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ABSTRACT

We study black-box detection of machine-generated text under practical constraints:
the scoring model (proxy LM) may mismatch the unknown source model, and
per-input contrastive generation is costly. We propose SurpMark, a reference-
based detector that summarizes a passage by the dynamics of its token surprisals.
SurpMark discretizes surprisals into interpretable states, estimates a state-transition
matrix for the test text, and scores it via a generalized Jensen—Shannon (GJS) gap
between the test transitions and two fixed references (human vs. machine) built
once from existing corpora. Theoretically, we derive design guidance for how the
discretization bins should scale with data and provide a principled justification
for our test statistic. Empirically, across multiple datasets, source models, and
scenarios, SurpMark consistently matches or surpasses baselines; our experiments
on hyperparameter sensitivity exhibit trends that our theoretical results help to
explain, and are consistent with the method’s underlying intuitions.

1 INTRODUCTION

Rapid advancements in LLMs have driven their text generation capabilities to near-human levels.
This has blurred the boundary between human-written and machine-generated text, posing multiple
concerns. These include susceptibility to fabrications (Ji et al.|(2023))) and outdated or misleading
information, which can spread misinformation, or facilitate plagiarism (Lee et al.[(2023)). LLMs are
also vulnerable to malicious use in disinformation dissemination (Lin et al.|(2022)), fraud(Ayoobi et al.
(2023)), social media spam (Mirsky et al.|(2021))), and academic dishonesty (Kasneci et al.|(2023)).
Moreover, the increasing use of LLM-generated content in training pipelines creates a recursive
feedback loop (Alemohammad et al.|(2023))), potentially degrading data quality and diversity, which
poses long-term risks to both society and academia. These concerns motivate the development of
detectors that reliably distinguish human-written from machine-generated text and can be deployed
at scale across domains.

Prior work on text detection can be grouped into two categories: classifier-based and statistics-
based. Classifier-based detectors require training a task-specific model, which in turn hinges on
collecting high-quality, domain-balanced labeled data (Guo et al.| (2023)); [Tian| (2023); \Guo et al.
(2024)); this process is costly, time-consuming, and must be repeated when the target domain or
generator shifts. Statistics-based methods fall into two categories: global statistics and distributional
statistics. The first relies on global statistics such as likelihood or rank (Solaiman et al.| (2019);
Gehrmann et al.| (2019)), which can be inaccurate or unstable under calibration mismatch, text-length
variability, and domain shift. The second relies on distributional statistics, which are constructed by
regenerating a neighborhood around the test passage, via sampling, perturbation, or continuation,
thereby tying the detector to that particular input (Yang et al.[(2023)); Su et al.| (2023b); Mitchell et al.
(2023))). Such per-instance pipelines demand substantial compute and latency and are unrealistic when
resources are constrained or throughput is high. Black-box constraints exacerbate calibration drift in
global-statistic and regeneration-based detectors due to proxy-model mismatch. This motivates the
development of detectors that avoid retraining and per-instance regeneration while remaining reliable
under distribution shift in the black-box setting.

Accordingly, we pursue a design that sidesteps both training-classifier and per-instance regeneration
by focusing on stable, dynamics-aware signals, that can be reused across test samples. Viewed through
a black-box perspective, the problem naturally invites a likelihood-free hypothesis testing formulation
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Figure 1: SurpMark framework. Offline, we build human/machine reference transition matrices by
scoring corpora with a proxy LM, discretizing surprisal via a shared g, and counting state transitions.
Online, a test passage is summarized the same way and assigned a GJS score to measure proximity to
human vs. machine references. Details are in Algorithm [TJand [2]in Appendix [AT]

(Gutman| (1989)); |Gerber & Polyanskiy|(2024))): when the true likelihood is unknown, we compare
the empirical summary statistics of a test text against human and machine references. Our summary
statistic design is guided by two principles. First, because the references are existing corpora whose
contexts differ from the test passage, the summary must be abstract and calibration-robust; second,
decisions should exploit token dynamics which expose rich local patterns (Xu et al.|(2025)). We
therefore quantize token surprisal into interpretable states and summarize texts by their state-transition
patterns, allowing decisions to depend on relative structure rather than absolute likelihood levels. This
representation captures token dynamics and provides a stable, interpretable basis for likelihood-free
comparison to human and machine references.

In this paper, we present SurpMark, a black-box, reference-based detector that frames attribution as a
likelihood-free hypothesis test. For each test text, token surprisals from a proxy LM are quantized
into k interpretable states. The text is summarized by its state-transition matrix and is then assigned
a generalized Jensen-Shannon (GJS) divergence score that measures its proximity to the human
or machine reference transitions. These design choices motivate the theoretical analysis: Under
an idealized first-order Markov model fitted to the discretized surprisal states, we analyze how
discretization affects the estimation of GJS and study the properties of our decision statistic.

1.1 MAIN CONTRIBUTIONS
* We propose SurpMark, a reference-based detector that requires no per-instance regeneration,
as shown in Figure[I]
* A theoretical analysis, deriving design guidance for how the discretization bins should scale
with data and providing a principled justification for the proposed test statistic.
* A comprehensive experimental evaluation of SurpMark demonstrates its effectiveness across
multiple models and domains.

2 RELATED WORK

Prior work on text detection can be broadly categorized into classifier-based and statistics-based
methods. Classifier-based detectors train task-specific classifiers to distinguish between human-
written and machine-generated text(Guo et al.[(2023); Tian|(2023); |Guo et al.|(2024)). While effective
with sufficient training data, they are costly to build and must be retrained whenever the domain or
generator shifts.

Statistics-based approaches can be divided into two groups based on their design of decision statistics.
The first global-statistic methods rely on overall features of the text such as likelihood (Solaiman
et al. (2019)), LogRank (Solaiman et al.| (2019)) that measures the log of each token’s rank in a
model’s predicted distribution , or entropy (Gehrmann et al|(2019)) that measures the uncertainty of
a model’s next-token distribution. Distributional-statistic methods generate a neighborhood around
the test passage via perturbation, continuation, or sampling, and then measure divergence between
the test instance and this synthetic distribution. DetectGPT (Mitchell et al.|(2023))) leverages the local
curvature of log-probability function, comparing original passages with perturbed variants to enable
detection of machine-generated text. Fast-DetectGPT (Bao et al.| (2024)) introduces conditional
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probability curvature for faster detection. DNA-GPT (Yang et al.| (2023))) truncates passages, and
analyzes n-gram divergences of the regeneration. DetectLLM-NPR (Su et al.|(2023a))) leverages
normalized perturbed log-rank statistics, showing that machine-generated texts are more sensitive
to small perturbations. Lastde++ (Xu et al.| (2025)) combines global likelihood with local diversity
entropy, where discretization of token probabilities stabilizes the entropy feature. In contrast, our
framework discretizes token surprisals to build surprisal-state Markov transitions, enabling likelihood-
free hypothesis test. Our method lies between global- and distributional-statistic approaches: it
scores each text in a single pass without regeneration, yet makes comparative decisions by measuring
alignment with fixed human and machine references.

Recent work has explored kernel-based statistical tests for machine-generated text detection (Zhang
et al.|(2024),Song et al.| (2025)). [Song et al.| (2025) introduced R-Detect, a relative test framework
that reduces false positives by comparing whether a test text is closer to human-written or machine-
generated distributions. Our method shares a common foundation with|Song et al.|(2025) in that it can
also be viewed as a relative test framework. Notably, while the decision rules of these kernel-based
approaches are non-parametric and do not rely on supervised classifiers, their optimized variants
require training kernel parameters on reference corpora, which increases computational cost. Our
approach only requires an lightweight data discretization stage.

3 SURPMARK: DETAILED METHODOLOGY
In this section, we introduce the proposed detector SurpMark.

Surprisal Sequence Estimation via Proxy Model. Given a fixed text passage t and a proxy
model Fjy, we first tokenize t with the tokenizer associated with Fj to obtain a token sequence

x = (21,...,%,) of length n. We then run a single forward pass of Fj on this fixed sequence to
compute the token-level surprisal sequence {s;}7 ;.
{se}iey ={s1,82,-.,8n}
= {~logpy(walw1), —log py(ws|{z:}i_1). - -, —logpo(wnl{ze i)}

where py(- | -) is the conditional probability estimated by the proxy model Fj.

Surprisal Discretization by K-means. Since surprisal values from the proxy model are continuous,
we discretize them into a finite set of surprisal states to enable robust statistical modeling. We employ
k-means clustering to partition the surprisal distribution into k levels, denoted as A = {1,..., k}.
For example, when k = | A| = 4, the clusters correspond to interpretable states such as “Predictable,”
“Slightly Surprising,” “Significantly Surprising,” and “Highly Surprising.” This abstraction simplifies
modeling while preserving the essential structure of predictive uncertainty.

Effectively, this step converts the initial sequence of continuous surprisal values, {s;}};, into a
discrete state sequence, {a;}}-,, where a; € A.

Modeling State Transitions as Markov Chain. After discretizing surprisal values into finite
states, we model the resulting sequence as a Markov chain. Notably, LLMs often produce a highly
predictable token after a highly surprising one, a recovery effect driven by perplexity minimization,
as illustrated in Figure 2Ja). To capture this structure, we summarize each text by its empirical first-
order transition frequencies. Formally, given a discretized surprisal state sequence {a1, as, ..., ay},
we estimate a transition probability matrix M, where each entry M (j|i) represents the empirical
probability of transitioning from state 4 to state j, with i, j € A.

n—1 . .
. 1{a, = —
Bl = e = b 0 2T} ey (1)
n—1 1 .
=1 Hay =i}

Here, 1{-} is the indicator function.

Figure 2b) varies the order of the state-transition summary while keeping the reference and test sets
fixed. AUROC deteriorates as the order increases, which we attribute to state-space explosion with
limited data: higher-order transition counts on both the reference and test side become extremely
sparse, so higher-order summaries bring no notable gains over the first-order one. More details and
further empirical and theoretical justification are in Section[#.T]and Appendix [AZ]
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Figure 2: (a) Visualizes the key feature driving our detector by comparing the conditional probabilities
of transitioning into and out of the "Highly Surprising" state under a 4-bin discretization. This reveals
distinct dynamic patterns, including a stronger recovery tendency and a more pronounced spiking
tendency from low-surprisal contexts in LLM-generated text. (b) A heatmap illustrating the detector’s
performance (AUROC) on SQuAD across different hyperparameter settings, using a fixed amount
of reference and test data. Higher orders suffer from state-space explosion and sparse transitions,
yielding no notable gains beyond the first-order model. (c) The final score distributions of our
detector.

Reference-based Detection with Generalized JS Divergence. We frame the task of distinguishing
between human-written and LLM-generated text as a binary likelihood-free hypothesis testing
(LFHT) problem (Gutman| (1989); Gerber & Polyanskiy| (2024))). To adapt LFHT for this specific
domain, we introduce three key methodological modifications: (1) we utilize token-level surprisals
from a fixed proxy LM as observable features; (2) we employ k-means quantization to transform
continuous values into statistically tractable discrete state sequences; and (3) we propose a novel test
statistic, AGJS,,. Crucially, unlike standard LFHT which typically evaluates divergence from a single
reference distribution |Gutman| (1989), AGJS,, leverages a two-sided comparison against both human
and machine references to enhance discriminative power. In this framework, the null hypothesis Hy
posits that the text is machine-generated, while the alternative H; suggests it is human-written. Since
the true source distributions (P and Q) are unknown, our approach remains strictly reference-based,
relying on historical corpora to approximate the underlying statistics.

Specifically, given reference texts tp,to from both model source P and human source (), we

first compute their empirical surprisal transition probability matrices, denoted by Mp and MQ,
respectively. For a given test text t coming from either P or (), we similarly compute its surprisal

transition probability matrix M7 using the surprisal state levels estimated from reference texts. We
then calculate two separate divergence scores using the generalized Jensen-Shannon Divergence (GJS):
one measuring the distance between the test text and the machine reference model GJ S(M P, Mr, a)
and another measuring the distance to the human reference model GJS (M Qs My, «), where « denotes
the reference—test length ratio. The GJS divergence between M 4 and Mp with weight « is defined as

GJIS(Ma, Mp, @) = 12 Dxr(Ma, My) + 2 Dxr(Mp, My), Mo = 12 Ma + 5= Mg,

where D1, denotes the Kullback—Leibler divergence. We score each test passage with AGIJS,, =
GIS (Mp, My, a) _GIS (MQ, My, a). We classify via a tunable threshold 7.

i <
0_ {HO if AGJS,, < T, o

H, ifAGIS, >1
See Algorithm [T and [2]in Appendix [AT]for details.

4 ANALYSIS

This section theoretically grounds our design choices. First, we justify the first-order Markov
modeling of discretized surprisals, supported by Gray’s approximation theory and empirical evidence
that second-order gains are negligible. Second, we justify AGJS,, to be a principled choice and
analyze it under this idealized framework to characterize how discretization and sample size influence
its behavior.
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4.1 THEORETICAL JUSTIFICATION FOR FIRST-ORDER MARKOV MODELING

Our detector models the discretized surprisal sequence with a first-order Markov chain. Gray’s
Markov approximation theory (Gray, 2011) shows that, for any stationary discrete-time process, the
canonical K-th order Markov chain is the best K-th order approximation in relative-entropy-rate
sense. Specializing this to our discretized surprisal process and K = 1, the gain from moving from
first order to second order is governed by the conditional mutual information term I (as; a;—o | ar—1).
Empirically, we observe this term to be negligible in our data—at most 0.0076 bits/token (perplexity
reduction =~ 0.5%); see Appendix . This indicates that a first-order chain already captures almost
all useful temporal dependence for our purposes.

4.2 ANALYSIS UNDER IDEALIZED FIRST-ORDER MARKOV MODELING

Let {sP}¥ , and {s®}¥, be the surprisal sequences produced by a fixed proxy LM on reference
corpora from the model source P and the human source (), respectively. For the purpose of analysis,
we work with a first-order Markov approximation to these surprisal processes on the real line R,
and write Sp and S for the corresponding transition kernels. This should be viewed as a stylized
model for the discretized surprisal dynamics, rather than a literal assumption that the underlying
language model is exactly first-order Markov. For an integer k > 2, let g, : R — A= {1,...,k} be

a shared quantizer with boundaries b; < - -- < by_1, and define discretized states al’ = g (sf) and

a? = qi(s®). The induced k-state Markov chains have transition kernels

Mp(j|i)=Prlaly =jlal =i,  Mg(j|i)=Prlal, =j]|al =1,

and their plug-in estimators M P, MQ are formed from transition counts as in Eq. |1} We assume the
discretized chains are ergodic with well-behaved mixing, which is standard in Markov-chain analyses
and matches our empirical observations on the surprisal-state sequences. Finally, we observe an
independent test surprisal-state sequence al,, = {a] }?_; whose source Mr is either Mp (null Hp)
or Mg (alternative H1), and all three sequences share the same quantizer gj,.

4.2.1 DISCRETIZATION EFFECT

How should we choose the number of bins £? Too few bins lose structural information, while too
many, given a fixed-length reference, lead to sparse counts, higher estimation noise, and bias from
zero-count corrections. Thus, £ must balance information preservation and statistical reliability.

Following Pillutla et al.|(2023), we analyze discretization through a two-term decomposition. Dis-
cretization error is a deterministic bias from projecting the continuous object onto k bins, while
the statistical error is the finite-sample discrepancy when estimating the discretized object. [Pillutla
et al.| (2023) study IID samples, and control the statistical error by splitting observed vs. unobserved
mass and derive non-asymptotic bounds when balanced with their quantization error. Rather than
assuming IID samples, we focus on Markov sources and examine empirical transition counts from
their sequences.

For a divergence functional D (we use row-wise GJS), the empirical estimator is D f(M P, MQ).
Our goal is to develop a non-asymptotic bound on the absolute error of the empirical estimator relative
to the true target, decomposed as

1D(Sp,Sq) — Dy (Mp, Mg)| + Dy (Mp, Mg) — Dy(Mp, Mg)| 3)

discretization error statistical error

where Sp, S denote the underlying Markov transition kernels. For simplicity we take both references
to have the same total transitions V. C' denotes an absolute constant that may change from line to
line.

Discretization Error and Statistical Error. At a high level, we decompose the total error into
a discretization bias and a finite-sample statistical term. The discretization bias is controlled by
adapting [Pillutla et al. (2023)) to our Markov setting and yields an O(1/k) bound. Theorem 4.2
then bounds the statistical error by tracking three sources—row-wise transition noise, missing-mass
from unseen transitions, and an additional stationary-weight estimation error specific to Markov
chains—showing how the overall error trades off & and N.

Proposition4.1. Let Sp, Sq be the population first-order Markov transition kernels on the continuous
surprisal space R. Consider a shared k-bin quantizer qi. : R — A and, from it, form the discretized
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k-state Markov chains Mp, Mq. For any row-aggregated f-divergence functional D, there exists
such a shared k-bin partition satisfying

“

= Q

|Df(SP’SQ) - Df(MP’ MQ)l <

See AppendiyA3.2.4|for the proof.

Theorem 4.2. Suppose we are in the setting described in Section Assume each dis-
cretized chain is ergodic with bounded mixing time, Ty, 2 1/k, and maximum hitting time
max{T(Mp),T(Mg)} = O(1). It holds that

NN E3log(kN) k® N k
D5 (Nep, Mq) = Dy (Mp, Mg)| < C(log N - | =22 + T log (1+ ) + TN> ®)

See Appendix |A3.2.3|for the proof.

Balancing Two Errors. We balance k by trading off the discretization bias against the finite-sample
statistical error. The discretization term decays as O(k~1), while the leading statistical term from

row-wise transition estimation grows like k2 /+/N up to logs, with smaller contributions O(k//N)
and O(k®/N) fork < N 3 Neglecting logs and lower-order terms, the dominant balance is between
c1k? //N and ¢y /k, yielding k* = O(N3).

4.2.2 DECISION STATISTIC ANALYSIS

Building on this discretized Markov approximation, we next analyze the decision statistic AGJS,,.
The goal is to understand why the proposed score behaves well under this idealized model, providing
intuition for the empirical results in Section[5] Our detector extends Gutman’s universal hypothesis
test (Gutman)| (1989)) from a single-reference setting to a two-reference setting. In Gutman’s test, the
test sequence is compared against one reference source; here we leverage two calibrated references P
(LM) and @ (human) and decide by AGIJS,,. Our choice of GJS is not ad hoc. Algebraically, AGJS,,
is the log-likelihood ratio (LLR) between the two hypotheses.

AGJS,, as Log-Likelihood Ratio. Proposition £.3] shows that AGJS,, exactly equals the nor-
malized log-likelihood ratio A, n. Here, the log-likelihood ratio represents the maximized data
likelihood under the two hypotheses Hy and H;. See Appendix [A3.3.2|for the proof.

Proposition 4.3. Assume the setting of Section Let F}, be the family of stationary first-order

Markov models on A = [k]|. For sequences al, ag ~» and al,,, define the concatenations

(ab y,at,) and (a?:N, al..). Consider the generalized log-likelihood ratio A, n
sup M((a{—:Na a{:n)) M/(G?:N)
oo sup  M(afy) M((aPy,af.,))
M, M’ € Fy,

where the suprema are attained at the empirical Markov models on the respective concatenated
sequences. Then, AGJS, = A, .

In Appendix[A3.3.3] we further prove the asymptotic normality of our statistics AGJS,,, and empiri-
cally verify it through experiments in Appendix [A4.2.3]

5 EXPERIMENTS

Datasets, Configurations and Models. We evaluate our method on XSum (Narayan et al.|(2018))),
WritingPrompts (Fan et al.[(2018)), SQuAD (Rajpurkar et al.| (2016)), WMT19 (Barrault et al.| (2019)),
and HC3 (Guo et al.[(2023))). Unless otherwise noted, we construct the reference corpora and test
set as follows. For each dataset, we randomly sample 300 human-written texts to form the human
reference, then generate paired machine outputs by prompting the source model with the first 30
tokens of each human text. For the test set, we sample another 150 human-written texts and create
their machine-generated counterparts using the same procedure. We select 9 open-source models and
3 closed-source models as our source model. More details are in Appendix [A4.T] Unless otherwise
specified, we use GPT2-Large as our proxy model.

6
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Baselines. We benchmark against 13 detectors, including Likelihood (Solaiman et al.|(2019)), Lo-
gRank (Solaiman et al.|(2019)), Entropy (Gehrmann et al.| (2019)); Ippolito et al.|(2020)), DetectLRR
(Su et al.|(2023a))), and Lastde (Xu et al.|(2025))), DetectGPT (Mitchell et al.| (2023))), Fast-DetectGPT
(Bao et al|(2024)), DNA-GPT (Yang et al|(2023)), DetectNPR (Su et al.[(2023a)), Lastde++ (Xu
et al.| (2025)), R-Detect (Song et al.|(2025))), Binoculars |Hans et al.| (2024)), and FourierGPT Xu et al.
(2024).

GPT2-XL GPT-J-6B GPT-Neo-2.7B GPT-NeoX-20B OPT-2.7B Llama-2-13B Llama-3-8B Llama-3.2-3B Gemma-7B Avg

Likelihood 85.02 74.82 73.32 72.03 77.22 94.39 93.93 65.22 65.8 77.97
LogRank 88.2 79.25 78.29 75.37 81.99 95.9 95.05 71.04 69.18 81.59
Entropy 511 47.15 50.94 45.94 48.88 29.03 29.31 53 46.85 44.69
DetectL.RR 91.07 85.81 87.12 80.27 88.48 96.43 94.85 81.54 75.5 86.79
Lastde 95.97 85.88 89.09 80.16 88.89 93.29 94.29 72,99 69.48 85.56
Lastde++ 99.46 91.54 94.29 85.13 94.15 95.5 95.9 77.47 769 90.04
DNA-GPT 81.98 70.68 72.69 70.42 73.86 95.91 96.54 64.79 65.32 76.91
Fast-DetectGPT 97.94 86.83 89.15 83.17 90.55 98.21 97.98 74.32 73.95 88.01
DetectGPT 94.45 79.55 84.71 75.71 82.88 86.51 86.28 64.23 69.05 80.37
DetectNPR 94.93 81.91 86.4 77.93 84.06 95.19 93.67 69.45 71.49 83.89
R-Detect 74.38 63.58 67.7 63.35 65.83 79.98 81.64 62.22 55.46 68.24
Binoculars 99.19 85.76 875 82.02 86.9 96.93 96.41 68.36 73.57 86.19
FourierGPT 5472 54.28 56.5 56.51 5247 7243 72.06 54.83 55.84 59.07
SurpMark, _g 98.07 92.96 95.19 86.78 94.49 97.41 97.06 81.74 77.40 91.23
SurpMark , _ 98.35 93.1 95.42 86.40 94.88 97.58 97.17 80.74 76.89 91.17

Table 2: Detection results for text generated by 9 open-source models under the black-box setting.
The AUROC reported for each model are averaged across three datasets: Xsum, WritingPrompts, and
SQuAD. See Table[12] [T3] [T4]in Appendix for details.

5.1 MAIN RESULTS
Table [T and [2] present the detection

results under black-box scenario. Ta- Gemini-1.5-Flash ~ GPT-4.1-mini  GPT-5-Chat  Avg

ble [T shows that SurpMark achieves

: Likelihood 56.49 66.77 49.62 57.63
the best performance on 3 commercr(}l, LogRank 5387 6.8 1983 1653
closed-source LLM. Performance is  Entropy 58.36 38.72 46.99 48.02
especially strong on GPT-5-Chat. Ta-  DeteclLRR 44,51 63.29 49.83 62.11
bl h hat SurpMark ranks fi Lastde 48.13 57.28 41.96 49.12
e[2]shows that SurpMark ranks first — [ggess 7172 68.23 4351 61.15
on 6 of 9 open-source models and  DNA-GPT 62.06 56.71 49.82 562
within the top two on 7 of 9. These re- Eﬁgggﬁ%‘cp T Zg"l‘g gggg ?4? 6641'745
sults highlight SurpMark’s robustness DetectNPR 64.96 70.83 54.99 63.59
on proprietary systems and its suit- ngetelct gié? Z}?‘zl %-gg gg-gg
1 3 moculars . . R B
ability for real-world commercial de- ¢/ o Gpr 6125 63.05 6482 63,04
ployments. Please note that compared ~ SurpMark,, _ 74.57 80.25 78.33 71.72
with distribution-based detectors that ~_ SurpMark; _; R L SIS 8%

generate a neighborhood per input at
test time, SurpMark builds reference Table 1: Detection results for text generated by 3 closed-

corpora once and reuses them for all ~source models under the black-box setting. The AUROC
test passages. Under a reference-per- reported for each model are averaged across three datasets:
test budget B — #references i, Xsum, WritingPrompts, and SQuAD. See Table 0] [10] [T1]in

#tests : :
ble [T] and 2} SurpMark operates at Appendix for details.

B = 2, whereas DNA-GPT uses B = 10, DetectGPT, DetectNPR require B = 100. Thus
SurpMark’s reference cost is 5x—50x lower, while avoiding any per-input contrastive generation at
test time, enabling real-time detection as discussed later.

We attribute SurpMark’s superior performance on closed-source models (e.g., GPT-5-chat) to its
ability to capture transitional dynamics. As detailed in Appendix [A4.2.12] stronger models exhibit a
vanishingly small gap in marginal surprisal distributions compared to humans, rendering marginal
statistics ineffective. However, the ’transition gap’ remains significant, which SurpMark effectively
exploits.

5.2 ABLATION AND SENSITIVITY ANALYSIS

Effect of bins k. Figure 3|shows the effect of the number of bins k. Across both models, increasing
the number of bins & leads to clear improvements in AUROC up to a moderate range, after which the
gains saturate or slightly decline. The best results across datasets are generally observed at k = 6 — 7.
Our theory yields an optimal bin count of the form k* = C'N''/® for some constant C, where N is
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the total number of transitions of the reference samples. We empirically calibrate the constant C' in
Appendix[A4.2.7] Next, we further investigate how varying N shift the empirical optimum &*.

Effect of Number of Reference Samples.
Figure [] (a) shows that AUROC improves

sharply as the reference grows from very small e o i e
number of reference samples to 100 reference * /'/ % / -
samples; beyond 100 reference samples the o

gains are minor. The k-optimized curve picks e €2 /\/.
the best k € {4, ...,12} at each number of ref- 4 xsum “70

erence. The annotated k values grow mildly 70 et e R ZZ

with the number of reference samples, and using s 3
large k for small number of reference hurts per- K K

formance. This trend aligns with our theoretical

intuition: a larger number of reference samples  Figure 3: Effect of the number of bins k on de-
reduces reference-side estimation error and thus  tection performance for source models including

allows for a slightly larger k. GPT-J-6B (left) and Llama-3.2-3B (right).
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Figure 4: (a) AUROC vs. number of reference samples. The blue curve (“k-optimized”) picks the
best k at each number of reference. orange/green curves fix k € {7,8}. (b) AUROC vs. test length n
under different reference lengths. Solid lines are k-optimized for each reference sample truncated to
50/100/200 tokens; shaded bands show the attainable range across & at each n. (c) Detection results
of 7 detection methods on 6 test lengths.

Effect of Length of Test Sample. In Figure[](b), we fix the number of reference samples and study
the effect of sample length. AUROC climbs rapidly as test length n grows from 50 to about 150-200.
Longer reference lift the curves and make the bands across k € {4, ..., 12} tighter, indicating greater
stability. The k-optimized curves show that the optimal k is driven more by reference length than
by test length. In Figure[d](c), we evaluated detection performance of baselines across varying test
length (tokens), focusing on WritingPrompts generated by Gemma-7B. All methods improve with
longer texts. SurpMark is competitive at short lengths and becomes the top method for test length
larger than 150. Comparison on more source models are presented in Figure[§]in Appendix.

Reference-Test Length Trade-Offs. Figure (a) and (b) show AUROC contours over reference
length and test length n at fixed bins k. Performance improves toward the upper-right, and the up-right
tilt shows a reference-test length trade-off: larger reference length can compensate for smaller test
length at similar accuracy.

Effect of Proxy Model. 1In Figure[3](c), x-axis lists the proxy LM used to compute scores. Across
both datasets, most baselines improve with stronger proxy models, especially on WritingPrompts
with GPT-5-Chat as the source model. SurpMark is consistently top and stable across proxy models.
It already performs strongly with the smallest proxy and improves only modestly with larger ones,
whereas several baselines are highly sensitive to the proxy choice, some even degrade when the
proxy changes. In short, SurpMark achieves strong and reliable performance without expensive proxy
models, making it a better default in low-resource deployments.

Throughput. Figure ] (Left) plots throughput (items/s) against the number of test texts. Baseline
methods appear as horizontal lines because their per-item latency is constant. SurpMark improves
monotonically as the one-time preprocessing cost is amortized. The curve crosses the Fast-DetectGPT
line at roughly n ~ 298, after which SurpMark maintains higher throughput.
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Figure 5: (a-b) AUROC contour maps (WritingPrompts/Gemma-7B). Left: kK = 7; right: kK = 8. The
x-axis is reference length (tokens) and the y-axis is test length (tokens). Colors encode AUROC. In
both panels, contours tilt up-right, indicating a trade-off: larger reference length allows smaller test
length at similar performance. (c) AUROC vs. proxy model.
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Figure 6: Left: Throughput (items per second) versus the number of test texts for SurpMark compared
to baseline methods (proxy LM: GPT-2 Large; GPU: NVIDIA RTX 4090). Right: AUROC on
non-English datasets (HC3-Chi-psy/qa/med and WMT-De). Error bars denote standard deviation.
Higher is better.

Non-English Scenarios. In Figure[6] (Right), we evaluate on German and Chinese corpora. For
German, we use WMT19 with GPT-40-mini as the source model and Llama-3.2-1B as the proxy
model. For Chinese, we use HC3 across multiple domains (psychology, medicine, openqa), which
provides paired human and ChatGPT answers to the same questions, and adopt Qwen-2.0-0.5B as the
proxy model. SurpMark ranks first on all four datasets, with large margins on HC3-Chi-med.

Necessity of k-means. In Table [3] we evaluate the effect of different discretization schemes,
including k-means, equal-width, and equal-mass binning. Across all datasets and & values, k-means
is the most robust quantization scheme: it consistently reaches or matches the best AUROC, while
equal-mass can degrade sharply on XSum@GPT-4.1-mini and equal-width is unstable and often
much worse.

Necessity of GJS. In Table[d] we evaluate the effect of different distance metrics including GJS
divergence, L, and L, norm distance. GJS achieves the best AUROC on most dataset and source
model. This suggests that GJS is a more robust similarity measure than L; and L.

5.3 GENERALIZATION

Cross-Domain Generalization. We evaluated cross-domain generalization og detector in Table [5]
We compared self-ref (in-domain reference) to Out-Of-Domain (OOD) reference (associate with
the corresponding generator). Even when we deliberately use out-of-domain reference corpora to
estimate transition probabilities, the impact is small. Changes remain moderate and can even be
positive sometimes. See Table [I9]for more comparison.

Cross-Generator Generalization. To evaluate robustness without recomputing transitions per
model, we propose SurpMark-MC, a multi-class variant using a single shared quantizer (derived from
pooled corpora) and distinct Markov chains for human and each reference generator. We classify
test texts by assigning them to the source with the minimal GJS divergence (i.e., a nearest-neighbor
rule). In a multi-class setting with GPT-J-6B, GPT-4.1-mini, and LLaMA2-13B, SurpMark-MC
achieves 82.3% overall accuracy, with 78.7% accuracy for human texts, 78.0% for GPT-J-6B, 84.0%
for GPT-4.1-mini, and 96.0% for LLaMA2-13B. We further collapse the multi-generator setting into



Under review as a conference paper at ICLR 2026

Dataset@Source model Method k=T k=38 Best
k-means 80.42 7932 8179 GPT-4.1 mini
XSum@GPT-4.1-mini equal-width  80.41 7620 80.41 XSum  WritingPrompts  SQuAD
equal-mass 71.40 74.22 74.22 GIS $2.52 $3.64 69.27
k-means 82.05 84.86  84.86 Ly 7351 82.17 62.28
WritingPrompts@GPT5-chat  equal-width  62.90 7206 7206 Lz 7338 83.04 59.14
equal-mass 84.42 83.59 84.42

Table 4: Comparison of different
Table 3: AUROC of different discretization schemes under distance metrics across datasets.

varying number of states k.

Test self-ref ‘WritingPrompts-as-ref XSum-as-ref SQuAD-as-ref
XSum@Llama2-13b 97.09 97.22 - 96.45
WritingPrompts @Llama2-13b 99.53 - 99.71 99.33
SQuAD@Llama2-13b 96.13 94.36 95.67 -
XSum@Llama3-8b 97.09 97.25 - 95.13
WritingPrompts @Llama3-8b 99.86 - 99.95 99.88
SQuAD@Llama3-8b 94.17 93.77 93.90 -

Table 5: AUROC of SurpMark under different reference choices across datasets and models.

a binary classification task (LM-generated vs. human-written), defining the score as the difference
between the GJS to the human reference and the minimum GJS to any machine reference. As shown
in Table[d] this approach generalizes effectively even to unseen models (e.g., Llama-3-8B, GPT-5-chat,
GPT-neo-20B), matching or surpassing baselines like Lastde++ and Fast-DetectGPT.

WritingPrompts LLaMA2-13B GPT-4.1-mini GPT-J-6B LLaMA3-8B GPT-5-chat GPT-neo-20B
Lastde++ 99.14 68.49 95.96 99.56 30.64 92.68
Fast-DetectGPT 99.56 70.23 93.80 99.84 30.01 9222
SurpMark self-ref 99.59 87.27 96.85 99.87 83.56 93.93
SurpMark-MC 99.72 90.01 95.61 99.77 64.27 92.84

Table 6: AUROC on WritingPrompts when the reference transition probabilities (LLaMA2-13B,
GPT-4.1-mini and GPT-J-6B) are held fixed and not re-estimated for each test-time generator

More Results. We provide additional experimental results in the Appendix, including: (1) ab-
lation study on decoding strategies (Appendix [A4.2.8) (2) evaluations under paraphrasing attack
(Appendix [A4.2.9) (3) evaluations under prompt-engineered adversarial attacks (Appendix

(4) ablation on the necessity of first-order markov chain (Appendix [A4.2.TT) (5) discussion for
threhold 7 selection (Appendix [A4.2.T3).

6 CONCLUSION

We presented SurpMark, a reference-based detector for black-box detection of machine-generated
text. By quantizing token surprisals into interpretable states and modeling their dynamics as a Markov
chain, SurpMark reduces each passage to a transition matrix and scores it via a GJS score against
fixed human/machine references. It avoids per-instance regeneration and enabling fast, scalable
deployment. Our analysis establishes a principled discretization criterion and proves asymptotic
normality of the decision statistic. Empirically, across diverse datasets, source models, and scenarios,
SurpMark consistently matches or surpasses strong baselines.

10
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ETHICS STATEMENT

This work focuses on developing methods for the detection of large language model (LLM)-generated
text. Our aim is to enhance transparency and accountability in Al systems rather than to enable
misuse. All datasets used in this study are publicly available benchmark corpora, and no personally
identifiable or sensitive information was included. we consider our framework as a tool for improving
the responsible development and governance of generative Al.

REPRODUCIBILITY STATEMENT

All experimental projects in this paper are reproducible. The details of experiments are in Section 3]
and Appendix [A4.T]

LLM USAGE

Large Language Models (LLMs) were employed solely for paraphrasing and minor language polish-
ing. They were not used for idea generation, proof writing, data analysis, or experiment design. All
technical contributions, theoretical results, and empirical evaluations in this paper are original and
independently produced by the authors.
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Al ALGORITHM

Algorithm 1 SurpMark (Offline): Build Human/Machine Reference Transitions
Require: Proxy LM Fjy; human corpus Dg; machine/LLM corpus Dp; number of bins &

Ensure: Shared surprisal quantizer qy; reference transition matrices M P, MQ; total reference length

N
1: Score references. For every t € Dg U Dp, run Fy to obtain token sequence 1.y and surprisals
$1.N§ With
St = *logpa(fl?f, | Il:t—l)-
2: Fit shared quantizer. Pool all reference surprisals and fit k-means to obtain ¢; : R —
{1,...,k}.

3: Discretize to states. Map each reference sequence to the corresponding state sequence a; =

qr(st),t€{l,...,N}.
4: Estimate transitions. For each corpus C' € {P, )}, estimate the empirical first-order transition

matrix Mc by counts:

?;11 Hay =1, a1 = j}
n—1 ]—{at — Z}

Mc(j | i) =

. i je{l,... k}

5: Record length. Let V be the total number of reference transitions used to form Mp and MQ
(sum over sequences)

6: return g, Mp, MQ, N.

Algorithm 2 SurpMark (Online): Decision via GJS score against References

Require: Proxy LM Fy; test text ¢; shared quantizer gy, ; reference transitions M P, MQ; reference
length N
Ensure: Score AGJS,, and label 2 € {MACHINE, HUMAN}
1: Score test text. Run Fy on ¢ to get tokens 1., and surprlsals S1:m-
2: Discretize. Map to surprisal states a; = qx(s¢),t € {1,...,n} and estimate the test transition
matrix M using the same formula as Offline.
Set mixing weight. o < N/n.
4: Compute divergence.

w

AGJS, = GIS(Mp, Mr,a) — GIS(Mg, Mr, ).

5: Decision rule.
Q- {MACHINE, AGJS, <,

HUMAN, AGIS,, > 1.
6: return AGJS,,, Q.

A2 JUSTIFICATION FOR FIRST-ORDER MODELING

A2.1 EMPIRICAL FINDINGS

All AUROC values in Figure 2(b) are computed using exactly the same amount of reference data and
test data. As in our main experiments, we use 300 human paragraphs and 300 machine-generated
paragraphs, each with length about 100-200 tokens as reference data. We use 150 human paragraphs
and 150 machine paragraphs as test data. Intuitively, increasing the Markov order makes the state
space explode while the amount of reference data is fixed, so transition estimates become very sparse
and noisy.

The degradation with larger order is a sparsity effect that arises both on the reference side and on
the test side: (i) state-space explosion: A first-order chain with k bins has k? transitions; an order-v
chain effectively has kV*+! transitions. With only 300 human + 300 machine paragraphs of 100-200
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Reference size Test length
Order 300 600 900 1200 Order 150 200 250 300
1 86.51 86.17 86.69 86.89 1 90.59 92.66 94.60 94.58
2 81.49 82.08 82.77 82.80 2 89.42 90.67 9221 92.60
3 7498 7474 75.84 75.85 3 88.67 90.57 9140 9140
4 64.72 69.51 71.20 73.00 4 62.29 6559 6846 68.33
(a) AUROC vs. reference size (b) AUROLC vs. test length

Table 7: Effect of reference size and test length on AUROC for different Markov orders.

tokens, many high-order contexts in the reference data are observed only a few times or not at all,
so the estimated transitions become extremely noisy. (ii) Short test sequences. Each test paragraph
is itself only 100-200 tokens long. Even if the reference transitions were perfectly estimated, an
order-v model on a 100-200-token sequence can observe only a very small number of distinct v-length
contexts. The higher-order model is severely under-sampled on each individual test example.

To isolate the effect of reference sparsity, in the XSum @GPT-J-6B dataset, we fixed £ = 6 and the
test set (150 human + 150 machine paragraphs, 100-200 tokens each), and increased the reference
size from 300 to 1200 paragraphs per side. As shown in Table[7(a), AUROC for higher-order models
improves only slightly and remains clearly below the first-order model.

To further evaluate the effect of test sparsity, in another WritingPrompts @ Genmma-7B dataset, we
vary the test passage length from 150 to 300 tokens while keeping the reference size fixed (300
passages per side, each with fixed 300 tokens). As in Table[7[b), AUROC consistently increases for
all orders, but the first-order model remains clearly best, and higher orders still lag behind by several
points.

Taken together, these ablations reflect practical text-detection settings with limited reference data
and short passages. In this regime, the first-order model offers the best bias-variance tradeoff, so we
believe it is the most reasonable default choice.

A2.2 THEORETICAL JUSTIFICATION

We clarify our reasoning by (i) starting from Gray’s Markov approximation theory, (ii) explaining
how the gain from order K to K + 1 is governed by conditional mutual information, (iii) mapping
this theory to our discretized surprisal process, and (iv) presenting empirical measurements showing
that the additional benefit of a second-order approximation over a first-order one is very small.

(1) Best finite-order Markov approximation in Gray’s theory.

Following Gray’s Entropy and Information Theory (2011), Sec. 6.4, Cor. 6.4.1-6.4.2; Sec.
7.4, Cor. 7.4.2-7.4.3], consider a stationary discrete-time source {X,, }. Gray constructs, for each
order K, a canonical K -th order Markov chain Mg whose conditional distributions match those
of the source given the last K symbols. He shows that M is optimal in the sense that it uniquely
minimizes the relative entropy rate between the true source and any K -th order Markov chain on the
same alphabet. In other words, the family of finite-order Markov chains { M } provides a sequence
of best approximations to the stationary process in the relative-entropy-rate sense. Formally,

Hyppe (Xa}) = | inf | Hype (X)) = T(X0s X251 XL ™

where p is the true stationary source, p’ is the canonical K-th order Markov approximation to
p, M is the class of stationary K -th order Markov sources on the same alphabet, Hp,,({ X} })

is the relative entropy rate of p with respect to ¢, X X1 = (X_ ..., X_g_,) is the infinite

past, X - = (X_k,..., X_1) is the block of the last K symbols, and I(-;-|-) conditional mutual
information. Applying the above indentity with K + 1 instead of K, we get

lelpK+1({Xn}) = I(X0§X:£72‘X:;1(,1) ®)
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We are interested in the gain from going from order K to K + 1, so

A = Hyjpx ({Xn}) — Hpjpxe1 ({Xn}) )
= I(Xo; X K YX—h) - I(Xo: X K2 x-L ) (10)
= I(Xo; Xk 1|X"g) (11

(2) Mapping to our discretized surprisal process

In our setting, { X, } is instantiated by the discretized surprisal process {a:}, where a; corresponds
to X, X:[l( corresponds to ai:% == (at—x, ** ,at—1), X_g_1 corresponds to a;_ 1. For the
case K = 1, the gain from first-order to second order is precisely I(a:; at—2|a:—1). We directly
estimate the relevant conditional mutual information term on our data. We first fit a first-order
Py (at|a;—1) and a second-order model Ps(a¢|ai—1,ar—o) from transition counts on the reference set.
We then compute plug-in estimates on test set

n

N 1 Z A
Hy = n—1 t=2 log, P1(atlai—1) (12)
. 1 n .
Hy=——— ;logz Py(atlaz—1,at—2) (13)

Their difference is the plug-in estimate of the conditional mutual information I =H —H, =
I(as; a;—o|a;—1), in bits per token, i.e., the extra predictive information contributed by the second-
order context beyond the immediate past. On our data, we obtain empirical estimates of conditional
mutual information and perplexity in Table |8} In our experiments, I is at most 0.0076 bits/token,
which corresponds to a perplexity reduction around 0.5%. Thus, in terms of average predictive
performance, the second-order Markov model brings only a sub-percent improvement over the
first-order model. Combined with Gray’s best Markov approximation theory, this indicates that
a first-order Markov chain already captures most useful temporal dependence in the discretized
surprisal dynamics, and provides a theoretically justified and empirically sufficient model for the
discretized surprisal dynamics in our detector.

Source Order pair H 1 (bits/token) H 1 — a o (bits/token) Perplexity Rel. PP change vs. st
GPT-5-chat 1st (baseline) 2.7882 0.0000 6.9075 0.000%
GPT-5-chat  2nd order 2.7805 0.0076 6.8711 +0.528%
Human 1st (baseline) 2.8089 0.0000 7.0074 0.000%
Human 2nd order 2.8043 0.0045 6.9854 +0.314%

Table 8: Conditional entropies and perplexities for discretized surprisal states.

A3 THEORETICAL ANALYSIS

A3.1 PROBLEM SETUP

Let {s}¥, and {stQ 1| be the surprisal sequences produced by a fixed proxy LM on reference
corpora from P and ). Each sequence is modeled as an ergodic first-order Markov process on
R. For an integer k > 2, let ¢, : R — A = {1,...,k} be a shared quantizer with boundaries
by < --- < by_1, and discretized states a”” = g, (s”) and a® = g (s%). Let Sp, S¢ denote the
underlying Markov transition kernels on the real-valued surprisal sequences before discretization. The
induced transition kernels on the k-state alphabet are Mp(j|i) = Pr[al,, = jlaf = i] and likewise

M. Their plug-in estimators Mp, M, are formed from transition counts with Mp(a|s) = NJ\I,’IS?S) ,
P

where Np(s) is the number of occurrences of state s in aj. 5, and Np(s, a) is the number of times
s is followed by a; analogously for ). Let mp, m¢ are stationary distributions of Mp and Mg, we
define iy := min{minge 4 7p(s), minge 4 7o (s)}.

We observe an independent test surprisal-state sequence a? y = {a] }1; ~ My, where the test
source M is either Mp (null Hy) or Mg (alternative H;). All three sequences are discretized by
the same q.

18



Under review as a conference paper at ICLR 2026

Throughout the analysis we impose the following conditions on the induced chains Mp and M.
These assumptions are standard in the study of Markov concentration inequalities and are required in
order to apply the auxiliary results recalled below.

Assumption A3.1. We impose the following standing conditions on the induced chains Mp, M.
Mp and M are irreducible, aperiodic Markov chain on the finite alphabet .A with unique stationary
distribution 7p and 7g and maximum hitting time T'(Mp) and T'(Mg) respectively. We assume
Tmin = min{minge 4 7p(s), minge 4 7o (s)} 2 1/k, and T'(M,) = O(1).

A3.2 DISCRETIZATION EFFECT
A3.2.1 AUXILIARY RESULTS FROM LITERATURE

The GJS Divergence as f-divergence. The GJS divergence is a specific instance of a broader
class of divergences known as f-divergences. An f-divergence between two discrete probability
distributions p and ¢ is defined by a convex generator function f where f(1) = 0. The GJS
divergence is equivalent to the w-skew Jensen-Shannon Divergence with w = a/(1 4 «), which is
an f-divergence generated by the function f¥(¢).

FUs(t) = at log L

)+ (1—-a) log(m

- 14
at+1—-a ) (14)
For notational convenience, we abbreviate f¢g as f. This connection allows us to leverage the
following theoretical tools developed for general f-divergences.

Assumption A3.2 (Assumption 9 in[Pillutla et al.|(2023))). We assume that the generator function f
of the f-divergence must satisfy the following three conditions:

* (A1) The function f and its conjugate generator f* must be bounded at zero. Formally,
f(0) < oo and f*(0) < oc.

* (A2) The first derivatives of f and f* must not grow faster than a logarithmic func-
tion. For any t € (0, 1), there must exits constants C; and C} such that |f/(t)| <
C1 (max(1,log(1/4))) and |(f*)'(£)] < Cf (max(L,log(1/¢))).

* The second derivatives of f and f* must not grow faster than % as t — 0. Formally,

there must exist constants C5 and Cjsuch that for anyt € (0,00), % f"(t) < Cb, and
5(f5)"(1) < Cs.
Lemma A3.3 (Approximate Lipschitz Property of the f-divergence, Lemma 20 in Pillutla et al.
(2023). Let f be a generator function satisfying Assumption Consider the bivariate scalar
Sunction ¢ : [0,1] x [0,1] — [0,00) defined as ¥(p,q) = qf(%). For all probability values
p,0',q,q € [0,1] with max(p,p’) > 0 and max(q,q’) > 0, the following inequalities hold.:

1
60/,0) = 0] < (Comax (1L1og b ) 4 max(Ci ) ) -2 (5)

* 1 *

W(p, ") = ¥(p,q)| < (Cl max <1,10g max(q,q’)) + max(Co, Cz)) lg—d'| (16)
Assumption A3.4 (Assumption 3(b) in Kara et al. (2023)). Let P(-|x) be a probability measure on
(X, F). There exit Lp < oo such that

TV(P(-|z) — P(-|z")) < Lplz — a'|, Va,2' € X. (17)

Proposition A3.5 (Quantization Error of f-Divergence, Proposition 13 in Pillutla et al.|(2023)). Let
P and Q) be two probability distributions over a common sample space X.

Let S = {S1,5a,...,Sm} be a partition of the space X into m disjoint sets. The corresponding
quantized distributions, Ps and Qs, are defined as multinomial distributions over the indices
{1,...,m}.

Then, for any integer k > 1, and f-divergence functional Dy, there exists a partition S of size
m < 2k such that the absolute difference between the original and the quantized f-divergence is

bounded as follows:
f(0) + £*(0)

|Ds(P,Q) — Ds(Ps,Qs)| < ?
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Theorem [A3.6]is adapted from Theorem 3.1 and Lemma 3.1 of[Wolfer, (2023)), which provide high-
probability bounds on the row-wise total variation error of the empirical transition matrix for a
finite-state, irreducible, aperiodic Markov chain observed over a single trajectory. The bound holds
uniformly over all states and depends explicitly on the number of states and the trajectory length,
while accounting for the chain’s dependence structure.

Lemma A3.6 (Row-wise TV bound,|Wolfer (2023)). Let (X1, ..., Xn) be an irreducible, aperiodic,
stationary Markov chain on a finite state space A with |A| = k, transition matrix M and stationary
distribution 7. Then there exists a universal constant C' > 0 such that, for any 0 < § < 1, the
Jollowing holds with probability at least 1 — §:

Tmixk log (kTN)

maxZ’M(aB)—M(a\s)‘ <C N ,

s€ A
# acA

where Thix is a mixing-time—type constant depending only on M (for reversible chains one has

Tmix = 1/Vps, With vps denoting the pseudo—spectral gap).

We will use the missing-mass bound from [Skorski (2020) to handle unseen transitions.

Lemma A3.7 (Missing Mass Bound, Theorem 1 in [Skorski| (2020)). Let (X1,...,Xn) be an
irreducible Markov chain over a finite state space A with stationary distribution wp and true
transition matrix Mp. Define the transition missing mass as

Mmass = » > wp(s)Mp(als) - 1{Mp(als) = 0}.

seAseA

Let T' be the maximum hitting time of any set of states with stationary probability at least 0.5. Then
there exists an absolute constant ¢ > 0 and independent Bernoulli random variables

Qs.o ~ Bernoulli (e_C'N'”P(S)MP(a\S)/T)

such that for any subset € C {(s,a) : s,a € A} and anyn > 1,

Pr| A {Mp(als) =0} < [[ PrlQs.=1].

(s,a)€E (s,a)€E

In particular, for any t > 0 it holds that

Eexp (t - Mmass) < Eexp (t . Z Z wp(s)Mp(a|s) QS@) .

seAseA

For bounding deviations of weighted sums over Markov chains, we rely on the inequality of|Chung
et al|(2012).

Lemma A3.8 (Theorem 3.1 of |Chung et al.|(2012)). Let M be an ergodic Markov chain on state
space A with stationary distribution 7. For e < 1/8, let T'(€) denote its total-variation mixing time.
Consider a length-N chain (X1, ...,Xx) on M with Xy ~ . Foreach s € A, let fs : A — [0,1]

be a weight function with Ex [fs(X)] = 7(s). Define the total weight N(s) = Ef\il fs(X5).
Then there exists an absolute constant c such that:

exp( — 6*m(s)N/(72T(e))), 0<6<1,

PriNGs) = 1+ )n(sIN] < ellelln {exp( ~ Sr(s)N/(12T(e)), 6> 1,

and, for0 < 6 < 1,
Pr[N(s) < (1= 8)n(s)N] < cll¢|lx exp(— 6°n(s)N/(72T(e))).

Here (u,v)r = Y UV /7(x) and ||u||~ = \/(u, u).
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A3.2.2 AUXILIARY RESULTS
Lemma A3.9. Forall o« > 0 and p € (0, 1], it holds that

p max{1l,log(1/p)}e " < w. (18)
e

Proof. Lety = ap € (0,a] and A = log . Then we can rewrite
1
p max{1,log(1/p)}e”*? = —ye™¥ max{1, A —logy}.
e
Next observe the inequality
max{1,A—logy} < 14+ A + (—logy),
where ;1 = max{0,z} and A, = max{0, A}.

Therefore,
ye Ymax{l,A—logy} < (1+A;) -ye ¥ +ye Y(—logy);.

Now use the following standard bounds:

1 1
supye ¥ = —, sup y(—logy) = —.
y>0 € 0<y<1 €

Hence

1+ A 1 241
supye Y max{l,A —logy} < t A+ + - = * oga+7
y>0 e (& e

where log a4 = max{0,log a} <log(1l+ «).

Substituting back into the expression, we obtain

1 2+ 1log(1l
p max{1,log(1/p)}e” P < o w.

This proves Eq.[I8] O

Lemma A3.10 (Stationarity of Quantized Kernels). Let Sp be the population first-order Markov
transition kernel on the continuous surprisal space R with stationary law pp. Fix a shared k-bin
quantizer qi, : R — A = {1,..., k} with boundaries by < --- < by_1 partitions space into bins
B; = [bj, bi11). Define the row-stationary weights and the edge measure

ne(i) = pe(B), Ze(id) = [ pe(do)Se(Bilo) e A

i

and the induced k-state transition kernel

Mp(j | i) = Z;}Ei’if) (for 7p(i) > 0).

Then mp is a stationary distribution of Mp, i.e. ), wp(i)Mp(j | i) = wp(j) forall j € A.

Proof. By definition,

S wp(@Mp(j 1) = 3 Zp(i,j) = / pp(d) Sp(Bj|x) = pp(B;) = 7p(j),

€A i€A R

where the penultimate equality uses the stationarity of pp for Sp. [
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A3.2.3 PROOF OF THEOREM[4.2]

In this step, we aim to bound the expected absolute difference between the estimated GJS divergence
and the GJS divergence for the induced Markov kernels after discretization. The statistical error of
our estimator is:

Ey = [Dy(Mp, Mg) — Dy(Mp, Mg)| (19)

The analysis will reveal how this error depends on the number of bins £ and the sequence length
N. To analyze the statistical error, we will extend the logic used in [Pillutla et al.| (2023). We will
apply Lemma[A3.3|(Lemma 20 in [Pillutla et al.| (2023))), which establishes an approximate Lipschitz
property for the core component of any f-divergence.

Proof of Theorem To bound the statistical error F7, we first decompose it and then expand the
GIS function into a sum of its core components, allowing for the application of Lemma[A3.3] Using
the triangle inequality, we can bound the total statistical error by the sum of the errors arising from
the estimation of each matrix individually:

By < [Dy(Mp, Mg) — Dy(Mp, Mq)|+ |Ds(Mp, Mq) — Dy (Mp, M) (20)
=T =7

The f-divergence between two Markov chains, M 4 and Mp, is defined as the expected divergence of
their row-wise conditional probability distributions, weighted by the stationary distribution of the
second chain. Let w(s) be the stationary probability of state s for chain M. The f-divergence is:

Dy(Ma,Mp) = wp(s) Y _ (Ma(als), Mp(als)) 21)
seA acA

Applying this to the first term of our decomposed error Eq. equation with f = f75, we get

Ti = |Dy(Mp, Mq) —Df(Mp,MQN (22)

=Y Fals) Y w(Mp(als), Mg(als)) = Y #q(s) Y w(Mp(als), Mo(als ))‘ (23)
sc A acA sc A acA

= S 0(9) S [00Tp(als), M(als)) — (Mp(als) MQ<a|s>>J] o4
sec A ac A

<| S S [0Te(als). Nig(als)) —w<Mp<a|s>,MQ<a|s>>]\ 5)
s€AacA

< 3 57 [ (als). glals) ~ w(Mp(als). Mlals) 26)
seAacA

Case 1: Observed Transitions For a transition that appears in the human-written text sample,
its empirical probability is Mp(a|s) = NJ\I;P(‘E:;) > ﬁ(s), where Np(s) is the number of times
state s was visited in the sequence of length N. We apply the first inequality of Lemma[A3.3| with
p' = Mp(als),p = Mp(als), and ¢ = M (als). The term max (1,1og W) is bounded by

log Np(s) as long as Np(s) > 3. Thus, the error for a single observed transition is bounded by:

[(Mp(als), Mg (als)) — $(Mp(als), Mq(als))| < (C1log Np(s) + C')|Mp(als) — Mp(als)]
27)
< (C1log N + C")|Nip(als) — Mp(als)|
(28)
where C' is a constant absorbing C and C. Summing over all observed transitions gives a bound

proportional to the Total Variation (TV) distance between the estimated and true transition matrices,
multiplied by a logarithmic factor.
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Case 2: Missing Transitions This case addresses transitions that have a non-zero true probability
(Mp(als)) but were not observed in the finite sample, resulting in an empirical probability of

Mp(a|s) = 0. This scenario is formally known as the missing mass problem for Markov chains, a
non-trivial extension of the classic IID case due to the dependencies between samples. To analyze the
error contribution, we directly bound the error for a single missing transition using Lemma[A3.3] Let

p' = Mp(als) = 0 and p = Mp(a|s). The error is now |1(0, Mq(als)) — ¥ (Mp(als), Mg(als))].
Applying the first inequality of Lemma[A3.3] we get:

900, Mg (als) ~ w(Mplals), Mg (als))| < (Crmax (1,108 -1 )+ €)[0 = Ma(als)
(29)

1
= (C; max (l,log ZWp(a|s)> + C"YMp(als) (30)

This bound shows that the error from a missing transition is proportional to its true probability
Mp(als), scaled by its information content. The total error from this case is the sum of these
individual bounds over all unobserved transitions. This sum constitutes the missing transition mass
of the Markov chain.

We summarize the following:

E[Ti] < (C1log N+ C') - > anps)(Mp(-[s)) + (CL+ C") Y Bpis)(Mp(-ls)) B
se€A seA

where Mp(+|s) is a k-dimensional probability distribution corresponding to state s, and we formally
define the row-wise error terms:

* Row-wise TV term ay,,(s)(Mp(-|s)): This term sums the error from observed transitions
in state s.

E[aNp<s)(Mp(.|s))]:E{ > |Mp(a|s)—Mp(a|s)\] (32)
a€EA,
st.Mp(als)>0

* Row-wise Missing Mass term 3, (s)(Mp(-|s)) This term sums the error from unobserved
transitions in state s.

E[BNP(S)(MP('|S))] :E[ Z Mp(als) - max (l,log
a€A,
s.t.]\;Ipe(a|s):0

Then we use Lemma [A3.6]to upper bound Eq

Elan, s (Mp(|s))] = ]E[ > |Mp(als) - Mp(al‘S)@ (34)
s.t.Mie(ﬁ;po

SE{Z |Mp(als) Mp<a|s)|] (35)
acA
o k log (kN)
N N
where Eq. [36] follows Lemma by inverting its tail bound and integrating to expectation; the
mixing-time constant is absorbed into O(1) under Assumption

Mpia@)} &)

) (36)

Lemma gives an exponential tail for the event Mp(a|s) = 0: for some absolute constant ¢ > 0
and 7" the maximum hitting time of any set with stationary probability at least 0.5,

PV (als) = 0] < exp (— Sonp(s)Mp(als)) 37)
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Then we upper bound the missing mass term E[Sy,s)(Mp(-|s))]. Let p, = Mp(als) and T’ =
cN
T 7TF‘( )

E[BNp(s) Z Do MAX ( pl )]P’[Mp als) = 0] (38)
acA
— 1 —I'pa
Pg Max 39)
}E; (150)e
< Z 24 log I‘) 40)
acA
_ kT cN7p(s)
= )(2+10g (1+ - )) @41)

where Eq. 40 .follows Lemmamfor alll’ > 0 and p, € (0, 1]. Assuming 7p(s) > ¢ for some
constant ¢g > 0 and T' = O(1), we obtain

k2 N
E[Bp(o) (M (1)) = O( 57 log(1 + 7)) “2)
By Eq.[31} Eq.[36] and Eq. 2] we obtain
B k3log(kN) k3 N
Ti = 0(log N - /| =552 + T log (1+ ) ) 43)
Next we bound 7.

Tz = |Df(Mp, Mq) — Df(Mp, Mg)| (44)
=Y #wqls) Y (Mp(als), Mglals)) = Y mq(s) Y ¢(Mp(als), Mg(als))|  (45)
sEA a€A sEA a€A
= | > #a(s) Y w(Mp(als), Mg(als)) = > #q(s) Y ¢(Mp(als), Mg(als))
sEA a€A sEA a€A

+ Z 7Q(s) Z Y(Mp(als), Mg(als) Z mQ(s Z Y(Mp(als), Mg(als)) (46)
sEA acA sEA acA
< | Fals) Y w(Mp(als), Mo(als)) = > #o(s) > w(Mp(als), Mg(als))
s€A acA seA acA
+{ D Aals) D w(Mp(als), Mo(als)) = Y mo(s) Y w(Mp(als), Mg(als))|  (47)
sEA acA sEA acA
<D0 [W(Mp(als), Mg(als)) — w(MP(GISLMQ(aIS))]‘
s€AacA
+1 D (7qls) = mq(s) Y w(Mp(als), Mg(als)) (48)
seEA acA
< Z Z (Mp(als), Mq(als)) — 1(Mp(als), Mg(als))
s€AacA
=:T21
+1 D (rqls) = mq(s) Y w(Mp(als), Mq(als)) (49)
sEA acA
=:T2,2

By symmetry, bounding 75 ; proceeds identically to 77, and yields the same rate as 77. To upper
bound 73 2, we consider

> v(Mp(als), Mo(als)) = ) Mq(als)f§s(Mp(als)/Mq(als)) < H(w) <log2  (50)

acA acA
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where H(w) = —[wlog(w) + (1 — w)log(1 — w)] with w = 1, € [0,1] is the binary entropy
function of which the absolute maximum possible value is log 2. To upper bound 73 2,

T2 <log2-E|fg — mq| (S
We apply Lemma to upper bound 73 5. Consider 7g(s) = NQT(S), for any § > 0, we have

lellng x {eXp( - 8*mq(s)N/(121)), 0<d<1,

Pr[Nq(s) > (1 +8)mo(s)N] < ¢ exp(— dmq(s)N/(72T)), &> 1,

and similarly for the lower tail with 0 < § < 1. With e = dmg(S), we have

2
. exp( — €N/(72Tmg(s))), 0<e<mg(s),
Pr[|7q(s) — mq(s)] > €] < 2¢llgllrg x ( ) (52)
exp(— eN/(72T)), € > mo(s),
Using E|Z| = [;° Pr(|Z| > €) and splitting the integral at m¢(s),
mQ(s) N2 oo Ne
E[l7q(s) — mq(s)]] < 2¢/|¢]lxg (/ e TPTRQ) de +/ e_7TTd6> (53)
0 mQ(s)
Tﬂ'Q(S) 72T N?TQ(S)
< i _
< 2elplg (0 T2 + B e (- 272} s
Tro(s
- O(Ilsollm o )> (55)
Thus we obtain
E(l7q — mql] = Y E[l#q(s) — mq(s)]] (56)
seA
Tro(s
<3 Cllglngy 222 )
seA
T
= Cligllng\/ ;x/m(s) (58)
Tk
< Cllellrg N (59)
k
_ O(ﬁ) (60)
where Eq. hOldS since [|¢|[x, = \/w;(s()) < \/minS:A — O(V'k) for the first state sg, and
T=0(1). Tosumup, 722 = O (ﬁ , and the rate for the total statistical error is
Ei<Ti+T1+ T2z (61)
B [k3log(kN)  k? N
= O(logN~ — N + ﬁlog (1 + ?))
Blog(kN) K N k
+O(1ogN~\/T+ﬁlog(1+?)>+O(ﬁ) 62)
B [k3log(kN) k3 N, k
7O(logN~ T+N10g(l+?)+ﬁ) (63)
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A3.2.4 PROOF OF PROPOSITION [4.1]

Proof of Proposition Let pp and pg be the continuous stationary distributions of Sp and Sg
respectively. We expand D (Sp,Sg) and Dy(Mp, Mg),

Dy(Sr.50) = [ po(dn)D; (Sp (o). (Sa(le) (64)
Dy(Mp, Mg) =Y _ wq(i)Dp(Mp(-|i), Mg (-]i)) (65)
€A
The quantizer g : R —> A [k] with boundaries b; < --- < by_1 partitions space into bins
B; = [bi,biy1). Let po(B;) = [, dpg(2), then mq (i) = pg(B;).

Define two intermediate ObJGCtS Up and U, to be markov kernel such that each has a discrete state
index ¢ € A, within a given state i, the observable variable z lives in a continuous space R, The
corresponding stationary distributions over states are mp for P and 7 for . Thus

Dy(Up,Uq) = Y mq(i)Ds(Sp(/i), So(-1i)) (66)
icA
where Sp(-[i) = Eynp(B,)[Sp(-|7)] and similarly for Sq(-|7). We have
Dy (Sp,Sq) = Df(Mp, Mq)| < |Df(Sp,Sq) — Dy(Up,Ug)| + Dy (Up, Uq) — Dy(Mp, M)

(67)
The second term is bounded as
Dy (Up,Uq) — Df(MPvMQ” (68)
= |32 mQ(0)Ds(Sp (i), So (1) = Y- (@)D (M (-1i), Mo(-1i)| (69)
€A ic A
< ZAm(z’)\Df<sp<~|z'>,sQ<-|i>> — Dy(Mp (i), Mo (1) (710)
i€

= 0(;) an

Egq.[71] holds by applying Proposition to each term in Eq. [70] yielding an O(1/k) bound per
term. Since the weighted sum of O(1/k) terms remains O(1/k), the overall bound follows. The first
term is

Df(SP7SQ) — Df(UP, UQ) (72)
- / po(d)D(Sp(J2), (Sa(17) — 3 7 ()P (Sp (1), Sal(1i)) 73)
€A
—Z / po(dx)Dy(Sp(-|2), (So(12)) — 3 70 (i)Ds(Sp (i), Sa (1) (74)
€A

—ZpQ By (5 [D5 (Sp (1), (S (o)) = 3 7 (VD5 (Sp (1), So (1)) (75)
€A €A

= 71Q(1)Barpg () [P (Sp(|2), (So(-|2))] = > 7o (i)Ds(Sp(:i), S (-|i) (76)
€A i€ A

= 3 700 [Eamney 50 [P (Sp (12), (S (12))] = Dy (Sp(10), Sa(:1i))] )
i€ A

S ol 79)
icA

Because Dy is jointly convex,

Dy (Banpo(8)[SP(12)] Barpg (B [Sq(12)]) < Eanpo(m)[Dr(Sp(|2), (Sq(l2)] (79
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Therefore,

1D¢(Sp,Sq) — Ds(Up,Ug)l = > mq(i)J; (80)
€A

Lemma[A3.3]implies a Lipschitz-type continuity bound in total variation distance, that is
D4(P,Q) — Dy (P, Q)| < 2Ly (TV(P, P') + TV(Q. Q') (81)
where L depends on Cy, C7, Cy, C5 in Lemma[A3.3] Applying Eq.[8Tto J; yields

Ji = Earpo () [Dr(Sp(-[2), (S (+[2))] = D (Sp(t]i), Sq () (82)
S Eanpo ) [Pr(Sp(|2), (So(-|2)) — D(Sp(:), Sq(-[i))] (83)
S 2LsEBon o) [TV(SP(]2), Sp(:[1) + TV(Sq(-[x), So(-l4))] (84)
By Assumption[A3.4]
TV(Sp(:|z), Sp(-[0) + TV(Sq([x), S (+1)) < (Lp + Lo)Ew z—a'| (89

Let ¢; be the centroid of B; and define the mean radius r; = E x — ¢;|. Forany x € B;,

Eprnpo(BoylT — 7| <z —cl+ EZE/NpQ(Bi)LT/ —ci|l=lr—ci| + 7 (86)
Then,
(Lp + LQ)Ew npoBiylt — 2| < (Lp + LQ)Eamposylr — cil +1i =2(Lp + Lg)ri  (87)
Then,
J; <AL{(Lp + Lo)rs (88)

Summing over buckets with weight 7p () gives:

D4 (Sp,Sq) — Dy(Up,Ug)| = Y _ mo(i) i (89)
i€ A
< 4Lf(Lp +LQ)Z7TQ(i)Ti (90)
€A
= ALy (Lp + Lo)Eanpg[r — k()] 20
= O(1/k) 92)
By Eq.[71]and Eq.[92]
[D4(Sp. Sq) = Dyp(Mp. Ma)| < ¢ ©3)
O]

A3.2.5 BALANCING TWO ERRORS

A clear choice for k is found by balancing the dominant statistical error (Eq.[63) with the quantization
error (Eq [03) in rate form, ignoring logarithmic factors. The leading statistical term scales as

c1k? N~2 and the quantization term as . Minimizing their sum f(k) = akIN"2 + Z by

first-order condition f’(k) = 0 yields that
deo\?: 2
= (52) Nt (94)
361

Thus, up to constants and polylog factors, the optimal bin count is k* = O(N 5 ).
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A3.3 DECISION STATISTIC ANALYSIS

A3.3.1 AUXILIARY RESULTS FROM LITERATURE

Lemma A3.11 (Second-Order Taylor Expansion of Generalized Jensen Shannon Divergence, Zhou
et al.| (2018)). Let Py, P, € P(X) be two distinct probability distributions over a finite alphabet
X, representing a point of expansion. Let P1, P, e P(X) be two other probability distributions in
a neighborhood of (Py, P). Let « be a fixed positive constant. The Generalized Jensen-Shannon
(GJS) divergence, viewed as a function GJS (]51, ]52, ), has the following second-order Taylor
approximation around the point (Py, Ps).

GIS(Py, Py, 0) = GIS(Pr, Py,a) + Y (Pi(x Doy () + Y (Pa(x (2))ia(x)
%,_/

Zeroth-Order Term zE€X tid

First-Order Term

+0 (1P = PP + 1122 - ol 95)

Remainder Term
where the remainder term is of the order of the squared Euclidean distance between the points,
GJS(P1, P2, ) is the zeroth-order term, the GJS function evaluated at the point of expansion

(Py, P2). The first-order term is a linear function of the differences (I:’l — Py) and (I:’g — Py). The
summation is taken over all symbols x in the alphabet X. The partial derivatives of the GJS function,
evaluated at (Py, P), are given by the information densities.

(1+a)Pi(x)
abPy(z) + Py(x)
(1+ a)Pa(x)
aPy(z) + Py(x)
Lemma A3.12 (Central Limit Theorem for Additive Functionals, Holzmann| (2005)). Let
(X1,...,XnN) be a stationary, ergodic, discrete-time Markov chain with state space S, transi-

tion operator M, and unique stationary distribution w. Let f : S — R be a real-valued function
defined on the state space, and assume its expectation with respect to the stationary distribution is

zero, Le., B [f(x)] = 0. Consider the additive functional Sy (f) = le\il f(X5). If a martingale
approximation to Sy (f) exits, then the Central Limit Theorem holds, i.e.:
Sn(f)
VN
The term o (f) is the asymptotic variance of the process.
Lemma A3.13 (Asymptotic Variance for Markov Chains, |Holzmann| (2005)). Under the same

conditions as Lemma the asymptotic variance o*(f) of the additive functional Sy (f) is given
by:

11(z) = 11 (x| Py, Py, ) = log (96)

to(x) := to(x| P, P2, ) = log 97)

< N(0,0%(f)) (98)

o*(f) = 2lim{ge, f) = IS (99)

where g. is the solution to the following equation ((1 + €)I — M) ™1, which is a function defined on
the state space A. {gc, [) is the inner product in the Hilbert space Lo(w), calculated as (g, f) =
> veam™(@)ge(x) f(x). ||fI|? is the squared norm of the function f in the space Ly() , which is its
variance with respect to the stationary distribution.

A3.3.2 PROOF OF PROPOSITION[4.3]

Proof of Proposition.3] Let Fj, be the family of stationary first-order Markov models on A := [k].
Consider the following likelihood ratio,

sup M((aiN,aT. )) M'(a?:N)

1:n
1 M, M’ €Fy,
Ay v = —log— (100)
" M zbv}l/gf M(G{D:N) M/((G?:Na a{:n))
5 k
_ llog Mal((a{jNaa,{n))MQ(a’?N) (101)

n " Mp(af )M, ((Q?Nv‘th))
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where (af ,a¥,) denotes the concatenation of af  and a7, M,; = O‘Mﬂizm, and M2 =

%72%. By Eq. (4)-(6) in|Gutman| (1989), we have
J\igg M((a{:N»a{n)) _ 27(N+n)H((aiN7a{m))7 Ms,lé}; M'(a?:N) —9—N H(G?;N)’ (102)
k k
sup M'((a@y,al,)) = 2N ARy al)) | sup M(afly) =27V HEin (103)
M'€Fy MEeFy

where H (-) is the empirical conditional entropy per transition in the corresponding sequence. Plugging
into the ratio gives

N+n N N+n N
Mo = " H (0, ad,) - o Hlaby) — [P (@ af,) — 2 H(a2y)]
(104)
With weight « = N/n,
N+n N
AGJS” = H((a’fN7 a,{n)) - H(a{n) - ZH(ain)
N+n N

- H((a@y.al) — H(al,) — —H(afy)] (105)

The two terms +H (a?,,) cancel. Thus we obtain AGJS,, = A,, y
O

A3.3.3 ASYMPTOTIC NORMALITY OF AGJS,,

Theorem A3.14 (Asymptotic normality of AGJS,, ). Assume the setting of Section with
a = N/n and standard ergodicity, AGJS,, is asymptotically normal. Under Hy : My = Mp,

2
pa, = —GJIS(Mqg,Mp,o) < 0, and 0, = 501y + 2050 where 0% is the
long-run variance of the P-reference-side information-density sum and a%)o is the long-run vari-
ance of the test-side information-density sum (details in Appendix D). Under H, : Mt = Mg,

2 .
pr, = +GIS(Mp, Mg, a) > 0,and 03, = {501, + 75 03,, where o1 | is the Q-reference-
side long-run variance, and Ug,l is the test-side long-run variance under H.

In both cases,
VR(AGIS, — um,) d

= N(0,1),
,/a%,.

where the bullet o € {0, 1} denotes the active hypothesis.

Proof of Theorem[A3.14] We need to establish asymptotic normality of the test statistic AGJS,,
by performing a second-order Taylor Expansion of it and determining the asymptotic mean and
asymptotic variance.

Since Lemma[A3.T1] adapted from Zhou et al| (2018), is a purely mathematical statement about the
local properties of the GJS function itself, irrespective of how its input variables are generated, this
lemma is equally applicable to Markov sources.

Thus, we can obtain Taylor Expansion of Generalized Jensen Shannon Divergence when it is applied
to Markov source. Consider two distinct transition matrices of two Markov sources M7, M. Let M,

and Mg be two other empirical transition matrices in a neighborhood of (M7, Ms). Let « be a fixed
positive constant. The GJS divergence has the following second-order Taylor approximation around
the point (M1, Ms).

GIS(My, My, ) = GIS(My, My, o)
+ Y mi(s) Y (Mi(als) — Mi(als))aus(als) + > ma(s) Y (Ma(als) — Ma(als))ea(als)

s€A acA s€A acA
+0 (It = My + |12z - 24 ?) (106)
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where 7 and 75 denote the stationary distributions of M; and Ms, respectively. And ¢ (a|s) and
t2(a|s) are information densities:

i als) = (0l M) = log (L ELA (107)
lals) = 1a((als)| M M) = Tog ] (a|j)>f 2 3| (108)

Furthermore, because AGJS,, = GJS (Mp,Mt, ) GJS MQ, tQ : is constructed as the

difference of two GJS functions, we can directly apply the Lemma |A3.11 to derive the Taylor
expansion AGJS,, itself.

First, we define the following typical set, given any M € Fy,.

N logn
Cn(M) = {alzn A" amax  |[Ma,,(afs) - Mals)| < i } (109)
This is a direct generalization of the IID case discussed in|Zhou et al.|(2018)), and can be justified in
Lemma 3.1 of [Wolfer| (2023), which provides a precise asymptotic analysis of the confidence interval
width for estimating the transition matrix. Next we establish an upper bound on the probability of
atypical sequences. We need a two-step approach: first, ensure the number of visits [N, in sequence
a1.n, to each state is sufficient, and then apply a concentration inequality under that condition.

. 1
P a1 ¢ Ca(M)} =P {SE%A (M, (als) — M(als)| > Oi"} (110)
< S;P {glg}lMam(aB) — M{(als)| > 1/ k’i”} (111)
< ; _]P’{NS < ””2(5) } +P {glea}mm(am — M(als)| > ,/loi” N, > ””2(3) H
(112)
< ¢y exp(—conm(s)) + 2k exp(—2mr2(s) : logn)} (113)
sEA - "
= c1 exp(—conm(s)) + 2k - nf"(s)} (114)
sEA
<k [cl exp(—canm(s)) + 2k - n_”(s)} (115)
:=1(n, M) (116)

where 7(s) denotes the stationary probability of state s, the first term of Eq. follows Chernoft-
Hoeffding inequality for Markov Chains (Corollary 8.1 of |Wolfer| (2023)), and the second term of
Eq. follows McDiarmid’s inequality, as its conditions of independence of variables and the
bounded differences property are met. This is because the analysis is performed on the sub-problem

of transitions from state s, conditional on the number of visits Ny = k (where k > %(S)), which
ensures the subsequent k transitions can be treated as IID samples. A similar application of this
technique is detailed in /Wolfer| (2023)). Moreover, the constant ¢; depends on the initial state of the
chain, measuring its deviation from the steady state, while cs depends on the mixing speed of the

chain, measuring how quickly it converges to its steady state. Thus,

P{a{fN ¢Cyn(Mp) or al, ¢Cu(Mp) or ¢ cN(MQ)} (117)
<P{ay ¢ Cn(Mp)} + P{aT, ¢ Co(M }+P{a1N¢CN(MQ)} (118)
= 7(an, Mp) + 7(n, Mp) + 7(an, Mg) (119)
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This means as long as the observed Markov chain sequences are sufficiently long, the probability of
sequences being atypical can be made arbitrarily small.

Then, under H,, we derive the Taylor expansion of AGJS,, = GIS (Mp,MT,O() —

GJS (MQ, MT, a) around the true transition matrices (Mp, Mq). The first term is expanded
as

GIS (Mp, My, a) = GIS(Mp, Mp, )
+> 7wp(s) > (Mp(als) — Mp(als))au (als) + Y wp(s) Y (Mr(als) — Mp(als))iz(als)

seEA acA seA acA
O(||MP—MP||2+||MT—MPH2) (120)

where GIS(Mp, Mp,a) = 0, and for a given symbol a and state s,

an@::u«M$ML%M@mw=kgaﬁ%(ﬁff*'8|)=o (121)
a(als) = ta((al9)| M M) = log i EIAEA g (122)

+
Thus GJS (MP,MT,Q) =0 (HMP — Mp| > + || My — Mp]||? ) Then, the second term of
AGIS,, is expanded as

GIS (MQ, My, a) = GIS(Mgq, Mp, a)
+> 7mo(s) Y (Mglals) — Mg(als)au(als) + > wp(s) > (Mr(als) — Mp(als))iz(als)

se€A acA s€A acA
+0 (IINtg = Mol + |3z — Mp|1?) (123)
where
(1+ a)Mq(als)
= Mo, M, =1 124
Ll(a’|s> Ll((a"s)’ Q> P’a) 0g O[MQ((I|S) I Mp(a|8) ( )
o B (I1+ a)Mp(als)
LQ(G’|S) T LQ((Q‘8)|MQ7MP7OC) - log O[MQ(CL|S) + MP(CL|S> (125)

Therefore, we obtain the expansion for AGJS,, and
AGIS,, = —GIS(Mg, Mp, c)

=Y ma(s) Y (Mgl(als) — Mo(als)au(als) = Y wp(s) Y (Mi(als) — Mp(als))ez(als)

sEA acA sEA acA
1
‘o < Og”) (126)
n
Here we connect GJS to information densities,
aMp + M, aMp + M,
GIS(Mgq, Mp,a) = aDgc 1, (Mo, #) + Dy (Mp, ——2 TP (127)
14+« 14+«
Mofa Mo (als)
- Z WQ(S) Z MQ(G|8) IOg alMq(al .s)+Mp (als) + Z P Z MP a| aMq(als)+Mp(als)
sES ac A 1+a sES ac A 14+«
(128)
(14 a)Mg(als) (14 a)Mg(als)
=« e Mg(als)lo + T Mp(a
3 ma(s) 3 Malals) s Ly S gy 2™ ) T M) S o)
sES acA acA
(129)
:aZwQ ZMQ als)ii(als) +Z7rp ZMP als)ta(als) (130)

sES acA sES acA
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where ¢1(a|s) and t2(als) are defined in Eq.[124]and Eq. We subsititute Eq. [130]into Eq.
and obtain

AGIS, = —a ) mq(s) ) Molals)u(als) = Y mp(s) Y Mr(als)(als) + O (10¢gzn>

seA acA seA acA
(131)

Recall that M (als) = Nﬁ;?:;) , where Ng(s) is the number of occurences of state s in a% ,, and

Ng(s,a) the number of times s is followed by a in a?: n- According to Ergodic Theorem (Strong
Law of Large Numbers, e.g. [Levin & Peres| (2017), Theorem C.1), we consider a long Markov chain
to be time-homogeneous, that is for a state s, we have Ng(s) =~ N - mg(s). Based on this, we
simplify the first term of Eq[T31]

N,
Zﬂ'@ ZMQ als)ui(a —OéZTFQ WM(@B) (132)
s€A acA seA acA (s)
«Q
=¥ > > Ng(s,a)u(als) (133)
s€EAacA
a N
= v 2 ulaflaly) (134)
=2

Similarly, the second term of Eq[T3T]is simplified as:

Z’ITP ZMT als)iz(als) %ZLQ allal | (135)
=2

seA acA
Combining Eq[T34]and Eq[T33] we get
o« al Q 1< o7 logn
AGJSn—fN;Ll(ai la® | 752@ Tl | +0< 2 > (136)

Then we compute the asymptotic mean and asymptotic variance of Eq.[I36] By comparing Eq. [I30]
and Eq.[T31] we obtain the asymptotic mean.

E[AGIS,] = —GIS(Mg, Mp, o) (137)

Eq.[I36|shows that the random behavior of AGJS,, is primarily determined by two additive functionals

on Markov chains. Since the two reference sequences, a?: ~ and af., are mutually independent, the

total variance is the sum of their individual variances.

N n
@ 1
Var(AGIS,,) = Var(— N2 n(alag 1)) + Var(—— ;Lg(aﬂaﬁl)) (138)
a? al 1 =
— Ww(;u(aﬂaf{l)) + ﬁVar(;LQ(aiT\aiT_l)) (139)

Here we use Lemma[A3.12]and [A3.13|to compute the asymptotic variance for AGJ S,,. We begin
by defining a new Markov chain whose state at time i is given by b; := (af’2 10, ) Then we can

define a function f; that acts on the state b;, f1(b;) =:= Ll(a?|agl). With these definitions, we
have successfully converted the original sum over transitions into a sum over the states of the new
chain, which perfectly fits the framework of Lemma[A3.12]and [A3.13]

1(@%a? ) @Zfl (140)

1=2
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According to Lemma|A3.13| the asymptotic variance 0% of the additive functional ZfiQ f1(b;) is
given by

ot =2limlg e, fi) = |1 £l (141)

Now we need to calculate the two main components of this formula. The stationary distribution 7’ of
the new chain is determined by 7’ = 7 (s) - Mg(als). By Eq.[130} we get

pm=Es )] = Y 7(s,a)fi(s.a) (142)
(s,a)eAx A
= " 7q(s) Y Mg(als)u(als) (143)
sc A ac A
Mo + M
= Dy (Mg, 5228 1Q+ —) (144)

We obtain the centered function
fi(s,a) = fi(s,a) — 1 = t1(als) — (145)

Then according to Lemma|A3.13| we calculate the squared norm || £, ||2, which is the variance of f;
under the stationary distribution 7’.

1f1l? = Vare (1) = Ex[(A(0)?] = Y #(s,a)(ulals) — m)? (146)

(s,a)eAXA
Calculating the inner product (g; , f1> requires first finding ¢, . by solving the resolvent equation:

gre= (14T — M) 'f (147)

where M, is the transition operator of the new chain and can be constructed from M¢. Each element
of the M}, matrix, My((s,a), (s’,a’)), represents the probability of the new chain transitioning from
state (s, a) to state (s',a’).

Mg(d'|s") If s’ = shift(s,a)

My((s,a),(s',a")) = {0 (148)

otherwise

where shift(s, a) denotes an operation that removes the first element of the sequences s and appends
a to the end. After solving g1 ., we compute the inner product:

(e fiy="Y_ 7(s,0)91.(s,a)fi(s,a) (149)

(s,a)eAx A

We take the limit lim._,o(g1,¢, f1), then substitute the limit and the value of Eq. [146]into Eq. get
the final asymptotic variance 0%0. Similarly, we use the same method to calculate the asymptotic
variance 03 , = Var(}_1_, t2(al'|al;)). While the asymptotic variance does not generally admit
a closed-form expression, Lemma[A3.12]and [A3.13|provide us with constructive representations.
They can be used to compute or approximate the asymptotic variance in practice.

Now we have proved that under Hy, the asymptotic normality of AGJS,,, that is
AGIS,, —
vn( DN N

0,1) (150)
UHO
where 171, = E[AGJS, ] = —GIS(Mgq, Mp, ) and variance o7, = ]‘\’,—220%’0 + 203 .

Analogously, under H;, we can prove the asymptotic normality of AGIS, with uy, =
GIS(Mp, Mg, ) and variance o7, = %220%1 + 503, where ol = Var(ZiV=2 t1(aflal )
and 03, = Var(} ", 12(af |al_;)). As discussed in the variance framework above, they can be
represented by the resolvent formulation as in Eq.[I41]and Eq.

O
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A4 EXPERIMENTS: CONFIGURATIONS AND MORE RESULTS

A4.1 IMPLEMENTATION AND CONFIGURATIONS

Our implementation is adapted from MAUVE ((Pillutla et al.,[2023))) and Lastde ((Xu et al., 2025)).

All detection experiments were conducted on one RTX 4090, while data generation ran on an A40
GPU. We use 9 open-source models and 3 closed-source models for generating text. Open-source

models include GPT-XL (Radford et al 2019), GPT-J-6B (Wang & Komatsuzakil 2021), GPT-
Neo-2.7B (EleutherAl, 2021), GPT-NeoX-20B (Black et all,[2022), OPT-2.7B (Zhang et al., [2022),
Llama-2-13B (Touvron et al. [2023), Llama-3-8B (Llama Team, 2024), Llama-3.2-3B (Meta AL
[2024), and Gemma-7B (Gemma Team, Google DeepMind| [2024). Closed-source models include
Gemini-1.5-Flash (Gemini Team, Googlel [2024), GPT-4.1-mini (OpenAl [2025a), and GPT-5-Chat

(OpenAl, 2025b).

Generation Pipeline In our generation pipeline, for each dataset, we filtered out samples with text
length less than 150 words and always condition only on the first 30 tokens of the human text. Each
machine passage is generated between 100 and 200 tokens. After generation, we pair each human
passage with its corresponding machine passage and truncate both to the shorter side (measured
in words). Thus every human-machine pair used for detection has the same length and there is no
systematic length advantage for either class.

Default Decoding Strategy In our experiments, unless otherwise specified, for each model family
we use a fixed default decoding configuration. Concretely, for open-source models on HuggingFace
we use the standard decoding configuration temperature = 1.0, top-p = 1.0, top-k = 50. For GPT-4.1-
mini and GPT-5-chat (OpenAlI API), we follow the default settings temperature = 1.0, top-p = 1.0
(no top-k parameter). For Gemini, we use the default settings of the Gemini API, temperature = 1.0,
top-p = 0.95, top-k = 64.

A4.2 MORE RESULTS

A4.2.1 EXPANSION OF TABLE[I]AND TABLE[2]

Table PTO|TT] T2|[T3] and [T4] show the detection results on XSum, WritingPrompts,and SQuAD
datasets. The performance is the average over three detections, where each detection is conducted on
a randomly sampled test set.

Gemini-1.5-Flash GPT-4.1-mini GPT-5-Chat Avg

Likelihood 532 +131 5554 £1.09  43.03 +£260  50.59
LogRank 52.01 £2.53 5796 £281 4586 +388  51.94
Entropy 63.19 +1.78 517 +£1.02 568 +202  57.23
DetectLRR 49.85 +2.54 6226 £091 5414 +36 5542
Lastde 59.26 +3.39 55974218 453 +134 5351
Lastde++ 76.9 +1.62 69.20 £2.00  48.14 £328  64.78
DNA-GPT 60.85 +£1.41 55.7 £0.46 454+£077 5398
Fast-DetectGPT 75.52 +£1.58 66.7+145 4851 £201 6358
DetectGPT 62.58 +131 61254308  50.17+£029 58

DetectNPR 58.77 +£2.47 6217 £1.50  53.324£097  58.09
R-Detect 63.68 £0.77 6343 £231 5874 +162  61.95
Binoculars 74.84 £2.12 61.12 £147 4594 +067  60.63
FourierGPT 52.06 +0.39 55.53 +2.31 61.1+£11 5623
SurpMark,,_ 70.24 +0.77 84.07 221 8416 £101  79.49
SurpMark,,_, 71.22 +0.32 8252 +1.11  87.02+14 8025
SurpMark g 69.03 +1.74 85.78 £076  86.38 £094  80.40

Table 9: Detection results on XSum for text generated by 3 closed-source models under the black-box
setting.
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Gemini-1.5-Flash ~ GPT-4.1-mini ~ GPT-5-Chat Avg

Likelihood 80.53 +1.29 82.95 +1.23 62.00 4295  75.16
LogRank 74.73 £2.64 80.66 +2.81 58.01 +4.04  71.13
Entropy 46.34 £3.11 19.00 +6.43 25.23 +4.08  30.19
DetectLRR 48.22 £2.7 68.50 +1.06 4392 +248  53.55
Lastde 41.09 +2.88 55.72 +2.62 30.64 159 4248
Lastde++ 76.90 £1.05 68.49 42 30.64+3.23 58.68
DNA-GPT 78.19 +0.87 63.70 +1.73 45.60 £3.2 62.50
Fast-DetectGPT 91.96 4-0.31 70.23 £1.91 30.01 £4.07  64.07
DetectGPT 87.12 +0.49 78.04 +0.9 58.72 +£2.01  74.63
DetectNPR 80.47 +1.23 75.80 +0.97 5597 231  70.75
R-Detect 83.31 £+0.89 78.79 £1.92 77.06 +0.48 79.72
Binoculars 95.35 +0.1 80.5540.34 42.2640.67 72.72
FourierGPT 77.8 £0.36 77.96 £1.05 74.45 £1.72  76.74
SurpMark,, _4 86.64 +2.33 85.80 4-0.57 82.25 +1.03  84.90
SurpMark,,_ . 86.68 +1.4 83.64 40.33 83.73 4052  84.68
SurpMark,,_g 89.43 40.35 87.27 4+0.14 83.56 +0.67  86.75

Table 10: Detection results on WritingPrompts for text generated by 3 closed-source models under
the black-box setting.

Gemini-1.5-Flash ~ GPT-4.1-mini ~ GPT-5-Chat Avg

Likelihood 35.74 +3.46 61.82 +3.21 43.83 £2.01  47.13
LogRank 34.86 4-2.61 61.78 +3.52 45.62 £3.66  47.42
Entropy 65.55 +1.08 45.46 +1.43 58.94 +0.65  56.65
DetectLRR 35.46 +1.84 59.10 #2.11 5142 4£250  48.66
Lastde 44.03 +£1.55 60.15 +2.92 49.95 £3.65  51.38
Lastde++ 52.47 +£1.86 66.90 +2.18 51.76 £3.02  57.04
DNA-GPT 47.15 £0.93 50.74 +2.88 58.45 +1.18  52.11
Fast-DetectGPT 49.98 +1.33 68.04 +1.19 51.64 £198  56.55
DetectGPT 57.87 +2.65 70.95 +0.82 54.90+40.83 61.24
DetectNPR 55.63 £2.91 74.53 +1.29 55.67 +£2.13  61.94
R-Detect 60.86 +1.33 72.69 +1.41 67.45 +2.37 67

Binoculars 53.34 £2.53 73.69+0.55 60.76 +0.67 62.6
FourierGPT 53.89 +2.57 55.66 +2.25 5892 +224  56.16
SurpMark,, _ 4 66.84 +1.11 70.87 +0.86 68.57 148  68.76
SurpMark,, _ - 67.51 +1.3 69.27 +1.83 73.23 +£0.87  70.00
SurpMark;, _g 59.53 £1.49 7227 £1.32 74.81 +£1.02  68.87

Table 11: Detection results on SQuUAD for text generated by 3 closed-source models under the
black-box setting.

GPT2-XL GPT-J-6B GPT-Neo-2.7B  GPT-NeoX-20B OPT-2.7B Llama-2-13B Llama-3-8B  Llama-3.2-3B Gemma-7B Avg
Likelihood 7654063 6274 +107 5836 +1.62 60.58 £1.8 68.51 £1.37 92224048 9341 +£082 51614062 5513118 6878
LogRank 80.16 £0.89  67.83£1.13  64.54 +0.98 6358 £125 72334156 9456032 95054017 59354008  59.13 068  76.89
Entropy 50.65£1.52 5637 +0.66  63.76 +143 5532 £1.11 5288 £0.68 42334258 2931 +3.19 55£2.89 5324148 5040
DetectLRR 8324083 7654088 7694 +1.09 68.4 +135 7749 £0.54 95744023  9485+008 7505031 66424142 8142
Lastde 9197 £0.44 7799 £0.89  82.49 +0.85 72124163 77854068 9201 £0.89 94294038 59524005  61.09+127 8257
Lastde++ 98.99 £021  85.3840.63 87.540.11 80.3 £0.92 87934054 92524043 959 +0.14 509 £0.08 6568 £0.97  87.51
DNA-GPT 7143 £133 5547 £285 5443 £32 56.31 £1.86 5824172 936904036 9654 +£0.12  50.37+£007 55294104  70.70
Fast-DetectGPT 9554 £0.34  78.6 2056 81.84-£0.88 8376 £128  9055+077 97774005 9678 £021 6186 +£142  632£118 8471
DetectGPT 9288 £1.3 7186 £179 7667 +£2.01 7806 £0.87 82884123 8279 062 8361 £125 5606265  61.6+£294 7718
DetectNPR 9187 £1.13 7236 £146  78.83 £0.66 7676 £148 8406 +£121 94294086  92314£03 5962177  6052+178  80.05
R-Detect 7287 £149 5986 £1.11  67.59 £0.48 63454245 69754071 72114093 8106 +084 6243 +£082 4675 +073 6621
Binoculars 98.87 +0.13  74.66 £048  78.05+127 76.18+1.22 7989 £0.79 9678 £021  96.19 +0.16 48224071 63714072  79.17
FourierGPT 5184139 52524202 5044 +296 50174028 4816 +301 63384242  5074+34  S198+173 53624078 5453
SurpMarkj,_g 96954043 88354102  92.26 +0.65 81.58 £0.72 90.88 0.1 96874026 97774035 7396 +0.86  73.01+£098  87.96
SurpMarkj, _, 97 £0.8 89.26 £048 9292 +0.06 82454103 OL16+£1.08  97.00£045 9748 £031  73.07+06 7297 +085  88.16
SurpMarkj, g 95.55+£021 8549 £0.63 8833 +0.83 82354049  90.19£041 9683 £0.16 97241008 7292102  70.11 £098 8656

Table 12: Detection results on XSum for text generated by 9 open-source models under the black-box
setting.
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GPT2-XL GPT-J-6B  GPT:Neo-27B  GPT-NeoX-20B ~ OPT-27B  Llama-2-13B  Llama-3-8B  Llama-32-3B  Gemma-7B  Avg
Likelihood 9455 £0.63 8873111  89.67 £0.84 87.12 4113 85154255 9948 4£02  99.61 £0.08 85954035 83164145  90.38
LogRank 9604043 9178118 9220 +1.22 80.68 £0.57  89.96+£062 9959 £0.01  99.81 £0.11  $9.09£105 8600 £0.86  92.68
Entropy 34724275 3364 +281 32824213 32634174 40884217 5834374 8424486 53004255 37016424 3101
DetectLRR 9696 £031 9531 £042  94.85+£0.16 92034032 9568 £064  98.57£0.12  99.81 £003 92444017 8919 £0.03  94.98
Lastde 9850 £02  93.94+0.12 9597 +0.33 9036 082 96.05+£0.18 97974048  98.69+£023 9204 0.1 8496 +£0.56  94.28
Lastde++ 99.68 +0.11 9596 +0.51 98.86 0.1 9268 +£0.74 98394012 9914008 9956 £0.06 9504 £03 9259 £0.65  96.88
DNA-GPT 90534162 8534113 8572407 8301 +1.41 85054129 9888 £0.12 99654003 8447 +£065  80.60 £0.81  88.14
Fast-DetectGPT  99.67 £0.02 9380 £0.6  96.62 £0.31 92224027 94994052 99.56 £0.01  99.84 £0.04  93.55+053  89.36+1.03 9551
DetectGPT 9588 £02 8583 +115  9LI2+152 85.07£1.84 9013 +121 92674063 9310061  8008£1.07  83.10+23 8856
DetectNPR 9829402 89774033  93.02 +0.92 8796 £055 9236 +143 98204051 98524018 8522405 8671 +£1.03 9223
R-Detect 8668 £135 75931106 7523 £0.59 7383 +1.1 51034257 79.69 £0.88 82794093 7124236 72624089 7433
Binoculars 99.6 £0.03 937 £051 94.96 +0.21 9322 4021 91334086 989 +0.16 99 40.06 9344027 89224082 9481
FourierGPT 6023 +48 5981 +£162 6808 +146 60.6 +0.29 56954304 9144074 9161 £1.14  S868+128 61524072  67.65
SurpMarkj,_g  99.44£006  97.60 £022 9832 +0.57 9438 4016 97224016 9947 £0.07 9965 +0.1 9271 +£145 8928 £1.69 9645
SurpMark,_, 9927 +£0.12 9729 £061  97.63 +0.17 94314012 96794052 9953 +0.06  99.86£0.02  93.61 +0.41 89424095 9641
SurpMark,_g 999 £0.01 9685 +106  97.61 +0.38 9393 +0.24 9648 £04 9959 +0.03  99.87+£003 91654037 9037 +143  96.25

Table 13: Detection results on WritingPrompts for text generated by 9 open-source models under the
black-box setting.

GPT2-XL GPT-J-6B  GPT:Neo-27B  GPT-NeoX-20B ~ OPT-27B  Llama-213B  Llama-3-8B  Llama-32-3B  Gemma-7B  Avg
Likelihood 84004233 7300312 71.93 £2.95 6840132 78014125 9147143 88774101  S8.11£186 5910 £158 7475
LogRank 88394206  78.14 £096  78.13 £2.26 7285 +1.45 8368412 93554059 9048 £13  6469+£064 6241 £172  79.15
Entropy 5893 £3.11 5143426 5624 £291 49.86 +1.68 5288431 38924237 38724271 51004226 5018182  49.80
DetectLRR 93054011 8561 £124  89.56 £1.01 8038119 92284105 9498035 9147 +145  T7.14£109 7089 £231  86.15
Lastde 9745 +037 8571 £145  88.82 £0.44 7801 187 9278 +1.18  89.88£1.03  90.89 £0.72 6741 £29 6240 £255 8371
Lastde++ 99724005 9327 £042  96.51 £0.05 8242 £0.3 96.13 £021  94.85£0.14 94724002 77474032  7243£024 8972
DNA-GPT 8397 4221 71234217 78214145 71934186 78334143 95154049 95004032 59524161  60.06 £1.67  T7.04
Fast-DetectGPT ~ 98.60 £0.05 8809 £1.05  89.00 £1.18 81.79 £1.58 9289 £0.6 97324028  97.324005  67.56 £247 6929 £0.61  86.87
DetectGPT 9459 4043 8095 +204 8634121 69.04 12,6 80454284 8408 £165 82134172 5656 £37 6244154  77.40
DetectNPR 9464 026 8359 +124 8734129 75.0142.13 83074178 93.09£0.69 9018 £105 63524243 6725417  81.97
R-Detect 6358 097 5504 £0.64  60.28 £1.67 52774264 51034072 88154069  81.06+£087  53.03+£277  47.02434 6133
Binoculars 99.09 £0.04 8891 £1.03  89.49 £0.46 76.66 +1.21 8049 £027 9514002 940403 6346046 6777 £258  84.89
FourierGPT 52124302 505 £2.56 565 £2.79 4976 +1.82 5234261 6249086  6482+122  5383+£072 52384249 5497
SurpMarkj,_g  97.88£055 92934082  94.99 £03 84.39:£0.18 9537406 95894049 93764035 7854197  69.92 +0.54  89.30
SurpMark,_, 98774072 9274 +£045 9572 +0.38 82454103 96.68£0.65 9613403 94174057 75554121 6827 +095 8894
SurpMark, g 98.76 £0.66  90.78 +0.23 94.56£0.1 7936 167 9726 £021 9481 £0.41 93324016  7655+12 67474083  88.10

Table 14: Detection results on SQuAD for text generated by 9 open-source models under the black-
box setting.

A4.2.2 EMPIRICAL CALIBRATION OF THE BIN-COUNT SCALING CONSTANT

Our intention in Section 4.2 is justify the scaling law k = O(N 1/ ®). In practice, for each dataset

we treat the theorem as providing the functional form k = C'N''/ and then select k by a small grid
search. To handle constant C', we examined the ratio # across several reference size and found it

to be consistently around 0.8. This suggests that in our regime the implicit constant is approximately
C = 0.8, and that the empirically chosen k is well aligned with the theoretical scaling law.

Number of ref samples N (approx. total transitions) Empirical best k& N 1/5 #
100 15,000 6 6.84 0.88
300 45,000 7 8.52 0.82
400 60,000 7 9.03 0.78
600 90,000 7 9.80 0.71
900 135,000 9 10.62  0.85

Table 15: Scaling of the empirically optimal number of bins k£ with the total number of transitions N.

A4.2.3 EMPIRICAL VALIDATION OF THE ASYMPTOTIC NORMAL APPROXIMATION

While the asymptotic variance in Theorem 4.4 does not provide a simple closed-form expression,
Appendix [A3.3.3] along with Lemma [A3.13| give an explicit numerical procedure to solve it. To
quantitatively compare this theoretical variance with empirical fluctuations, we proceed as follows.
We first compute the theoretical variance using the estimated Markov kernels from reference data.
Then we estimate the empirical variance of AGJS,, in detection procedure. Table[I6|reports theoretical
variance and empirical variance with test length 250. Overall, the theoretical variance captures the
right order of magnitude AGIJS,, fluctuations, so we interpret it as a conservative asymptotic scale
parameter rather than a precise finite-sample variance estimator.

Finally, to assess the distributional shape, we ran Shapiro-Wilk tests on the obtained AGIJS,, score,
as shown in Table the Shapiro-Wilk statistics are close to 1 and the p-values are not small
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Model Emp o2 (Human)  Empo?2 (LM)  Th o2 (Human) Th o2 (LM) Ratio Th/Emp (Human) ~ Ratio Th/Emp (LM)
Llama3-8B 1.15 x 107° 1.06 x 1075 248 x 107°  7.50 x 10~° 2.16 7.08
Llama3.2-3B 1.12 x 107° 9.93x 1076 273 x107° 9.11x107° 2.44 9.17
Gemma-7B 1.50 x 106 5.96 x 1077  3.56 x 10°% 243 x 1076 237 4.08

Table 16: Comparison between empirical and theoretical variances of AGJS under human and LM
text.

Setting SQuUAD@GPT-5-chat  WritingPrompts@Llama3-8B  XSum@Qwen3-8B
H, (LM text) stat 0.9952 0.9856 0.9974
H; (LM text) p-value 0.9078 0.1203 0.9969
Ho (human text) stat 0.9876 0.9854 0.9929
Hy (human text) p-value 0.2032 0.1143 0.6632

Table 17: Shapiro-Wilk test statistics and p-values for AGJS,, under LM-generated (H;) and human
(Hp) text.

(larger than 0.05). This indicates no evidence against normality and empirically supports the central-
limit-theorem-based approximation in Theorem [A3.3.3] consistent with the variance comparison
above.

A4.2.4 SCORE DISTRIBUTION
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Figure 7: SurpMark’s score distribution.

A4.2.5 EFFECT OF TEST LENGTH
A4.2.6 TPR

In Table[T8] we include TPR@FPR=1% and 5% for SurpMark and two strong baselines (Lastde++
and Fast-DetectGPT) across evaluation settings. Overall, these results indicate that SurpMark is
particularly effective in the low-false-positive regime.

A4.2.7 CROSS-DOMAIN GENERALIZATION
A4.2.8 DECODING STRATEGIES

In Table 20} to evaluate the effect of decoding stratigy, we use standard decoding strategies as
described in Appendix [A4.1] varying one hyperparameter at a time while keeping the others at their
default values. For open-source models on HuggingFace and Gemini, we (i) set top-p = 0.96, (ii) set
top-k = 40, (iii) set temperature = 0.7. For GPT-5-chat, we vary one parameter at a time: top-p = 0.96
or temperature = 0.7 (no top-k parameter is exposed). Across all three models and decoding strategies,
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Figure 8: AUROC vs test length.

Method XSum@ ‘WritingPrompts @ XSum@ SQuAD@ WritingPrompts @ HC3-Chi-
GPT-5-Chat GPT-4.1-mini Llama2-13B GPT-Neo-2.7B Llama3-8B Psy
Lastde++ TPR@FPR=1% 4.00 6.00 76.67 53.33 97.33 22.00
TPR@FPR=5% 12.67 18.67 82.67 81.33 99.33 31.33
Fast-DetectGPT TPR@FPR=1% 2.00 3.30 80.67 47.33 94.67 26.00
TPR@FPR=5% 4.00 22.00 86.67 77.33 98.00 40.00
SurpMark TPR@FPR=1% 31.33 31.33 75.33 41.33 100.00 90.00
TPR@FPR=5% 37.33 50.00 90.00 90.00 100.00 97.33

Table 18: TPR at fixed FPR levels (1% and 5%) for different detectors and datasets.

SurpMark either matches or exceeds the best baseline, and is especially strong under top-p/top-k
sampling.

A4.2.9 PARAPHRASING ATTACK

Here we examine the robustness of detection methods to the paraphrasing attack. For SurpMark, we
consider three paraphrase scenarios. Ref-P applies paraphrasing only to the offline references. Test-P
paraphrases only the incoming text, which is the most realistic case in practice. Both-P paraphrases
both sides. We follow the setup of Lastde++ and Fast-DetectGPT, and use T5-Paraphraser to perform
paraphrasing attacks on texts. Under the practically most relevant Test-P case, the losses are minimal.
Under Ref-P, the changes are modest. Under Both-P the drop is larger but still competitive. It shows
that SurpMark’s surprisal-dynamics features are largely invariant to semantics-preserving rewrites.

A4.2.10 PROMPT-ENGINEERED ADVERSARIAL ATTACKS

In this section, we run experiments with simple prompt-engineered attacks beyond plain paraphrasing.
Specifically, for the XSum and WritingPrompts datasets, we design two types of attacks: (attack 1)
prompts that ask the model to mimic human writing style, using instructions such as “Messy casual
summary of the news article.” or “Short story in a quick, slightly messy human style.”; and (attack 2)
prompts that explicitly instruct the model to evade detection, such as “Write a summary of the article
that is designed to evade Al-text detectors.” or “Continue the story in a way that is hard for Al-text
detectors.” See Table 22] for comparison. “SurpMark ref-attack™ applies the adversarial prompts
only when generating the reference machine texts, “SurpMark test-attack™ applies them only to the
test texts, and “SurpMark both-attack™ applies the same adversarial prompts to both the reference
and test texts. Across both datasets, SurpMark variants (especially the test-attack and both-attack
settings) experience much smaller accuracy drops under all three attacks, showing the strongest
overall robustness.

Ad4.2.11 ABLATION ON NECESSITY OF FIRST-ORDER MARKOV CHAIN

In Table[23] we evaluate the necessity of the use of first-order markov chain by comparing against the
1-gram distribution of surprisal states. Across the datasets, the first-order Markov features outperform
the 1-gram distribution, with especially large gains on GPT-5-chat. This shows that modeling surprisal
transitions, rather than only the stationary distribution, is particularly important for harder-to-detect
models.
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Test self-ref  WritingPrompts-as-ref ~ XSum-as-ref ~ SQuAD-as-ref
XSum@Gemma_7b 72.97 68.32 - 73.81
WritingPrompts @ Gemma_7b 89.42 - 86.60 90.00
SQuAD@Gemma_7b 68.27 72.92 70.44 -
XSum@GPT-Neox-20b 82.45 82.52 - 81.80
‘WritingPrompts @ GPT-Neox-20b 94.31 - 93.45 92.48
SQuAD @GPT-Neox-20b 82.45 81.43 83.02 -

Table 19: AUROC of SurpMark under different reference choices across datasets and models.

Method / Data@Model XSum@OPT-2.7B XSum@Gemma-7B WritingPrompts @ GPT-5-chat
top-p  top-k  temperature  top-p  top-k  temperature  top-p temperature
Likelihood 79.24  67.95 93.53 66.73  55.56 87.56 57.29 66.99
LogRank 82.01 7211 94.72 6828  59.25 88.69 55.03 65.60
Entropy 46.87  56.53 45.27 49.16  52.12 45.06 36.24 33.68
LRR 8343  77.88 93.48 68.66  67.86 86.22 47.28 59.38
Lastde 86.09  81.26 94.19 68.34  58.24 85.03 39.38 47.74
Lastde++ 92.64  87.38 97.24 8143  69.42 93.15 45.15 57.26
Fast-DetectGPT 90.64  85.03 98.28 80.41  68.70 95.99 41.61 57.54
SurpMark k = 6 9241  87.81 96.65 82.13 72.38 93.79 75.80 77.08
SurpMark k = 7 93.90 87.20 95.96 80.90 77.88 93.57 77.32 77.08

Table 20: AUROC of different detectors across decoding parameters, datasets, and models.

A4.2.12 ANALYSIS OF PERFORMANCE DISPARITY: MARGINAL VS. TRANSITION
SURPRISAL

We investigate the performance disparity observed between closed-source (e.g., GPT-5-chat) and
open-source models. Our analysis suggests that the distinguishing factor lies in the divergence
between the generator and human text at the marginal surprisal level versus the transitional level.

For many open-source models, the marginal surprisal gap—the difference in the stationary distribution
of token surprisals—is sufficiently large. Consequently, detectors relying on marginal statistics (e.g.,
Likelihood, LogRank, Entropy) perform well, and the relative gain from SurpMark is moderate.
Conversely, for advanced closed-source models, this marginal gap is nearly negligible, rendering
unigram-based methods ineffective. However, a significant transition gap persists in the surprisal
dynamics. SurpMark captures these temporal dependencies, explaining its substantial performance
advantage on proprietary models.

To quantify this, we compute the Jensen-Shannon (JS) divergence for both marginal surprisal
distributions (JSmargina) and first-order transition distributions (JSiransition) between human and
machine text. As shown in Table[24] for GPT-5-chat, the ratio of transition divergence to marginal
divergence is approximately 30, indicating that the signal primarily resides in the dynamics. In
contrast, for GPT-J-6B, this ratio is close to 1, suggesting that marginal statistics alone are nearly as
informative as transition statistics.

A4.2.13 THRESHOLD SELECTION

The natural decision rule is simply the sign test by setting 7 = 0. Our detector is built around the
difference between two GJS divergences. Intuitively, AGJS is positive when the test sequence is
closer to the machine reference than to the human reference, and negative in the opposite case. Also,
AGJS can be viewed as a log-likelihood ratio A,, . In the classical Neyman-Pearson framework,
the optimal likelihood-ratio test with equal class priors and symmetric costs is precisely A, n = 0.
We additionally perform a threshold sensitivity study in Table[23] For each dataset and generator, we
sweep 7 over the full score range on the test set, compute precision/recall, and identify an optimal
threshold 7* that maximizes F1. We then compare F1 at our fixed choice 7 = 0. Across all generators
and datasets, F1 at 7 = 0 is typically about 95-97% of the oracle F1. This shows that in practice, our
parameter-free sign-based rule already operates very close to the best threshold.

In Lastde, the authors propose a fixed threshold of 2 for Lastde++ regardless of the source model,
motivated by plotting score distributions and empirical performance across their experiments. In
Table 26] we therefore compare F1 of two methods at their respective threshold. Across three of the
four settings, SurpMark achieves higher AUROC, and in all four settings it attains a higher F1. On
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Xsum@Llama-3-8B WritingPrompts @ GPT-NeoX-20B SQuAD @Llama-2-13B

Original Paraphrased \ Original Paraphrased \ Original Paraphrased
Fast-DetectGPT 96.78 95.3 (11.48) 92.22 89.51 (J2.71) 94.85 92.78 (12.07)
Lastde++ 93.42 91.3 (12.12) 92.68 91.94 (10.74) 97.32 92.12(45.2)
SurpMark Ref-P 97.77 97.06 (40.61) 94.31 93.12 ({1.19) 96.13 94.89 (11.24)
SurpMark Test-P 97.77 97.33 (10.44) 94.31 94.05 (10.26) 96.13 95.46 (J0.67)
SurpMark Both-P 97.77 97.17 (10.6) 94.31 92.22 (42.09) 96.13 93.98 (J2.15)

Table 21: Robustness to paraphrase attacks. AUROC on three settings—XSum@Llama-3-8B,
WritingPrompts @ GPT-NeoX-20B, and SQuAD @Llama-2-13B. For SurpMark, Ref-P/Test-P/Both-P
denote paraphrasing the reference set, the test text, or both.

WritingPrompts @ GPT-J-6B XSum@GPT-J-6B
Original Attack 1 Attack 2 Original Attack 1 Attack 2
Lastde++ 96.96 84.24 (1 12.72) 8542 ({ 11.52) 85.38 69.79 (} 15.59)  73.55(] 11.83)
Fast-DetectGPT 93.80 85.95 (1 7.85) 79.26 (| 14.54) 78.60 75.44 (] 3.16) 74.09 (| 4.51)
SurpMark ref-attack 97.60 95.06 (1 2.54) 94.67 (4 2.93) 88.35 83.84 (, 4.51) 83.85 (1 4.50)

SurpMark test-attack 97.60 9562 (] 1.98) 9259 (l 5.01) 88.35 86.37() 1.98)  84.86 (| 3.49)
SurpMark both-attack  97.60 94.30 () 3.30) 9274 (] 4.86) 88.35 84.44(1 3.91)  8523(] 3.12)

Table 22: AUROC under adversarial attacks for different detectors on GPT-J-6B.

SQuAD @Llama-3-8B, Lastde++ has slightly higher AUROC, but at their fixed thresholds SurpMark
still achieves higher F1, indicating SurpMark’s sign-based decision rule is better calibrated and less
sensitive to threshold choice.
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GPT-J-6B GPT-5-chat
Metric / Dataset XSum  WritingPrompts ~ SQUAD ~ XSum  WritingPrompts SQuAD
1-gram distribution 86.07 96.60 91.62 55.89 78.43 54.58
First-order Markov chain 88.35 97.60 92.93 84.16 82.25 68.57

Table 23: AUROC of unigram vs. first-order Markov detectors across models and datasets.

Generator Dataset  JS-marginal  JS-transition  Ratio (Transition / Marginal)
GPT-J-6B XSum 0.00180 0.00228 ~ 1.27

SQuAD 0.00358 0.00392 ~ 1.09
GPT-5-chat XSum 0.00006 0.00170 ~ 29.97

SQuAD 0.00024 0.00100 ~ 4.17
GPT-4.1-mini ~ XSum 0.00030 0.00160 ~ 5.33

SQuAD 0.00052 0.00150 ~ 2.88

Table 24: Comparison of Jensen-Shannon (JS) divergence on marginal surprisal distributions versus
first-order transition distributions. The high ratio for closed-source models (e.g., GPT-5-chat) indicates
that detection signals are dominated by transition dynamics rather than marginal statistics.

Setting AUROC T Fl@r* Fl@r =0
XSum@GPT-J-6B 89.12 2.92 x 107° 83.56 80.36
WritingPrompts @Llama-2-13B 99.75 —9.29 x 1076 98.66 98.66
SQuAD@Llama-3-8B 93.56 —4.49 x 107° 87.58 82.69
WritingPrompts @ GPT-5-chat 80.63 —1.34 x 107° 76.13 75.07

Table 25: AUROC and F1 scores at the optimal threshold 7* and at 7 = 0 across different settings.

Metric Method XSum@GPT-J-6B WritingPrompts @Llama-2-13B SQuAD @Llama-3-8B WritingPrompts @ GPT-5-chat
AUROC Lastde++ 85.38 99.14 94.72 30.64
SurpMark k = 6 88.35 99.47 93.76 82.25
F1 at respective Lastde++ 63.44 95.56 80.93 0.00
fixed threshold SurpMark & = 6 80.36 98.66 82.69 75.07

Table 26: Comparison of AUROC and F1 at fixed thresholds for Lastde++ and SurpMark (k = 6)
across different settings.
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