞ = (X−∞ . . . , X−K−1) is the infinite
past, X−1

−K = (X−K , . . . , X−1) is the block of the last K symbols, and I(·; ·|·) conditional mutual
information. Applying the above indentity with K + 1 instead of K, we get

Hp∥pK+1({Xn}) = I(X0;X
−K−2
−∞ |X−1

−K−1) (8)
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We are interested in the gain from going from order K to K + 1, so

∆K = Hp∥pK ({Xn})−Hp∥pK+1({Xn}) (9)

= I(X0;X
−K−1
−∞ |X−1

−K)− I(X0;X
−K−2
−∞ |X−1

−K−1) (10)

= I(X0;X−K−1|X−1
−K) (11)

(2) Mapping to our discretized surprisal process

In our setting, {Xn} is instantiated by the discretized surprisal process {at}, where at corresponds
to X0, X−1

−K corresponds to at−1
t−K == (at−K , · · · , at−1), X−K−1 corresponds to at−K−1. For the

case K = 1, the gain from first-order to second order is precisely I(at; at−2|at−1). We directly
estimate the relevant conditional mutual information term on our data. We first fit a first-order
P̂1(at|at−1) and a second-order model P̂2(at|at−1, at−2) from transition counts on the reference set.
We then compute plug-in estimates on test set

Ĥ1 = − 1

n− 1

n∑
t=2

log2 P̂1(at|at−1) (12)

Ĥ2 = − 1

n− 2

n∑
t=3

log2 P̂2(at|at−1, at−2) (13)

Their difference is the plug-in estimate of the conditional mutual information Î = Ĥ1 − Ĥ2 =
I(at; at−2|at−1), in bits per token, i.e., the extra predictive information contributed by the second-
order context beyond the immediate past. On our data, we obtain empirical estimates of conditional
mutual information and perplexity in Table 8. In our experiments, Î is at most 0.0076 bits/token,
which corresponds to a perplexity reduction around 0.5%. Thus, in terms of average predictive
performance, the second-order Markov model brings only a sub-percent improvement over the
first-order model. Combined with Gray’s best Markov approximation theory, this indicates that
a first-order Markov chain already captures most useful temporal dependence in the discretized
surprisal dynamics, and provides a theoretically justified and empirically sufficient model for the
discretized surprisal dynamics in our detector.

Source Order pair Ĥk (bits/token) Ĥ1 − Ĥ2 (bits/token) Perplexity Rel. PP change vs. 1st

GPT-5-chat 1st (baseline) 2.7882 0.0000 6.9075 0.000%
GPT-5-chat 2nd order 2.7805 0.0076 6.8711 +0.528%
Human 1st (baseline) 2.8089 0.0000 7.0074 0.000%
Human 2nd order 2.8043 0.0045 6.9854 +0.314%

Table 8: Conditional entropies and perplexities for discretized surprisal states.

A3 THEORETICAL ANALYSIS

A3.1 PROBLEM SETUP

Let {sPt }Nt=1 and {sQt }Nt=1 be the surprisal sequences produced by a fixed proxy LM on reference
corpora from P and Q. Each sequence is modeled as an ergodic first-order Markov process on
R. For an integer k ≥ 2, let qk : R → A = {1, . . . , k} be a shared quantizer with boundaries
b1 < · · · < bk−1, and discretized states aPt = qk(s

P
t ) and aQt = qk(s

Q
t ). Let SP ,SQ denote the

underlying Markov transition kernels on the real-valued surprisal sequences before discretization. The
induced transition kernels on the k-state alphabet are MP (j|i) = Pr[aPt+1 = j|aPt = i] and likewise
MQ. Their plug-in estimators M̂P , M̂Q are formed from transition counts with M̂P (a|s) = NP (s,a)

NP (s) ,
where NP (s) is the number of occurrences of state s in aP1:N , and NP (s, a) is the number of times
s is followed by a; analogously for Q. Let πP , πQ are stationary distributions of MP and MQ, we
define πmin := min{mins∈A πP (s),mins∈A πQ(s)}.

We observe an independent test surprisal-state sequence aT1:N := {aTt }nt=1 ∼ MT , where the test
source MT is either MP (null H0) or MQ (alternative H1). All three sequences are discretized by
the same qk.
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Throughout the analysis we impose the following conditions on the induced chains MP and MQ.
These assumptions are standard in the study of Markov concentration inequalities and are required in
order to apply the auxiliary results recalled below.
Assumption A3.1. We impose the following standing conditions on the induced chains MP ,MQ.
MP and MQ are irreducible, aperiodic Markov chain on the finite alphabet A with unique stationary
distribution πP and πQ and maximum hitting time T (MP ) and T (MQ) respectively. We assume
πmin := min{mins∈A πP (s),mins∈A πQ(s)} ≳ 1/k, and T (M•) = O(1).

A3.2 DISCRETIZATION EFFECT

A3.2.1 AUXILIARY RESULTS FROM LITERATURE

The GJS Divergence as f -divergence. The GJS divergence is a specific instance of a broader
class of divergences known as f -divergences. An f -divergence between two discrete probability
distributions p and q is defined by a convex generator function f where f(1) = 0. The GJS
divergence is equivalent to the w-skew Jensen-Shannon Divergence with w = α/(1 + α), which is
an f -divergence generated by the function fwJS(t).

fwJS(t) = αt log(
t

αt+ 1− α
) + (1− α) log( 1

αt+ 1− α
) (14)

For notational convenience, we abbreviate fαJS as f . This connection allows us to leverage the
following theoretical tools developed for general f -divergences.
Assumption A3.2 (Assumption 9 in Pillutla et al. (2023)). We assume that the generator function f
of the f -divergence must satisfy the following three conditions:

• (A1) The function f and its conjugate generator f∗ must be bounded at zero. Formally,
f(0) <∞ and f∗(0) <∞.

• (A2) The first derivatives of f and f∗ must not grow faster than a logarithmic func-
tion. For any t ∈ (0, 1), there must exits constants C1 and C∗

1 such that |f ′(t)| ≤
C1(max(1, log(1/t))) and |(f∗)′(t)| ≤ C∗

1 (max(1, log(1/t))).

• The second derivatives of f and f∗ must not grow faster than 1
t as t → 0. Formally,

there must exist constants C2 and C∗
2 such that for anyt ∈ (0,∞), t

2f
′′(t) ≤ C2, and

t
2 (f

∗)′′(t) ≤ C∗
2 .

Lemma A3.3 (Approximate Lipschitz Property of the f -divergence, Lemma 20 in Pillutla et al.
(2023)). Let f be a generator function satisfying Assumption A3.2. Consider the bivariate scalar
function ψ : [0, 1] × [0, 1] → [0,∞) defined as ψ(p, q) = qf(pq ). For all probability values
p, p′, q, q′ ∈ [0, 1] with max(p, p′) > 0 and max(q, q′) > 0, the following inequalities hold:

|ψ(p′, q)− ψ(p, q)| ≤
(
C1 max

(
1, log

1

max(p, p′)

)
+max(C∗

0 , C2)

)
|p− p′| (15)

|ψ(p, q′)− ψ(p, q)| ≤
(
C∗

1 max

(
1, log

1

max(q, q′)

)
+max(C0, C

∗
2 )

)
|q − q′| (16)

Assumption A3.4 (Assumption 3(b) in Kara et al. (2023)). Let P (·|x) be a probability measure on
(X ,F). There exit LP <∞ such that

TV(P (·|x)− P (·|x′)) ≤ LP |x− x′|, ∀x, x′ ∈ X . (17)
Proposition A3.5 (Quantization Error of f-Divergence, Proposition 13 in Pillutla et al. (2023)). Let
P and Q be two probability distributions over a common sample space X .

Let S = {S1, S2, . . . , Sm} be a partition of the space X into m disjoint sets. The corresponding
quantized distributions, PS and QS , are defined as multinomial distributions over the indices
{1, . . . ,m}.
Then, for any integer k ≥ 1, and f -divergence functional Df , there exists a partition S of size
m ≤ 2k such that the absolute difference between the original and the quantized f-divergence is
bounded as follows:

|Df (P,Q)−Df (PS , QS)| ≤
f(0) + f∗(0)

k
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Theorem A3.6 is adapted from Theorem 3.1 and Lemma 3.1 of Wolfer (2023), which provide high-
probability bounds on the row-wise total variation error of the empirical transition matrix for a
finite-state, irreducible, aperiodic Markov chain observed over a single trajectory. The bound holds
uniformly over all states and depends explicitly on the number of states and the trajectory length,
while accounting for the chain’s dependence structure.

Lemma A3.6 (Row-wise TV bound, Wolfer (2023)). Let (X1, . . . , XN ) be an irreducible, aperiodic,
stationary Markov chain on a finite state space A with |A| = k, transition matrix M and stationary
distribution π. Then there exists a universal constant C > 0 such that, for any 0 < δ < 1, the
following holds with probability at least 1− δ:

max
s∈A

∑
a∈A

∣∣∣M̂(a|s)−M(a | s)
∣∣∣ ≤ C

√
τmixk log

(
kN
δ

)
N

,

where τmix is a mixing-time–type constant depending only on M (for reversible chains one has
τmix ≍ 1/γps, with γps denoting the pseudo–spectral gap).

We will use the missing-mass bound from Skorski (2020) to handle unseen transitions.

Lemma A3.7 (Missing Mass Bound, Theorem 1 in Skorski (2020)). Let (X1, . . . , XN ) be an
irreducible Markov chain over a finite state space A with stationary distribution πP and true
transition matrix MP . Define the transition missing mass as

Mmass =
∑
s∈A

∑
s∈A

πP (s)MP (a|s) · 1{M̂P (a|s) = 0}.

Let T be the maximum hitting time of any set of states with stationary probability at least 0.5. Then
there exists an absolute constant c > 0 and independent Bernoulli random variables

Qs,a ∼ Bernoulli
(
e−c·N ·πP (s)MP (a|s)/T

)
such that for any subset E ⊆ {(s, a) : s, a ∈ A} and any n ≥ 1,

Pr

 ∧
(s,a)∈E

{M̂P (a|s) = 0}

 ≤ ∏
(s,a)∈E

Pr[Qs,a = 1].

In particular, for any t > 0 it holds that

E exp (t ·Mmass) ≤ E exp

(
t ·
∑
s∈A

∑
s∈A

πP (s)MP (a|s)Qs,a

)
.

For bounding deviations of weighted sums over Markov chains, we rely on the inequality of Chung
et al. (2012).

Lemma A3.8 (Theorem 3.1 of Chung et al. (2012)). Let M be an ergodic Markov chain on state
space A with stationary distribution π. For ε ≤ 1/8, let T (ε) denote its total-variation mixing time.
Consider a length-N chain (X1, . . . , XN ) on M with X1 ∼ φ. For each s ∈ A, let fs : A → [0, 1]

be a weight function with EX∼π[fs(X)] = π(s). Define the total weight N(s) =
∑N

i=1 fs(Xi).
Then there exists an absolute constant c such that:

Pr
[
N(s) ≥ (1 + δ)π(s)N

]
≤ c ∥φ∥π ×

{
exp
(
− δ2π(s)N/(72T (ϵ))

)
, 0 ≤ δ ≤ 1,

exp
(
− δ π(s)N/(72T (ϵ))

)
, δ > 1,

and, for 0 ≤ δ ≤ 1,

Pr
[
N(s) ≤ (1− δ)π(s)N

]
≤ c ∥φ∥π exp

(
− δ2π(s)N/(72T (ϵ))

)
.

Here ⟨u, v⟩π =
∑

x uxvx/π(x) and ∥u∥π =
√
⟨u, u⟩π .
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A3.2.2 AUXILIARY RESULTS

Lemma A3.9. For all α > 0 and p ∈ (0, 1], it holds that

p max{1, log(1/p)} e−αp ≤ 2 + log(1 + α)

e α
. (18)

Proof. Let y = αp ∈ (0, α] and A = logα. Then we can rewrite

p max{1, log(1/p)}e−αp =
1

α
ye−y max{1, A− log y}.

Next observe the inequality

max{1, A− log y} ≤ 1 +A+ + (− log y)+,

where x+ = max{0, x} and A+ = max{0, A}.
Therefore,

ye−y max{1, A− log y} ≤ (1 +A+) · ye−y + ye−y(− log y)+.

Now use the following standard bounds:

sup
y>0

ye−y =
1

e
, sup

0<y≤1
y(− log y) =

1

e
.

Hence

sup
y>0

ye−y max{1, A− log y} ≤ 1 +A+

e
+

1

e
=

2 + logα+

e
,

where logα+ = max{0, logα} ≤ log(1 + α).

Substituting back into the expression, we obtain

p max{1, log(1/p)}e−αp ≤ 1

α
· 2 + log(1 + α)

e
.

This proves Eq. 18.

Lemma A3.10 (Stationarity of Quantized Kernels). Let SP be the population first-order Markov
transition kernel on the continuous surprisal space R with stationary law ρP . Fix a shared k-bin
quantizer qk : R → A = {1, . . . , k} with boundaries b1 < · · · < bk−1 partitions space into bins
Bi = [bi, bi+1). Define the row-stationary weights and the edge measure

πP (i) := ρP (Bi), ZP (i, j) :=

∫
Bi

ρP (dx)SP (Bj |x), i, j ∈ A,

and the induced k-state transition kernel

MP (j | i) :=
ZP (i, j)

πP (i)
(for πP (i) > 0).

Then πP is a stationary distribution of MP , i.e.
∑

i πP (i)MP (j | i) = πP (j) for all j ∈ A.

Proof. By definition,∑
i∈A

πP (i)MP (j | i) =
∑
i∈A

ZP (i, j) =

∫
R
ρP (dx)SP (Bj |x) = ρP (Bj) = πP (j),

where the penultimate equality uses the stationarity of ρP for SP .
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A3.2.3 PROOF OF THEOREM 4.2

In this step, we aim to bound the expected absolute difference between the estimated GJS divergence
and the GJS divergence for the induced Markov kernels after discretization. The statistical error of
our estimator is:

E1 = |Df (M̂P , M̂Q)−Df (MP ,MQ)| (19)

The analysis will reveal how this error depends on the number of bins k and the sequence length
N . To analyze the statistical error, we will extend the logic used in Pillutla et al. (2023). We will
apply Lemma A3.3 (Lemma 20 in Pillutla et al. (2023)), which establishes an approximate Lipschitz
property for the core component of any f -divergence.

Proof of Theorem 4.2. To bound the statistical error E1, we first decompose it and then expand the
GJS function into a sum of its core components, allowing for the application of Lemma A3.3. Using
the triangle inequality, we can bound the total statistical error by the sum of the errors arising from
the estimation of each matrix individually:

E1 ≤ |Df (M̂P , M̂Q)−Df (MP , M̂Q)|︸ ︷︷ ︸
=:T1

+ |Df (MP , M̂Q)−Df (MP ,MQ)|︸ ︷︷ ︸
=:T2

(20)

The f-divergence between two Markov chains, MA and MB , is defined as the expected divergence of
their row-wise conditional probability distributions, weighted by the stationary distribution of the
second chain. Let πB(s) be the stationary probability of state s for chain MB . The f-divergence is:

Df (MA,MB) =
∑
s∈A

πB(s)
∑
a∈A

ψ(MA(a|s),MB(a|s)) (21)

Applying this to the first term of our decomposed error Eq. equation 20, with f = fwJS , we get

T1 = |Df (M̂P , M̂Q)−Df (MP , M̂Q)| (22)

=

∣∣∣∣∑
s∈A

π̂Q(s)
∑
a∈A

ψ(M̂P (a|s), M̂Q(a|s))−
∑
s∈A

π̂Q(s)
∑
a∈A

ψ(MP (a|s), M̂Q(a|s))
∣∣∣∣ (23)

=

∣∣∣∣∑
s∈A

π̂Q(s)
∑
a∈A

[
ψ(M̂P (a|s), M̂Q(a|s))− ψ(MP (a|s), M̂Q(a|s))

]∣∣∣∣ (24)

≤
∣∣∣∣∑
s∈A

∑
a∈A

[
ψ(M̂P (a|s), M̂Q(a|s))− ψ(MP (a|s), M̂Q(a|s))

]∣∣∣∣ (25)

≤
∑
s∈A

∑
a∈A

∣∣∣∣ψ(M̂P (a|s), M̂Q(a|s))− ψ(MP (a|s), M̂Q(a|s))
∣∣∣∣ (26)

Case 1: Observed Transitions For a transition that appears in the human-written text sample,
its empirical probability is M̂P (a|s) = NP (s,a)

NP (s) ≥
1

NP (s) , where NP (s) is the number of times
state s was visited in the sequence of length N . We apply the first inequality of Lemma A3.3 with
p′ = M̂P (a|s), p = MP (a|s), and q = M̂Q(a|s). The term max

(
1, log 1

max(p,p′)

)
is bounded by

logNP (s) as long as NP (s) ≥ 3. Thus, the error for a single observed transition is bounded by:∣∣ψ(M̂P (a|s), M̂Q(a|s))− ψ(MP (a|s), M̂Q(a|s))
∣∣ ≤ (C1 logNP (s) + C ′)

∣∣M̂P (a|s)−MP (a|s)
∣∣

(27)

≤ (C1 logN + C ′)
∣∣M̂P (a|s)−MP (a|s)

∣∣
(28)

where C ′ is a constant absorbing C∗
0 and C2. Summing over all observed transitions gives a bound

proportional to the Total Variation (TV) distance between the estimated and true transition matrices,
multiplied by a logarithmic factor.
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Case 2: Missing Transitions This case addresses transitions that have a non-zero true probability
(MP (a|s)) but were not observed in the finite sample, resulting in an empirical probability of
M̂P (a|s) = 0. This scenario is formally known as the missing mass problem for Markov chains, a
non-trivial extension of the classic IID case due to the dependencies between samples. To analyze the
error contribution, we directly bound the error for a single missing transition using Lemma A3.3. Let
p′ = M̂P (a|s) = 0 and p =MP (a|s). The error is now

∣∣ψ(0, M̂Q(a|s))− ψ(MP (a|s), M̂Q(a|s))
∣∣.

Applying the first inequality of Lemma A3.3, we get:∣∣ψ(0, M̂Q(a|s))− ψ(MP (a|s), M̂Q(a|s))
∣∣ ≤ (C1 max

(
1, log

1

MP (a|s)

)
+ C ′)

∣∣0−MP (a|s)
∣∣

(29)

= (C1 max

(
1, log

1

MP (a|s)

)
+ C ′)MP (a|s) (30)

This bound shows that the error from a missing transition is proportional to its true probability
MP (a|s), scaled by its information content. The total error from this case is the sum of these
individual bounds over all unobserved transitions. This sum constitutes the missing transition mass
of the Markov chain.

We summarize the following:

E[T1] ≤
(
C1 logN + C ′) ·∑

s∈A
αNP (s)(MP (·|s)) +

(
C1 + C ′)∑

s∈A
βNP (s)(MP (·|s)) (31)

where MP (·|s) is a k-dimensional probability distribution corresponding to state s, and we formally
define the row-wise error terms:

• Row-wise TV term αNP (s)(MP (·|s)): This term sums the error from observed transitions
in state s.

E[αNP (s)(MP (·|s))] = E
[ ∑

a∈A,

s.t.M̂P (a|s)>0

∣∣M̂P (a|s)−MP (a|s)
∣∣] (32)

• Row-wise Missing Mass term βNP (s)(MP (·|s)) This term sums the error from unobserved
transitions in state s.

E[βNP (s)(MP (·|s))] = E
[ ∑

a∈A,

s.t.M̂P (a|s)=0

MP (a|s) ·max
(
1, log

1

MP (a|s)

)]
(33)

Then we use Lemma A3.6 to upper bound Eq 32.

E[αNP (s)(MP (·|s))] = E
[ ∑

a∈A,

s.t.M̂P (a|s)>0

∣∣M̂P (a|s)−MP (a|s)
∣∣] (34)

≤ E
[∑
a∈A

∣∣M̂P (a|s)−MP (a|s)
∣∣] (35)

= O(

√
k log (kN)

N
) (36)

where Eq. 36 follows Lemma A3.6 by inverting its tail bound and integrating to expectation; the
mixing-time constant is absorbed into O(1) under Assumption A3.1.

Lemma A3.7 gives an exponential tail for the event M̂P (a|s) = 0: for some absolute constant c > 0
and T the maximum hitting time of any set with stationary probability at least 0.5,

P[M̂P (a|s) = 0] ≤ exp
(
− cN

T
πP (s)MP (a|s)

)
(37)
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Then we upper bound the missing mass term E[βNP (s)(MP (·|s))]. Let pa = MP (a|s) and Γ =
cN
T πP (s).

E[βNP (s)(MP (·|s))] =
∑
a∈A

pa max
(
1,

1

pa

)
P[M̂P (a|s) = 0] (38)

=
∑
a∈A

pa max
(
1,

1

pa

)
e−Γpa (39)

≤
∑
a∈A

2 + log(1 + Γ)

eΓ
(40)

=
kT

ecNπP (s)

(
2 + log

(
1 +

cNπP (s)

T

))
(41)

where Eq. 40 follows Lemma A3.9 for all Γ > 0 and pa ∈ (0, 1]. Assuming πP (s) ≥ c0
k for some

constant c0 > 0 and T = O(1), we obtain

E[βNP (s)(MP (·|s))] = O
(k2
N

log(1 +
N

k
)
)

(42)

By Eq. 31, Eq. 36, and Eq. 42 we obtain

T1 = O
(
logN ·

√
k3 log(kN)

N
+
k3

N
log
(
1 +

N

k

))
(43)

Next we bound T2.

T2 = |Df (MP , M̂Q)−Df (MP ,MQ)| (44)

=

∣∣∣∣∑
s∈A

π̂Q(s)
∑
a∈A

ψ(MP (a|s), M̂Q(a|s))−
∑
s∈A

πQ(s)
∑
a∈A

ψ(MP (a|s),MQ(a|s))
∣∣∣∣ (45)

=

∣∣∣∣∑
s∈A

π̂Q(s)
∑
a∈A

ψ(MP (a|s), M̂Q(a|s))−
∑
s∈A

π̂Q(s)
∑
a∈A

ψ(MP (a|s),MQ(a|s))

+
∑
s∈A

π̂Q(s)
∑
a∈A

ψ(MP (a|s),MQ(a|s))−
∑
s∈A

πQ(s)
∑
a∈A

ψ(MP (a|s),MQ(a|s))
∣∣∣∣ (46)

≤
∣∣∣∣∑
s∈A

π̂Q(s)
∑
a∈A

ψ(MP (a|s), M̂Q(a|s))−
∑
s∈A

π̂Q(s)
∑
a∈A

ψ(MP (a|s),MQ(a|s))
∣∣∣∣

+

∣∣∣∣∑
s∈A

π̂Q(s)
∑
a∈A

ψ(MP (a|s),MQ(a|s))−
∑
s∈A

πQ(s)
∑
a∈A

ψ(MP (a|s),MQ(a|s))
∣∣∣∣ (47)

≤
∣∣∣∣∑
s∈A

∑
a∈A

[ψ(MP (a|s), M̂Q(a|s))− ψ(MP (a|s),MQ(a|s))]
∣∣∣∣

+

∣∣∣∣∑
s∈A

(
π̂Q(s)− πQ(s)

)∑
a∈A

ψ(MP (a|s),MQ(a|s))
∣∣∣∣ (48)

≤
∑
s∈A

∑
a∈A

∣∣∣∣ψ(MP (a|s), M̂Q(a|s))− ψ(MP (a|s),MQ(a|s))
∣∣∣∣︸ ︷︷ ︸

=:T2,1

+

∣∣∣∣∑
s∈A

(
π̂Q(s)− πQ(s)

)∑
a∈A

ψ(MP (a|s),MQ(a|s))
∣∣∣∣︸ ︷︷ ︸

=:T2,2

(49)

By symmetry, bounding T2,1 proceeds identically to T1, and yields the same rate as T1. To upper
bound T2,2, we consider∑

a∈A
ψ(MP (a|s),MQ(a|s)) =

∑
a∈A

MQ(a|s)fwJS(MP (a|s)/MQ(a|s)) ≤ H(w) ≤ log 2 (50)
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where H(w) = −[w log(w) + (1 − w) log(1 − w)] with w = α
1+α ∈ [0, 1] is the binary entropy

function of which the absolute maximum possible value is log 2. To upper bound T2,2,

T2,2 ≤ log 2 · E
∣∣π̂Q − πQ∣∣ (51)

We apply Lemma A3.8 to upper bound T2,2. Consider π̂Q(s) =
NQ(s)

N , for any δ > 0, we have

Pr
[
NQ(s) ≥ (1 + δ)πQ(s)N

]
≤ c ∥φ∥πQ

×

{
exp
(
− δ2πQ(s)N/(72T )

)
, 0 ≤ δ ≤ 1,

exp
(
− δ πQ(s)N/(72T )

)
, δ > 1,

and similarly for the lower tail with 0 < δ < 1. With ϵ = δπQ(S), we have

Pr
[
|π̂Q(s)− πQ(s)| ≥ ϵ

]
≤ 2c ∥φ∥πQ

×

{
exp
(
− ϵ2N/(72TπQ(s))

)
, 0 ≤ ϵ ≤ πQ(s),

exp
(
− ϵN/(72T )

)
, ϵ > πQ(s),

(52)

Using E|Z| =
∫∞
0

Pr(|Z| ≥ ϵ) and splitting the integral at πQ(s),

E
[
|π̂Q(s)− πQ(s)|

]
≤ 2c∥φ∥πQ

(∫ πQ(s)

0

e
− Nϵ2

72TπQ(s) dϵ+

∫ ∞

πQ(s)

e−
Nϵ
72T dϵ

)
(53)

≤ 2c∥φ∥πQ

(
C

√
TπQ(s)

N
+

72T

N
exp

(
− NπQ(s)

72T

))
(54)

= O

(
∥φ∥πQ

√
TπQ(s)

N

)
(55)

Thus we obtain

E
[
|π̂Q − πQ|

]
=
∑
s∈A

E
[
|π̂Q(s)− πQ(s)|

]
(56)

≤
∑
s∈A

C∥φ∥πQ

√
TπQ(s)

N
(57)

= C∥φ∥πQ

√
T

N

∑
s∈A

√
πQ(s) (58)

≤ C∥φ∥πQ

√
Tk

N
(59)

= O
( k√

N

)
(60)

where Eq. 60 holds since ∥φ∥πQ
= 1√

πQ(s0)
≤ 1√

mins∈A πQ(s)
= O(

√
k) for the first state s0, and

T = O(1). To sum up, T2,2 = O
(

k√
N

)
, and the rate for the total statistical error is

E1 ≤ T1 + T2,1 + T2,2 (61)

= O
(
logN ·

√
k3 log(kN)

N
+
k3

N
log
(
1 +

N

k

))
+O

(
logN ·

√
k3 log(kN)

N
+
k3

N
log
(
1 +

N

k

))
+O

( k√
N

)
(62)

= O
(
logN ·

√
k3 log(kN)

N
+
k3

N
log
(
1 +

N

k

)
+

k√
N

)
(63)
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A3.2.4 PROOF OF PROPOSITION 4.1

Proof of Proposition 4.1. Let ρP and ρQ be the continuous stationary distributions of SP and SQ
respectively. We expand Df (SP ,SQ) and Df (MP ,MQ),

Df (SP ,SQ) =
∫
R
ρQ(dx)Df (SP (·|x), (SQ(·|x)) (64)

Df (MP ,MQ) =
∑
i∈A

πQ(i)Df (MP (·|i),MQ(·|i)) (65)

The quantizer qk : R → A = [k] with boundaries b1 < · · · < bk−1 partitions space into bins
Bi = [bi, bi+1). Let ρQ(Bi) =

∫
Bi

dρQ(x), then πQ(i) = ρQ(Bi).

Define two intermediate objects UP and UQ to be markov kernel such that each has a discrete state
index i ∈ A, within a given state i, the observable variable x lives in a continuous space R, The
corresponding stationary distributions over states are πP for P and πQ for Q. Thus

Df (UP , UQ) =
∑
i∈A

πQ(i)Df (SP (·|i),SQ(·|i)) (66)

where SP (·|i) = Ex∼ρQ(Bi)[SP (·|x)] and similarly for SQ(·|i). We have

|Df (SP ,SQ)−Df (MP ,MQ)| ≤ |Df (SP ,SQ)−Df (UP , UQ)|+ |Df (UP , UQ)−Df (MP ,MQ)|
(67)

The second term is bounded as

|Df (UP , UQ)−Df (MP ,MQ)| (68)

=
∣∣∣∑
i∈A

πQ(i)Df (SP (·|i),SQ(·|i))−
∑
i∈A

πQ(i)Df (MP (·|i),MQ(·|i))
∣∣∣ (69)

≤
∑
i∈A

πQ(i)
∣∣∣Df (SP (·|i),SQ(·|i))−Df (MP (·|i),MQ(·|i))

∣∣∣ (70)

= O(
1

k
) (71)

Eq. 71 holds by applying Proposition A3.5 to each term in Eq. 70, yielding an O(1/k) bound per
term. Since the weighted sum of O(1/k) terms remains O(1/k), the overall bound follows. The first
term is

Df (SP ,SQ)−Df (UP , UQ) (72)

=

∫
R
ρQ(dx)Df (SP (·|x), (SQ(·|x))−

∑
i∈A

πQ(i)Df (SP (·|i),SQ(·|i)) (73)

=

k∑
i=1

∫
Bi

ρQ(dx)Df (SP (·|x), (SQ(·|x))−
∑
i∈A

πQ(i)Df (SP (·|i),SQ(·|i)) (74)

=
∑
i∈A

ρQ(Bi)Ex∼ρQ(Bi)[Df (SP (·|x), (SQ(·|x))]−
∑
i∈A

πQ(i)Df (SP (·|i),SQ(·|i)) (75)

=
∑
i∈A

πQ(i)Ex∼ρQ(Bi)[Df (SP (·|x), (SQ(·|x))]−
∑
i∈A

πQ(i)Df (SP (·|i),SQ(·|i)) (76)

=
∑
i∈A

πQ(i)
[
Ex∼ρQ(Bi)[Df (SP (·|x), (SQ(·|x))]−Df (SP (·|i),SQ(·|i))

]
(77)

=:
∑
i∈A

πQ(i)Ji (78)

Because Df is jointly convex,

Df (Ex∼ρQ(Bi)[SP (·|x)],Ex∼ρQ(Bi)[SQ(·|x)]
)
≤ Ex∼ρQ(Bi)[Df (SP (·|x), (SQ(·|x))] (79)
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Therefore,

|Df (SP ,SQ)−Df (UP , UQ)| =
∑
i∈A

πQ(i)Ji (80)

Lemma A3.3 implies a Lipschitz-type continuity bound in total variation distance, that is

|Df (P,Q)−Df (P
′, Q′)| ≤ 2Lf (TV(P, P ′) + TV(Q,Q′)) (81)

where Lf depends on C1, C∗
1 , C2, C∗

2 in Lemma A3.3. Applying Eq. 81 to Ji yields

Ji = Ex∼ρQ(Bi)[Df (SP (·|x), (SQ(·|x))]−Df (SP (·|i),SQ(·|i)) (82)

≤ Ex∼ρQ(Bi)[Df (SP (·|x), (SQ(·|x))−Df (SP (·|i),SQ(·|i))] (83)

≤ 2LfEx∼ρQ(Bi)[TV(SP (·|x),SP (·|i)) + TV(SQ(·|x),SQ(·|i))] (84)

By Assumption A3.4,

TV(SP (·|x),SP (·|i)) + TV(SQ(·|x),SQ(·|i)) ≤ (LP + LQ)Ex′∼ρQ(Bi)|x− x
′| (85)

Let ci be the centroid of Bi and define the mean radius ri = Ex∼ρQ(Bi)|x− ci|. For any x ∈ Bi,

Ex′∼ρQ(Bi)|x− x
′| ≤ |x− ci|+ Ex′∼ρQ(Bi)|x

′ − ci| = |x− ci|+ ri (86)

Then,

(LP + LQ)Ex′∼ρQ(Bi)|x− x
′| ≤ (LP + LQ)Ex′∼ρQ(Bi)|x− ci|+ ri = 2(LP + LQ)ri (87)

Then,

Ji ≤ 4Lf (LP + LQ)ri (88)

Summing over buckets with weight πP (i) gives:

|Df (SP ,SQ)−Df (UP , UQ)| =
∑
i∈A

πQ(i)Ji (89)

≤ 4Lf (LP + LQ)
∑
i∈A

πQ(i)ri (90)

= 4Lf (LP + LQ)Ex∼ρQ
[x− qk(x)] (91)

= O(1/k) (92)

By Eq. 71 and Eq. 92,

|Df (SP ,SQ)−Df (MP ,MQ)| ≤
c

k
(93)

A3.2.5 BALANCING TWO ERRORS

A clear choice for k is found by balancing the dominant statistical error (Eq. 63) with the quantization
error (Eq. 93) in rate form, ignoring logarithmic factors. The leading statistical term scales as
c1k

3
2N− 1

2 and the quantization term as c2
k . Minimizing their sum f(k) = c1k

3
2N− 1

2 + c2
k by

first-order condition f ′(k) = 0 yields that

k∗ =
(4c2
3c1

) 2
7

N
1
5 (94)

Thus, up to constants and polylog factors, the optimal bin count is k∗ = Θ(N
1
5 ).
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A3.3 DECISION STATISTIC ANALYSIS

A3.3.1 AUXILIARY RESULTS FROM LITERATURE

Lemma A3.11 (Second-Order Taylor Expansion of Generalized Jensen Shannon Divergence, Zhou
et al. (2018)). Let P1, P2 ∈ P(X ) be two distinct probability distributions over a finite alphabet
X , representing a point of expansion. Let P̂1, P̂2 ∈ P(X ) be two other probability distributions in
a neighborhood of (P1, P2). Let α be a fixed positive constant. The Generalized Jensen-Shannon
(GJS) divergence, viewed as a function GJS(P̂1, P̂2, α), has the following second-order Taylor
approximation around the point (P1, P2).

GJS(P̂1, P̂2, α) =GJS(P1, P2, α)︸ ︷︷ ︸
Zeroth-Order Term

+
∑
x∈X

(P̂1(x)− P1(x))αι1(x) +
∑
x∈X

(P̂2(x)− P2(x))ι2(x)︸ ︷︷ ︸
First-Order Term

+O
(
||P̂1 − P1||2 + ||P̂2 − P2||2

)
︸ ︷︷ ︸

Remainder Term

(95)

where the remainder term is of the order of the squared Euclidean distance between the points,
GJS(P1, P2, α) is the zeroth-order term, the GJS function evaluated at the point of expansion
(P1, P2). The first-order term is a linear function of the differences (P̂1 − P1) and (P̂2 − P2). The
summation is taken over all symbols x in the alphabet X . The partial derivatives of the GJS function,
evaluated at (P1, P2), are given by the information densities.

ι1(x) := ι1(x|P1, P2, α) = log
(1 + α)P1(x)

αP1(x) + P2(x)
(96)

ι2(x) := ι2(x|P1, P2, α) = log
(1 + α)P2(x)

αP1(x) + P2(x)
(97)

Lemma A3.12 (Central Limit Theorem for Additive Functionals, Holzmann (2005)). Let
(X1, . . . , XN ) be a stationary, ergodic, discrete-time Markov chain with state space S, transi-
tion operator M , and unique stationary distribution π. Let f : S → R be a real-valued function
defined on the state space, and assume its expectation with respect to the stationary distribution is
zero, i.e., Eπ[f(x)] = 0. Consider the additive functional SN (f) =

∑N
i=1 f(Xi). If a martingale

approximation to SN (f) exits, then the Central Limit Theorem holds, i.e.:
SN (f)√

N

d−→ N(0, σ2(f)) (98)

The term σ2(f) is the asymptotic variance of the process.
Lemma A3.13 (Asymptotic Variance for Markov Chains, Holzmann (2005)). Under the same
conditions as Lemma A3.12, the asymptotic variance σ2(f) of the additive functional SN (f) is given
by:

σ2(f) = 2 lim
ϵ→0
⟨gϵ, f⟩ − ∥f∥2 (99)

where gϵ is the solution to the following equation ((1 + ϵ)I −M)−1, which is a function defined on
the state space A. ⟨gϵ, f⟩ is the inner product in the Hilbert space L2(π), calculated as ⟨gϵ, f⟩ =∑

x∈A π(x)gϵ(x)f(x). ∥f∥2 is the squared norm of the function f in the space L2(π) , which is its
variance with respect to the stationary distribution.

A3.3.2 PROOF OF PROPOSITION 4.3

Proof of Proposition 4.3. Let Fk be the family of stationary first-order Markov models on A := [k].
Consider the following likelihood ratio,

Λn,N =
1

n
log

sup
M,M ′∈Fk

M
(
(aP1:N , a

T
1:n)
)
M ′(aQ1:N)

sup
M,M ′∈Fk

M
(
aP1:N

)
M ′((aQ1:N , aT1:n)) (100)

=
1

n
log

M̂α1((a
P
1:N , a

T
1:n))M̂Q(a

Q
1:N )

M̂P (aP1:N )M̂α2((a
Q
1:N , a

T
1:n))

(101)
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where (aP1:N , a
T
1:n) denotes the concatenation of aP1:N and aT1:n, M̂α1 = αM̂P+M̂T

1+α , and M̂α2 =
αM̂Q+M̂T

1+α . By Eq. (4)-(6) in Gutman (1989), we have

sup
M∈Fk

M
(
(aP1:N , a

T
1:n)
)
= 2−(N+n)H((aP

1:N ,aT
1:n)), sup

M ′∈Fk

M ′(aQ1:N) = 2−N H(aQ
1:N ), (102)

sup
M ′∈Fk

M ′((aQ1:N , aT1:n)) = 2−(N+n)H((aQ
1:N ,aT

1:n)), sup
M∈Fk

M
(
aP1:N

)
= 2−N H(aP

1:N ), (103)

whereH(·) is the empirical conditional entropy per transition in the corresponding sequence. Plugging
into the ratio gives

Λn,N =
N + n

n
H((aP1:N , a

T
1:n))−

N

n
H(aP1:N )−

[N + n

n
H((aQ1:N , a

T
1:n))−

N

n
H(aQ1:N )

]
(104)

With weight α = N/n,

∆GJSn =
N + n

n
H((aP1:N , a

T
1:n))−H(aT1:n)−

N

n
H(aP1:n)

−
[N + n

n
H((aQ1:N , a

T
1:n))−H(aT1:n)−

N

n
H(aQ1:N )

]
(105)

The two terms ±H(aT1:n) cancel. Thus we obtain ∆GJSn = Λn,N

A3.3.3 ASYMPTOTIC NORMALITY OF ∆GJSn

Theorem A3.14 (Asymptotic normality of ∆GJSn ). Assume the setting of Section 4.2 with
α = N/n and standard ergodicity, ∆GJSn is asymptotically normal. Under H0 : MT = MP ,
µH0

= −GJS(MQ,MP , α) < 0, and σ2
H0

= α2

N2 σ
2
1,0 + 1

n2 σ
2
2,0, where σ2

1,0 is the
long-run variance of the P -reference-side information-density sum and σ2

2,0 is the long-run vari-
ance of the test-side information-density sum (details in Appendix D). Under H1 : MT = MQ,
µH1 = +GJS(MP ,MQ, α) > 0, and σ2

H1
= α2

N2 σ
2
1,1 + 1

n2 σ
2
2,1, where σ2

1,1 is the Q-reference-
side long-run variance, and σ2

2,1 is the test-side long-run variance under H1.

In both cases, √
n(∆GJSn − µH•)√

σ2
H•

d
=⇒ N (0, 1),

where the bullet • ∈ {0, 1} denotes the active hypothesis.

Proof of Theorem A3.14. We need to establish asymptotic normality of the test statistic ∆GJSn

by performing a second-order Taylor Expansion of it and determining the asymptotic mean and
asymptotic variance.

Since Lemma A3.11, adapted from Zhou et al. (2018), is a purely mathematical statement about the
local properties of the GJS function itself, irrespective of how its input variables are generated, this
lemma is equally applicable to Markov sources.

Thus, we can obtain Taylor Expansion of Generalized Jensen Shannon Divergence when it is applied
to Markov source. Consider two distinct transition matrices of two Markov sources M1,M2. Let M̂1

and M̂2 be two other empirical transition matrices in a neighborhood of (M1,M2). Let α be a fixed
positive constant. The GJS divergence has the following second-order Taylor approximation around
the point (M1,M2).

GJS(M̂1, M̂2, α) = GJS(M1,M2, α)

+
∑
s∈A

π1(s)
∑
a∈A

(M̂1(a|s)−M1(a|s))αι1(a|s) +
∑
s∈A

π2(s)
∑
a∈A

(M̂2(a|s)−M2(a|s))ι2(a|s)

+O
(
||M̂1 −M1||2 + ||M̂2 −M2||2

)
(106)
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where π1 and π2 denote the stationary distributions of M1 and M2, respectively. And ι1(a|s) and
ι2(a|s) are information densities:

ι1(a|s) := ι1((a|s)
∣∣M1,M2, α) = log

(1 + α)M1(a|s)
αM1(a|s) +M2(a|s)

(107)

ι2(a|s) := ι2((a|s)
∣∣M1,M2, α) = log

(1 + α)M2(a|s)
αM1(a|s) +M2(a|s)

(108)

Furthermore, because ∆GJSn = GJS
(
M̂P , M̂t, α

)
− GJS

(
M̂Q, M̂t, α

)
is constructed as the

difference of two GJS functions, we can directly apply the Lemma A3.11 to derive the Taylor
expansion ∆GJSn itself.

First, we define the following typical set, given any M ∈ Fk,.

Cn(M) :=

{
a1:n ∈ An : max

s∈A,a∈A
|M̂a1:n

(a|s)−M(a|s)| ≤
√

log n

n

}
(109)

This is a direct generalization of the IID case discussed in Zhou et al. (2018), and can be justified in
Lemma 3.1 of Wolfer (2023), which provides a precise asymptotic analysis of the confidence interval
width for estimating the transition matrix. Next we establish an upper bound on the probability of
atypical sequences. We need a two-step approach: first, ensure the number of visits Ns in sequence
a1:n to each state is sufficient, and then apply a concentration inequality under that condition.

P {a1:n /∈ Cn(M)} = P

{
max

s∈A,a∈A
|M̂a1:n

(a|s)−M(a|s)| >
√

log n

n

}
(110)

≤
∑
s∈A

P

{
max
a∈A
|M̂a1:n

(a|s)−M(a|s)| >
√

log n

n

}
(111)

≤
∑
s∈A

[
P
{
Ns <

nπ(s)

2

}
+ P

{
max
a∈A
|M̂a1:n

(a|s)−M(a|s)| >
√

log n

n

∣∣∣∣Ns ≥
nπ(s)

2

}]
(112)

≤
∑
s∈A

[
c1 exp(−c2nπ(s)) + 2k exp(−2nπ(s)

2
· log n

n
)

]
(113)

=
∑
s∈A

[
c1 exp(−c2nπ(s)) + 2k · n−π(s)

]
(114)

≤ k
[
c1 exp(−c2nπ(s)) + 2k · n−π(s)

]
(115)

:= τ(n,M) (116)

where π(s) denotes the stationary probability of state s, the first term of Eq. 113 follows Chernoff-
Hoeffding inequality for Markov Chains (Corollary 8.1 of Wolfer (2023)), and the second term of
Eq. 113 follows McDiarmid’s inequality, as its conditions of independence of variables and the
bounded differences property are met. This is because the analysis is performed on the sub-problem
of transitions from state s, conditional on the number of visits Ns = k (where k ≥ nπ(s)

2 ), which
ensures the subsequent k transitions can be treated as IID samples. A similar application of this
technique is detailed in Wolfer (2023). Moreover, the constant c1 depends on the initial state of the
chain, measuring its deviation from the steady state, while c2 depends on the mixing speed of the
chain, measuring how quickly it converges to its steady state. Thus,

P
{
aP1:N /∈ CN (MP ) or aT1:n /∈ Cn(MP ) or aQ1:N /∈ CN (MQ)

}
(117)

≤ P
{
aP1:N /∈ CN (MP )

}
+ P

{
aT1:n /∈ Cn(MP )

}
+ P

{
aQ1:N /∈ CN (MQ)

}
(118)

= τ(αn,MP ) + τ(n,MP ) + τ(αn,MQ) (119)
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This means as long as the observed Markov chain sequences are sufficiently long, the probability of
sequences being atypical can be made arbitrarily small.

Then, under H0, we derive the Taylor expansion of ∆GJSn = GJS
(
M̂P , M̂T , α

)
−

GJS
(
M̂Q, M̂T , α

)
around the true transition matrices (MP ,MQ). The first term is expanded

as

GJS
(
M̂P , M̂T , α

)
= GJS(MP ,MP , α)

+
∑
s∈A

πP (s)
∑
a∈A

(M̂P (a|s)−MP (a|s))αι1(a|s) +
∑
s∈A

πP (s)
∑
a∈A

(M̂T (a|s)−MP (a|s))ι2(a|s)

+O
(
||M̂P −MP ||2 + ||M̂T −MP ||2

)
(120)

where GJS(MP ,MP , α) = 0, and for a given symbol a and state s,

ι1(a|s) := ι1((a|s)
∣∣MP ,MP , α) = log

(1 + α)MP (a|s)
αMP (a|s) +MP (a|s)

= 0 (121)

ι2(a|s) := ι2((a|s)
∣∣MP ,MP , α) = log

(1 + α)MP (a|s)
αMP (a|s) +MP (a|s)

= 0 (122)

Thus GJS
(
M̂P , M̂T , α

)
= O

(
||M̂P −MP ||2 + ||M̂T −MP ||2

)
. Then, the second term of

∆GJSn is expanded as

GJS
(
M̂Q, M̂T , α

)
= GJS(MQ,MP , α)

+
∑
s∈A

πQ(s)
∑
a∈A

(M̂Q(a|s)−MQ(a|s))αι1(a|s) +
∑
s∈A

πP (s)
∑
a∈A

(M̂T (a|s)−MP (a|s))ι2(a|s)

+O
(
||M̂Q −MQ||2 + ||M̂T −MP ||2

)
(123)

where

ι1(a|s) := ι1((a|s)
∣∣MQ,MP , α) = log

(1 + α)MQ(a|s)
αMQ(a|s) +MP (a|s)

(124)

ι2(a|s) := ι2((a|s)
∣∣MQ,MP , α) = log

(1 + α)MP (a|s)
αMQ(a|s) +MP (a|s)

(125)

Therefore, we obtain the expansion for ∆GJSn and
∆GJSn = −GJS(MQ,MP , α)

−
∑
s∈A

πQ(s)
∑
a∈A

(M̂Q(a|s)−MQ(a|s))αι1(a|s)−
∑
s∈A

πP (s)
∑
a∈A

(M̂t(a|s)−MP (a|s))ι2(a|s)

+O

(
log n

n

)
(126)

Here we connect GJS to information densities,

GJS(MQ,MP , α) = αDKL(MQ,
αMQ +MP

1 + α
) + DKL(MP ,

αMQ +MP

1 + α
) (127)

= α
∑
s∈S

πQ(s)
∑
a∈A

MQ(a|s) log
MQ(a|s)

αMQ(a|s)+MP (a|s)
1+α

+
∑
s∈S

πP (s)
∑
a∈A

MP (a|s)
MQ(a|s)

αMQ(a|s)+MP (a|s)
1+α

(128)

= α
∑
s∈S

πQ(s)
∑
a∈A

MQ(a|s) log
(1 + α)MQ(a|s)

αMQ(a|s) +MP (a|s)
+
∑
s∈S

πP (s)
∑
a∈A

MP (a|s)
(1 + α)MQ(a|s)

αMQ(a|s) +MP (a|s)
(129)

= α
∑
s∈S

πQ(s)
∑
a∈A

MQ(a|s)ι1(a|s) +
∑
s∈S

πP (s)
∑
a∈A

MP (a|s)ι2(a|s) (130)
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where ι1(a|s) and ι2(a|s) are defined in Eq. 124 and Eq. 125. We subsititute Eq. 130 into Eq. 126
and obtain

∆GJSn = −α
∑
s∈A

πQ(s)
∑
a∈A

M̂Q(a|s)ι1(a|s)−
∑
s∈A

πP (s)
∑
a∈A

M̂T (a|s)ι2(a|s) +O

(
log n

n

)
(131)

Recall that M̂Q(a|s) = NQ(s,a)
NQ(s) , where NQ(s) is the number of occurences of state s in aQ1:N , and

NQ(s, a) the number of times s is followed by a in aQ1:N . According to Ergodic Theorem (Strong
Law of Large Numbers, e.g. Levin & Peres (2017), Theorem C.1), we consider a long Markov chain
to be time-homogeneous, that is for a state s, we have NQ(s) ≈ N · πQ(s). Based on this, we
simplify the first term of Eq.131.∑

s∈A
πQ(s)α

∑
a∈A

M̂Q(a|s)ι1(a|s) = α
∑
s∈A

πQ(s)
∑
a∈A

NQ(s, a)

NQ(s)
ι1(a|s) (132)

=
α

N

∑
s∈A

∑
a∈A

NQ(s, a)ι1(a|s) (133)

=
α

N

N∑
i=2

ι1(a
Q
i |a

Q
i−1) (134)

Similarly, the second term of Eq.131 is simplified as:∑
s∈A

πP (s)
∑
a∈A

M̂T (a|s)ι2(a|s) =
1

n

n∑
i=2

ι2(a
T
i |aTi−1) (135)

Combining Eq.134 and Eq.135, we get

∆GJSn = − α
N

N∑
i=2

ι1(a
Q
i |a

Q
i−1)−

1

n

n∑
i=2

ι2(a
T
i |aTi−1) +O

(
log n

n

)
(136)

Then we compute the asymptotic mean and asymptotic variance of Eq. 136. By comparing Eq. 130
and Eq. 131, we obtain the asymptotic mean.

E[∆GJSn] = −GJS(MQ,MP , α) (137)

Eq. 136 shows that the random behavior of ∆GJSn is primarily determined by two additive functionals
on Markov chains. Since the two reference sequences, aQ1:N and aT1:n are mutually independent, the
total variance is the sum of their individual variances.

Var(∆GJSn) = Var(− α
N

N∑
i=2

ι1(a
Q
i |a

Q
i−1)) + Var(− 1

n

n∑
i=2

ι2(a
T
i |aTi−1)) (138)

=
α2

N2
Var(

N∑
i=2

ι1(a
Q
i |a

Q
i−1)) +

1

n2
Var(

n∑
i=2

ι2(a
T
i |aTi−1)) (139)

Here we use Lemma A3.12 and A3.13 to compute the asymptotic variance for ∆GJSn. We begin
by defining a new Markov chain whose state at time i is given by bi := (aQi−1, a

Q
i ). Then we can

define a function f1 that acts on the state bi, f1(bi) =:= ι1(a
Q
i |a

Q
i−1). With these definitions, we

have successfully converted the original sum over transitions into a sum over the states of the new
chain, which perfectly fits the framework of Lemma A3.12 and A3.13.

N∑
i=2

ι1(a
Q
i |a

Q
i−1)⇔

N∑
i=2

f1(bi) (140)
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According to Lemma A3.13, the asymptotic variance σ2
1 of the additive functional

∑N
i=2 f1(bi) is

given by

σ2
1,0 = 2 lim

ϵ→0
⟨g1,ϵ, f1⟩ − ∥f1∥2 (141)

Now we need to calculate the two main components of this formula. The stationary distribution π′ of
the new chain is determined by π′ = πQ(s) ·MQ(a|s). By Eq. 130, we get

µ1 = Eπ′ [f1(b)] =
∑

(s,a)∈A×A

π′(s, a)f1(s, a) (142)

=
∑
s∈A

πQ(s)
∑
a∈A

MQ(a|s)ι1(a|s) (143)

= DKL(MQ,
αMQ +MP

1 + α
) (144)

We obtain the centered function

f̃1(s, a) = f1(s, a)− µ1 = ι1(a|s)− µ1 (145)

Then according to Lemma A3.13, we calculate the squared norm ∥f̃1∥2, which is the variance of f̃1
under the stationary distribution π′.

∥f̃1∥2 = Varπ′(f1) = Eπ′ [(f̃1(b))
2] =

∑
(s,a)∈A×A

π′(s, a)(ι1(a|s)− µ1)
2 (146)

Calculating the inner product ⟨g1,ϵ, f̃1⟩ requires first finding g1,ϵ by solving the resolvent equation:

g1,ϵ = ((1 + ϵ)I −Mb)
−1f̃1 (147)

where Mb is the transition operator of the new chain and can be constructed from MQ. Each element
of the Mb matrix, Mb((s, a), (s

′, a′)), represents the probability of the new chain transitioning from
state (s, a) to state (s′, a′).

Mb((s, a), (s
′, a′)) =

{
MQ(a

′|s′) If s′ = shift(s, a)

0 otherwise
(148)

where shift(s, a) denotes an operation that removes the first element of the sequences s and appends
a to the end. After solving g1,ϵ, we compute the inner product:

⟨g1,ϵ, f1⟩ =
∑

(s,a)∈A×A

π′(s, a)g1,ϵ(s, a)f̃1(s, a) (149)

We take the limit limϵ→0⟨g1,ϵ, f1⟩, then substitute the limit and the value of Eq. 146 into Eq. 141 get
the final asymptotic variance σ2

1,0. Similarly, we use the same method to calculate the asymptotic
variance σ2

2,0 = Var(
∑n

i=2 ι2(a
T
i |aTi−1)). While the asymptotic variance does not generally admit

a closed-form expression, Lemma A3.12 and A3.13 provide us with constructive representations.
They can be used to compute or approximate the asymptotic variance in practice.

Now we have proved that under H0, the asymptotic normality of ∆GJSn, that is
√
n(∆GJSn − µ)

σH0

d−→ N (0, 1) (150)

where µH0
= E[∆GJSn] = −GJS(MQ,MP , α) and variance σ2

H0
= α2

N2σ
2
1,0 +

1
n2σ

2
2,0.

Analogously, under H1, we can prove the asymptotic normality of ∆GJSn with µH1 =

GJS(MP ,MQ, α) and variance σ2
H1

= α2

N2σ
2
1,1 + 1

n2σ
2
2,1, where σ2

1,1 = Var(
∑N

i=2 ι1(a
P
i |aPi−1))

and σ2
2,1 = Var(

∑n
i=2 ι2(a

T
i |aTi−1)). As discussed in the variance framework above, they can be

represented by the resolvent formulation as in Eq. 141 and Eq. 147.
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A4 EXPERIMENTS: CONFIGURATIONS AND MORE RESULTS

A4.1 IMPLEMENTATION AND CONFIGURATIONS

Our implementation is adapted from MAUVE ((Pillutla et al., 2023)) and Lastde ((Xu et al., 2025)).
All detection experiments were conducted on one RTX 4090, while data generation ran on an A40
GPU. We use 9 open-source models and 3 closed-source models for generating text. Open-source
models include GPT-XL (Radford et al., 2019), GPT-J-6B (Wang & Komatsuzaki, 2021), GPT-
Neo-2.7B (EleutherAI, 2021), GPT-NeoX-20B (Black et al., 2022), OPT-2.7B (Zhang et al., 2022),
Llama-2-13B (Touvron et al., 2023), Llama-3-8B (Llama Team, 2024), Llama-3.2-3B (Meta AI,
2024), and Gemma-7B (Gemma Team, Google DeepMind, 2024). Closed-source models include
Gemini-1.5-Flash (Gemini Team, Google, 2024), GPT-4.1-mini (OpenAI, 2025a), and GPT-5-Chat
(OpenAI, 2025b).

Generation Pipeline In our generation pipeline, for each dataset, we filtered out samples with text
length less than 150 words and always condition only on the first 30 tokens of the human text. Each
machine passage is generated between 100 and 200 tokens. After generation, we pair each human
passage with its corresponding machine passage and truncate both to the shorter side (measured
in words). Thus every human-machine pair used for detection has the same length and there is no
systematic length advantage for either class.

Default Decoding Strategy In our experiments, unless otherwise specified, for each model family
we use a fixed default decoding configuration. Concretely, for open-source models on HuggingFace
we use the standard decoding configuration temperature = 1.0, top-p = 1.0, top-k = 50. For GPT-4.1-
mini and GPT-5-chat (OpenAI API), we follow the default settings temperature = 1.0, top-p = 1.0
(no top-k parameter). For Gemini, we use the default settings of the Gemini API, temperature = 1.0,
top-p = 0.95, top-k = 64.

A4.2 MORE RESULTS

A4.2.1 EXPANSION OF TABLE 1 AND TABLE 2

Table 9,10,11, 12,13, and 14 show the detection results on XSum, WritingPrompts,and SQuAD
datasets. The performance is the average over three detections, where each detection is conducted on
a randomly sampled test set.

Gemini-1.5-Flash GPT-4.1-mini GPT-5-Chat Avg

Likelihood 53.2 ±1.31 55.54 ±1.09 43.03 ±2.69 50.59
LogRank 52.01 ±2.53 57.96 ±2.81 45.86 ±3.88 51.94
Entropy 63.19 ±1.78 51.7 ±1.02 56.8 ±2.02 57.23
DetectLRR 49.85 ±2.54 62.26 ±0.91 54.14 ±3.6 55.42
Lastde 59.26 ±3.39 55.97±2.18 45.3 ±1.34 53.51
Lastde++ 76.9 ±1.62 69.29 ±2.00 48.14 ±3.28 64.78
DNA-GPT 60.85 ±1.41 55.7 ±0.46 45.4 ±0.77 53.98
Fast-DetectGPT 75.52 ±1.58 66.7 ±1.45 48.51 ±2.01 63.58
DetectGPT 62.58 ±1.31 61.25 ±3.08 50.17 ±0.29 58
DetectNPR 58.77 ±2.47 62.17 ±1.50 53.32 ±0.97 58.09
R-Detect 63.68 ±0.77 63.43 ±2.31 58.74 ±1.62 61.95
Binoculars 74.84 ±2.12 61.12 ±1.47 45.94 ±0.67 60.63
FourierGPT 52.06 ±0.39 55.53 ±2.31 61.1 ±1.1 56.23
SurpMarkk=6 70.24 ±0.77 84.07 ±2.21 84.16 ±1.01 79.49
SurpMarkk=7 71.22 ±0.32 82.52 ±1.11 87.02 ±1.4 80.25
SurpMarkk=8 69.03 ±1.74 85.78 ±0.76 86.38 ±0.94 80.40

Table 9: Detection results on XSum for text generated by 3 closed-source models under the black-box
setting.
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Gemini-1.5-Flash GPT-4.1-mini GPT-5-Chat Avg

Likelihood 80.53 ±1.29 82.95 ±1.23 62.00 ±2.95 75.16
LogRank 74.73 ±2.64 80.66 ±2.81 58.01 ±4.04 71.13
Entropy 46.34 ±3.11 19.00 ±6.43 25.23 ±4.08 30.19
DetectLRR 48.22 ±2.7 68.50 ±1.06 43.92 ±2.48 53.55
Lastde 41.09 ±2.88 55.72 ±2.62 30.64 ±1.59 42.48
Lastde++ 76.90 ±1.05 68.49 ±2 30.64±3.23 58.68
DNA-GPT 78.19 ±0.87 63.70 ±1.73 45.60 ±3.2 62.50
Fast-DetectGPT 91.96 ±0.31 70.23 ±1.91 30.01 ±4.07 64.07
DetectGPT 87.12 ±0.49 78.04 ±0.9 58.72 ±2.01 74.63
DetectNPR 80.47 ±1.23 75.80 ±0.97 55.97 ±2.31 70.75
R-Detect 83.31 ±0.89 78.79 ±1.92 77.06 ±0.48 79.72
Binoculars 95.35 ±0.1 80.55±0.34 42.26±0.67 72.72
FourierGPT 77.8 ±0.36 77.96 ±1.05 74.45 ±1.72 76.74
SurpMarkk=6 86.64 ±2.33 85.80 ±0.57 82.25 ±1.03 84.90
SurpMarkk=7 86.68 ±1.4 83.64 ±0.33 83.73 ±0.52 84.68
SurpMarkk=8 89.43 ±0.35 87.27 ±0.14 83.56 ±0.67 86.75

Table 10: Detection results on WritingPrompts for text generated by 3 closed-source models under
the black-box setting.

Gemini-1.5-Flash GPT-4.1-mini GPT-5-Chat Avg

Likelihood 35.74 ±3.46 61.82 ±3.21 43.83 ±2.01 47.13
LogRank 34.86 ±2.61 61.78 ±3.52 45.62 ±3.66 47.42
Entropy 65.55 ±1.08 45.46 ±1.43 58.94 ±0.65 56.65
DetectLRR 35.46 ±1.84 59.10 ±2.11 51.42 ±2.50 48.66
Lastde 44.03 ±1.55 60.15 ±2.92 49.95 ±3.65 51.38
Lastde++ 52.47 ±1.86 66.90 ±2.18 51.76 ±3.02 57.04
DNA-GPT 47.15 ±0.93 50.74 ±2.88 58.45 ±1.18 52.11
Fast-DetectGPT 49.98 ±1.33 68.04 ±1.19 51.64 ±1.98 56.55
DetectGPT 57.87 ±2.65 70.95 ±0.82 54.90±0.83 61.24
DetectNPR 55.63 ±2.91 74.53 ±1.29 55.67 ±2.13 61.94
R-Detect 60.86 ±1.33 72.69 ±1.41 67.45 ±2.37 67
Binoculars 53.34 ±2.53 73.69±0.55 60.76 ±0.67 62.6
FourierGPT 53.89 ±2.57 55.66 ±2.25 58.92 ±2.24 56.16
SurpMarkk=6 66.84 ±1.11 70.87 ±0.86 68.57 ±1.48 68.76
SurpMarkk=7 67.51 ±1.3 69.27 ±1.83 73.23 ±0.87 70.00
SurpMarkk=8 59.53 ±1.49 72.27 ±1.32 74.81 ±1.02 68.87

Table 11: Detection results on SQuAD for text generated by 3 closed-source models under the
black-box setting.

GPT2-XL GPT-J-6B GPT-Neo-2.7B GPT-NeoX-20B OPT-2.7B Llama-2-13B Llama-3-8B Llama-3.2-3B Gemma-7B Avg

Likelihood 76.5 ±0.63 62.74 ±1.07 58.36 ±1.62 60.58 ±1.8 68.51 ±1.37 92.22 ±0.48 93.41 ±0.82 51.61 ±0.62 55.13 ±1.18 68.78
LogRank 80.16 ±0.89 67.83 ±1.13 64.54 ±0.98 63.58 ±1.25 72.33 ±1.56 94.56 ±0.32 95.05 ±0.17 59.35 ±0.08 59.13 ±0.68 76.89
Entropy 59.65 ±1.52 56.37 ±0.66 63.76 ±1.43 55.32 ±1.11 52.88 ±0.68 42.33 ±2.58 29.31 ±3.19 55±2.89 53.2±1.48 50.40
DetectLRR 83.2 ±0.83 76.5 ±0.88 76.94 ±1.09 68.4 ±1.35 77.49 ±0.54 95.74 ±0.23 94.85 ±0.08 75.05 ±0.31 66.42 ±1.42 81.42
Lastde 91.97 ±0.44 77.99 ±0.89 82.49 ±0.85 72.12 ±1.63 77.85 ±0.68 92.01 ±0.89 94.29 ±0.38 59.52 ±0.05 61.09±1.27 82.57
Lastde++ 98.99 ±0.21 85.38±0.63 87.5±0.11 80.3 ±0.92 87.93 ±0.54 92.52 ±0.43 95.9 ±0.14 59.9 ±0.08 65.68 ±0.97 87.51
DNA-GPT 71.43 ±1.33 55.47 ±2.85 54.43 ±3.2 56.31 ±1.86 58.2 ±1.72 93.69 ±0.36 96.54 ±0.12 50.37 ±0.07 55.29 ±1.04 70.70
Fast-DetectGPT 95.54 ±0.34 78.6 ±0.56 81.84±0.88 83.76 ±1.28 90.55 ±0.77 97.77±0.05 96.78 ±0.21 61.86 ±1.42 63.2 ±1.18 84.71
DetectGPT 92.88 ±1.3 71.86 ±1.79 76.67 ±2.01 78.06 ±0.87 82.88 ±1.23 82.79 ±0.62 83.61 ±1.25 56.06±2.65 61.6 ±2.94 77.18
DetectNPR 91.87 ±1.13 72.36 ±1.46 78.83 ±0.66 76.76 ±1.48 84.06 ±1.21 94.29 ±0.86 92.31 ±0.3 59.62 ±1.77 60.52 ±1.78 80.05
R-Detect 72.87 ±1.49 59.86 ±1.11 67.59 ±0.48 63.45 ±2.45 69.75 ±0.71 72.11 ±0.93 81.06 ±0.84 62.43 ±0.82 46.75 ±0.73 66.21
Binoculars 98.87 ±0.13 74.66 ±0.48 78.05±1.27 76.18±1.22 79.89 ±0.79 96.78 ±0.21 96.19 ±0.16 48.22 ±0.71 63.71 ±0.72 79.17
FourierGPT 51.8 ±1.39 52.52 ±2.02 50.44 ±2.96 59.17 ±0.28 48.16 ±3.01 63.38 ±2.42 59.74 ±3.4 51.98 ±1.73 53.62 ±0.78 54.53
SurpMarkk=6 96.95 ±0.43 88.35 ±1.02 92.26 ±0.65 81.58 ±0.72 90.88 ±0.1 96.87 ±0.26 97.77 ±0.35 73.96 ±0.86 73.01 ±0.98 87.96
SurpMarkk=7 97 ±0.8 89.26 ±0.48 92.92 ±0.06 82.45 ±1.03 91.16 ±1.08 97.09 ±0.45 97.48 ±0.31 73.07 ±0.6 72.97 ±0.85 88.16
SurpMarkk=8 95.55 ±0.21 85.49 ±0.63 88.33 ±0.83 82.35 ±0.49 90.19 ±0.41 96.83 ±0.16 97.24±0.08 72.92 ±1.02 70.11 ±0.98 86.56

Table 12: Detection results on XSum for text generated by 9 open-source models under the black-box
setting.
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GPT2-XL GPT-J-6B GPT-Neo-2.7B GPT-NeoX-20B OPT-2.7B Llama-2-13B Llama-3-8B Llama-3.2-3B Gemma-7B Avg

Likelihood 94.55 ±0.63 88.73 ±1.11 89.67 ±0.84 87.12 ±1.13 85.15 ±2.55 99.48 ±0.2 99.61 ±0.08 85.95 ±0.35 83.16 ±1.45 90.38
LogRank 96.04±0.43 91.78 ±1.18 92.20 ±1.22 89.68 ±0.57 89.96 ±0.62 99.59 ±0.01 99.81 ±0.11 89.09 ±1.05 86.00 ±0.86 92.68
Entropy 34.72 ±2.75 33.64 ±2.81 32.82 ±2.13 32.63 ±1.74 40.88 ±2.17 5.83 ±3.74 8.42 ±4.86 53.00 ±2.55 37.16 ±2.4 31.01
DetectLRR 96.96 ±0.31 95.31 ±0.42 94.85 ±0.16 92.03 ±0.32 95.68 ±0.64 98.57 ±0.12 99.81 ±0.03 92.44 ±0.17 89.19 ±0.03 94.98
Lastde 98.50 ±0.2 93.94 ±0.12 95.97 ±0.33 90.36 ±0.82 96.05 ±0.18 97.97±0.48 98.69 ±0.23 92.04 ±0.1 84.96 ±0.56 94.28
Lastde++ 99.68 ±0.11 95.96 ±0.51 98.86 ±0.1 92.68 ±0.74 98.39 ±0.12 99.14 ±0.08 99.56 ±0.06 95.04 ±0.3 92.59 ±0.65 96.88
DNA-GPT 90.53 ±1.62 85.34 ±1.13 85.72 ±0.7 83.01 ±1.41 85.05 ±1.29 98.88 ±0.12 99.65 ±0.03 84.47 ±0.65 80.60 ±0.81 88.14
Fast-DetectGPT 99.67 ±0.02 93.80 ±0.6 96.62 ±0.31 92.22 ±0.27 94.99 ±0.52 99.56 ±0.01 99.84 ±0.04 93.55 ±0.53 89.36±1.03 95.51
DetectGPT 95.88 ±0.2 85.83 ±1.15 91.12 ±1.52 85.17 ±1.84 90.13 ±1.21 92.67 ±0.63 93.10 ±0.61 80.08 ±1.07 83.10 ±2.3 88.56
DetectNPR 98.29 ±0.2 89.77 ±0.33 93.02 ±0.92 87.96 ±0.55 92.36 ±1.43 98.20 ±0.51 98.52 ±0.18 85.22±0.5 86.71 ±1.03 92.23
R-Detect 86.68 ±1.35 75.93±1.06 75.23 ±0.59 73.83 ±1.1 51.03±2.57 79.69 ±0.88 82.79 ±0.93 71.2 ±2.36 72.62 ±0.89 74.33
Binoculars 99.6 ±0.03 93.7 ±0.51 94.96 ±0.21 93.22 ±0.21 91.33 ±0.86 98.9 ±0.16 99 ±0.06 93.4 ±0.27 89.22 ±0.82 94.81
FourierGPT 60.23 ±4.8 59.81 ±1.62 68.08 ±1.46 60.6 ±0.29 56.95±3.04 91.4 ±0.74 91.61 ±1.14 58.68 ±1.28 61.52 ±0.72 67.65
SurpMarkk=6 99.44 ±0.06 97.60 ±0.22 98.32 ±0.57 94.38 ±0.16 97.22 ±0.16 99.47 ±0.07 99.65 ±0.1 92.71 ±1.45 89.28 ±1.69 96.45
SurpMarkk=7 99.27 ±0.12 97.29 ±0.61 97.63 ±0.17 94.31 ±0.12 96.79 ±0.52 99.53 ±0.06 99.86 ±0.02 93.61 ±0.41 89.42 ±0.95 96.41
SurpMarkk=8 99.9 ±0.01 96.85 ±1.06 97.61 ±0.38 93.93 ±0.24 96.48 ±0.4 99.59 ±0.03 99.87 ±0.03 91.65±0.37 90.37 ±1.43 96.25

Table 13: Detection results on WritingPrompts for text generated by 9 open-source models under the
black-box setting.

GPT2-XL GPT-J-6B GPT-Neo-2.7B GPT-NeoX-20B OPT-2.7B Llama-2-13B Llama-3-8B Llama-3.2-3B Gemma-7B Avg

Likelihood 84.00 ±2.33 73.00 ±3.12 71.93 ±2.95 68.40 ±1.32 78.01 ±1.25 91.47 ±1.43 88.77 ±1.01 58.11 ±1.86 59.10 ±1.58 74.75
LogRank 88.39 ±2.06 78.14 ±0.96 78.13 ±2.26 72.85 ±1.45 83.68 ±1.2 93.55±0.59 90.48 ±1.3 64.69±0.64 62.41 ±1.72 79.15
Entropy 58.93 ±3.11 51.43 ±2.6 56.24 ±2.91 49.86 ±1.68 52.88 ±3.1 38.92 ±2.37 38.72 ±2.71 51.00 ±2.26 50.18 ±1.82 49.80
DetectLRR 93.05 ±0.11 85.61 ±1.24 89.56 ±1.01 80.38 ±1.19 92.28 ±1.05 94.98 ±0.35 91.47 ±1.45 77.14 ±1.09 70.89 ±2.31 86.15
Lastde 97.45 ±0.37 85.71 ±1.45 88.82 ±0.44 78.01 ±1.87 92.78 ±1.18 89.88 ±1.03 90.89 ±0.72 67.41 ±2.9 62.40 ±2.55 83.71
Lastde++ 99.72 ±0.05 93.27 ±0.42 96.51 ±0.05 82.42 ±0.3 96.13 ±0.21 94.85 ±0.14 94.72 ±0.02 77.47 ±0.32 72.43±0.24 89.72
DNA-GPT 83.97 ±2.21 71.23 ±2.17 78.21±1.45 71.93 ±1.86 78.33 ±1.43 95.15±0.49 95.00 ±0.32 59.52 ±1.61 60.06 ±1.67 77.04
Fast-DetectGPT 98.60 ±0.05 88.09 ±1.05 89.00 ±1.18 81.79 ±1.58 92.89 ±0.6 97.32 ±0.28 97.32 ±0.05 67.56 ±2.47 69.29 ±0.61 86.87
DetectGPT 94.59 ±0.43 80.95 ±2.04 86.34 ±1.21 69.04 ±2.6 80.45 ±2.84 84.08 ±1.65 82.13 ±1.72 56.56 ±3.7 62.44 ±1.54 77.40
DetectNPR 94.64 ±0.26 83.59 ±1.24 87.34 ±1.29 75.01±2.13 83.07 ±1.78 93.09 ±0.69 90.18 ±1.05 63.52 ±2.43 67.25 ±1.7 81.97
R-Detect 63.58 ±0.97 55.04 ±0.64 60.28 ±1.67 52.77 ±2.64 51.03 ±0.72 88.15 ±0.69 81.06 ±0.87 53.03 ±2.77 47.02 ±3.4 61.33
Binoculars 99.09 ±0.04 88.91 ±1.03 89.49 ±0.46 76.66 ±1.21 89.49 ±0.27 95.1 ±0.02 94.04 ±0.3 63.46 ±0.46 67.77 ±2.58 84.89
FourierGPT 52.12±3.12 50.5 ±2.56 56.5 ±2.79 49.76 ±1.82 52.3 ±2.61 62.49 ±0.86 64.82 ±1.22 53.83 ±0.72 52.38 ±2.49 54.97
SurpMarkk=6 97.88 ±0.55 92.93 ±0.82 94.99 ±0.3 84.39±0.18 95.37 ±0.6 95.89 ±0.49 93.76 ±0.35 78.54±1.97 69.92 ±0.54 89.30
SurpMarkk=7 98.77 ±0.72 92.74 ±0.45 95.72 ±0.38 82.45 ±1.03 96.68 ±0.65 96.13 ±0.3 94.17 ±0.57 75.55 ±1.21 68.27 ±0.95 88.94
SurpMarkk=8 98.76 ±0.66 90.78 ±0.23 94.56±0.1 79.36 ±1.67 97.26 ±0.21 94.81 ±0.41 93.32 ±0.16 76.55 ±1.2 67.47 ±0.83 88.10

Table 14: Detection results on SQuAD for text generated by 9 open-source models under the black-
box setting.

A4.2.2 EMPIRICAL CALIBRATION OF THE BIN-COUNT SCALING CONSTANT

Our intention in Section 4.2 is justify the scaling law k = Θ(N1/5). In practice, for each dataset
we treat the theorem as providing the functional form k = CN1/5 and then select k by a small grid
search. To handle constant C, we examined the ratio k

N1/5 across several reference size and found it
to be consistently around 0.8. This suggests that in our regime the implicit constant is approximately
C ≈ 0.8, and that the empirically chosen k is well aligned with the theoretical scaling law.

Number of ref samples N (approx. total transitions) Empirical best k N1/5 k

N1/5

100 15,000 6 6.84 0.88
300 45,000 7 8.52 0.82
400 60,000 7 9.03 0.78
600 90,000 7 9.80 0.71
900 135,000 9 10.62 0.85

Table 15: Scaling of the empirically optimal number of bins k with the total number of transitions N .

A4.2.3 EMPIRICAL VALIDATION OF THE ASYMPTOTIC NORMAL APPROXIMATION

While the asymptotic variance in Theorem 4.4 does not provide a simple closed-form expression,
Appendix A3.3.3 along with Lemma A3.13 give an explicit numerical procedure to solve it. To
quantitatively compare this theoretical variance with empirical fluctuations, we proceed as follows.
We first compute the theoretical variance using the estimated Markov kernels from reference data.
Then we estimate the empirical variance of ∆GJSn in detection procedure. Table 16 reports theoretical
variance and empirical variance with test length 250. Overall, the theoretical variance captures the
right order of magnitude ∆GJSn fluctuations, so we interpret it as a conservative asymptotic scale
parameter rather than a precise finite-sample variance estimator.

Finally, to assess the distributional shape, we ran Shapiro-Wilk tests on the obtained ∆GJSn score,
as shown in Table 17, the Shapiro-Wilk statistics are close to 1 and the p-values are not small
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Model Emp σ2 (Human) Emp σ2 (LM) Th σ2 (Human) Th σ2 (LM) Ratio Th/Emp (Human) Ratio Th/Emp (LM)

Llama3-8B 1.15 × 10−5 1.06 × 10−5 2.48 × 10−5 7.50 × 10−5 2.16 7.08
Llama3.2-3B 1.12 × 10−5 9.93 × 10−6 2.73 × 10−5 9.11 × 10−5 2.44 9.17
Gemma-7B 1.50 × 10−6 5.96 × 10−7 3.56 × 10−6 2.43 × 10−6 2.37 4.08

Table 16: Comparison between empirical and theoretical variances of ∆GJS under human and LM
text.

Setting SQuAD@GPT-5-chat WritingPrompts@Llama3-8B XSum@Qwen3-8B

H1 (LM text) stat 0.9952 0.9856 0.9974
H1(LM text) p-value 0.9078 0.1203 0.9969
H0 (human text) stat 0.9876 0.9854 0.9929
H0 (human text) p-value 0.2032 0.1143 0.6632

Table 17: Shapiro-Wilk test statistics and p-values for ∆GJSn under LM-generated (H1) and human
(H0) text.

(larger than 0.05). This indicates no evidence against normality and empirically supports the central-
limit-theorem-based approximation in Theorem A3.3.3, consistent with the variance comparison
above.

A4.2.4 SCORE DISTRIBUTION

Figure 7: SurpMark’s score distribution.

A4.2.5 EFFECT OF TEST LENGTH

A4.2.6 TPR

In Table 18, we include TPR@FPR=1% and 5% for SurpMark and two strong baselines (Lastde++
and Fast-DetectGPT) across evaluation settings. Overall, these results indicate that SurpMark is
particularly effective in the low-false-positive regime.

A4.2.7 CROSS-DOMAIN GENERALIZATION

A4.2.8 DECODING STRATEGIES

In Table 20, to evaluate the effect of decoding stratigy, we use standard decoding strategies as
described in Appendix A4.1, varying one hyperparameter at a time while keeping the others at their
default values. For open-source models on HuggingFace and Gemini, we (i) set top-p = 0.96, (ii) set
top-k = 40, (iii) set temperature = 0.7. For GPT-5-chat, we vary one parameter at a time: top-p = 0.96
or temperature = 0.7 (no top-k parameter is exposed). Across all three models and decoding strategies,
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Figure 8: AUROC vs test length.

Method XSum@
GPT-5-Chat

WritingPrompts@
GPT-4.1-mini

XSum@
Llama2-13B

SQuAD@
GPT-Neo-2.7B

WritingPrompts@
Llama3-8B

HC3-Chi-
Psy

Lastde++ TPR@FPR=1% 4.00 6.00 76.67 53.33 97.33 22.00
TPR@FPR=5% 12.67 18.67 82.67 81.33 99.33 31.33

Fast-DetectGPT TPR@FPR=1% 2.00 3.30 80.67 47.33 94.67 26.00
TPR@FPR=5% 4.00 22.00 86.67 77.33 98.00 40.00

SurpMark TPR@FPR=1% 31.33 31.33 75.33 41.33 100.00 90.00
TPR@FPR=5% 37.33 50.00 90.00 90.00 100.00 97.33

Table 18: TPR at fixed FPR levels (1% and 5%) for different detectors and datasets.

SurpMark either matches or exceeds the best baseline, and is especially strong under top-p/top-k
sampling.

A4.2.9 PARAPHRASING ATTACK

Here we examine the robustness of detection methods to the paraphrasing attack. For SurpMark, we
consider three paraphrase scenarios. Ref-P applies paraphrasing only to the offline references. Test-P
paraphrases only the incoming text, which is the most realistic case in practice. Both-P paraphrases
both sides. We follow the setup of Lastde++ and Fast-DetectGPT, and use T5-Paraphraser to perform
paraphrasing attacks on texts. Under the practically most relevant Test-P case, the losses are minimal.
Under Ref-P, the changes are modest. Under Both-P the drop is larger but still competitive. It shows
that SurpMark’s surprisal-dynamics features are largely invariant to semantics-preserving rewrites.

A4.2.10 PROMPT-ENGINEERED ADVERSARIAL ATTACKS

In this section, we run experiments with simple prompt-engineered attacks beyond plain paraphrasing.
Specifically, for the XSum and WritingPrompts datasets, we design two types of attacks: (attack 1)
prompts that ask the model to mimic human writing style, using instructions such as “Messy casual
summary of the news article.” or “Short story in a quick, slightly messy human style.”; and (attack 2)
prompts that explicitly instruct the model to evade detection, such as “Write a summary of the article
that is designed to evade AI-text detectors.” or “Continue the story in a way that is hard for AI-text
detectors.” See Table 22 for comparison. “SurpMark ref-attack” applies the adversarial prompts
only when generating the reference machine texts, “SurpMark test-attack” applies them only to the
test texts, and “SurpMark both-attack” applies the same adversarial prompts to both the reference
and test texts. Across both datasets, SurpMark variants (especially the test-attack and both-attack
settings) experience much smaller accuracy drops under all three attacks, showing the strongest
overall robustness.

A4.2.11 ABLATION ON NECESSITY OF FIRST-ORDER MARKOV CHAIN

In Table 23, we evaluate the necessity of the use of first-order markov chain by comparing against the
1-gram distribution of surprisal states. Across the datasets, the first-order Markov features outperform
the 1-gram distribution, with especially large gains on GPT-5-chat. This shows that modeling surprisal
transitions, rather than only the stationary distribution, is particularly important for harder-to-detect
models.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Test self-ref WritingPrompts-as-ref XSum-as-ref SQuAD-as-ref

XSum@Gemma_7b 72.97 68.32 – 73.81
WritingPrompts@Gemma_7b 89.42 – 86.60 90.00
SQuAD@Gemma_7b 68.27 72.92 70.44 –
XSum@GPT-Neox-20b 82.45 82.52 – 81.80
WritingPrompts@GPT-Neox-20b 94.31 – 93.45 92.48
SQuAD@GPT-Neox-20b 82.45 81.43 83.02 –

Table 19: AUROC of SurpMark under different reference choices across datasets and models.

Method / Data@Model XSum@OPT-2.7B XSum@Gemma-7B WritingPrompts@GPT-5-chat
top-p top-k temperature top-p top-k temperature top-p temperature

Likelihood 79.24 67.95 93.53 66.73 55.56 87.56 57.29 66.99
LogRank 82.01 72.11 94.72 68.28 59.25 88.69 55.03 65.60
Entropy 46.87 56.53 45.27 49.16 52.12 45.06 36.24 33.68
LRR 83.43 77.88 93.48 68.66 67.86 86.22 47.28 59.38
Lastde 86.09 81.26 94.19 68.34 58.24 85.03 39.38 47.74
Lastde++ 92.64 87.38 97.24 81.43 69.42 93.15 45.15 57.26
Fast-DetectGPT 90.64 85.03 98.28 80.41 68.70 95.99 41.61 57.54
SurpMark k = 6 92.41 87.81 96.65 82.13 72.38 93.79 75.80 77.08
SurpMark k = 7 93.90 87.20 95.96 80.90 77.88 93.57 77.32 77.08

Table 20: AUROC of different detectors across decoding parameters, datasets, and models.

A4.2.12 ANALYSIS OF PERFORMANCE DISPARITY: MARGINAL VS. TRANSITION
SURPRISAL

We investigate the performance disparity observed between closed-source (e.g., GPT-5-chat) and
open-source models. Our analysis suggests that the distinguishing factor lies in the divergence
between the generator and human text at the marginal surprisal level versus the transitional level.

For many open-source models, the marginal surprisal gap—the difference in the stationary distribution
of token surprisals—is sufficiently large. Consequently, detectors relying on marginal statistics (e.g.,
Likelihood, LogRank, Entropy) perform well, and the relative gain from SurpMark is moderate.
Conversely, for advanced closed-source models, this marginal gap is nearly negligible, rendering
unigram-based methods ineffective. However, a significant transition gap persists in the surprisal
dynamics. SurpMark captures these temporal dependencies, explaining its substantial performance
advantage on proprietary models.

To quantify this, we compute the Jensen-Shannon (JS) divergence for both marginal surprisal
distributions (JSmarginal) and first-order transition distributions (JStransition) between human and
machine text. As shown in Table 24, for GPT-5-chat, the ratio of transition divergence to marginal
divergence is approximately 30, indicating that the signal primarily resides in the dynamics. In
contrast, for GPT-J-6B, this ratio is close to 1, suggesting that marginal statistics alone are nearly as
informative as transition statistics.

A4.2.13 THRESHOLD SELECTION

The natural decision rule is simply the sign test by setting τ = 0. Our detector is built around the
difference between two GJS divergences. Intuitively, ∆GJS is positive when the test sequence is
closer to the machine reference than to the human reference, and negative in the opposite case. Also,
∆GJS can be viewed as a log-likelihood ratio Λn,N . In the classical Neyman-Pearson framework,
the optimal likelihood-ratio test with equal class priors and symmetric costs is precisely Λn,N ≷ 0.
We additionally perform a threshold sensitivity study in Table 25. For each dataset and generator, we
sweep τ over the full score range on the test set, compute precision/recall, and identify an optimal
threshold τ∗ that maximizes F1. We then compare F1 at our fixed choice τ = 0. Across all generators
and datasets, F1 at τ = 0 is typically about 95-97% of the oracle F1. This shows that in practice, our
parameter-free sign-based rule already operates very close to the best threshold.

In Lastde, the authors propose a fixed threshold of 2 for Lastde++ regardless of the source model,
motivated by plotting score distributions and empirical performance across their experiments. In
Table 26, we therefore compare F1 of two methods at their respective threshold. Across three of the
four settings, SurpMark achieves higher AUROC, and in all four settings it attains a higher F1. On
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Xsum@Llama-3-8B WritingPrompts@GPT-NeoX-20B SQuAD@Llama-2-13B

Original Paraphrased Original Paraphrased Original Paraphrased

Fast-DetectGPT 96.78 95.3 (↓1.48) 92.22 89.51 (↓2.71) 94.85 92.78 (↓2.07)
Lastde++ 93.42 91.3 (↓2.12) 92.68 91.94 (↓0.74) 97.32 92.12 (↓5.2)

SurpMark Ref-P 97.77 97.06 (↓0.61) 94.31 93.12 (↓1.19) 96.13 94.89 (↓1.24)
SurpMark Test-P 97.77 97.33 (↓0.44) 94.31 94.05 (↓0.26) 96.13 95.46 (↓0.67)
SurpMark Both-P 97.77 97.17 (↓0.6) 94.31 92.22 (↓2.09) 96.13 93.98 (↓2.15)

Table 21: Robustness to paraphrase attacks. AUROC on three settings—XSum@Llama-3-8B,
WritingPrompts@GPT-NeoX-20B, and SQuAD@Llama-2-13B. For SurpMark, Ref-P/Test-P/Both-P
denote paraphrasing the reference set, the test text, or both.

WritingPrompts@GPT-J-6B XSum@GPT-J-6B
Original Attack 1 Attack 2 Original Attack 1 Attack 2

Lastde++ 96.96 84.24 (↓ 12.72) 85.42 (↓ 11.52) 85.38 69.79 (↓ 15.59) 73.55 (↓ 11.83)
Fast-DetectGPT 93.80 85.95 (↓ 7.85) 79.26 (↓ 14.54) 78.60 75.44 (↓ 3.16) 74.09 (↓ 4.51)
SurpMark ref-attack 97.60 95.06 (↓ 2.54) 94.67 (↓ 2.93) 88.35 83.84 (↓ 4.51) 83.85 (↓ 4.50)
SurpMark test-attack 97.60 95.62 (↓ 1.98) 92.59 (↓ 5.01) 88.35 86.37 (↓ 1.98) 84.86 (↓ 3.49)
SurpMark both-attack 97.60 94.30 (↓ 3.30) 92.74 (↓ 4.86) 88.35 84.44 (↓ 3.91) 85.23 (↓ 3.12)

Table 22: AUROC under adversarial attacks for different detectors on GPT-J-6B.

SQuAD@Llama-3-8B, Lastde++ has slightly higher AUROC, but at their fixed thresholds SurpMark
still achieves higher F1, indicating SurpMark’s sign-based decision rule is better calibrated and less
sensitive to threshold choice.
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GPT-J-6B GPT-5-chat
Metric / Dataset XSum WritingPrompts SQuAD XSum WritingPrompts SQuAD

1-gram distribution 86.07 96.60 91.62 55.89 78.43 54.58
First-order Markov chain 88.35 97.60 92.93 84.16 82.25 68.57

Table 23: AUROC of unigram vs. first-order Markov detectors across models and datasets.

Generator Dataset JS-marginal JS-transition Ratio (Transition / Marginal)

GPT-J-6B XSum 0.00180 0.00228 ≈ 1.27
SQuAD 0.00358 0.00392 ≈ 1.09

GPT-5-chat XSum 0.00006 0.00170 ≈ 29.97
SQuAD 0.00024 0.00100 ≈ 4.17

GPT-4.1-mini XSum 0.00030 0.00160 ≈ 5.33
SQuAD 0.00052 0.00150 ≈ 2.88

Table 24: Comparison of Jensen-Shannon (JS) divergence on marginal surprisal distributions versus
first-order transition distributions. The high ratio for closed-source models (e.g., GPT-5-chat) indicates
that detection signals are dominated by transition dynamics rather than marginal statistics.

Setting AUROC τ∗ F1@ τ∗ F1@τ = 0

XSum@GPT-J-6B 89.12 2.92 × 10−5 83.56 80.36
WritingPrompts@Llama-2-13B 99.75 −9.29 × 10−6 98.66 98.66
SQuAD@Llama-3-8B 93.56 −4.49 × 10−5 87.58 82.69
WritingPrompts@GPT-5-chat 80.63 −1.34 × 10−5 76.13 75.07

Table 25: AUROC and F1 scores at the optimal threshold τ∗ and at τ = 0 across different settings.

Metric Method XSum@GPT-J-6B WritingPrompts@Llama-2-13B SQuAD@Llama-3-8B WritingPrompts@GPT-5-chat

AUROC Lastde++ 85.38 99.14 94.72 30.64
SurpMark k = 6 88.35 99.47 93.76 82.25

F1 at respective Lastde++ 63.44 95.56 80.93 0.00
fixed threshold SurpMark k = 6 80.36 98.66 82.69 75.07

Table 26: Comparison of AUROC and F1 at fixed thresholds for Lastde++ and SurpMark (k = 6)
across different settings.
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