

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BLACK-BOX DETECTION OF LLM-GENERATED TEXT USING GENERALIZED JENSEN-SHANNON DIVERGENCE

Anonymous authors

Paper under double-blind review

ABSTRACT

We study black-box detection of machine-generated text under practical constraints: the scoring model (proxy LM) may mismatch the unknown source model, and per-input contrastive generation is costly. We propose SurpMark, a reference-based detector that summarizes a passage by the dynamics of its token surprisals. SurpMark discretizes surprisals into interpretable states, estimates a state-transition matrix for the test text, and scores it via a generalized Jensen–Shannon (GJS) gap between the test transitions and two fixed references (human vs. machine) built once from existing corpora. **Theoretically, we derive design guidance for how the discretization bins should scale with data and provide a principled justification for our test statistic.** Empirically, across multiple datasets, source models, and scenarios, SurpMark consistently matches or surpasses baselines; **our experiments on hyperparameter sensitivity exhibit trends that our theoretical results help to explain, and are consistent with the method’s underlying intuitions.**

1 INTRODUCTION

Rapid advancements in LLMs have driven their text generation capabilities to near-human levels. This has blurred the boundary between human-written and machine-generated text, posing multiple concerns. These include susceptibility to fabrications (Ji et al. (2023)) and outdated or misleading information, which can spread misinformation, or facilitate plagiarism (Lee et al. (2023)). LLMs are also vulnerable to malicious use in disinformation dissemination (Lin et al. (2022)), fraud (Ayoobi et al. (2023)), social media spam (Mirsky et al. (2021)), and academic dishonesty (Kasneci et al. (2023)). Moreover, the increasing use of LLM-generated content in training pipelines creates a recursive feedback loop (Alemohammad et al. (2023)), potentially degrading data quality and diversity, which poses long-term risks to both society and academia. These concerns motivate the development of detectors that reliably distinguish human-written from machine-generated text and can be deployed at scale across domains.

Prior work on text detection can be grouped into two categories: classifier-based and statistics-based. Classifier-based detectors require training a task-specific model, which in turn hinges on collecting high-quality, domain-balanced labeled data (Guo et al. (2023); Tian (2023); Guo et al. (2024)); this process is costly, time-consuming, and must be repeated when the target domain or generator shifts. Statistics-based methods fall into two categories: global statistics and distributional statistics. The first relies on global statistics such as likelihood or rank (Solaiman et al. (2019); Gehrmann et al. (2019)), which can be inaccurate or unstable under calibration mismatch, text-length variability, and domain shift. The second relies on distributional statistics, which are constructed by regenerating a neighborhood around the test passage, via sampling, perturbation, or continuation, thereby tying the detector to that particular input (Yang et al. (2023); Su et al. (2023b); Mitchell et al. (2023)). Such per-instance pipelines demand substantial compute and latency and are unrealistic when resources are constrained or throughput is high. Black-box constraints exacerbate calibration drift in global-statistic and regeneration-based detectors due to proxy-model mismatch. This motivates the development of detectors that avoid retraining and per-instance regeneration while remaining reliable under distribution shift in the black-box setting.

Accordingly, we pursue a design that sidesteps both training-classifier and per-instance regeneration by focusing on stable, dynamics-aware signals, that can be reused across test samples. Viewed through a black-box perspective, the problem naturally invites a likelihood-free hypothesis testing formulation

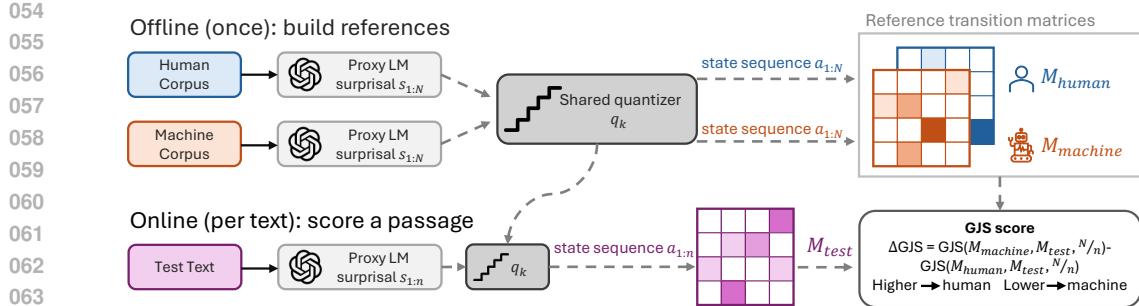


Figure 1: SurpMark framework. Offline, we build human/machine reference transition matrices by scoring corpora with a proxy LM, discretizing surprisal via a shared q_k , and counting state transitions. Online, a test passage is summarized the same way and assigned a GJS score to measure proximity to human vs. machine references. Details are in Algorithm 1 and 2 in Appendix A1.

(Gutman (1989); Gerber & Polyanskiy (2024)): when the true likelihood is unknown, we compare the empirical summary statistics of a test text against human and machine references. Our summary statistic design is guided by two principles. First, because the references are existing corpora whose contexts differ from the test passage, the summary must be abstract and calibration-robust; second, decisions should exploit token dynamics which expose rich local patterns (Xu et al. (2025)). We therefore quantize token surprisal into interpretable states and summarize texts by their state-transition patterns, allowing decisions to depend on relative structure rather than absolute likelihood levels. This representation captures token dynamics and provides a stable, interpretable basis for likelihood-free comparison to human and machine references.

In this paper, we present SurpMark, a black-box, reference-based detector that frames attribution as a likelihood-free hypothesis test. For each test text, token surprisals from a proxy LM are quantized into k interpretable states. The text is summarized by its state-transition matrix and is then assigned a generalized Jensen-Shannon (GJS) divergence score that measures its proximity to the human or machine reference transitions. **These design choices motivate the theoretical analysis: Under an idealized first-order Markov model fitted to the discretized surprisal states, we analyze how discretization affects the estimation of GJS and study the properties of our decision statistic.**

1.1 MAIN CONTRIBUTIONS

- We propose SurpMark, a reference-based detector that requires no per-instance regeneration, as shown in Figure 1.
- **A theoretical analysis, deriving design guidance for how the discretization bins should scale with data and providing a principled justification for the proposed test statistic.**
- A comprehensive experimental evaluation of SurpMark demonstrates its effectiveness across multiple models and domains.

2 RELATED WORK

Prior work on text detection can be broadly categorized into classifier-based and statistics-based methods. Classifier-based detectors train task-specific classifiers to distinguish between human-written and machine-generated text (Guo et al. (2023); Tian (2023); Guo et al. (2024)). While effective with sufficient training data, they are costly to build and must be retrained whenever the domain or generator shifts.

Statistics-based approaches can be divided into two groups based on their design of decision statistics. The first global-statistic methods rely on overall features of the text such as likelihood (Solaiman et al. (2019)), LogRank (Solaiman et al. (2019)) that measures the log of each token’s rank in a model’s predicted distribution, or entropy (Gehrman et al. (2019)) that measures the uncertainty of a model’s next-token distribution. Distributional-statistic methods generate a neighborhood around the test passage via perturbation, continuation, or sampling, and then measure divergence between the test instance and this synthetic distribution. DetectGPT (Mitchell et al. (2023)) leverages the local curvature of log-probability function, comparing original passages with perturbed variants to enable detection of machine-generated text. Fast-DetectGPT (Bao et al. (2024)) introduces conditional

108 probability curvature for faster detection. DNA-GPT (Yang et al. (2023)) truncates passages, and
 109 analyzes n-gram divergences of the regeneration. DetectLLM-NPR (Su et al. (2023a)) leverages
 110 normalized perturbed log-rank statistics, showing that machine-generated texts are more sensitive
 111 to small perturbations. Lastde++ (Xu et al. (2025)) combines global likelihood with local diversity
 112 entropy, where discretization of token probabilities stabilizes the entropy feature. In contrast, our
 113 framework discretizes token surprisals to build surprisal-state Markov transitions, enabling likelihood-
 114 free hypothesis test. Our method lies between global- and distributional-statistic approaches: it
 115 scores each text in a single pass without regeneration, yet makes comparative decisions by measuring
 116 alignment with fixed human and machine references.

117 Recent work has explored kernel-based statistical tests for machine-generated text detection (Zhang
 118 et al. (2024), Song et al. (2025)). Song et al. (2025) introduced R-Detect, a relative test framework
 119 that reduces false positives by comparing whether a test text is closer to human-written or machine-
 120 generated distributions. Our method shares a common foundation with Song et al. (2025) in that it can
 121 also be viewed as a relative test framework. Notably, while the decision rules of these kernel-based
 122 approaches are non-parametric and do not rely on supervised classifiers, their optimized variants
 123 require training kernel parameters on reference corpora, which increases computational cost. Our
 124 approach only requires a lightweight data discretization stage.

125 3 SURPMARK: DETAILED METHODOLOGY

127 In this section, we introduce the proposed detector SurpMark.

129 **Surprisal Sequence Estimation via Proxy Model.** Given a fixed text passage \mathbf{t} and a proxy
 130 model F_θ , we first tokenize \mathbf{t} with the tokenizer associated with F_θ to obtain a token sequence
 131 $\mathbf{x} = (x_1, \dots, x_n)$ of length n . We then run a single forward pass of F_θ on this fixed sequence to
 132 compute the token-level surprisal sequence $\{s_t\}_{t=1}^n$.

$$133 \{s_t\}_{t=1}^n = \{s_1, s_2, \dots, s_n\} \\ 134 = \{-\log p_\theta(x_2|x_1), -\log p_\theta(x_3|\{x_t\}_{t=1}^2), \dots, -\log p_\theta(x_n|\{x_t\}_{t=1}^{n-1})\} \\ 135$$

136 where $p_\theta(\cdot | \cdot)$ is the conditional probability estimated by the proxy model F_θ .

138 **Surprisal Discretization by K-means.** Since surprisal values from the proxy model are continuous,
 139 we discretize them into a finite set of surprisal states to enable robust statistical modeling. We employ
 140 k -means clustering to partition the surprisal distribution into k levels, denoted as $\mathcal{A} = \{1, \dots, k\}$.
 141 For example, when $k = |\mathcal{A}| = 4$, the clusters correspond to interpretable states such as “Predictable,”
 142 “Slightly Surprising,” “Significantly Surprising,” and “Highly Surprising.” This abstraction simplifies
 143 modeling while preserving the essential structure of predictive uncertainty.

144 Effectively, this step converts the initial sequence of continuous surprisal values, $\{s_t\}_{t=1}^n$, into a
 145 discrete state sequence, $\{a_t\}_{t=1}^n$, where $a_t \in \mathcal{A}$.

146 **Modeling State Transitions as Markov Chain.** After discretizing surprisal values into finite
 147 states, we model the resulting sequence as a Markov chain. Notably, LLMs often produce a highly
 148 predictable token after a highly surprising one, a recovery effect driven by perplexity minimization,
 149 as illustrated in Figure 2(a). To capture this structure, we summarize each text by its empirical first-
 150 order transition frequencies. Formally, given a discretized surprisal state sequence $\{a_1, a_2, \dots, a_n\}$,
 151 we estimate a transition probability matrix \hat{M} , where each entry $\hat{M}(j|i)$ represents the empirical
 152 probability of transitioning from state i to state j , with $i, j \in \mathcal{A}$.

$$154 \hat{M}(j|i) = \frac{\sum_{t=1}^{n-1} \mathbf{1}\{a_t = i, a_{t+1} = j\}}{\sum_{t=1}^{n-1} \mathbf{1}\{a_t = i\}}, \quad i, j \in \mathcal{A} \quad (1) \\ 155 \\ 156$$

157 Here, $\mathbf{1}\{\cdot\}$ is the indicator function.

158 Figure 2(b) varies the order of the state-transition summary while keeping the reference and test sets
 159 fixed. AUROC deteriorates as the order increases, which we attribute to state-space explosion with
 160 limited data: higher-order transition counts on both the reference and test side become extremely
 161 sparse, so higher-order summaries bring no notable gains over the first-order one. More details and
 further empirical and theoretical justification are in Section 4.1 and Appendix A2.



Figure 2: (a) Visualizes the key feature driving our detector by comparing the conditional probabilities of transitioning into and out of the "Highly Surprising" state under a 4-bin discretization. This reveals distinct dynamic patterns, including a stronger recovery tendency and a more pronounced spiking tendency from low-surprisal contexts in LLM-generated text. (b) A heatmap illustrating the detector's performance (AUROC) on SQuAD across different hyperparameter settings, using a fixed amount of reference and test data. Higher orders suffer from state-space explosion and sparse transitions, yielding no notable gains beyond the first-order model. (c) The final score distributions of our detector.

Reference-based Detection with Generalized JS Divergence. We frame the task of distinguishing between human-written and LLM-generated text as a binary likelihood-free hypothesis testing (LFHT) problem (Gutman (1989); Gerber & Polyanskiy (2024)). To adapt LFHT for this specific domain, we introduce three key methodological modifications: (1) we utilize token-level surprisals from a fixed proxy LM as observable features; (2) we employ k -means quantization to transform continuous values into statistically tractable discrete state sequences; and (3) we propose a novel test statistic, ΔGJS_n . Crucially, unlike standard LFHT which typically evaluates divergence from a single reference distribution Gutman (1989), ΔGJS_n leverages a two-sided comparison against both human and machine references to enhance discriminative power. In this framework, the null hypothesis H_0 posits that the text is machine-generated, while the alternative H_1 suggests it is human-written. Since the true source distributions (P and Q) are unknown, our approach remains strictly reference-based, relying on historical corpora to approximate the underlying statistics.

Specifically, given reference texts t_P, t_Q from both model source P and human source Q , we first compute their empirical surprisal transition probability matrices, denoted by \hat{M}_P and \hat{M}_Q , respectively. For a given test text t coming from either P or Q , we similarly compute its surprisal transition probability matrix \hat{M}_T using the surprisal state levels estimated from reference texts. We then calculate two separate divergence scores using the generalized Jensen-Shannon Divergence (GJS): one measuring the distance between the test text and the machine reference model $GJS(\hat{M}_P, \hat{M}_T, \alpha)$ and another measuring the distance to the human reference model $GJS(\hat{M}_Q, \hat{M}_T, \alpha)$, where α denotes the reference–test length ratio. The GJS divergence between M_A and M_B with weight α is defined as

$$GJS(M_A, M_B, \alpha) = \frac{\alpha}{1+\alpha} D_{KL}(M_A, M_\alpha) + \frac{1}{1+\alpha} D_{KL}(M_B, M_\alpha), \quad M_\alpha = \frac{\alpha}{1+\alpha} M_A + \frac{1}{1+\alpha} M_B,$$

where D_{KL} denotes the Kullback–Leibler divergence. We score each test passage with $\Delta GJS_n = GJS(\hat{M}_P, \hat{M}_T, \alpha) - GJS(\hat{M}_Q, \hat{M}_T, \alpha)$. We classify via a tunable threshold τ .

$$\Omega = \begin{cases} H_0 & \text{if } \Delta GJS_n \leq \tau, \\ H_1 & \text{if } \Delta GJS_n > \tau \end{cases} \quad (2)$$

See Algorithm 1 and 2 in Appendix A1 for details.

4 ANALYSIS

This section theoretically grounds our design choices. First, we justify the first-order Markov modeling of discretized surprisals, supported by Gray's approximation theory and empirical evidence that second-order gains are negligible. Second, we justify ΔGJS_n to be a principled choice and analyze it under this idealized framework to characterize how discretization and sample size influence its behavior.

216 4.1 THEORETICAL JUSTIFICATION FOR FIRST-ORDER MARKOV MODELING
217

218 Our detector models the discretized surprisal sequence with a first-order Markov chain. Gray’s
219 Markov approximation theory (Gray, 2011) shows that, for any stationary discrete-time process, the
220 canonical K -th order Markov chain is the best K -th order approximation in relative-entropy-rate
221 sense. Specializing this to our discretized surprisal process and $K = 1$, the gain from moving from
222 first order to second order is governed by the conditional mutual information term $I(a_t; a_{t-2} | a_{t-1})$.
223 Empirically, we observe this term to be negligible in our data—at most 0.0076 bits/token (perplexity
224 reduction $\approx 0.5\%$; see Appendix A2.2). This indicates that a first-order chain already captures almost
225 all useful temporal dependence for our purposes.

226 4.2 ANALYSIS UNDER IDEALIZED FIRST-ORDER MARKOV MODELING
227

228 Let $\{s_t^P\}_{t=1}^N$ and $\{s_t^Q\}_{t=1}^N$ be the surprisal sequences produced by a fixed proxy LM on reference
229 corpora from the model source P and the human source Q , respectively. For the purpose of analysis,
230 we work with a *first-order Markov approximation* to these surprisal processes on the real line \mathbb{R} ,
231 and write \mathcal{S}_P and \mathcal{S}_Q for the corresponding transition kernels. This should be viewed as a stylized
232 model for the discretized surprisal dynamics, rather than a literal assumption that the underlying
233 language model is exactly first-order Markov. For an integer $k \geq 2$, let $q_k : \mathbb{R} \rightarrow \mathcal{A} = \{1, \dots, k\}$ be
234 a shared quantizer with boundaries $b_1 < \dots < b_{k-1}$, and define discretized states $a_t^P = q_k(s_t^P)$ and
235 $a_t^Q = q_k(s_t^Q)$. The induced k -state Markov chains have transition kernels
236

$$M_P(j | i) = \Pr[a_{t+1}^P = j | a_t^P = i], \quad M_Q(j | i) = \Pr[a_{t+1}^Q = j | a_t^Q = i],$$

237 and their plug-in estimators \hat{M}_P, \hat{M}_Q are formed from transition counts as in Eq. 1. We assume the
238 discretized chains are ergodic with well-behaved mixing, which is standard in Markov-chain analyses
239 and matches our empirical observations on the surprisal-state sequences. Finally, we observe an
240 independent test surprisal-state sequence $a_{1:n}^T = \{a_t^T\}_{t=1}^n$ whose source M_T is either M_P (null H_0)
241 or M_Q (alternative H_1), and all three sequences share the same quantizer q_k .

242 4.2.1 DISCRETIZATION EFFECT

243 How should we choose the number of bins k ? Too few bins lose structural information, while too
244 many, given a fixed-length reference, lead to sparse counts, higher estimation noise, and bias from
245 zero-count corrections. Thus, k must balance information preservation and statistical reliability.

246 Following Pillutla et al. (2023), we analyze discretization through a two-term decomposition. Dis-
247 cretization error is a deterministic bias from projecting the continuous object onto k bins, while
248 the statistical error is the finite-sample discrepancy when estimating the discretized object. Pillutla
249 et al. (2023) study IID samples, and control the statistical error by splitting observed vs. unobserved
250 mass and derive non-asymptotic bounds when balanced with their quantization error. Rather than
251 assuming IID samples, we focus on Markov sources and examine empirical transition counts from
252 their sequences.

253 For a divergence functional \mathcal{D}_f (we use row-wise GJS), the empirical estimator is $\mathcal{D}_f(\hat{M}_P, \hat{M}_Q)$.
254 Our goal is to develop a non-asymptotic bound on the absolute error of the empirical estimator relative
255 to the true target, decomposed as

$$\underbrace{|\mathcal{D}_f(\mathcal{S}_P, \mathcal{S}_Q) - \mathcal{D}_f(M_P, M_Q)|}_{\text{discretization error}} + \underbrace{|\mathcal{D}_f(\hat{M}_P, \hat{M}_Q) - \mathcal{D}_f(M_P, M_Q)|}_{\text{statistical error}} \quad (3)$$

259 where $\mathcal{S}_P, \mathcal{S}_Q$ denote the underlying Markov transition kernels. For simplicity we take both references
260 to have the same total transitions N . C denotes an absolute constant that may change from line to
261 line.

262 **Discretization Error and Statistical Error.** At a high level, we decompose the total error into
263 a discretization bias and a finite-sample statistical term. The discretization bias is controlled by
264 adapting Pillutla et al. (2023) to our Markov setting and yields an $O(1/k)$ bound. Theorem 4.2
265 then bounds the statistical error by tracking three sources—row-wise transition noise, missing-mass
266 from unseen transitions, and an additional stationary-weight estimation error specific to Markov
267 chains—showing how the overall error trades off k and N .

268 **Proposition 4.1.** Let $\mathcal{S}_P, \mathcal{S}_Q$ be the population first-order Markov transition kernels on the continuous
269 surprisal space \mathbb{R} . Consider a shared k -bin quantizer $q_k : \mathbb{R} \rightarrow \mathcal{A}$ and, from it, form the discretized

270 *k*-state Markov chains M_P, M_Q . For any row-aggregated f -divergence functional \mathcal{D} , there exists
 271 such a shared k -bin partition satisfying
 272

$$273 \quad |\mathcal{D}_f(\mathcal{S}_P, \mathcal{S}_Q) - \mathcal{D}_f(M_P, M_Q)| \leq \frac{C}{k} \quad (4)$$

$$274$$

275 See Appendix A3.2.4 for the proof.
 276

277 **Theorem 4.2.** Suppose we are in the setting described in Section 4.2. Assume each dis-
 278 cretized chain is ergodic with bounded mixing time, $\pi_{\min} \gtrsim 1/k$, and maximum hitting time
 279 $\max\{T(M_P), T(M_Q)\} = O(1)$. It holds that

$$280 \quad |\mathcal{D}_f(\hat{M}_P, \hat{M}_Q) - \mathcal{D}_f(M_P, M_Q)| \leq C \left(\log N \cdot \sqrt{\frac{k^3 \log(kN)}{N}} + \frac{k^3}{N} \log \left(1 + \frac{N}{k}\right) + \frac{k}{\sqrt{N}} \right) \quad (5)$$

$$281$$

$$282$$

283 See Appendix A3.2.3 for the proof.
 284

285 **Balancing Two Errors.** We balance k by trading off the discretization bias against the finite-sample
 286 statistical error. The discretization term decays as $O(k^{-1})$, while the leading statistical term from
 287 row-wise transition estimation grows like $k^{\frac{3}{2}}/\sqrt{N}$ up to logs, with smaller contributions $O(k/\sqrt{N})$
 288 and $O(k^3/N)$ for $k \ll N^{\frac{1}{3}}$. Neglecting logs and lower-order terms, the dominant balance is between
 289 $c_1 k^{\frac{3}{2}}/\sqrt{N}$ and c_2/k , yielding $k^* = \Theta(N^{\frac{1}{5}})$.
 290

4.2.2 DECISION STATISTIC ANALYSIS

291 Building on this discretized Markov approximation, we next analyze the decision statistic ΔGJS_n .
 292 The goal is to understand why the proposed score behaves well under this idealized model, providing
 293 intuition for the empirical results in Section 5. Our detector extends Gutman’s universal hypothesis
 294 test (Gutman (1989)) from a single-reference setting to a two-reference setting. In Gutman’s test, the
 295 test sequence is compared against one reference source; here we leverage two calibrated references P
 296 (LM) and Q (human) and decide by ΔGJS_n . Our choice of GJS is not ad hoc. Algebraically, ΔGJS_n
 297 is the log-likelihood ratio (LLR) between the two hypotheses.
 298

299 **ΔGJS_n as Log-Likelihood Ratio.** Proposition 4.3 shows that ΔGJS_n exactly equals the
 300 normalized log-likelihood ratio $\Lambda_{n,N}$. Here, the log-likelihood ratio represents the maximized data
 301 likelihood under the two hypotheses H_0 and H_1 . See Appendix A3.3.2 for the proof.
 302

303 **Proposition 4.3.** Assume the setting of Section 4.2. Let \mathcal{F}_k be the family of stationary first-order
 304 Markov models on $\mathcal{A} := [k]$. For sequences $a_{1:N}^P$, $a_{1:N}^Q$, and $a_{1:n}^T$, define the concatenations
 305 $(a_{1:N}^P, a_{1:n}^T)$ and $(a_{1:N}^Q, a_{1:n}^T)$. Consider the generalized log-likelihood ratio $\Lambda_{n,N}$

$$306 \quad \Lambda_{n,N} = \frac{1}{n} \log \frac{\sup_{M, M' \in \mathcal{F}_k} M((a_{1:N}^P, a_{1:n}^T)) M'((a_{1:N}^Q, a_{1:n}^T))}{\sup_{M, M' \in \mathcal{F}_k} M(a_{1:N}^P) M'((a_{1:N}^Q, a_{1:n}^T))} \quad (6)$$

$$307$$

$$308$$

$$309$$

310 where the suprema are attained at the empirical Markov models on the respective concatenated
 311 sequences. Then, $\Delta GJS_n = \Lambda_{n,N}$.
 312

313 In Appendix A3.3.3, we further prove the asymptotic normality of our statistics ΔGJS_n , and empiri-
 314 cally verify it through experiments in Appendix A4.2.3.
 315

5 EXPERIMENTS

316 **Datasets, Configurations and Models.** We evaluate our method on XSum (Narayan et al. (2018)),
 317 WritingPrompts (Fan et al. (2018)), SQuAD (Rajpurkar et al. (2016)), WMT19 (Barrault et al. (2019)),
 318 and HC3 (Guo et al. (2023)). Unless otherwise noted, we construct the reference corpora and test
 319 set as follows. For each dataset, we randomly sample 300 human-written texts to form the human
 320 reference, then generate paired machine outputs by prompting the source model with the first 30
 321 tokens of each human text. For the test set, we sample another 150 human-written texts and create
 322 their machine-generated counterparts using the same procedure. We select 9 open-source models and
 323 3 closed-source models as our source model. More details are in Appendix A4.1. Unless otherwise
 324 specified, we use GPT2-Large as our proxy model.
 325

324 **Baselines.** We benchmark against 13 detectors, including Likelihood (Solaiman et al. (2019)), Lo-
 325 gRank (Solaiman et al. (2019)), Entropy (Gehrman et al. (2019); Ippolito et al. (2020)), DetectLRR
 326 (Su et al. (2023a)), and Lastde (Xu et al. (2025)), DetectGPT (Mitchell et al. (2023)), Fast-DetectGPT
 327 (Bao et al. (2024)), DNA-GPT (Yang et al. (2023)), DetectNPR (Su et al. (2023a)), Lastde++ (Xu
 328 et al. (2025)), R-Detect (Song et al. (2025)), Binoculars Hans et al. (2024), and FourierGPT Xu et al.
 329 (2024).

	GPT2-XL	GPT-1-6B	GPT-Neo-2.7B	GPT-NeoX-20B	OPT-2.7B	Llama-2-13B	Llama-3-8B	Llama-3.2-3B	Gemma-7B	Avg
Likelihood	85.02	74.82	73.32	72.03	77.22	94.39	93.93	65.22	65.8	77.97
LogRank	88.2	79.25	78.29	75.37	81.99	95.9	95.05	71.04	69.18	81.59
Entropy	51.1	47.15	50.94	45.94	48.88	29.03	29.31	53	46.85	44.69
DetectLRR	91.07	85.81	87.12	80.27	88.48	96.43	94.85	81.54	75.5	86.79
Lastde	95.97	85.88	89.09	80.16	88.89	93.29	94.29	72.99	69.48	85.56
Lastde++	99.46	91.54	94.29	85.13	94.15	95.5	95.9	77.47	76.9	90.04
DNA-GPT	81.98	70.68	72.69	70.42	73.86	95.91	96.54	64.79	65.32	76.91
Fast-DetectGPT	97.94	86.83	89.15	83.17	90.55	98.21	97.98	74.32	73.95	88.01
DetectGPT	94.45	79.55	84.71	75.71	82.88	86.51	86.28	64.23	69.05	80.37
DetectNPR	94.93	81.91	86.4	77.93	84.06	95.19	93.67	69.45	71.49	83.89
R-Detect	74.38	63.58	67.7	63.35	65.83	79.98	81.64	62.22	55.46	68.24
Binoculars	99.19	85.76	87.5	82.02	86.9	96.93	96.41	68.36	73.57	86.19
FourierGPT	54.72	54.28	56.5	56.51	52.47	72.43	72.06	54.83	55.84	59.07
SurpMark _{k=6}	98.07	92.96	95.19	86.78	94.49	97.41	97.06	81.74	77.40	91.23
SurpMark _{k=7}	98.35	93.1	95.42	86.40	94.88	97.58	97.17	80.74	76.89	91.17

340 Table 2: Detection results for text generated by 9 open-source models under the black-box setting.
 341 The AUROC reported for each model are averaged across three datasets: Xsum, WritingPrompts, and
 342 SQuAD. See Table 12, 13, 14 in Appendix for details.
 343

344 5.1 MAIN RESULTS

345 Table 1 and 2 present the detection
 346 results under black-box scenario. Ta-
 347 ble 1 shows that SurpMark achieves
 348 the best performance on 3 commercial,
 349 closed-source LLM. Performance is
 350 especially strong on GPT-5-Chat. Ta-
 351 ble 2 shows that SurpMark ranks first
 352 on 6 of 9 open-source models and
 353 within the top two on 7 of 9. These re-
 354 sults highlight SurpMark’s robustness
 355 on proprietary systems and its suit-
 356 ability for real-world commercial de-
 357 ployments. Please note that compared
 358 with distribution-based detectors that
 359 generate a neighborhood per input at
 360 test time, SurpMark builds reference
 361 corpora once and reuses them for all
 362 test passages. Under a reference-per-
 363 test budget $B = \frac{\# \text{references}}{\# \text{tests}}$, in Ta-
 364 ble 1 and 2, SurpMark operates at
 365 $B = 2$, whereas DNA-GPT uses $B = 10$. Thus
 366 SurpMark’s reference cost is $5 \times - 50 \times$ lower, while avoiding any per-input contrastive generation at
 367 test time, enabling real-time detection as discussed later.

368 We attribute SurpMark’s superior performance on closed-source models (e.g., GPT-5-chat) to its
 369 ability to capture transitional dynamics. As detailed in Appendix A4.2.12, stronger models exhibit a
 370 vanishingly small gap in marginal surprisal distributions compared to humans, rendering marginal
 371 statistics ineffective. However, the ‘transition gap’ remains significant, which SurpMark effectively
 372 exploits.

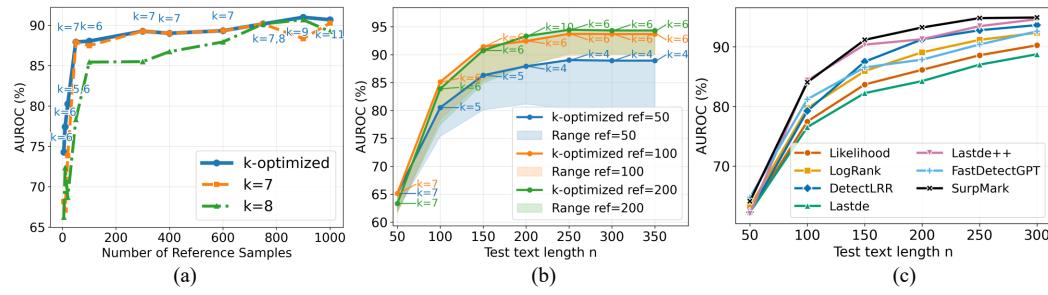
373 5.2 ABLATION AND SENSITIVITY ANALYSIS

374 **Effect of bins k .** Figure 3 shows the effect of the number of bins k . Across both models, increasing
 375 the number of bins k leads to clear improvements in AUROC up to a moderate range, after which the
 376 gains saturate or slightly decline. The best results across datasets are generally observed at $k = 6 - 7$.
 377 Our theory yields an optimal bin count of the form $k^* = CN^{1/5}$ for some constant C , where N is

378 the total number of transitions of the reference samples. We empirically calibrate the constant C in
 379 Appendix A4.2.2. Next, we further investigate how varying N shift the empirical optimum k^* .
 380

381 Effect of Number of Reference Samples.

382 Figure 4 (a) shows that AUROC improves
 383 sharply as the reference grows from very small
 384 number of reference samples to 100 reference
 385 samples; beyond 100 reference samples the
 386 gains are minor. The k -optimized curve picks
 387 the best $k \in \{4, \dots, 12\}$ at each number of refer-
 388 ence. The annotated k values grow mildly with
 389 the number of reference samples, and using
 390 large k for small number of reference hurts per-
 391 formance. This trend aligns with our theoretical
 392 intuition: a larger number of reference samples
 393 reduces reference-side estimation error and thus
 394 allows for a slightly larger k .
 395



405 Figure 4: (a) AUROC vs. number of reference samples. The blue curve (“ k -optimized”) picks the
 406 best k at each number of reference. orange/green curves fix $k \in \{7, 8\}$. (b) AUROC vs. test length n
 407 under different reference lengths. Solid lines are k -optimized for each reference sample truncated to
 408 50/100/200 tokens; shaded bands show the attainable range across k at each n . (c) Detection results
 409 of 7 detection methods on 6 test lengths.

410 **Effect of Length of Test Sample.** In Figure 4 (b), we fix the number of reference samples and study
 411 the effect of sample length. AUROC climbs rapidly as test length n grows from 50 to about 150–200.
 412 Longer reference lift the curves and make the bands across $k \in \{4, \dots, 12\}$ tighter, indicating greater
 413 stability. The k -optimized curves show that the optimal k is driven more by reference length than
 414 by test length. In Figure 4 (c), we evaluated detection performance of baselines across varying test
 415 length (tokens), focusing on WritingPrompts generated by Gemma-7B. All methods improve with
 416 longer texts. SurpMark is competitive at short lengths and becomes the top method for test length
 417 larger than 150. Comparison on more source models are presented in Figure 8 in Appendix.
 418

419 **Reference–Test Length Trade-Offs.** Figure 5 (a) and (b) show AUROC contours over reference
 420 length and test length n at fixed bins k . Performance improves toward the upper-right, and the up-right
 421 tilt shows a reference-test length trade-off: larger reference length can compensate for smaller test
 422 length at similar accuracy.

423 **Effect of Proxy Model.** In Figure 5 (c), x-axis lists the proxy LM used to compute scores. Across
 424 both datasets, most baselines improve with stronger proxy models, especially on WritingPrompts
 425 with GPT-5-Chat as the source model. SurpMark is consistently top and stable across proxy models.
 426 It already performs strongly with the smallest proxy and improves only modestly with larger ones,
 427 whereas several baselines are highly sensitive to the proxy choice, some even degrade when the
 428 proxy changes. In short, SurpMark achieves strong and reliable performance without expensive proxy
 429 models, making it a better default in low-resource deployments.

430 **Throughput.** Figure 6 (Left) plots throughput (items/s) against the number of test texts. Baseline
 431 methods appear as horizontal lines because their per-item latency is constant. SurpMark improves
 432 monotonically as the one-time preprocessing cost is amortized. The curve crosses the Fast-DetectGPT
 433 line at roughly $n \approx 298$, after which SurpMark maintains higher throughput.

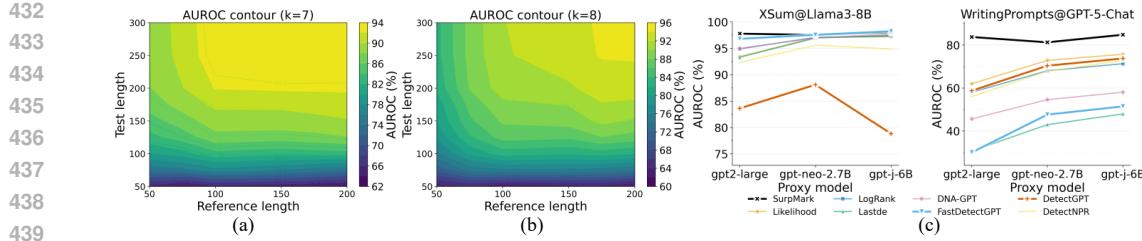


Figure 5: (a-b) AUROC contour maps (WritingPrompts/Gemma-7B). Left: $k = 7$; right: $k = 8$. The x-axis is reference length (tokens) and the y-axis is test length (tokens). Colors encode AUROC. In both panels, contours tilt up-right, indicating a trade-off: larger reference length allows smaller test length at similar performance. (c) AUROC vs. proxy model.

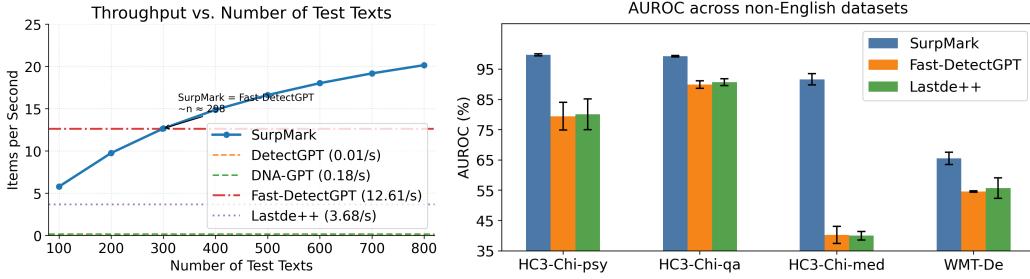


Figure 6: Left: Throughput (items per second) versus the number of test texts for SurpMark compared to baseline methods (proxy LM: GPT-2 Large; GPU: NVIDIA RTX 4090). Right: AUROC on non-English datasets (HC3-Chi-psychology, HC3-Chi-medicine, HC3-Chi-qa, WMT-De). Error bars denote standard deviation. Higher is better.

Non-English Scenarios. In Figure 6 (Right), we evaluate on German and Chinese corpora. For German, we use WMT19 with GPT-4o-mini as the source model and Llama-3.2-1B as the proxy model. For Chinese, we use HC3 across multiple domains (psychology, medicine, openqa), which provides paired human and ChatGPT answers to the same questions, and adopt Qwen-2.0-0.5B as the proxy model. SurpMark ranks first on all four datasets, with large margins on HC3-Chi-med.

Necessity of k -means. In Table 3, we evaluate the effect of different discretization schemes, including k -means, equal-width, and equal-mass binning. Across all datasets and k values, k -means is the most robust quantization scheme: it consistently reaches or matches the best AUROC, while equal-mass can degrade sharply on XSum@GPT-4.1-mini and equal-width is unstable and often much worse.

Necessity of GJS. In Table 4, we evaluate the effect of different distance metrics including GJS divergence, L_1 and L_2 norm distance. GJS achieves the best AUROC on most dataset and source model. This suggests that GJS is a more robust similarity measure than L_1 and L_2 .

5.3 GENERALIZATION

Cross-Domain Generalization. We evaluated cross-domain generalization of detector in Table 5. We compared self-ref (in-domain reference) to Out-Of-Domain (OOD) reference (associate with the corresponding generator). Even when we deliberately use out-of-domain reference corpora to estimate transition probabilities, the impact is small. Changes remain moderate and can even be positive sometimes. See Table 19 for more comparison.

Cross-Generator Generalization. To evaluate robustness without recomputing transitions per model, we propose SurpMark-MC, a multi-class variant using a single shared quantizer (derived from pooled corpora) and distinct Markov chains for human and each reference generator. We classify test texts by assigning them to the source with the minimal GJS divergence (i.e., a nearest-neighbor rule). In a multi-class setting with GPT-J-6B, GPT-4.1-mini, and LLaMA2-13B, SurpMark-MC achieves 82.3% overall accuracy, with 78.7% accuracy for human texts, 78.0% for GPT-J-6B, 84.0% for GPT-4.1-mini, and 96.0% for LLaMA2-13B. We further collapse the multi-generator setting into

486	Dataset@Source model	Method	$k = 7$	$k = 8$	Best
487	XSum@GPT-4.1-mini	k-means	80.42	79.32	81.79
		equal-width	80.41	76.20	80.41
		equal-mass	71.40	74.22	74.22
489	WritingPrompts@GPT5-chat	k-means	82.05	84.86	84.86
		equal-width	62.90	72.06	72.06
		equal-mass	84.42	83.59	84.42

492 Table 3: AUROC of different discretization schemes under
 493 varying number of states k .
 494

495	Test	self-ref	WritingPrompts-as-ref	XSum-as-ref	SQuAD-as-ref
496	XSum@Llama2-13b	97.09	97.22	—	96.45
497	WritingPrompts@Llama2-13b	99.53	—	99.71	99.33
498	SQuAD@Llama2-13b	96.13	94.36	95.67	—
499	XSum@Llama3-8b	97.09	97.25	—	95.13
500	WritingPrompts@Llama3-8b	99.86	—	99.95	99.88
501	SQuAD@Llama3-8b	94.17	93.77	93.90	—

501 Table 5: AUROC of SurpMark under different reference choices across datasets and models.
 502

503 a binary classification task (LM-generated vs. human-written), defining the score as the difference
 504 between the GJS to the human reference and the minimum GJS to any machine reference. As shown
 505 in Table 6, this approach generalizes effectively even to unseen models (e.g., Llama-3-8B, GPT-5-chat,
 506 GPT-neo-20B), matching or surpassing baselines like Lastde++ and Fast-DetectGPT.
 507

508	WritingPrompts	LLaMA2-13B	GPT-4.1-mini	GPT-J-6B	LLaMA3-8B	GPT-5-chat	GPT-neo-20B
509	Lastde++	99.14	68.49	95.96	99.56	30.64	92.68
510	Fast-DetectGPT	99.56	70.23	93.80	99.84	30.01	92.22
511	SurpMark self-ref	99.59	87.27	96.85	99.87	83.56	93.93
512	SurpMark-MC	99.72	90.01	95.61	99.77	64.27	92.84

513 Table 6: AUROC on WritingPrompts when the reference transition probabilities (LLaMA2-13B,
 514 GPT-4.1-mini and GPT-J-6B) are held fixed and not re-estimated for each test-time generator
 515

516 **More Results.** We provide additional experimental results in the Appendix, including: (1) ablation
 517 study on decoding strategies (Appendix A4.2.8) (2) evaluations under paraphrasing attack
 518 (Appendix A4.2.9) (3) evaluations under prompt-engineered adversarial attacks (Appendix A4.2.10)
 519 (4) ablation on the necessity of first-order markov chain (Appendix A4.2.11) (5) discussion for
 520 threshold τ selection (Appendix A4.2.13).

521 6 CONCLUSION

522 We presented SurpMark, a reference-based detector for black-box detection of machine-generated
 523 text. By quantizing token surprisals into interpretable states and modeling their dynamics as a Markov
 524 chain, SurpMark reduces each passage to a transition matrix and scores it via a GJS score against
 525 fixed human/machine references. It avoids per-instance regeneration and enabling fast, scalable
 526 deployment. Our analysis establishes a principled discretization criterion and proves asymptotic
 527 normality of the decision statistic. Empirically, across diverse datasets, source models, and scenarios,
 528 SurpMark consistently matches or surpasses strong baselines.
 529

530
 531
 532
 533
 534
 535
 536
 537
 538
 539

		GPT-4.1 mini	
	XSum	WritingPrompts	SQuAD
GJS	82.52	83.64	69.27
L_1	73.51	82.17	62.28
L_2	73.58	83.04	59.14

Table 4: Comparison of different distance metrics across datasets.

540 ETHICS STATEMENT
541542 This work focuses on developing methods for the detection of large language model (LLM)-generated
543 text. Our aim is to enhance transparency and accountability in AI systems rather than to enable
544 misuse. All datasets used in this study are publicly available benchmark corpora, and no personally
545 identifiable or sensitive information was included. we consider our framework as a tool for improving
546 the responsible development and governance of generative AI.
547548 REPRODUCIBILITY STATEMENT
549550 All experimental projects in this paper are reproducible. The details of experiments are in Section 5
551 and Appendix A4.1
552553 LLM USAGE
554555 Large Language Models (LLMs) were employed solely for paraphrasing and minor language polishing.
556 They were not used for idea generation, proof writing, data analysis, or experiment design. All
557 technical contributions, theoretical results, and empirical evaluations in this paper are original and
558 independently produced by the authors.
559560 REFERENCES
561562 Sina Aleomohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein
563 Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G. Baraniuk. Self-consuming generative
564 models go mad, 2023. URL <https://arxiv.org/abs/2307.01850>.565 Navid Ayoobi, Sadat Shahriar, and Arjun Mukherjee. The looming threat of fake and llm-generated
566 linkedin profiles: Challenges and opportunities for detection and prevention. In *Proceedings of
567 the 34th ACM Conference on Hypertext and Social Media*, HT '23, New York, NY, USA, 2023.
568 Association for Computing Machinery. ISBN 9798400702327. doi: 10.1145/3603163.3609064.
569 URL <https://doi.org/10.1145/3603163.3609064>.
570571 Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, and Yue Zhang. Fast-detectGPT:
572 Efficient zero-shot detection of machine-generated text via conditional probability curvature.
573 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Bpcgcr8E8Z>.
574575 Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Yvette
576 Graham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof Monz, Mathias
577 Müller, Santanu Pal, Matt Post, and Marcos Zampieri. Findings of the 2019 conference on
578 machine translation (WMT19). In Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark
579 Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn,
580 André Martins, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Marco
581 Turchi, and Karin Verspoor (eds.), *Proceedings of the Fourth Conference on Machine Translation
582 (Volume 2: Shared Task Papers, Day 1)*, pp. 1–61, Florence, Italy, August 2019. Association for
583 Computational Linguistics. doi: 10.18653/v1/W19-5301. URL <https://aclanthology.org/W19-5301/>.
584585 Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
586 Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source autoregressive
587 language model. *arXiv preprint arXiv:2204.06745*, 2022. URL <https://arxiv.org/abs/2204.06745>.
588589 Kai-Min Chung, Henry Lam, Zhenming Liu, and Michael Mitzenmacher. Chernoff-hoeffding bounds
590 for markov chains: Generalized and simplified, 2012. URL <https://arxiv.org/abs/1201.0559>.
591592 EleutherAI. GPT-Neo 2.7B. <https://huggingface.co/EleutherAI/gpt-neo-2.7B>,
593 2021.

594 Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Iryna
 595 Gurevych and Yusuke Miyao (eds.), *Proceedings of the 56th Annual Meeting of the Association
 596 for Computational Linguistics (Volume 1: Long Papers)*, pp. 889–898, Melbourne, Australia, July
 597 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1082. URL <https://aclanthology.org/P18-1082/>.
 598
 599

600 Sebastian Gehrmann, Hendrik Strobelt, and Alexander Rush. GLTR: Statistical detection and visual-
 601 ization of generated text. In Marta R. Costa-jussà and Enrique Alfonseca (eds.), *Proceedings of
 602 the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstra-
 603 tions*, pp. 111–116, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
 604 10.18653/v1/P19-3019. URL <https://aclanthology.org/P19-3019/>.
 605
 606 Gemini Team, Google. Gemini 1.5: Unlocking multimodal understanding across millions of tokens
 607 of context. *arXiv preprint arXiv:2403.05530*, 2024. URL <https://arxiv.org/abs/2403.05530>.
 608
 609 Gemma Team, Google DeepMind. Gemma: Open models based on gemini research and technology.
 610 *arXiv preprint arXiv:2403.08295*, 2024. URL <https://arxiv.org/abs/2403.08295>.
 611
 612 Patrik Róbert Gerber and Yury Polyanskiy. Likelihood-free hypothesis testing. *IEEE Transactions on
 613 Information Theory*, 70(11):7971–8000, 2024.
 614
 615 Robert M. Gray. *Entropy and Information Theory*. Springer, New York, 2 edition, 2011. doi:
 616 10.1007/978-1-4419-7970-4.
 617
 618 Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang, Jinran Nie, Yuxuan Ding, Jianwei Yue, and
 619 Yupeng Wu. How close is chatgpt to human experts? comparison corpus, evaluation, and detection,
 620 2023. URL <https://arxiv.org/abs/2301.07597>.
 621
 622 Xun Guo, Yongxin He, Shan Zhang, Ting Zhang, Wanquan Feng, Haibin Huang, and Chongyang
 623 Ma. Detective: Detecting AI-generated text via multi-level contrastive learning. In *The Thirty-
 624 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=cdTTJfJe3>.
 625
 626 M. Gutman. Asymptotically optimal classification for multiple tests with empirically observed
 627 statistics. *IEEE Transactions on Information Theory*, 35(2):401–408, 1989. doi: 10.1109/18.32134.
 628
 629 Abhimanyu Hans, Avi Schwarzschild, Valeria Cherepanova, Hamid Kazemi, Aniruddha Saha, Micah
 630 Goldblum, Jonas Geiping, and Tom Goldstein. Spotting LLMs with binoculars: Zero-shot detection
 631 of machine-generated text. In *Forty-first International Conference on Machine Learning*, 2024.
 632 URL <https://openreview.net/forum?id=ax13FAkpik>.
 633
 634 Hajo Holzmann. Martingale approximations for continuous-time and discrete-time stationary markov
 635 processes. *Stochastic Processes and their Applications*, 115(9):1518–1529, 2005. ISSN 0304-4149.
 636 doi: <https://doi.org/10.1016/j.spa.2005.04.001>. URL <https://www.sciencedirect.com/science/article/pii/S0304414905000463>.
 637
 638 Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck. Automatic detection
 639 of generated text is easiest when humans are fooled, 2020. URL <https://arxiv.org/abs/1911.00650>.
 640
 641 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
 642 Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM
 643 Computing Surveys*, 55(12):1–38, March 2023. ISSN 1557-7341. doi: 10.1145/3571730. URL
 644 <http://dx.doi.org/10.1145/3571730>.
 645
 646 Ali Devran Kara, Naci Saldi, and Serdar Yüksel. Q-learning for mdps with general spaces: Con-
 647 vergence and near optimality via quantization under weak continuity, 2023. URL <https://arxiv.org/abs/2111.06781>.

648 Enkelejda Kasneci, Kathrin Sessler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
 649 Fischer, Urs Gasser, Georg Groh, Stephan Günemann, Eyke Hüllermeier, Stephan Krusche,
 650 Gitta Kutyniok, Tilman Michaeli, Claudia Nerdel, Jürgen Pfeffer, Oleksandra Poquet, Michael
 651 Sailer, Albrecht Schmidt, Tina Seidel, Matthias Stadler, Jochen Weller, Jochen Kuhn, and Gjergji
 652 Kasneci. Chatgpt for good? on opportunities and challenges of large language models for
 653 education. *Learning and Individual Differences*, 103:102274, 2023. ISSN 1041-6080. doi:
 654 <https://doi.org/10.1016/j.lindif.2023.102274>. URL <https://www.sciencedirect.com/science/article/pii/S1041608023000195>.

656 Jooyoung Lee, Thai Le, Jinghui Chen, and Dongwon Lee. Do language models plagiarize? In
 657 *Proceedings of the ACM Web Conference 2023*, WWW '23, pp. 3637–3647, New York, NY, USA,
 658 2023. Association for Computing Machinery. ISBN 9781450394161. doi: 10.1145/3543507.
 659 3583199. URL <https://doi.org/10.1145/3543507.3583199>.

660 David A Levin and Yuval Peres. *Markov chains and mixing times*, volume 107. American Mathematical
 661 Soc., 2017.

663 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 664 falsehoods, 2022. URL <https://arxiv.org/abs/2109.07958>.

665 AI @ Meta Llama Team. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024. URL
 666 <https://arxiv.org/abs/2407.21783>.

668 Meta AI. Llama 3.2 model cards and prompt formats. https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_2/, 2024. Documentation for 1B/3B
 669 Llama 3.2 models.

671 Yisroel Mirsky, Ambra Demontis, Jaidip Kotak, Ram Shankar, Deng Gelei, Liu Yang, Xiangyu
 672 Zhang, Wenke Lee, Yuval Elovici, and Battista Biggio. The threat of offensive ai to organizations,
 673 2021. URL <https://arxiv.org/abs/2106.15764>.

674 Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, and Chelsea Finn.
 675 Detectgpt: Zero-shot machine-generated text detection using probability curvature, 2023. URL
 676 <https://arxiv.org/abs/2301.11305>.

678 Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don't give me the details, just the summary!
 679 topic-aware convolutional neural networks for extreme summarization. In Ellen Riloff, David
 680 Chiang, Julia Hockenmaier, and Jun'ichi Tsujii (eds.), *Proceedings of the 2018 Conference on
 681 Empirical Methods in Natural Language Processing*, pp. 1797–1807, Brussels, Belgium, October–
 682 November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1206. URL
 683 <https://aclanthology.org/D18-1206/>.

684 OpenAI. Introducing gpt-4.1 in the api. <https://openai.com/index/gpt-4-1/>, 2025a.
 685 Includes GPT-4.1 mini.

686 OpenAI. Introducing gpt-5, 2025b.

688 Krishna Pillutla, Lang Liu, John Thickstun, Sean Welleck, Swabha Swayamdipta, Rowan Zellers,
 689 Sewoong Oh, Yejin Choi, and Zaid Harchaoui. Mauve scores for generative models: Theory and
 690 practice, 2023. URL <https://arxiv.org/abs/2212.14578>.

691 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
 692 Language models are unsupervised multitask learners. OpenAI technical report,
 693 2019. URL https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf.

695 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
 696 for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), *Proceedings
 697 of the 2016 Conference on Empirical Methods in Natural Language Processing*, pp. 2383–2392,
 698 Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/
 699 D16-1264. URL <https://aclanthology.org/D16-1264/>.

701 Maciej Skorski. Missing mass concentration for markov chains, 2020. URL <https://arxiv.org/abs/2001.03603>.

702 Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
 703 Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, Miles McCain, Alex Newhouse, Jason
 704 Blazakis, Kris McGuffie, and Jasmine Wang. Release strategies and the social impacts of language
 705 models, 2019. URL <https://arxiv.org/abs/1908.09203>.

706 Yiliao Song, Zhenqiao Yuan, Shuhai Zhang, Zhen Fang, Jun Yu, and Feng Liu. Deep kernel relative
 707 test for machine-generated text detection. In *The Thirteenth International Conference on Learning
 708 Representations*, 2025. URL <https://openreview.net/forum?id=z9j7wctoGV>.

709

710 Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. Detectllm: Leveraging log rank information
 711 for zero-shot detection of machine-generated text. *arXiv preprint arXiv:2306.05540*, 2023a.

712 Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. Detectllm: Leveraging log rank information
 713 for zero-shot detection of machine-generated text, 2023b. URL <https://arxiv.org/abs/2306.05540>.

714

715 Edward Tian. Gptzero: An ai text detector, 2023. URL <https://gptzero.me/>.

716

717 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, et al. Llama 2: Open
 718 foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023. URL <https://arxiv.org/abs/2307.09288>.

719

720

721 Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model.
 722 <https://github.com/kingoflolz/mesh-transformer-jax>, 2021.

723

724 Geoffrey Wolfer. Empirical and instance-dependent estimation of markov chain and mixing time,
 725 2023. URL <https://arxiv.org/abs/1912.06845>.

726

727 Yang Xu, Yu Wang, Hao An, Zhichen Liu, and Yongyuan Li. Detecting subtle differences between
 728 human and model languages using spectrum of relative likelihood, 2024. URL <https://arxiv.org/abs/2406.19874>.

729

730 Yihuai Xu, Yongwei Wang, Yifei Bi, Huangsen Cao, Zhouhan Lin, Yu Zhao, and Fei Wu. Training-
 731 free LLM-generated text detection by mining token probability sequences. In *The Thirteenth
 732 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=vo4AHjowKi>.

733

734 Xianjun Yang, Wei Cheng, Yue Wu, Linda Petzold, William Yang Wang, and Haifeng Chen. Dna-
 735 gpt: Divergent n-gram analysis for training-free detection of gpt-generated text, 2023. URL
 736 <https://arxiv.org/abs/2305.17359>.

737

738 Shuhai Zhang, Yiliao Song, Jiahao Yang, Yuanqing Li, Bo Han, and Mingkui Tan. Detecting
 739 machine-generated texts by multi-population aware optimization for maximum mean discrepancy.
 740 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=3fEKavFsnv>.

741

742 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christopher
 743 Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
 744 models. *arXiv preprint arXiv:2205.01068*, 2022. URL <https://arxiv.org/abs/2205.01068>.

745

746 Lin Zhou, Vincent Y. F. Tan, and Mehul Motani. Second-order asymptotically optimal statistical
 747 classification, 2018. URL <https://arxiv.org/abs/1806.00739>.

748

749

750

751

752

753

754

755

810 A1 ALGORITHM
811812 **Algorithm 1** SurpMark (Offline): Build Human/Machine Reference Transitions

813 **Require:** Proxy LM F_θ ; human corpus \mathcal{D}_Q ; machine/LLM corpus \mathcal{D}_P ; number of bins k
 814 **Ensure:** Shared surprisal quantizer q_k ; reference transition matrices \hat{M}_P, \hat{M}_Q ; total reference length
 815 N
 816 1: **Score references.** For every $t \in \mathcal{D}_Q \cup \mathcal{D}_P$, run F_θ to obtain token sequence $x_{1:N}$ and surprisals
 817 $s_{1:N}$ with
 818
$$s_t = -\log p_\theta(x_t \mid x_{1:t-1}).$$

 819 2: **Fit shared quantizer.** Pool all reference surprisals and fit k -means to obtain $q_k : \mathbb{R} \rightarrow$
 820 $\{1, \dots, k\}$.
 821 3: **Discretize to states.** Map each reference sequence to the corresponding state sequence $a_t =$
 822 $q_k(s_t), t \in \{1, \dots, N\}$.
 823 4: **Estimate transitions.** For each corpus $C \in \{P, Q\}$, estimate the empirical first-order transition
 824 matrix \hat{M}_C by counts:
 825

$$\hat{M}_C(j \mid i) = \frac{\sum_{t=1}^{n-1} \mathbf{1}\{a_t = i, a_{t+1} = j\}}{\sum_{t=1}^{n-1} \mathbf{1}\{a_t = i\}}, \quad i, j \in \{1, \dots, k\}.$$

826 5: **Record length.** Let N be the total number of *reference* transitions used to form \hat{M}_P and \hat{M}_Q
 827 (sum over sequences).
 828 6: **return** $q_k, \hat{M}_P, \hat{M}_Q, N$.

834 **Algorithm 2** SurpMark (Online): Decision via GJS score against References

835 **Require:** Proxy LM F_θ ; test text t ; shared quantizer q_k ; reference transitions \hat{M}_P, \hat{M}_Q ; reference
 836 length N
 837 **Ensure:** Score ΔGJS_n and label $\Omega \in \{\text{MACHINE}, \text{HUMAN}\}$
 838 1: **Score test text.** Run F_θ on t to get tokens $x_{1:n}$ and surprisals $s_{1:n}$.
 839 2: **Discretize.** Map to surprisal states $a_t = q_k(s_t), t \in \{1, \dots, n\}$ and estimate the test transition
 840 matrix \hat{M}_T using the same formula as Offline.
 841 3: **Set mixing weight.** $\alpha \leftarrow N/n$.
 842 4: **Compute divergence.**

$$\Delta\text{GJS}_n = \text{GJS}(\hat{M}_P, \hat{M}_T, \alpha) - \text{GJS}(\hat{M}_Q, \hat{M}_T, \alpha).$$

843 5: **Decision rule.**

$$\Omega = \begin{cases} \text{MACHINE}, & \Delta\text{GJS}_n \leq \tau, \\ \text{HUMAN}, & \Delta\text{GJS}_n > \tau. \end{cases}$$

844 6: **return** $\Delta\text{GJS}_n, \Omega$.

851 A2 JUSTIFICATION FOR FIRST-ORDER MODELING

854 A2.1 EMPIRICAL FINDINGS

856 All AUROC values in Figure 2(b) are computed using exactly the same amount of reference data and
 857 test data. As in our main experiments, we use 300 human paragraphs and 300 machine-generated
 858 paragraphs, each with length about 100-200 tokens as reference data. We use 150 human paragraphs
 859 and 150 machine paragraphs as test data. Intuitively, increasing the Markov order makes the state
 860 space explode while the amount of reference data is fixed, so transition estimates become very sparse
 861 and noisy.

862 The degradation with larger order is a sparsity effect that arises both on the reference side and on
 863 the test side: (i) state-space explosion: A first-order chain with k bins has k^2 transitions; an order- v
 chain effectively has k^{v+1} transitions. With only 300 human + 300 machine paragraphs of 100-200

864	865	Reference size				Test length					
		Order	300	600	900	1200	Order	150	200	250	300
866	867	1	86.51	86.17	86.69	86.89	1	90.59	92.66	94.60	94.58
868	869	2	81.49	82.08	82.77	82.80	2	89.42	90.67	92.21	92.60
870	871	3	74.98	74.74	75.84	75.85	3	88.67	90.57	91.40	91.40
872	873	4	64.72	69.51	71.20	73.00	4	62.29	65.59	68.46	68.33

(a) AUROC vs. reference size

(b) AUROC vs. test length

Table 7: Effect of reference size and test length on AUROC for different Markov orders.

tokens, many high-order contexts in the reference data are observed only a few times or not at all, so the estimated transitions become extremely noisy. (ii) Short test sequences. Each test paragraph is itself only 100-200 tokens long. Even if the reference transitions were perfectly estimated, an order- v model on a 100-200-token sequence can observe only a very small number of distinct v -length contexts. The higher-order model is severely under-sampled on each individual test example.

To isolate the effect of reference sparsity, in the XSum@GPT-J-6B dataset, we fixed $k = 6$ and the test set (150 human + 150 machine paragraphs, 100-200 tokens each), and increased the reference size from 300 to 1200 paragraphs per side. As shown in Table 7(a), AUROC for higher-order models improves only slightly and remains clearly below the first-order model.

To further evaluate the effect of test sparsity, in another WritingPrompts@Genmma-7B dataset, we vary the test passage length from 150 to 300 tokens while keeping the reference size fixed (300 passages per side, each with fixed 300 tokens). As in Table 7(b), AUROC consistently increases for all orders, but the first-order model remains clearly best, and higher orders still lag behind by several points.

Taken together, these ablations reflect practical text-detection settings with limited reference data and short passages. In this regime, the first-order model offers the best bias-variance tradeoff, so we believe it is the most reasonable default choice.

A2.2 THEORETICAL JUSTIFICATION

We clarify our reasoning by (i) starting from Gray’s Markov approximation theory, (ii) explaining how the gain from order K to $K + 1$ is governed by conditional mutual information, (iii) mapping this theory to our discretized surprisal process, and (iv) presenting empirical measurements showing that the additional benefit of a second-order approximation over a first-order one is very small.

(1) Best finite-order Markov approximation in Gray’s theory.

Following Gray’s Entropy and Information Theory [Gray (2011), Sec. 6.4, Cor. 6.4.1–6.4.2; Sec. 7.4, Cor. 7.4.2–7.4.3], consider a stationary discrete-time source $\{X_n\}$. Gray constructs, for each order K , a canonical K -th order Markov chain M_K whose conditional distributions match those of the source given the last K symbols. He shows that M_K is optimal in the sense that it uniquely minimizes the relative entropy rate between the true source and any K -th order Markov chain on the same alphabet. In other words, the family of finite-order Markov chains $\{M_K\}$ provides a sequence of best approximations to the stationary process in the relative-entropy-rate sense. Formally,

$$H_{p\parallel p^K}(\{X_n\}) = \inf_{M_K \in \mathcal{M}_K} H_{p\parallel M_K}(\{X_n\}) = I(X_0; X_{-\infty}^{-K-1} | X_{-K}^{-1}) \quad (7)$$

where p is the true stationary source, p^K is the canonical K -th order Markov approximation to p , \mathcal{M}_K is the class of stationary K -th order Markov sources on the same alphabet, $H_{p\parallel q}(\{X_n\})$ is the relative entropy rate of p with respect to q , $X_{-\infty}^{-K-1} = (X_{-\infty}, \dots, X_{-K-1})$ is the infinite past, $X_{-K}^{-1} = (X_{-K}, \dots, X_{-1})$ is the block of the last K symbols, and $I(\cdot; \cdot)$ conditional mutual information. Applying the above identity with $K + 1$ instead of K , we get

$$H_{p\parallel p^{K+1}}(\{X_n\}) = I(X_0; X_{-\infty}^{-K-2} | X_{-K-1}^{-1}) \quad (8)$$

918 We are interested in the gain from going from order K to $K + 1$, so
 919

$$\Delta_K = H_{p\|p^K}(\{X_n\}) - H_{p\|p^{K+1}}(\{X_n\}) \quad (9)$$

$$= I(X_0; X_{-\infty}^{-K-1} | X_{-K}^{-1}) - I(X_0; X_{-\infty}^{-K-2} | X_{-K-1}^{-1}) \quad (10)$$

$$= I(X_0; X_{-K-1} | X_{-K}^{-1}) \quad (11)$$

924 (2) Mapping to our discretized surprisal process
 925

926 In our setting, $\{X_n\}$ is instantiated by the discretized surprisal process $\{a_t\}$, where a_t corresponds
 927 to X_0 , X_{-K}^{-1} corresponds to $a_{t-K}^{t-1} = (a_{t-K}, \dots, a_{t-1})$, X_{-K-1} corresponds to a_{t-K-1} . For the
 928 case $K = 1$, the gain from first-order to second order is precisely $I(a_t; a_{t-2} | a_{t-1})$. We directly
 929 estimate the relevant conditional mutual information term on our data. We first fit a first-order
 930 $\hat{P}_1(a_t | a_{t-1})$ and a second-order model $\hat{P}_2(a_t | a_{t-1}, a_{t-2})$ from transition counts on the reference set.
 931 We then compute plug-in estimates on test set

$$\hat{H}_1 = -\frac{1}{n-1} \sum_{t=2}^n \log_2 \hat{P}_1(a_t | a_{t-1}) \quad (12)$$

$$\hat{H}_2 = -\frac{1}{n-2} \sum_{t=3}^n \log_2 \hat{P}_2(a_t | a_{t-1}, a_{t-2}) \quad (13)$$

937 Their difference is the plug-in estimate of the conditional mutual information $\hat{I} = \hat{H}_1 - \hat{H}_2 = I(a_t; a_{t-2} | a_{t-1})$, in bits per token, i.e., the extra predictive information contributed by the second-order context beyond the immediate past. On our data, we obtain empirical estimates of conditional
 938 mutual information and perplexity in Table 8. In our experiments, \hat{I} is at most 0.0076 bits/token,
 939 which corresponds to a perplexity reduction around 0.5%. Thus, in terms of average predictive
 940 performance, the second-order Markov model brings only a sub-percent improvement over the
 941 first-order model. Combined with Gray’s best Markov approximation theory, this indicates that
 942 a first-order Markov chain already captures most useful temporal dependence in the discretized
 943 surprisal dynamics, and provides a theoretically justified and empirically sufficient model for the
 944 discretized surprisal dynamics in our detector.

Source	Order pair	\hat{H}_k (bits/token)	$\hat{H}_1 - \hat{H}_2$ (bits/token)	Perplexity	Rel. PP change vs. 1st
GPT-5-chat	1st (baseline)	2.7882	0.0000	6.9075	0.000%
GPT-5-chat	2nd order	2.7805	0.0076	6.8711	+0.528%
Human	1st (baseline)	2.8089	0.0000	7.0074	0.000%
Human	2nd order	2.8043	0.0045	6.9854	+0.314%

952 Table 8: Conditional entropies and perplexities for discretized surprisal states.
 953

955 A3 THEORETICAL ANALYSIS

957 A3.1 PROBLEM SETUP

959 Let $\{s_t^P\}_{t=1}^N$ and $\{s_t^Q\}_{t=1}^N$ be the surprisal sequences produced by a fixed proxy LM on reference
 960 corpora from P and Q . Each sequence is modeled as an ergodic first-order Markov process on
 961 \mathbb{R} . For an integer $k \geq 2$, let $q_k : \mathbb{R} \rightarrow \mathcal{A} = \{1, \dots, k\}$ be a shared quantizer with boundaries
 962 $b_1 < \dots < b_{k-1}$, and discretized states $a_t^P = q_k(s_t^P)$ and $a_t^Q = q_k(s_t^Q)$. Let $\mathcal{S}_P, \mathcal{S}_Q$ denote the
 963 underlying Markov transition kernels on the real-valued surprisal sequences before discretization. The
 964 induced transition kernels on the k -state alphabet are $M_P(j|i) = \Pr[a_{t+1}^P = j | a_t^P = i]$ and likewise
 965 M_Q . Their plug-in estimators \hat{M}_P, \hat{M}_Q are formed from transition counts with $\hat{M}_P(a|s) = \frac{N_P(s,a)}{N_P(s)}$,
 966 where $N_P(s)$ is the number of occurrences of state s in $a_{1:N}^P$, and $N_P(s, a)$ is the number of times
 967 s is followed by a ; analogously for Q . Let π_P, π_Q are stationary distributions of M_P and M_Q , we
 968 define $\pi_{\min} := \min\{\min_{s \in \mathcal{A}} \pi_P(s), \min_{s \in \mathcal{A}} \pi_Q(s)\}$.

970 We observe an independent test surprisal-state sequence $a_{1:N}^T := \{a_t^T\}_{t=1}^n \sim M_T$, where the test
 971 source M_T is either M_P (null H_0) or M_Q (alternative H_1). All three sequences are discretized by
 972 the same q_k .

Throughout the analysis we impose the following conditions on the induced chains M_P and M_Q . These assumptions are standard in the study of Markov concentration inequalities and are required in order to apply the auxiliary results recalled below.

Assumption A3.1. We impose the following standing conditions on the induced chains M_P, M_Q . M_P and M_Q are irreducible, aperiodic Markov chain on the finite alphabet \mathcal{A} with unique stationary distribution π_P and π_Q and maximum hitting time $T(M_P)$ and $T(M_Q)$ respectively. We assume $\pi_{\min} := \min\{\min_{s \in \mathcal{A}} \pi_P(s), \min_{s \in \mathcal{A}} \pi_Q(s)\} \gtrsim 1/k$, and $T(M_\bullet) = O(1)$.

A3.2 DISCRETIZATION EFFECT

A3.2.1 AUXILIARY RESULTS FROM LITERATURE

The GJS Divergence as f -divergence. The GJS divergence is a specific instance of a broader class of divergences known as f -divergences. An f -divergence between two discrete probability distributions p and q is defined by a convex generator function f where $f(1) = 0$. The GJS divergence is equivalent to the w -skew Jensen-Shannon Divergence with $w = \alpha/(1 + \alpha)$, which is an f -divergence generated by the function $f_{JS}^w(t)$.

$$f_{JS}^w(t) = \alpha t \log\left(\frac{t}{\alpha t + 1 - \alpha}\right) + (1 - \alpha) \log\left(\frac{1}{\alpha t + 1 - \alpha}\right) \quad (14)$$

For notational convenience, we abbreviate f_{JS}^α as f . This connection allows us to leverage the following theoretical tools developed for general f -divergences.

Assumption A3.2 (Assumption 9 in Pillutla et al. (2023)). We assume that the generator function f of the f -divergence must satisfy the following three conditions:

- (A1) The function f and its conjugate generator f^* must be bounded at zero. Formally, $f(0) < \infty$ and $f^*(0) < \infty$.
- (A2) The first derivatives of f and f^* must not grow faster than a logarithmic function. For any $t \in (0, 1)$, there must exist constants C_1 and C_1^* such that $|f'(t)| \leq C_1(\max(1, \log(1/t)))$ and $|f^*(t)| \leq C_1^*(\max(1, \log(1/t)))$.
- The second derivatives of f and f^* must not grow faster than $\frac{1}{t}$ as $t \rightarrow 0$. Formally, there must exist constants C_2 and C_2^* such that for any $t \in (0, \infty)$, $\frac{t}{2}f''(t) \leq C_2$, and $\frac{t}{2}(f^*)''(t) \leq C_2^*$.

Lemma A3.3 (Approximate Lipschitz Property of the f -divergence, Lemma 20 in Pillutla et al. (2023)). Let f be a generator function satisfying Assumption A3.2. Consider the bivariate scalar function $\psi : [0, 1] \times [0, 1] \rightarrow [0, \infty)$ defined as $\psi(p, q) = qf(\frac{p}{q})$. For all probability values $p, p', q, q' \in [0, 1]$ with $\max(p, p') > 0$ and $\max(q, q') > 0$, the following inequalities hold:

$$|\psi(p', q) - \psi(p, q)| \leq \left(C_1 \max\left(1, \log\frac{1}{\max(p, p')}\right) + \max(C_0^*, C_2) \right) |p - p'| \quad (15)$$

$$|\psi(p, q') - \psi(p, q)| \leq \left(C_1^* \max\left(1, \log\frac{1}{\max(q, q')}\right) + \max(C_0, C_2^*) \right) |q - q'| \quad (16)$$

Assumption A3.4 (Assumption 3(b) in Kara et al. (2023)). Let $P(\cdot|x)$ be a probability measure on $(\mathcal{X}, \mathcal{F})$. There exist $L_P < \infty$ such that

$$\text{TV}(P(\cdot|x) - P(\cdot|x')) \leq L_P|x - x'|, \quad \forall x, x' \in \mathcal{X}. \quad (17)$$

Proposition A3.5 (Quantization Error of f-Divergence, Proposition 13 in Pillutla et al. (2023)). Let P and Q be two probability distributions over a common sample space \mathcal{X} .

Let $S = \{S_1, S_2, \dots, S_m\}$ be a partition of the space \mathcal{X} into m disjoint sets. The corresponding quantized distributions, P_S and Q_S , are defined as multinomial distributions over the indices $\{1, \dots, m\}$.

Then, for any integer $k \geq 1$, and f -divergence functional \mathcal{D}_f , there exists a partition S of size $m \leq 2k$ such that the absolute difference between the original and the quantized f -divergence is bounded as follows:

$$|\mathcal{D}_f(P, Q) - \mathcal{D}_f(P_S, Q_S)| \leq \frac{f(0) + f^*(0)}{k}$$

1026 Theorem A3.6 is adapted from Theorem 3.1 and Lemma 3.1 of Wolfer (2023), which provide high-
 1027 probability bounds on the row-wise total variation error of the empirical transition matrix for a
 1028 finite-state, irreducible, aperiodic Markov chain observed over a single trajectory. The bound holds
 1029 uniformly over all states and depends explicitly on the number of states and the trajectory length,
 1030 while accounting for the chain’s dependence structure.

1031 **Lemma A3.6** (Row-wise TV bound, Wolfer (2023)). *Let (X_1, \dots, X_N) be an irreducible, aperiodic,
 1032 stationary Markov chain on a finite state space \mathcal{A} with $|\mathcal{A}| = k$, transition matrix M and stationary
 1033 distribution π . Then there exists a universal constant $C > 0$ such that, for any $0 < \delta < 1$, the
 1034 following holds with probability at least $1 - \delta$:*

$$1036 \max_{s \in \mathcal{A}} \sum_{a \in \mathcal{A}} \left| \hat{M}(a|s) - M(a|s) \right| \leq C \sqrt{\frac{\tau_{\text{mix}} k \log(\frac{kN}{\delta})}{N}},$$

1039 where τ_{mix} is a mixing-time-type constant depending only on M (for reversible chains one has
 1040 $\tau_{\text{mix}} \asymp 1/\gamma_{\text{ps}}$, with γ_{ps} denoting the pseudo-spectral gap).

1041 We will use the missing-mass bound from Skorski (2020) to handle unseen transitions.

1042 **Lemma A3.7** (Missing Mass Bound, Theorem 1 in Skorski (2020)). *Let (X_1, \dots, X_N) be an
 1043 irreducible Markov chain over a finite state space \mathcal{A} with stationary distribution π_P and true
 1044 transition matrix M_P . Define the transition missing mass as*

$$1045 \text{Mmass} = \sum_{s \in \mathcal{A}} \sum_{a \in \mathcal{A}} \pi_P(s) M_P(a|s) \cdot \mathbf{1}\{\hat{M}_P(a|s) = 0\}.$$

1050 Let T be the maximum hitting time of any set of states with stationary probability at least 0.5. Then
 1051 there exists an absolute constant $c > 0$ and independent Bernoulli random variables

$$1053 Q_{s,a} \sim \text{Bernoulli} \left(e^{-c \cdot N \cdot \pi_P(s) M_P(a|s) / T} \right)$$

1054 such that for any subset $\mathcal{E} \subseteq \{(s, a) : s, a \in \mathcal{A}\}$ and any $n \geq 1$,

$$1057 \Pr \left[\bigwedge_{(s,a) \in \mathcal{E}} \{\hat{M}_P(a|s) = 0\} \right] \leq \prod_{(s,a) \in \mathcal{E}} \Pr[Q_{s,a} = 1].$$

1058 In particular, for any $t > 0$ it holds that

$$1062 \mathbb{E} \exp(t \cdot \text{Mmass}) \leq \mathbb{E} \exp \left(t \cdot \sum_{s \in \mathcal{A}} \sum_{a \in \mathcal{A}} \pi_P(s) M_P(a|s) Q_{s,a} \right).$$

1063 For bounding deviations of weighted sums over Markov chains, we rely on the inequality of Chung
 1064 et al. (2012).

1065 **Lemma A3.8** (Theorem 3.1 of Chung et al. (2012)). *Let M be an ergodic Markov chain on state
 1066 space \mathcal{A} with stationary distribution π . For $\varepsilon \leq 1/8$, let $T(\varepsilon)$ denote its total-variation mixing time.
 1067 Consider a length- N chain (X_1, \dots, X_N) on M with $X_1 \sim \varphi$. For each $s \in \mathcal{A}$, let $f_s : \mathcal{A} \rightarrow [0, 1]$
 1068 be a weight function with $\mathbb{E}_{X \sim \pi}[f_s(X)] = \pi(s)$. Define the total weight $N(s) = \sum_{i=1}^N f_s(X_i)$.
 1069 Then there exists an absolute constant c such that:*

$$1073 \Pr[N(s) \geq (1 + \delta)\pi(s)N] \leq c \|\varphi\|_\pi \times \begin{cases} \exp(-\delta^2\pi(s)N/(72T(\varepsilon))), & 0 \leq \delta \leq 1, \\ \exp(-\delta\pi(s)N/(72T(\varepsilon))), & \delta > 1, \end{cases}$$

1074 and, for $0 \leq \delta \leq 1$,

$$1075 \Pr[N(s) \leq (1 - \delta)\pi(s)N] \leq c \|\varphi\|_\pi \exp(-\delta^2\pi(s)N/(72T(\varepsilon))).$$

1076 Here $\langle u, v \rangle_\pi = \sum_x u_x v_x / \pi(x)$ and $\|u\|_\pi = \sqrt{\langle u, u \rangle_\pi}$.

1080 A3.2.2 AUXILIARY RESULTS
10811082 **Lemma A3.9.** *For all $\alpha > 0$ and $p \in (0, 1]$, it holds that*

1083
1084
$$p \max\{1, \log(1/p)\} e^{-\alpha p} \leq \frac{2 + \log(1 + \alpha)}{e \alpha}. \quad (18)$$

1085
1086

1087 *Proof.* Let $y = \alpha p \in (0, \alpha]$ and $A = \log \alpha$. Then we can rewrite
1088

1089
$$p \max\{1, \log(1/p)\} e^{-\alpha p} = \frac{1}{\alpha} y e^{-y} \max\{1, A - \log y\}.$$

1090

1091 Next observe the inequality
1092

1093
$$\max\{1, A - \log y\} \leq 1 + A_+ + (-\log y)_+,$$

1094

1095 where $x_+ = \max\{0, x\}$ and $A_+ = \max\{0, A\}$.
1096

Therefore,

1097
$$y e^{-y} \max\{1, A - \log y\} \leq (1 + A_+) \cdot y e^{-y} + y e^{-y} (-\log y)_+.$$

1098

1099 Now use the following standard bounds:
1100

1101
$$\sup_{y>0} y e^{-y} = \frac{1}{e}, \quad \sup_{0<y\leq 1} y (-\log y) = \frac{1}{e}.$$

1102
1103

Hence

1104
$$\sup_{y>0} y e^{-y} \max\{1, A - \log y\} \leq \frac{1 + A_+}{e} + \frac{1}{e} = \frac{2 + \log \alpha_+}{e},$$

1105
1106

1107 where $\log \alpha_+ = \max\{0, \log \alpha\} \leq \log(1 + \alpha)$.
11081109 Substituting back into the expression, we obtain
1110

1111
$$p \max\{1, \log(1/p)\} e^{-\alpha p} \leq \frac{1}{\alpha} \cdot \frac{2 + \log(1 + \alpha)}{e}.$$

1112

1113 This proves Eq. 18. \square
11141115 **Lemma A3.10** (Stationarity of Quantized Kernels). *Let S_P be the population first-order Markov
1116 transition kernel on the continuous surprisal space \mathbb{R} with stationary law ρ_P . Fix a shared k -bin
1117 quantizer $q_k : \mathbb{R} \rightarrow \mathcal{A} = \{1, \dots, k\}$ with boundaries $b_1 < \dots < b_{k-1}$ partitions space into bins
1118 $B_i = [b_i, b_{i+1})$. Define the row-stationary weights and the edge measure*

1119
$$\pi_P(i) := \rho_P(B_i), \quad Z_P(i, j) := \int_{B_i} \rho_P(dx) S_P(B_j|x), \quad i, j \in \mathcal{A},$$

1120
1121

1122 and the induced k -state transition kernel
1123

1124
$$M_P(j | i) := \frac{Z_P(i, j)}{\pi_P(i)} \quad (\text{for } \pi_P(i) > 0).$$

1125

1126 Then π_P is a stationary distribution of M_P , i.e. $\sum_i \pi_P(i) M_P(j | i) = \pi_P(j)$ for all $j \in \mathcal{A}$.
1127

1128

1129 *Proof.* By definition,
1130

1131
$$\sum_{i \in \mathcal{A}} \pi_P(i) M_P(j | i) = \sum_{i \in \mathcal{A}} Z_P(i, j) = \int_{\mathbb{R}} \rho_P(dx) S_P(B_j|x) = \rho_P(B_j) = \pi_P(j),$$

1132
1133

where the penultimate equality uses the stationarity of ρ_P for S_P . \square

1134 A3.2.3 PROOF OF THEOREM 4.2
1135

1136 In this step, we aim to bound the expected absolute difference between the estimated GJS divergence
1137 and the GJS divergence for the induced Markov kernels after discretization. The statistical error of
1138 our estimator is:

$$1139 \quad E_1 = |\mathcal{D}_f(\hat{M}_P, \hat{M}_Q) - \mathcal{D}_f(M_P, M_Q)| \quad (19)$$

1141 The analysis will reveal how this error depends on the number of bins k and the sequence length
1142 N . To analyze the statistical error, we will extend the logic used in Pillutla et al. (2023). We will
1143 apply Lemma A3.3 (Lemma 20 in Pillutla et al. (2023)), which establishes an approximate Lipschitz
1144 property for the core component of any f -divergence.

1145 *Proof of Theorem 4.2.* To bound the statistical error E_1 , we first decompose it and then expand the
1146 GJS function into a sum of its core components, allowing for the application of Lemma A3.3. Using
1147 the triangle inequality, we can bound the total statistical error by the sum of the errors arising from
1148 the estimation of each matrix individually:

$$1150 \quad E_1 \leq \underbrace{|\mathcal{D}_f(\hat{M}_P, \hat{M}_Q) - \mathcal{D}_f(M_P, \hat{M}_Q)|}_{=: \mathcal{T}_1} + \underbrace{|\mathcal{D}_f(M_P, \hat{M}_Q) - \mathcal{D}_f(M_P, M_Q)|}_{=: \mathcal{T}_2} \quad (20)$$

1153 The f -divergence between two Markov chains, M_A and M_B , is defined as the expected divergence of
1154 their row-wise conditional probability distributions, weighted by the stationary distribution of the
1155 second chain. Let $\pi_B(s)$ be the stationary probability of state s for chain M_B . The f -divergence is:

$$1157 \quad D_f(M_A, M_B) = \sum_{s \in \mathcal{A}} \pi_B(s) \sum_{a \in \mathcal{A}} \psi(M_A(a|s), M_B(a|s)) \quad (21)$$

1160 Applying this to the first term of our decomposed error Eq. equation 20, with $f = f_{JS}^w$, we get
1161

$$1162 \quad \mathcal{T}_1 = |\mathcal{D}_f(\hat{M}_P, \hat{M}_Q) - \mathcal{D}_f(M_P, \hat{M}_Q)| \quad (22)$$

$$1163 \quad = \left| \sum_{s \in \mathcal{A}} \hat{\pi}_Q(s) \sum_{a \in \mathcal{A}} \psi(\hat{M}_P(a|s), \hat{M}_Q(a|s)) - \sum_{s \in \mathcal{A}} \hat{\pi}_Q(s) \sum_{a \in \mathcal{A}} \psi(M_P(a|s), \hat{M}_Q(a|s)) \right| \quad (23)$$

$$1166 \quad = \left| \sum_{s \in \mathcal{A}} \hat{\pi}_Q(s) \sum_{a \in \mathcal{A}} [\psi(\hat{M}_P(a|s), \hat{M}_Q(a|s)) - \psi(M_P(a|s), \hat{M}_Q(a|s))] \right| \quad (24)$$

$$1169 \quad \leq \left| \sum_{s \in \mathcal{A}} \sum_{a \in \mathcal{A}} [\psi(\hat{M}_P(a|s), \hat{M}_Q(a|s)) - \psi(M_P(a|s), \hat{M}_Q(a|s))] \right| \quad (25)$$

$$1172 \quad \leq \sum_{s \in \mathcal{A}} \sum_{a \in \mathcal{A}} \left| \psi(\hat{M}_P(a|s), \hat{M}_Q(a|s)) - \psi(M_P(a|s), \hat{M}_Q(a|s)) \right| \quad (26)$$

1174 **Case 1: Observed Transitions** For a transition that appears in the human-written text sample,
1175 its empirical probability is $\hat{M}_P(a|s) = \frac{N_P(s,a)}{N_P(s)} \geq \frac{1}{N_P(s)}$, where $N_P(s)$ is the number of times
1176 state s was visited in the sequence of length N . We apply the first inequality of Lemma A3.3 with
1177 $p' = \hat{M}_P(a|s)$, $p = M_P(a|s)$, and $q = \hat{M}_Q(a|s)$. The term $\max(1, \log \frac{1}{\max(p, p')})$ is bounded by
1178 $\log N_P(s)$ as long as $N_P(s) \geq 3$. Thus, the error for a single observed transition is bounded by:
1179

$$1181 \quad |\psi(\hat{M}_P(a|s), \hat{M}_Q(a|s)) - \psi(M_P(a|s), \hat{M}_Q(a|s))| \leq (C_1 \log N_P(s) + C') |\hat{M}_P(a|s) - M_P(a|s)| \quad (27)$$

$$1183 \quad \leq (C_1 \log N + C') |\hat{M}_P(a|s) - M_P(a|s)| \quad (28)$$

1186 where C' is a constant absorbing C_0^* and C_2 . Summing over all observed transitions gives a bound
1187 proportional to the Total Variation (TV) distance between the estimated and true transition matrices,
1188 multiplied by a logarithmic factor.

1188 **Case 2: Missing Transitions** This case addresses transitions that have a non-zero true probability
 1189 ($M_P(a|s)$) but were not observed in the finite sample, resulting in an empirical probability of
 1190 $\hat{M}_P(a|s) = 0$. This scenario is formally known as the missing mass problem for Markov chains, a
 1191 non-trivial extension of the classic IID case due to the dependencies between samples. To analyze the
 1192 error contribution, we directly bound the error for a single missing transition using Lemma A3.3. Let
 1193 $p' = \hat{M}_P(a|s) = 0$ and $p = M_P(a|s)$. The error is now $|\psi(0, \hat{M}_Q(a|s)) - \psi(M_P(a|s), \hat{M}_Q(a|s))|$.
 1194 Applying the first inequality of Lemma A3.3, we get:

$$1196 \quad |\psi(0, \hat{M}_Q(a|s)) - \psi(M_P(a|s), \hat{M}_Q(a|s))| \leq (C_1 \max \left(1, \log \frac{1}{M_P(a|s)} \right) + C') |0 - M_P(a|s)| \quad (29)$$

$$1199 \quad = (C_1 \max \left(1, \log \frac{1}{M_P(a|s)} \right) + C') M_P(a|s) \quad (30)$$

1202 This bound shows that the error from a missing transition is proportional to its true probability
 1203 $M_P(a|s)$, scaled by its information content. The total error from this case is the sum of these
 1204 individual bounds over all unobserved transitions. This sum constitutes the missing transition mass
 1205 of the Markov chain.

1206 We summarize the following:

$$1208 \quad \mathbb{E}[\mathcal{T}_1] \leq (C_1 \log N + C') \cdot \sum_{s \in \mathcal{A}} \alpha_{N_P(s)}(M_P(\cdot|s)) + (C_1 + C') \sum_{s \in \mathcal{A}} \beta_{N_P(s)}(M_P(\cdot|s)) \quad (31)$$

1210 where $M_P(\cdot|s)$ is a k -dimensional probability distribution corresponding to state s , and we formally
 1211 define the row-wise error terms:

- 1213 • Row-wise TV term $\alpha_{N_P(s)}(M_P(\cdot|s))$: This term sums the error from observed transitions
 1214 in state s .

$$1215 \quad \mathbb{E}[\alpha_{N_P(s)}(M_P(\cdot|s))] = \mathbb{E} \left[\sum_{\substack{a \in \mathcal{A}, \\ \text{s.t. } \hat{M}_P(a|s) > 0}} |\hat{M}_P(a|s) - M_P(a|s)| \right] \quad (32)$$

- 1219 • Row-wise Missing Mass term $\beta_{N_P(s)}(M_P(\cdot|s))$: This term sums the error from unobserved
 1220 transitions in state s .

$$1222 \quad \mathbb{E}[\beta_{N_P(s)}(M_P(\cdot|s))] = \mathbb{E} \left[\sum_{\substack{a \in \mathcal{A}, \\ \text{s.t. } \hat{M}_P(a|s) = 0}} M_P(a|s) \cdot \max \left(1, \log \frac{1}{M_P(a|s)} \right) \right] \quad (33)$$

1225 Then we use Lemma A3.6 to upper bound Eq 32.

$$1228 \quad \mathbb{E}[\alpha_{N_P(s)}(M_P(\cdot|s))] = \mathbb{E} \left[\sum_{\substack{a \in \mathcal{A}, \\ \text{s.t. } \hat{M}_P(a|s) > 0}} |\hat{M}_P(a|s) - M_P(a|s)| \right] \quad (34)$$

$$1231 \quad \leq \mathbb{E} \left[\sum_{a \in \mathcal{A}} |\hat{M}_P(a|s) - M_P(a|s)| \right] \quad (35)$$

$$1234 \quad = O \left(\sqrt{\frac{k \log (kN)}{N}} \right) \quad (36)$$

1236 where Eq. 36 follows Lemma A3.6 by inverting its tail bound and integrating to expectation; the
 1237 mixing-time constant is absorbed into $O(1)$ under Assumption A3.1.

1238 Lemma A3.7 gives an exponential tail for the event $\hat{M}_P(a|s) = 0$: for some absolute constant $c > 0$
 1239 and T the maximum hitting time of any set with stationary probability at least 0.5,

$$1241 \quad \mathbb{P}[\hat{M}_P(a|s) = 0] \leq \exp \left(- \frac{cN}{T} \pi_P(s) M_P(a|s) \right) \quad (37)$$

Then we upper bound the missing mass term $\mathbb{E}[\beta_{N_P(s)}(M_P(\cdot|s))]$. Let $p_a = M_P(a|s)$ and $\Gamma = \frac{cN}{T} \pi_P(s)$.

$$\mathbb{E}[\beta_{N_P(s)}(M_P(\cdot|s))] = \sum_{a \in \mathcal{A}} p_a \max\left(1, \frac{1}{p_a}\right) \mathbb{P}[\hat{M}_P(a|s) = 0] \quad (38)$$

$$= \sum_{a \in \mathcal{A}} p_a \max\left(1, \frac{1}{p_a}\right) e^{-\Gamma p_a} \quad (39)$$

$$\leq \sum_{a \in \mathcal{A}} \frac{2 + \log(1 + \Gamma)}{e\Gamma} \quad (40)$$

$$= \frac{kT}{ecN\pi_P(s)} \left(2 + \log\left(1 + \frac{cN\pi_P(s)}{T}\right)\right) \quad (41)$$

where Eq. 40 follows Lemma A3.9 for all $\Gamma > 0$ and $p_a \in (0, 1]$. Assuming $\pi_P(s) \geq \frac{c_0}{k}$ for some constant $c_0 > 0$ and $T = O(1)$, we obtain

$$\mathbb{E}[\beta_{N_P(s)}(M_P(\cdot|s))] = O\left(\frac{k^2}{N} \log\left(1 + \frac{N}{k}\right)\right) \quad (42)$$

By Eq. 31, Eq. 36, and Eq. 42 we obtain

$$\mathcal{T}_1 = O\left(\log N \cdot \sqrt{\frac{k^3 \log(kN)}{N}} + \frac{k^3}{N} \log\left(1 + \frac{N}{k}\right)\right) \quad (43)$$

Next we bound \mathcal{T}_2 .

$$\mathcal{T}_2 = |\mathcal{D}_f(M_P, \hat{M}_Q) - \mathcal{D}_f(M_P, M_Q)| \quad (44)$$

$$= \left| \sum_{s \in \mathcal{A}} \hat{\pi}_Q(s) \sum_{a \in \mathcal{A}} \psi(M_P(a|s), \hat{M}_Q(a|s)) - \sum_{s \in \mathcal{A}} \pi_Q(s) \sum_{a \in \mathcal{A}} \psi(M_P(a|s), M_Q(a|s)) \right| \quad (45)$$

$$= \left| \sum_{s \in \mathcal{A}} \hat{\pi}_Q(s) \sum_{a \in \mathcal{A}} \psi(M_P(a|s), \hat{M}_Q(a|s)) - \sum_{s \in \mathcal{A}} \hat{\pi}_Q(s) \sum_{a \in \mathcal{A}} \psi(M_P(a|s), M_Q(a|s)) \right. \\ \left. + \sum_{s \in \mathcal{A}} \hat{\pi}_Q(s) \sum_{a \in \mathcal{A}} \psi(M_P(a|s), M_Q(a|s)) - \sum_{s \in \mathcal{A}} \pi_Q(s) \sum_{a \in \mathcal{A}} \psi(M_P(a|s), M_Q(a|s)) \right| \quad (46)$$

$$\leq \left| \sum_{s \in \mathcal{A}} \hat{\pi}_Q(s) \sum_{a \in \mathcal{A}} \psi(M_P(a|s), \hat{M}_Q(a|s)) - \sum_{s \in \mathcal{A}} \hat{\pi}_Q(s) \sum_{a \in \mathcal{A}} \psi(M_P(a|s), M_Q(a|s)) \right|$$

$$+ \left| \sum_{s \in \mathcal{A}} \hat{\pi}_Q(s) \sum_{a \in \mathcal{A}} \psi(M_P(a|s), M_Q(a|s)) - \sum_{s \in \mathcal{A}} \pi_Q(s) \sum_{a \in \mathcal{A}} \psi(M_P(a|s), M_Q(a|s)) \right| \quad (47)$$

$$\leq \left| \sum_{s \in \mathcal{A}} \sum_{a \in \mathcal{A}} [\psi(M_P(a|s), \hat{M}_Q(a|s)) - \psi(M_P(a|s), M_Q(a|s))] \right| \\ + \left| \sum_{s \in \mathcal{A}} (\hat{\pi}_Q(s) - \pi_Q(s)) \sum_{a \in \mathcal{A}} \psi(M_P(a|s), M_Q(a|s)) \right| \quad (48)$$

$$\leq \underbrace{\sum_{s \in \mathcal{A}} \sum_{a \in \mathcal{A}} \left| \psi(M_P(a|s), \hat{M}_Q(a|s)) - \psi(M_P(a|s), M_Q(a|s)) \right|}_{=: \mathcal{T}_{2,1}}$$

$$+ \underbrace{\sum_{s \in \mathcal{A}} (\hat{\pi}_Q(s) - \pi_Q(s)) \sum_{a \in \mathcal{A}} \psi(M_P(a|s), M_Q(a|s))}_{=: \mathcal{T}_{2,2}} \quad (49)$$

By symmetry, bounding $\mathcal{T}_{2,1}$ proceeds identically to \mathcal{T}_1 , and yields the same rate as \mathcal{T}_1 . To upper bound $\mathcal{T}_{2,2}$, we consider

$$\sum_{a \in \mathcal{A}} \psi(M_P(a|s), M_Q(a|s)) = \sum_{a \in \mathcal{A}} M_Q(a|s) f_{JS}^w(M_P(a|s)/M_Q(a|s)) \leq H(w) \leq \log 2 \quad (50)$$

1296 where $H(w) = -[w \log(w) + (1-w) \log(1-w)]$ with $w = \frac{\alpha}{1+\alpha} \in [0, 1]$ is the binary entropy
 1297 function of which the absolute maximum possible value is $\log 2$. To upper bound $\mathcal{T}_{2,2}$,
 1298

$$1299 \quad \mathcal{T}_{2,2} \leq \log 2 \cdot \mathbb{E}|\hat{\pi}_Q - \pi_Q| \quad (51)$$

1300 We apply Lemma A3.8 to upper bound $\mathcal{T}_{2,2}$. Consider $\hat{\pi}_Q(s) = \frac{N_Q(s)}{N}$, for any $\delta > 0$, we have
 1301

$$1303 \quad \Pr[N_Q(s) \geq (1+\delta)\pi_Q(s)N] \leq c\|\varphi\|_{\pi_Q} \times \begin{cases} \exp(-\delta^2\pi_Q(s)N/(72T)), & 0 \leq \delta \leq 1, \\ \exp(-\delta\pi_Q(s)N/(72T)), & \delta > 1, \end{cases}$$

1306 and similarly for the lower tail with $0 < \delta < 1$. With $\epsilon = \delta\pi_Q(s)$, we have
 1307

$$1308 \quad \Pr[|\hat{\pi}_Q(s) - \pi_Q(s)| \geq \epsilon] \leq 2c\|\varphi\|_{\pi_Q} \times \begin{cases} \exp(-\epsilon^2N/(72T\pi_Q(s))), & 0 \leq \epsilon \leq \pi_Q(s), \\ \exp(-\epsilon N/(72T)), & \epsilon > \pi_Q(s), \end{cases} \quad (52)$$

1311 Using $\mathbb{E}|Z| = \int_0^\infty \Pr(|Z| \geq \epsilon)$ and splitting the integral at $\pi_Q(s)$,
 1312

$$1313 \quad \mathbb{E}[|\hat{\pi}_Q(s) - \pi_Q(s)|] \leq 2c\|\varphi\|_{\pi_Q} \left(\int_0^{\pi_Q(s)} e^{-\frac{N\epsilon^2}{72T\pi_Q(s)}} d\epsilon + \int_{\pi_Q(s)}^\infty e^{-\frac{N\epsilon}{72T}} d\epsilon \right) \quad (53)$$

$$1316 \quad \leq 2c\|\varphi\|_{\pi_Q} \left(C\sqrt{\frac{T\pi_Q(s)}{N}} + \frac{72T}{N} \exp\left(-\frac{N\pi_Q(s)}{72T}\right) \right) \quad (54)$$

$$1319 \quad = O\left(\|\varphi\|_{\pi_Q} \sqrt{\frac{T\pi_Q(s)}{N}}\right) \quad (55)$$

1321 Thus we obtain
 1322

$$1323 \quad \mathbb{E}[|\hat{\pi}_Q - \pi_Q|] = \sum_{s \in \mathcal{A}} \mathbb{E}[|\hat{\pi}_Q(s) - \pi_Q(s)|] \quad (56)$$

$$1326 \quad \leq \sum_{s \in \mathcal{A}} C\|\varphi\|_{\pi_Q} \sqrt{\frac{T\pi_Q(s)}{N}} \quad (57)$$

$$1329 \quad = C\|\varphi\|_{\pi_Q} \sqrt{\frac{T}{N} \sum_{s \in \mathcal{A}} \sqrt{\pi_Q(s)}} \quad (58)$$

$$1332 \quad \leq C\|\varphi\|_{\pi_Q} \sqrt{\frac{Tk}{N}} \quad (59)$$

$$1334 \quad = O\left(\frac{k}{\sqrt{N}}\right) \quad (60)$$

1336 where Eq. 60 holds since $\|\varphi\|_{\pi_Q} = \frac{1}{\sqrt{\pi_Q(s_0)}} \leq \frac{1}{\sqrt{\min_{s \in \mathcal{A}} \pi_Q(s)}} = O(\sqrt{k})$ for the first state s_0 , and
 1337 $T = O(1)$. To sum up, $\mathcal{T}_{2,2} = O\left(\frac{k}{\sqrt{N}}\right)$, and the rate for the total statistical error is
 1339

$$1340 \quad E_1 \leq \mathcal{T}_1 + \mathcal{T}_{2,1} + \mathcal{T}_{2,2} \quad (61)$$

$$1342 \quad = O\left(\log N \cdot \sqrt{\frac{k^3 \log(kN)}{N}} + \frac{k^3}{N} \log\left(1 + \frac{N}{k}\right)\right) \\ 1343 \quad + O\left(\log N \cdot \sqrt{\frac{k^3 \log(kN)}{N}} + \frac{k^3}{N} \log\left(1 + \frac{N}{k}\right)\right) + O\left(\frac{k}{\sqrt{N}}\right) \quad (62)$$

$$1346 \quad = O\left(\log N \cdot \sqrt{\frac{k^3 \log(kN)}{N}} + \frac{k^3}{N} \log\left(1 + \frac{N}{k}\right) + \frac{k}{\sqrt{N}}\right) \quad (63)$$

1348

□

1350 A3.2.4 PROOF OF PROPOSITION 4.1
13511352 *Proof of Proposition 4.1.* Let ρ_P and ρ_Q be the continuous stationary distributions of \mathcal{S}_P and \mathcal{S}_Q
1353 respectively. We expand $\mathcal{D}_f(\mathcal{S}_P, \mathcal{S}_Q)$ and $\mathcal{D}_f(M_P, M_Q)$,

1354
$$\mathcal{D}_f(\mathcal{S}_P, \mathcal{S}_Q) = \int_{\mathbb{R}} \rho_Q(dx) \mathcal{D}_f(\mathcal{S}_P(\cdot|x), (\mathcal{S}_Q(\cdot|x))) \quad (64)$$

1355
$$\mathcal{D}_f(M_P, M_Q) = \sum_{i \in \mathcal{A}} \pi_Q(i) \mathcal{D}_f(M_P(\cdot|i), M_Q(\cdot|i)) \quad (65)$$

1356 The quantizer $q_k : \mathbb{R} \rightarrow \mathcal{A} = [k]$ with boundaries $b_1 < \dots < b_{k-1}$ partitions space into bins
1357 $B_i = [b_i, b_{i+1})$. Let $\rho_Q(B_i) = \int_{B_i} d\rho_Q(x)$, then $\pi_Q(i) = \rho_Q(B_i)$.1358 Define two intermediate objects U_P and U_Q to be markov kernel such that each has a discrete state
1359 index $i \in \mathcal{A}$, within a given state i , the observable variable x lives in a continuous space \mathbb{R} , The
1360 corresponding stationary distributions over states are π_P for P and π_Q for Q . Thus
1361

1362
$$\mathcal{D}_f(U_P, U_Q) = \sum_{i \in \mathcal{A}} \pi_Q(i) \mathcal{D}_f(\mathcal{S}_P(\cdot|i), \mathcal{S}_Q(\cdot|i)) \quad (66)$$

1363 where $\mathcal{S}_P(\cdot|i) = \mathbb{E}_{x \sim \rho_Q(B_i)} [\mathcal{S}_P(\cdot|x)]$ and similarly for $\mathcal{S}_Q(\cdot|i)$. We have
1364

1365
$$|\mathcal{D}_f(\mathcal{S}_P, \mathcal{S}_Q) - \mathcal{D}_f(M_P, M_Q)| \leq |\mathcal{D}_f(\mathcal{S}_P, \mathcal{S}_Q) - \mathcal{D}_f(U_P, U_Q)| + |\mathcal{D}_f(U_P, U_Q) - \mathcal{D}_f(M_P, M_Q)| \quad (67)$$

1366 The second term is bounded as
1367

1368
$$|\mathcal{D}_f(U_P, U_Q) - \mathcal{D}_f(M_P, M_Q)| \quad (68)$$

1369
$$= \left| \sum_{i \in \mathcal{A}} \pi_Q(i) \mathcal{D}_f(\mathcal{S}_P(\cdot|i), \mathcal{S}_Q(\cdot|i)) - \sum_{i \in \mathcal{A}} \pi_Q(i) \mathcal{D}_f(M_P(\cdot|i), M_Q(\cdot|i)) \right| \quad (69)$$

1370
$$\leq \sum_{i \in \mathcal{A}} \pi_Q(i) \left| \mathcal{D}_f(\mathcal{S}_P(\cdot|i), \mathcal{S}_Q(\cdot|i)) - \mathcal{D}_f(M_P(\cdot|i), M_Q(\cdot|i)) \right| \quad (70)$$

1371
$$= O\left(\frac{1}{k}\right) \quad (71)$$

1372 Eq. 71 holds by applying Proposition A3.5 to each term in Eq. 70, yielding an $O(1/k)$ bound per
1373 term. Since the weighted sum of $O(1/k)$ terms remains $O(1/k)$, the overall bound follows. The first
1374 term is

1375
$$\mathcal{D}_f(\mathcal{S}_P, \mathcal{S}_Q) - \mathcal{D}_f(U_P, U_Q) \quad (72)$$

1376
$$= \int_{\mathbb{R}} \rho_Q(dx) \mathcal{D}_f(\mathcal{S}_P(\cdot|x), (\mathcal{S}_Q(\cdot|x))) - \sum_{i \in \mathcal{A}} \pi_Q(i) \mathcal{D}_f(\mathcal{S}_P(\cdot|i), \mathcal{S}_Q(\cdot|i)) \quad (73)$$

1377
$$= \sum_{i=1}^k \int_{B_i} \rho_Q(dx) \mathcal{D}_f(\mathcal{S}_P(\cdot|x), (\mathcal{S}_Q(\cdot|x))) - \sum_{i \in \mathcal{A}} \pi_Q(i) \mathcal{D}_f(\mathcal{S}_P(\cdot|i), \mathcal{S}_Q(\cdot|i)) \quad (74)$$

1378
$$= \sum_{i \in \mathcal{A}} \rho_Q(B_i) \mathbb{E}_{x \sim \rho_Q(B_i)} [\mathcal{D}_f(\mathcal{S}_P(\cdot|x), (\mathcal{S}_Q(\cdot|x)))] - \sum_{i \in \mathcal{A}} \pi_Q(i) \mathcal{D}_f(\mathcal{S}_P(\cdot|i), \mathcal{S}_Q(\cdot|i)) \quad (75)$$

1379
$$= \sum_{i \in \mathcal{A}} \pi_Q(i) \mathbb{E}_{x \sim \rho_Q(B_i)} [\mathcal{D}_f(\mathcal{S}_P(\cdot|x), (\mathcal{S}_Q(\cdot|x)))] - \sum_{i \in \mathcal{A}} \pi_Q(i) \mathcal{D}_f(\mathcal{S}_P(\cdot|i), \mathcal{S}_Q(\cdot|i)) \quad (76)$$

1380
$$= \sum_{i \in \mathcal{A}} \pi_Q(i) [\mathbb{E}_{x \sim \rho_Q(B_i)} [\mathcal{D}_f(\mathcal{S}_P(\cdot|x), (\mathcal{S}_Q(\cdot|x)))] - \mathcal{D}_f(\mathcal{S}_P(\cdot|i), \mathcal{S}_Q(\cdot|i))] \quad (77)$$

1381
$$=: \sum_{i \in \mathcal{A}} \pi_Q(i) J_i \quad (78)$$

1382 Because \mathcal{D}_f is jointly convex,
1383

1384
$$\mathcal{D}_f(\mathbb{E}_{x \sim \rho_Q(B_i)} [\mathcal{S}_P(\cdot|x)], \mathbb{E}_{x \sim \rho_Q(B_i)} [\mathcal{S}_Q(\cdot|x)]) \leq \mathbb{E}_{x \sim \rho_Q(B_i)} [\mathcal{D}_f(\mathcal{S}_P(\cdot|x), (\mathcal{S}_Q(\cdot|x)))] \quad (79)$$

1404 Therefore,

1405

$$1406 |\mathcal{D}_f(\mathcal{S}_P, \mathcal{S}_Q) - \mathcal{D}_f(U_P, U_Q)| = \sum_{i \in \mathcal{A}} \pi_Q(i) J_i \quad (80)$$

1407

1408 Lemma A3.3 implies a Lipschitz-type continuity bound in total variation distance, that is

1409

$$1410 |\mathcal{D}_f(P, Q) - \mathcal{D}_f(P', Q')| \leq 2L_f(\text{TV}(P, P') + \text{TV}(Q, Q')) \quad (81)$$

1411

1412 where L_f depends on C_1, C_1^*, C_2, C_2^* in Lemma A3.3. Applying Eq. 81 to J_i yields

1413

$$1414 J_i = \mathbb{E}_{x \sim \rho_Q(B_i)} [\mathcal{D}_f(\mathcal{S}_P(\cdot|x), (\mathcal{S}_Q(\cdot|x))] - \mathcal{D}_f(\mathcal{S}_P(\cdot|i), \mathcal{S}_Q(\cdot|i)) \quad (82)$$

1415

$$1416 \leq \mathbb{E}_{x \sim \rho_Q(B_i)} [\mathcal{D}_f(\mathcal{S}_P(\cdot|x), (\mathcal{S}_Q(\cdot|x)) - \mathcal{D}_f(\mathcal{S}_P(\cdot|i), \mathcal{S}_Q(\cdot|i))] \quad (83)$$

1417

$$1418 \leq 2L_f \mathbb{E}_{x \sim \rho_Q(B_i)} [\text{TV}(\mathcal{S}_P(\cdot|x), \mathcal{S}_P(\cdot|i)) + \text{TV}(\mathcal{S}_Q(\cdot|x), \mathcal{S}_Q(\cdot|i))] \quad (84)$$

1419

1420 By Assumption A3.4,

1421

$$1422 \text{TV}(\mathcal{S}_P(\cdot|x), \mathcal{S}_P(\cdot|i)) + \text{TV}(\mathcal{S}_Q(\cdot|x), \mathcal{S}_Q(\cdot|i)) \leq (L_P + L_Q) \mathbb{E}_{x' \sim \rho_Q(B_i)} |x - x'| \quad (85)$$

1423

1424 Let c_i be the centroid of B_i and define the mean radius $r_i = \mathbb{E}_{x \sim \rho_Q(B_i)} |x - c_i|$. For any $x \in B_i$,

1425

$$1426 \mathbb{E}_{x' \sim \rho_Q(B_i)} |x - x'| \leq |x - c_i| + \mathbb{E}_{x' \sim \rho_Q(B_i)} |x' - c_i| = |x - c_i| + r_i \quad (86)$$

1427

1428 Then,

1429

$$1430 (L_P + L_Q) \mathbb{E}_{x' \sim \rho_Q(B_i)} |x - x'| \leq (L_P + L_Q) \mathbb{E}_{x' \sim \rho_Q(B_i)} |x - c_i| + r_i = 2(L_P + L_Q) r_i \quad (87)$$

1431

1432 Then,

1433

$$1434 J_i \leq 4L_f (L_P + L_Q) r_i \quad (88)$$

1435

1436 Summing over buckets with weight $\pi_P(i)$ gives:

1437

$$1438 |\mathcal{D}_f(\mathcal{S}_P, \mathcal{S}_Q) - \mathcal{D}_f(U_P, U_Q)| = \sum_{i \in \mathcal{A}} \pi_Q(i) J_i \quad (89)$$

1439

$$1440 \leq 4L_f (L_P + L_Q) \sum_{i \in \mathcal{A}} \pi_Q(i) r_i \quad (90)$$

1441

$$1442 = 4L_f (L_P + L_Q) \mathbb{E}_{x \sim \rho_Q} [x - q_k(x)] \quad (91)$$

1443

$$1444 = O(1/k) \quad (92)$$

1445

1446 By Eq. 71 and Eq. 92,

1447

$$1448 |\mathcal{D}_f(\mathcal{S}_P, \mathcal{S}_Q) - \mathcal{D}_f(M_P, M_Q)| \leq \frac{c}{k} \quad (93)$$

1449

□

1450

1451 A3.2.5 BALANCING TWO ERRORS

1452

1453 A clear choice for k is found by balancing the dominant statistical error (Eq. 63) with the quantization error (Eq. 93) in rate form, ignoring logarithmic factors. The leading statistical term scales as $c_1 k^{\frac{3}{2}} N^{-\frac{1}{2}}$ and the quantization term as $\frac{c_2}{k}$. Minimizing their sum $f(k) = c_1 k^{\frac{3}{2}} N^{-\frac{1}{2}} + \frac{c_2}{k}$ by first-order condition $f'(k) = 0$ yields that

1454

$$1455 k^* = \left(\frac{4c_2}{3c_1} \right)^{\frac{2}{7}} N^{\frac{1}{5}} \quad (94)$$

1456

1457 Thus, up to constants and polylog factors, the optimal bin count is $k^* = \Theta(N^{\frac{1}{5}})$.

1458 A3.3 DECISION STATISTIC ANALYSIS
14591460 A3.3.1 AUXILIARY RESULTS FROM LITERATURE
1461

1462 **Lemma A3.11** (Second-Order Taylor Expansion of Generalized Jensen Shannon Divergence, Zhou
1463 et al. (2018)). Let $P_1, P_2 \in \mathcal{P}(\mathcal{X})$ be two distinct probability distributions over a finite alphabet
1464 \mathcal{X} , representing a point of expansion. Let $\hat{P}_1, \hat{P}_2 \in \mathcal{P}(\mathcal{X})$ be two other probability distributions in
1465 a neighborhood of (P_1, P_2) . Let α be a fixed positive constant. The Generalized Jensen-Shannon
1466 (GJS) divergence, viewed as a function $GJS(\hat{P}_1, \hat{P}_2, \alpha)$, has the following second-order Taylor
1467 approximation around the point (P_1, P_2) .

$$1468 GJS(\hat{P}_1, \hat{P}_2, \alpha) = \underbrace{GJS(P_1, P_2, \alpha)}_{\text{Zeroth-Order Term}} + \underbrace{\sum_{x \in \mathcal{X}} (\hat{P}_1(x) - P_1(x)) \alpha \iota_1(x) + \sum_{x \in \mathcal{X}} (\hat{P}_2(x) - P_2(x)) \iota_2(x)}_{\text{First-Order Term}} \\ 1469 \\ 1470 + \underbrace{O\left(\|\hat{P}_1 - P_1\|^2 + \|\hat{P}_2 - P_2\|^2\right)}_{\text{Remainder Term}} \quad (95)$$

1471 where the remainder term is of the order of the squared Euclidean distance between the points,
1472 $GJS(P_1, P_2, \alpha)$ is the zeroth-order term, the GJS function evaluated at the point of expansion
1473 (P_1, P_2) . The first-order term is a linear function of the differences $(\hat{P}_1 - P_1)$ and $(\hat{P}_2 - P_2)$. The
1474 summation is taken over all symbols x in the alphabet \mathcal{X} . The partial derivatives of the GJS function,
1475 evaluated at (P_1, P_2) , are given by the information densities.

$$1476 \iota_1(x) := \iota_1(x|P_1, P_2, \alpha) = \log \frac{(1 + \alpha)P_1(x)}{\alpha P_1(x) + P_2(x)} \quad (96)$$

$$1477 \iota_2(x) := \iota_2(x|P_1, P_2, \alpha) = \log \frac{(1 + \alpha)P_2(x)}{\alpha P_1(x) + P_2(x)} \quad (97)$$

1478 **Lemma A3.12** (Central Limit Theorem for Additive Functionals, Holzmann (2005)). Let
1479 (X_1, \dots, X_N) be a stationary, ergodic, discrete-time Markov chain with state space \mathcal{S} , transi-
1480 tion operator M , and unique stationary distribution π . Let $f : \mathcal{S} \rightarrow \mathbb{R}$ be a real-valued function
1481 defined on the state space, and assume its expectation with respect to the stationary distribution is
1482 zero, i.e., $\mathbb{E}_\pi[f(x)] = 0$. Consider the additive functional $S_N(f) = \sum_{i=1}^N f(X_i)$. If a martingale
1483 approximation to $S_N(f)$ exists, then the Central Limit Theorem holds, i.e.:

$$1484 \frac{S_N(f)}{\sqrt{N}} \xrightarrow{d} N(0, \sigma^2(f)) \quad (98)$$

1485 The term $\sigma^2(f)$ is the asymptotic variance of the process.

1486 **Lemma A3.13** (Asymptotic Variance for Markov Chains, Holzmann (2005)). Under the same
1487 conditions as Lemma A3.12, the asymptotic variance $\sigma^2(f)$ of the additive functional $S_N(f)$ is given
1488 by:

$$1489 \sigma^2(f) = 2 \lim_{\epsilon \rightarrow 0} \langle g_\epsilon, f \rangle - \|f\|^2 \quad (99)$$

1490 where g_ϵ is the solution to the following equation $((1 + \epsilon)I - M)^{-1}$, which is a function defined on
1491 the state space \mathcal{A} . $\langle g_\epsilon, f \rangle$ is the inner product in the Hilbert space $L_2(\pi)$, calculated as $\langle g_\epsilon, f \rangle =$
1492 $\sum_{x \in \mathcal{A}} \pi(x) g_\epsilon(x) f(x)$. $\|f\|^2$ is the squared norm of the function f in the space $L_2(\pi)$, which is its
1493 variance with respect to the stationary distribution.

1502 A3.3.2 PROOF OF PROPOSITION 4.3
1503

1504 *Proof of Proposition 4.3.* Let \mathcal{F}_k be the family of stationary first-order Markov models on $\mathcal{A} := [k]$.
1505 Consider the following likelihood ratio,

$$1506 \Lambda_{n,N} = \frac{1}{n} \log \frac{\sup_{M, M' \in \mathcal{F}_k} M((a_{1:N}^P, a_{1:n}^T)) M'(a_{1:N}^Q)}{\sup_{M, M' \in \mathcal{F}_k} M(a_{1:N}^P) M'((a_{1:N}^Q, a_{1:n}^T))} \quad (100)$$

$$1507 = \frac{1}{n} \log \frac{\hat{M}_{\alpha 1}((a_{1:N}^P, a_{1:n}^T)) \hat{M}_Q(a_{1:N}^Q)}{\hat{M}_P(a_{1:N}^P) \hat{M}_{\alpha 2}((a_{1:N}^Q, a_{1:n}^T))} \quad (101)$$

1512 where $(a_{1:N}^P, a_{1:n}^T)$ denotes the concatenation of $a_{1:N}^P$ and $a_{1:n}^T$, $\hat{M}_{\alpha 1} = \frac{\alpha \hat{M}_P + \hat{M}_T}{1+\alpha}$, and $\hat{M}_{\alpha 2} = \frac{\alpha \hat{M}_Q + \hat{M}_T}{1+\alpha}$. By Eq. (4)-(6) in Gutman (1989), we have

$$1515 \sup_{M \in \mathcal{F}_k} M((a_{1:N}^P, a_{1:n}^T)) = 2^{-(N+n) H((a_{1:N}^P, a_{1:n}^T))}, \sup_{M' \in \mathcal{F}_k} M'(a_{1:N}^Q) = 2^{-N H(a_{1:N}^Q)}, \quad (102)$$

$$1517 \sup_{M' \in \mathcal{F}_k} M'((a_{1:N}^Q, a_{1:n}^T)) = 2^{-(N+n) H((a_{1:N}^Q, a_{1:n}^T))}, \sup_{M \in \mathcal{F}_k} M(a_{1:N}^P) = 2^{-N H(a_{1:N}^P)}, \quad (103)$$

1519 where $H(\cdot)$ is the empirical conditional entropy per transition in the corresponding sequence. Plugging
1520 into the ratio gives
1521

$$1522 \Lambda_{n,N} = \frac{N+n}{n} H((a_{1:N}^P, a_{1:n}^T)) - \frac{N}{n} H(a_{1:N}^P) - \left[\frac{N+n}{n} H((a_{1:N}^Q, a_{1:n}^T)) - \frac{N}{n} H(a_{1:N}^Q) \right] \quad (104)$$

1526 With weight $\alpha = N/n$,

$$1527 \Delta \text{GJS}_n = \frac{N+n}{n} H((a_{1:N}^P, a_{1:n}^T)) - H(a_{1:n}^T) - \frac{N}{n} H(a_{1:n}^P) \\ 1528 - \left[\frac{N+n}{n} H((a_{1:N}^Q, a_{1:n}^T)) - H(a_{1:n}^T) - \frac{N}{n} H(a_{1:N}^Q) \right] \quad (105)$$

1531 The two terms $\pm H(a_{1:n}^T)$ cancel. Thus we obtain $\Delta \text{GJS}_n = \Lambda_{n,N}$

1532

□

1534 A3.3.3 ASYMPTOTIC NORMALITY OF ΔGJS_n

1536 **Theorem A3.14** (Asymptotic normality of ΔGJS_n). *Assume the setting of Section 4.2 with*
1537 *$\alpha = N/n$ and standard ergodicity, ΔGJS_n is asymptotically normal. Under $H_0 : M_T = M_P$,*
1538 *$\mu_{H_0} = -\text{GJS}(M_Q, M_P, \alpha) < 0$, and $\sigma_{H_0}^2 = \frac{\alpha^2}{N^2} \sigma_{1,0}^2 + \frac{1}{n^2} \sigma_{2,0}^2$, where $\sigma_{1,0}^2$ is the*
1539 *long-run variance of the P -reference-side information-density sum and $\sigma_{2,0}^2$ is the long-run vari-
1540 $\sigma_{1,0}^2$ is the long-run variance of the test-side information-density sum (details in Appendix D). Under $H_1 : M_T = M_Q$,*
1541 *$\mu_{H_1} = +\text{GJS}(M_P, M_Q, \alpha) > 0$, and $\sigma_{H_1}^2 = \frac{\alpha^2}{N^2} \sigma_{1,1}^2 + \frac{1}{n^2} \sigma_{2,1}^2$, where $\sigma_{1,1}^2$ is the Q -reference-
1542 $\sigma_{2,1}^2$ is the test-side long-run variance under H_1 .*

1543 In both cases,

$$1545 \frac{\sqrt{n}(\Delta \text{GJS}_n - \mu_{H_\bullet})}{\sqrt{\sigma_{H_\bullet}^2}} \xrightarrow{d} \mathcal{N}(0, 1),$$

1548 where the bullet $\bullet \in \{0, 1\}$ denotes the active hypothesis.

1549 *Proof of Theorem A3.14.* We need to establish asymptotic normality of the test statistic ΔGJS_n
1550 by performing a second-order Taylor Expansion of it and determining the asymptotic mean and
1551 asymptotic variance.

1552 Since Lemma A3.11, adapted from Zhou et al. (2018), is a purely mathematical statement about the
1553 local properties of the GJS function itself, irrespective of how its input variables are generated, this
1554 lemma is equally applicable to Markov sources.

1556 Thus, we can obtain Taylor Expansion of Generalized Jensen Shannon Divergence when it is applied
1557 to Markov source. Consider two distinct transition matrices of two Markov sources M_1, M_2 . Let \hat{M}_1
1558 and \hat{M}_2 be two other empirical transition matrices in a neighborhood of (M_1, M_2) . Let α be a fixed
1559 positive constant. The GJS divergence has the following second-order Taylor approximation around
1560 the point (M_1, M_2) .

$$1561 \text{GJS}(\hat{M}_1, \hat{M}_2, \alpha) = \text{GJS}(M_1, M_2, \alpha) \\ 1562 + \sum_{s \in \mathcal{A}} \pi_1(s) \sum_{a \in \mathcal{A}} (\hat{M}_1(a|s) - M_1(a|s)) \alpha \iota_1(a|s) + \sum_{s \in \mathcal{A}} \pi_2(s) \sum_{a \in \mathcal{A}} (\hat{M}_2(a|s) - M_2(a|s)) \iota_2(a|s) \\ 1564 + O\left(\|\hat{M}_1 - M_1\|^2 + \|\hat{M}_2 - M_2\|^2\right) \quad (106)$$

1566 where π_1 and π_2 denote the stationary distributions of M_1 and M_2 , respectively. And $\iota_1(a|s)$ and
 1567 $\iota_2(a|s)$ are information densities:
 1568

$$1569 \quad \iota_1(a|s) := \iota_1((a|s) | M_1, M_2, \alpha) = \log \frac{(1+\alpha)M_1(a|s)}{\alpha M_1(a|s) + M_2(a|s)} \quad (107)$$

$$1570 \quad \iota_2(a|s) := \iota_2((a|s) | M_1, M_2, \alpha) = \log \frac{(1+\alpha)M_2(a|s)}{\alpha M_1(a|s) + M_2(a|s)} \quad (108)$$

1571 Furthermore, because $\Delta\text{GJS}_n = \text{GJS}(\hat{M}_P, \hat{M}_t, \alpha) - \text{GJS}(\hat{M}_Q, \hat{M}_t, \alpha)$ is constructed as the
 1572 difference of two GJS functions, we can directly apply the Lemma A3.11 to derive the Taylor
 1573 expansion ΔGJS_n itself.

1574 First, we define the following typical set, given any $M \in \mathcal{F}_k$,

$$1575 \quad \mathcal{C}_n(M) := \left\{ a_{1:n} \in \mathcal{A}^n : \max_{s \in \mathcal{A}, a \in \mathcal{A}} |\hat{M}_{a_{1:n}}(a|s) - M(a|s)| \leq \sqrt{\frac{\log n}{n}} \right\} \quad (109)$$

1576 This is a direct generalization of the IID case discussed in Zhou et al. (2018), and can be justified in
 1577 Lemma 3.1 of Wolfer (2023), which provides a precise asymptotic analysis of the confidence interval
 1578 width for estimating the transition matrix. Next we establish an upper bound on the probability of
 1579 atypical sequences. We need a two-step approach: first, ensure the number of visits N_s in sequence
 1580 $a_{1:n}$ to each state is sufficient, and then apply a concentration inequality under that condition.

$$1581 \quad \mathbb{P}\{a_{1:n} \notin \mathcal{C}_n(M)\} = \mathbb{P}\left\{ \max_{s \in \mathcal{A}, a \in \mathcal{A}} |\hat{M}_{a_{1:n}}(a|s) - M(a|s)| > \sqrt{\frac{\log n}{n}} \right\} \quad (110)$$

$$1582 \quad \leq \sum_{s \in \mathcal{A}} \mathbb{P}\left\{ \max_{a \in \mathcal{A}} |\hat{M}_{a_{1:n}}(a|s) - M(a|s)| > \sqrt{\frac{\log n}{n}} \right\} \quad (111)$$

$$1583 \quad \leq \sum_{s \in \mathcal{A}} \left[\mathbb{P}\left\{ N_s < \frac{n\pi(s)}{2} \right\} + \mathbb{P}\left\{ \max_{a \in \mathcal{A}} |\hat{M}_{a_{1:n}}(a|s) - M(a|s)| > \sqrt{\frac{\log n}{n}} \middle| N_s \geq \frac{n\pi(s)}{2} \right\} \right] \quad (112)$$

$$1584 \quad \leq \sum_{s \in \mathcal{A}} \left[c_1 \exp(-c_2 n\pi(s)) + 2k \exp(-2 \frac{n\pi(s)}{2} \cdot \frac{\log n}{n}) \right] \quad (113)$$

$$1585 \quad = \sum_{s \in \mathcal{A}} \left[c_1 \exp(-c_2 n\pi(s)) + 2k \cdot n^{-\pi(s)} \right] \quad (114)$$

$$1586 \quad \leq k \left[c_1 \exp(-c_2 n\pi(s)) + 2k \cdot n^{-\pi(s)} \right] \quad (115)$$

$$1587 \quad := \tau(n, M) \quad (116)$$

1588 where $\pi(s)$ denotes the stationary probability of state s , the first term of Eq. 113 follows Chernoff-
 1589 Hoeffding inequality for Markov Chains (Corollary 8.1 of Wolfer (2023)), and the second term of
 1590 Eq. 113 follows McDiarmid's inequality, as its conditions of independence of variables and the
 1591 bounded differences property are met. This is because the analysis is performed on the sub-problem
 1592 of transitions from state s , conditional on the number of visits $N_s = k$ (where $k \geq \frac{n\pi(s)}{2}$), which
 1593 ensures the subsequent k transitions can be treated as IID samples. A similar application of this
 1594 technique is detailed in Wolfer (2023). Moreover, the constant c_1 depends on the initial state of the
 1595 chain, measuring its deviation from the steady state, while c_2 depends on the mixing speed of the
 1596 chain, measuring how quickly it converges to its steady state. Thus,

$$1597 \quad \mathbb{P}\{a_{1:N}^P \notin \mathcal{C}_N(M_P) \text{ or } a_{1:n}^T \notin \mathcal{C}_n(M_P) \text{ or } a_{1:N}^Q \notin \mathcal{C}_N(M_Q)\} \quad (117)$$

$$1598 \quad \leq \mathbb{P}\{a_{1:N}^P \notin \mathcal{C}_N(M_P)\} + \mathbb{P}\{a_{1:n}^T \notin \mathcal{C}_n(M_P)\} + \mathbb{P}\{a_{1:N}^Q \notin \mathcal{C}_N(M_Q)\} \quad (118)$$

$$1599 \quad = \tau(\alpha n, M_P) + \tau(n, M_P) + \tau(\alpha n, M_Q) \quad (119)$$

1620 This means as long as the observed Markov chain sequences are sufficiently long, the probability of
 1621 sequences being atypical can be made arbitrarily small.
 1622

1623 Then, under H_0 , we derive the Taylor expansion of $\Delta\text{GJS}_n = \text{GJS}(\hat{M}_P, \hat{M}_T, \alpha) -$
 1624 $\text{GJS}(\hat{M}_Q, \hat{M}_T, \alpha)$ around the true transition matrices (M_P, M_Q) . The first term is expanded
 1625 as
 1626
$$\text{GJS}(\hat{M}_P, \hat{M}_T, \alpha) = \text{GJS}(M_P, M_P, \alpha) + \sum_{s \in \mathcal{A}} \pi_P(s) \sum_{a \in \mathcal{A}} (\hat{M}_P(a|s) - M_P(a|s)) \iota_1(a|s) + \sum_{s \in \mathcal{A}} \pi_P(s) \sum_{a \in \mathcal{A}} (\hat{M}_T(a|s) - M_P(a|s)) \iota_2(a|s) + O\left(\|\hat{M}_P - M_P\|^2 + \|\hat{M}_T - M_P\|^2\right) \quad (120)$$

1632 where $\text{GJS}(M_P, M_P, \alpha) = 0$, and for a given symbol a and state s ,

$$\iota_1(a|s) := \iota_1((a|s) | M_P, M_P, \alpha) = \log \frac{(1 + \alpha) M_P(a|s)}{\alpha M_P(a|s) + M_P(a|s)} = 0 \quad (121)$$

$$\iota_2(a|s) := \iota_2((a|s) | M_P, M_P, \alpha) = \log \frac{(1 + \alpha) M_P(a|s)}{\alpha M_P(a|s) + M_P(a|s)} = 0 \quad (122)$$

1640 Thus $\text{GJS}(\hat{M}_P, \hat{M}_T, \alpha) = O\left(\|\hat{M}_P - M_P\|^2 + \|\hat{M}_T - M_P\|^2\right)$. Then, the second term of
 1641 ΔGJS_n is expanded as
 1642

1643
$$\text{GJS}(\hat{M}_Q, \hat{M}_T, \alpha) = \text{GJS}(M_Q, M_P, \alpha) + \sum_{s \in \mathcal{A}} \pi_Q(s) \sum_{a \in \mathcal{A}} (\hat{M}_Q(a|s) - M_Q(a|s)) \alpha \iota_1(a|s) + \sum_{s \in \mathcal{A}} \pi_P(s) \sum_{a \in \mathcal{A}} (\hat{M}_T(a|s) - M_P(a|s)) \iota_2(a|s) + O\left(\|\hat{M}_Q - M_Q\|^2 + \|\hat{M}_T - M_P\|^2\right) \quad (123)$$

1648 where

$$\iota_1(a|s) := \iota_1((a|s) | M_Q, M_P, \alpha) = \log \frac{(1 + \alpha) M_Q(a|s)}{\alpha M_Q(a|s) + M_P(a|s)} \quad (124)$$

$$\iota_2(a|s) := \iota_2((a|s) | M_Q, M_P, \alpha) = \log \frac{(1 + \alpha) M_P(a|s)}{\alpha M_Q(a|s) + M_P(a|s)} \quad (125)$$

1654 Therefore, we obtain the expansion for ΔGJS_n and

$$\begin{aligned} \Delta\text{GJS}_n &= -\text{GJS}(M_Q, M_P, \alpha) \\ &\quad - \sum_{s \in \mathcal{A}} \pi_Q(s) \sum_{a \in \mathcal{A}} (\hat{M}_Q(a|s) - M_Q(a|s)) \alpha \iota_1(a|s) - \sum_{s \in \mathcal{A}} \pi_P(s) \sum_{a \in \mathcal{A}} (\hat{M}_T(a|s) - M_P(a|s)) \iota_2(a|s) \\ &\quad + O\left(\frac{\log n}{n}\right) \end{aligned} \quad (126)$$

1662 Here we connect GJS to information densities,

$$\text{GJS}(M_Q, M_P, \alpha) = \alpha D_{KL}(M_Q, \frac{\alpha M_Q + M_P}{1 + \alpha}) + D_{KL}(M_P, \frac{\alpha M_Q + M_P}{1 + \alpha}) \quad (127)$$

$$\begin{aligned} &= \alpha \sum_{s \in \mathcal{S}} \pi_Q(s) \sum_{a \in \mathcal{A}} M_Q(a|s) \log \frac{M_Q(a|s)}{\frac{\alpha M_Q(a|s) + M_P(a|s)}{1 + \alpha}} + \sum_{s \in \mathcal{S}} \pi_P(s) \sum_{a \in \mathcal{A}} M_P(a|s) \log \frac{M_Q(a|s)}{\frac{\alpha M_Q(a|s) + M_P(a|s)}{1 + \alpha}} \end{aligned} \quad (128)$$

$$\begin{aligned} &= \alpha \sum_{s \in \mathcal{S}} \pi_Q(s) \sum_{a \in \mathcal{A}} M_Q(a|s) \log \frac{(1 + \alpha) M_Q(a|s)}{\alpha M_Q(a|s) + M_P(a|s)} + \sum_{s \in \mathcal{S}} \pi_P(s) \sum_{a \in \mathcal{A}} M_P(a|s) \log \frac{(1 + \alpha) M_Q(a|s)}{\alpha M_Q(a|s) + M_P(a|s)} \end{aligned} \quad (129)$$

$$\begin{aligned} &= \alpha \sum_{s \in \mathcal{S}} \pi_Q(s) \sum_{a \in \mathcal{A}} M_Q(a|s) \iota_1(a|s) + \sum_{s \in \mathcal{S}} \pi_P(s) \sum_{a \in \mathcal{A}} M_P(a|s) \iota_2(a|s) \end{aligned} \quad (130)$$

1674 where $\iota_1(a|s)$ and $\iota_2(a|s)$ are defined in Eq. 124 and Eq. 125. We substitute Eq. 130 into Eq. 126
 1675 and obtain
 1676

$$1678 \Delta \text{GJS}_n = -\alpha \sum_{s \in \mathcal{A}} \pi_Q(s) \sum_{a \in \mathcal{A}} \hat{M}_Q(a|s) \iota_1(a|s) - \sum_{s \in \mathcal{A}} \pi_P(s) \sum_{a \in \mathcal{A}} \hat{M}_T(a|s) \iota_2(a|s) + O\left(\frac{\log n}{n}\right) \quad (131)$$

1682 Recall that $\hat{M}_Q(a|s) = \frac{N_Q(s,a)}{N_Q(s)}$, where $N_Q(s)$ is the number of occurrences of state s in $a_{1:N}^Q$, and
 1683 $N_Q(s,a)$ the number of times s is followed by a in $a_{1:N}^Q$. According to Ergodic Theorem (Strong
 1684 Law of Large Numbers, e.g. Levin & Peres (2017), Theorem C.1), we consider a long Markov chain
 1685 to be time-homogeneous, that is for a state s , we have $N_Q(s) \approx N \cdot \pi_Q(s)$. Based on this, we
 1686 simplify the first term of Eq.131.
 1687

$$1688 \sum_{s \in \mathcal{A}} \pi_Q(s) \alpha \sum_{a \in \mathcal{A}} \hat{M}_Q(a|s) \iota_1(a|s) = \alpha \sum_{s \in \mathcal{A}} \pi_Q(s) \sum_{a \in \mathcal{A}} \frac{N_Q(s,a)}{N_Q(s)} \iota_1(a|s) \quad (132)$$

$$1691 = \frac{\alpha}{N} \sum_{s \in \mathcal{A}} \sum_{a \in \mathcal{A}} N_Q(s,a) \iota_1(a|s) \quad (133)$$

$$1693 = \frac{\alpha}{N} \sum_{i=2}^N \iota_1(a_i^Q | a_{i-1}^Q) \quad (134)$$

1696 Similarly, the second term of Eq.131 is simplified as:
 1697

$$1698 \sum_{s \in \mathcal{A}} \pi_P(s) \sum_{a \in \mathcal{A}} \hat{M}_T(a|s) \iota_2(a|s) = \frac{1}{n} \sum_{i=2}^n \iota_2(a_i^T | a_{i-1}^T) \quad (135)$$

1701 Combining Eq.134 and Eq.135, we get

$$1703 \Delta \text{GJS}_n = -\frac{\alpha}{N} \sum_{i=2}^N \iota_1(a_i^Q | a_{i-1}^Q) - \frac{1}{n} \sum_{i=2}^n \iota_2(a_i^T | a_{i-1}^T) + O\left(\frac{\log n}{n}\right) \quad (136)$$

1705 Then we compute the asymptotic mean and asymptotic variance of Eq. 136. By comparing Eq. 130
 1706 and Eq. 131, we obtain the asymptotic mean.
 1707

$$1708 \mathbb{E}[\Delta \text{GJS}_n] = -\text{GJS}(M_Q, M_P, \alpha) \quad (137)$$

1710 Eq. 136 shows that the random behavior of ΔGJS_n is primarily determined by two additive functionals
 1711 on Markov chains. Since the two reference sequences, $a_{1:N}^Q$ and $a_{1:n}^T$ are mutually independent, the
 1712 total variance is the sum of their individual variances.

$$1714 \text{Var}(\Delta \text{GJS}_n) = \text{Var}\left(-\frac{\alpha}{N} \sum_{i=2}^N \iota_1(a_i^Q | a_{i-1}^Q)\right) + \text{Var}\left(-\frac{1}{n} \sum_{i=2}^n \iota_2(a_i^T | a_{i-1}^T)\right) \quad (138)$$

$$1717 = \frac{\alpha^2}{N^2} \text{Var}\left(\sum_{i=2}^N \iota_1(a_i^Q | a_{i-1}^Q)\right) + \frac{1}{n^2} \text{Var}\left(\sum_{i=2}^n \iota_2(a_i^T | a_{i-1}^T)\right) \quad (139)$$

1720 Here we use Lemma A3.12 and A3.13 to compute the asymptotic variance for ΔGJS_n . We begin
 1721 by defining a new Markov chain whose state at time i is given by $b_i := (a_{i-1}^Q, a_i^Q)$. Then we can
 1722 define a function f_1 that acts on the state b_i , $f_1(b_i) := \iota_1(a_i^Q | a_{i-1}^Q)$. With these definitions, we
 1723 have successfully converted the original sum over transitions into a sum over the states of the new
 1724 chain, which perfectly fits the framework of Lemma A3.12 and A3.13.
 1725

$$1726 \sum_{i=2}^N \iota_1(a_i^Q | a_{i-1}^Q) \Leftrightarrow \sum_{i=2}^N f_1(b_i) \quad (140)$$

According to Lemma A3.13, the asymptotic variance σ_1^2 of the additive functional $\sum_{i=2}^N f_1(b_i)$ is given by

$$\sigma_{1,0}^2 = 2 \lim_{\epsilon \rightarrow 0} \langle g_{1,\epsilon}, f_1 \rangle - \|f_1\|^2 \quad (141)$$

Now we need to calculate the two main components of this formula. The stationary distribution π' of the new chain is determined by $\pi' = \pi_Q(s) \cdot M_Q(a|s)$. By Eq. 130, we get

$$\mu_1 = \mathbb{E}_{\pi'}[f_1(b)] = \sum_{(s,a) \in \mathcal{A} \times \mathcal{A}} \pi'(s,a) f_1(s,a) \quad (142)$$

$$= \sum_{s \in \mathcal{A}} \pi_Q(s) \sum_{a \in \mathcal{A}} M_Q(a|s) \iota_1(a|s) \quad (143)$$

$$= D_{KL}(M_Q, \frac{\alpha M_Q + M_P}{1 + \alpha}) \quad (144)$$

We obtain the centered function

$$\tilde{f}_1(s,a) = f_1(s,a) - \mu_1 = \iota_1(a|s) - \mu_1 \quad (145)$$

Then according to Lemma A3.13, we calculate the squared norm $\|\tilde{f}_1\|^2$, which is the variance of \tilde{f}_1 under the stationary distribution π' .

$$\|\tilde{f}_1\|^2 = \text{Var}_{\pi'}(f_1) = \mathbb{E}_{\pi'}[(\tilde{f}_1(b))^2] = \sum_{(s,a) \in \mathcal{A} \times \mathcal{A}} \pi'(s,a) (\iota_1(a|s) - \mu_1)^2 \quad (146)$$

Calculating the inner product $\langle g_{1,\epsilon}, \tilde{f}_1 \rangle$ requires first finding $g_{1,\epsilon}$ by solving the resolvent equation:

$$g_{1,\epsilon} = ((1 + \epsilon)I - M_b)^{-1} \tilde{f}_1 \quad (147)$$

where M_b is the transition operator of the new chain and can be constructed from M_Q . Each element of the M_b matrix, $M_b((s,a), (s',a'))$, represents the probability of the new chain transitioning from state (s,a) to state (s',a') .

$$M_b((s,a), (s',a')) = \begin{cases} M_Q(a'|s') & \text{If } s' = \text{shift}(s,a) \\ 0 & \text{otherwise} \end{cases} \quad (148)$$

where $\text{shift}(s,a)$ denotes an operation that removes the first element of the sequences s and appends a to the end. After solving $g_{1,\epsilon}$, we compute the inner product:

$$\langle g_{1,\epsilon}, f_1 \rangle = \sum_{(s,a) \in \mathcal{A} \times \mathcal{A}} \pi'(s,a) g_{1,\epsilon}(s,a) \tilde{f}_1(s,a) \quad (149)$$

We take the limit $\lim_{\epsilon \rightarrow 0} \langle g_{1,\epsilon}, f_1 \rangle$, then substitute the limit and the value of Eq. 146 into Eq. 141 get the final asymptotic variance $\sigma_{1,0}^2$. Similarly, we use the same method to calculate the asymptotic variance $\sigma_{2,0}^2 = \text{Var}(\sum_{i=2}^n \iota_2(a_i^T | a_{i-1}^T))$. While the asymptotic variance does not generally admit a closed-form expression, Lemma A3.12 and A3.13 provide us with constructive representations. They can be used to compute or approximate the asymptotic variance in practice.

Now we have proved that under H_0 , the asymptotic normality of ΔGJS_n , that is

$$\frac{\sqrt{n}(\Delta\text{GJS}_n - \mu)}{\sigma_{H_0}} \xrightarrow{d} \mathcal{N}(0, 1) \quad (150)$$

where $\mu_{H_0} = \mathbb{E}[\Delta\text{GJS}_n] = -\text{GJS}(M_Q, M_P, \alpha)$ and variance $\sigma_{H_0}^2 = \frac{\alpha^2}{N^2} \sigma_{1,0}^2 + \frac{1}{n^2} \sigma_{2,0}^2$.

Analogously, under H_1 , we can prove the asymptotic normality of ΔGJS_n with $\mu_{H_1} = \text{GJS}(M_P, M_Q, \alpha)$ and variance $\sigma_{H_1}^2 = \frac{\alpha^2}{N^2} \sigma_{1,1}^2 + \frac{1}{n^2} \sigma_{2,1}^2$, where $\sigma_{1,1}^2 = \text{Var}(\sum_{i=2}^N \iota_1(a_i^P | a_{i-1}^P))$ and $\sigma_{2,1}^2 = \text{Var}(\sum_{i=2}^n \iota_2(a_i^T | a_{i-1}^T))$. As discussed in the variance framework above, they can be represented by the resolvent formulation as in Eq. 141 and Eq. 147.

□

1782 **A4 EXPERIMENTS: CONFIGURATIONS AND MORE RESULTS**
17831784 **A4.1 IMPLEMENTATION AND CONFIGURATIONS**
1785

1786 Our implementation is adapted from MAUVE ((Pillutla et al., 2023)) and Lastde ((Xu et al., 2025)).
 1787 All detection experiments were conducted on one RTX 4090, while data generation ran on an A40
 1788 GPU. We use 9 open-source models and 3 closed-source models for generating text. Open-source
 1789 models include GPT-XL (Radford et al., 2019), GPT-J-6B (Wang & Komatsuzaki, 2021), GPT-
 1790 Neo-2.7B (EleutherAI, 2021), GPT-NeoX-20B (Black et al., 2022), OPT-2.7B (Zhang et al., 2022),
 1791 Llama-2-13B (Touvron et al., 2023), Llama-3-8B (Llama Team, 2024), Llama-3.2-3B (Meta AI,
 1792 2024), and Gemma-7B (Gemma Team, Google DeepMind, 2024). Closed-source models include
 1793 Gemini-1.5-Flash (Gemini Team, Google, 2024), GPT-4.1-mini (OpenAI, 2025a), and GPT-5-Chat
 1794 (OpenAI, 2025b).

1795 **Generation Pipeline** In our generation pipeline, for each dataset, we filtered out samples with text
 1796 length less than 150 words and always condition only on the first 30 tokens of the human text. Each
 1797 machine passage is generated between 100 and 200 tokens. After generation, we pair each human
 1798 passage with its corresponding machine passage and truncate both to the shorter side (measured
 1799 in words). Thus every human-machine pair used for detection has the same length and there is no
 1800 systematic length advantage for either class.

1801 **Default Decoding Strategy** In our experiments, unless otherwise specified, for each model family
 1802 we use a fixed default decoding configuration. Concretely, for open-source models on HuggingFace
 1803 we use the standard decoding configuration temperature = 1.0, top-p = 1.0, top-k = 50. For GPT-4.1-
 1804 mini and GPT-5-chat (OpenAI API), we follow the default settings temperature = 1.0, top-p = 1.0
 1805 (no top-k parameter). For Gemini, we use the default settings of the Gemini API, temperature = 1.0,
 1806 top-p = 0.95, top-k = 64.

1807 **A4.2 MORE RESULTS**
18081809 **A4.2.1 EXPANSION OF TABLE 1 AND TABLE 2**
1810

1811 Table 9,10,11, 12,13, and 14 show the detection results on XSum, WritingPrompts, and SQuAD
 1812 datasets. The performance is the average over three detections, where each detection is conducted on
 1813 a randomly sampled test set.

	Gemini-1.5-Flash	GPT-4.1-mini	GPT-5-Chat	Avg
Likelihood	53.2 \pm 1.31	55.54 \pm 1.09	43.03 \pm 2.69	50.59
LogRank	52.01 \pm 2.53	57.96 \pm 2.81	45.86 \pm 3.88	51.94
Entropy	63.19 \pm 1.78	51.7 \pm 1.02	56.8 \pm 2.02	57.23
DetectLRR	49.85 \pm 2.54	62.26 \pm 0.91	54.14 \pm 3.6	55.42
Lastde	59.26 \pm 3.39	55.97 \pm 2.18	45.3 \pm 1.34	53.51
Lastde++	76.9 \pm 1.62	69.29 \pm 2.00	48.14 \pm 3.28	64.78
DNA-GPT	60.85 \pm 1.41	55.7 \pm 0.46	45.4 \pm 0.77	53.98
Fast-DetectGPT	75.52 \pm 1.58	66.7 \pm 1.45	48.51 \pm 2.01	63.58
DetectGPT	62.58 \pm 1.31	61.25 \pm 3.08	50.17 \pm 0.29	58
DetectNPR	58.77 \pm 2.47	62.17 \pm 1.50	53.32 \pm 0.97	58.09
R-Detect	63.68 \pm 0.77	63.43 \pm 2.31	58.74 \pm 1.62	61.95
Binoculars	74.84 \pm 2.12	61.12 \pm 1.47	45.94 \pm 0.67	60.63
FourierGPT	52.06 \pm 0.39	55.53 \pm 2.31	61.1 \pm 1.1	56.23
SurpMark _{k=6}	70.24 \pm 0.77	84.07 \pm 2.21	84.16 \pm 1.01	79.49
SurpMark _{k=7}	71.22 \pm 0.32	82.52 \pm 1.11	87.02 \pm 1.4	80.25
SurpMark _{k=8}	69.03 \pm 1.74	85.78 \pm 0.76	86.38 \pm 0.94	80.40

1828 Table 9: Detection results on XSum for text generated by 3 closed-source models under the black-box
 1829 setting.
1830

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

	Gemini-1.5-Flash	GPT-4.1-mini	GPT-5-Chat	Avg
Likelihood	80.53 \pm 1.29	82.95 \pm 1.23	62.00 \pm 2.95	75.16
LogRank	74.73 \pm 2.64	80.66 \pm 2.81	58.01 \pm 4.04	71.13
Entropy	46.34 \pm 3.11	19.00 \pm 6.43	25.23 \pm 4.08	30.19
DetectLRR	48.22 \pm 2.7	68.50 \pm 1.06	43.92 \pm 2.48	53.55
Lastde	41.09 \pm 2.88	55.72 \pm 2.62	30.64 \pm 1.59	42.48
Lastde++	76.90 \pm 1.05	68.49 \pm 2	30.64 \pm 3.23	58.68
DNA-GPT	78.19 \pm 0.87	63.70 \pm 1.73	45.60 \pm 3.2	62.50
Fast-DetectGPT	91.96 \pm 0.31	70.23 \pm 1.91	30.01 \pm 4.07	64.07
DetectGPT	87.12 \pm 0.49	78.04 \pm 0.9	58.72 \pm 2.01	74.63
DetectNPR	80.47 \pm 1.23	75.80 \pm 0.97	55.97 \pm 2.31	70.75
R-Detect	83.31 \pm 0.89	78.79 \pm 1.92	77.06 \pm 0.48	79.72
Binoculars	95.35 \pm 0.1	80.55 \pm 0.34	42.26 \pm 0.67	72.72
FourierGPT	77.8 \pm 0.36	77.96 \pm 1.05	74.45 \pm 1.72	76.74
SurpMark _{k=6}	86.64 \pm 2.33	85.80 \pm 0.57	82.25 \pm 1.03	84.90
SurpMark _{k=7}	86.68 \pm 1.4	83.64 \pm 0.33	83.73 \pm 0.52	84.68
SurpMark _{k=8}	89.43 \pm 0.35	87.27 \pm 0.14	83.56 \pm 0.67	86.75

Table 10: Detection results on WritingPrompts for text generated by 3 closed-source models under the black-box setting.

	Gemini-1.5-Flash	GPT-4.1-mini	GPT-5-Chat	Avg
Likelihood	35.74 \pm 3.46	61.82 \pm 3.21	43.83 \pm 2.01	47.13
LogRank	34.86 \pm 2.61	61.78 \pm 3.52	45.62 \pm 3.66	47.42
Entropy	65.55 \pm 1.08	45.46 \pm 1.43	58.94 \pm 0.65	56.65
DetectLRR	35.46 \pm 1.84	59.10 \pm 2.11	51.42 \pm 2.50	48.66
Lastde	44.03 \pm 1.55	60.15 \pm 2.92	49.95 \pm 3.65	51.38
Lastde++	52.47 \pm 1.86	66.90 \pm 2.18	51.76 \pm 3.02	57.04
DNA-GPT	47.15 \pm 0.93	50.74 \pm 2.88	58.45 \pm 1.18	52.11
Fast-DetectGPT	49.98 \pm 1.33	68.04 \pm 1.19	51.64 \pm 1.98	56.55
DetectGPT	57.87 \pm 2.65	70.95 \pm 0.82	54.90 \pm 0.83	61.24
DetectNPR	55.63 \pm 2.91	74.53 \pm 1.29	55.67 \pm 2.13	61.94
R-Detect	60.86 \pm 1.33	72.69 \pm 1.41	67.45 \pm 2.37	67
Binoculars	53.34 \pm 2.53	73.69 \pm 0.55	60.76 \pm 0.67	62.6
FourierGPT	53.89 \pm 2.57	55.66 \pm 2.25	58.92 \pm 2.24	56.16
SurpMark _{k=6}	66.84 \pm 1.11	70.87 \pm 0.86	68.57 \pm 1.48	68.76
SurpMark _{k=7}	67.51 \pm 1.3	69.27 \pm 1.83	73.23 \pm 0.87	70.00
SurpMark _{k=8}	59.53 \pm 1.49	72.27 \pm 1.32	74.81 \pm 1.02	68.87

Table 11: Detection results on SQuAD for text generated by 3 closed-source models under the black-box setting.

	GPT2-XL	GPT-J-6B	GPT-Neo-2.7B	GPT-NeoX-20B	OPT-2.7B	Llama-2-13B	Llama-3-8B	Llama-3-2.3B	Gemma-7B	Avg
Likelihood	76.5 \pm 0.63	62.74 \pm 1.07	58.36 \pm 1.62	60.58 \pm 1.8	68.51 \pm 1.37	92.22 \pm 0.48	93.41 \pm 0.82	51.61 \pm 0.62	55.13 \pm 1.18	68.78
LogRank	80.16 \pm 0.89	67.83 \pm 1.13	64.54 \pm 0.98	63.58 \pm 1.25	72.33 \pm 1.56	94.56 \pm 0.32	95.05 \pm 0.17	59.35 \pm 0.08	59.13 \pm 0.68	76.89
Entropy	59.65 \pm 1.52	56.37 \pm 0.66	63.76 \pm 1.43	55.32 \pm 1.11	52.88 \pm 0.68	42.33 \pm 2.58	29.31 \pm 3.19	55.2 \pm 2.89	53.2 \pm 1.48	50.40
DetectLRR	83.2 \pm 0.83	76.5 \pm 0.88	76.94 \pm 1.09	68.4 \pm 1.35	77.49 \pm 0.54	95.74 \pm 0.23	94.85 \pm 0.08	75.05 \pm 0.31	66.42 \pm 1.42	81.42
Lastde	91.97 \pm 0.44	77.99 \pm 0.89	82.49 \pm 0.85	72.12 \pm 1.63	77.85 \pm 0.68	92.01 \pm 0.89	94.29 \pm 0.38	59.52 \pm 0.05	61.09 \pm 1.27	82.57
Lastde++	98.99 \pm 0.21	85.38 \pm 0.63	87.5 \pm 0.11	80.3 \pm 0.92	87.93 \pm 0.54	92.52 \pm 0.43	95.9 \pm 0.14	59.9 \pm 0.08	65.68 \pm 0.97	87.51
DNA-GPT	71.43 \pm 1.33	55.47 \pm 2.85	54.43 \pm 3.2	56.31 \pm 1.86	58.2 \pm 1.72	93.69 \pm 0.36	96.54 \pm 0.12	50.37 \pm 0.07	55.29 \pm 1.04	70.70
Fast-DetectGPT	95.54 \pm 0.34	78.6 \pm 0.56	81.84 \pm 0.88	83.76 \pm 1.28	90.55 \pm 0.77	97.77 \pm 0.05	96.78 \pm 0.21	61.86 \pm 1.42	63.2 \pm 1.18	84.71
DetectGPT	92.88 \pm 1.3	71.86 \pm 1.79	76.67 \pm 2.01	78.06 \pm 0.87	82.86 \pm 1.23	82.79 \pm 0.62	83.61 \pm 1.25	56.06 \pm 2.65	61.6 \pm 2.94	77.18
DetectNPR	91.87 \pm 1.13	72.36 \pm 1.46	78.83 \pm 0.66	76.76 \pm 1.48	84.06 \pm 1.21	94.29 \pm 0.86	92.31 \pm 0.3	59.62 \pm 1.77	60.52 \pm 1.78	80.05
R-Detect	72.87 \pm 1.49	59.86 \pm 1.11	67.59 \pm 0.48	63.45 \pm 2.45	69.75 \pm 0.71	72.11 \pm 0.93	81.06 \pm 0.84	62.43 \pm 0.82	46.75 \pm 0.73	66.21
Binoculars	98.87 \pm 0.13	74.66 \pm 0.48	78.05 \pm 1.27	76.18 \pm 1.22	79.89 \pm 0.79	96.78 \pm 0.21	96.19 \pm 0.16	48.22 \pm 0.71	63.71 \pm 0.72	79.17
FourierGPT	51.8 \pm 1.39	52.52 \pm 2.02	50.44 \pm 2.96	59.17 \pm 0.28	48.16 \pm 3.01	63.38 \pm 2.42	59.74 \pm 3.4	51.98 \pm 1.73	53.62 \pm 0.78	54.53
SurpMark _{k=6}	96.95 \pm 0.43	88.35 \pm 1.02	92.26 \pm 0.65	81.58 \pm 0.72	90.88 \pm 0.1	96.87 \pm 0.26	97.77 \pm 0.35	73.96 \pm 0.86	73.01 \pm 0.98	87.96
SurpMark _{k=7}	97 \pm 0.8	89.26 \pm 0.48	92.92 \pm 0.06	82.45 \pm 1.03	91.16 \pm 1.08	97.09 \pm 0.45	97.48 \pm 0.31	73.07 \pm 0.6	72.97 \pm 0.85	88.16
SurpMark _{k=8}	95.55 \pm 0.21	85.49 \pm 0.63	88.33 \pm 0.83	82.35 \pm 0.49	90.19 \pm 0.41	96.83 \pm 0.16	97.24 \pm 0.08	72.92 \pm 1.02	70.11 \pm 0.98	86.56

Table 12: Detection results on XSum for text generated by 9 open-source models under the black-box setting.

	GPT2-XL	GPT-J-6B	GPT-Neo-2.7B	GPT-NeoX-20B	OPT-2.7B	Llama-2-13B	Llama-3-8B	Llama-3.2-3B	Gemma-7B	Avg
Likelihood	94.55 \pm 0.6	88.73 \pm 1.11	89.67 \pm 0.84	87.12 \pm 1.13	85.15 \pm 2.55	99.48 \pm 0.2	99.61 \pm 0.08	85.95 \pm 0.35	83.16 \pm 1.45	90.38
LogRank	96.04 \pm 0.43	91.78 \pm 1.8	92.20 \pm 1.22	89.68 \pm 0.57	89.96 \pm 0.62	99.59 \pm 0.01	99.81 \pm 0.11	89.09 \pm 1.05	86.00 \pm 0.86	92.68
Entropy	34.72 \pm 2.75	33.64 \pm 2.81	32.82 \pm 2.13	32.63 \pm 1.74	40.88 \pm 2.17	5.83 \pm 3.74	8.42 \pm 4.86	53.00 \pm 2.55	37.16 \pm 2.4	31.01
DetectLRR	96.96 \pm 0.31	95.31 \pm 0.42	94.85 \pm 0.16	92.03 \pm 0.32	95.68 \pm 0.64	98.57 \pm 0.12	99.81 \pm 0.03	92.44 \pm 0.17	89.19 \pm 0.03	94.98
Lastde	98.50 \pm 0.2	93.94 \pm 0.12	95.97 \pm 0.33	90.36 \pm 0.82	96.05 \pm 0.18	97.97 \pm 0.48	98.69 \pm 0.23	92.04 \pm 0.1	84.96 \pm 0.56	94.28
Lastde++	99.68 \pm 0.11	95.96 \pm 0.51	98.86 \pm 0.1	92.68 \pm 0.74	98.39 \pm 0.12	99.14 \pm 0.08	99.56 \pm 0.06	95.04 \pm 0.3	92.59 \pm 0.65	96.88
DNA-GPT	90.53 \pm 1.62	85.34 \pm 1.13	85.72 \pm 0.7	83.01 \pm 1.41	85.05 \pm 1.29	98.88 \pm 0.12	99.65 \pm 0.03	84.47 \pm 0.65	80.60 \pm 0.81	88.14
Fast-DetectGPT	99.67 \pm 0.02	93.80 \pm 0.6	96.62 \pm 0.31	92.22 \pm 0.27	94.99 \pm 0.52	99.56 \pm 0.01	99.84 \pm 0.04	93.55 \pm 0.53	89.36 \pm 1.03	95.51
DetectGPT	95.88 \pm 0.2	85.83 \pm 1.15	91.12 \pm 1.52	85.17 \pm 1.84	90.13 \pm 1.21	92.67 \pm 0.63	93.10 \pm 0.61	80.08 \pm 1.07	83.10 \pm 2.3	88.56
DetectNPR	98.29 \pm 0.2	89.77 \pm 0.33	93.02 \pm 0.92	87.96 \pm 0.55	92.36 \pm 1.43	98.20 \pm 0.51	98.52 \pm 0.18	85.22 \pm 0.5	86.71 \pm 1.03	92.23
R-Detect	86.68 \pm 1.35	75.93 \pm 1.06	75.23 \pm 0.59	73.83 \pm 1.1	51.03 \pm 2.57	79.69 \pm 0.88	82.79 \pm 0.93	71.2 \pm 2.36	72.62 \pm 0.89	74.33
Binoculars	99.6 \pm 0.03	93.7 \pm 0.51	94.96 \pm 0.21	93.22 \pm 0.21	91.33 \pm 0.86	98.9 \pm 0.16	99.06	93.4 \pm 0.27	89.22 \pm 0.82	94.81
FourierGPT	60.23 \pm 4.8	59.81 \pm 1.62	68.08 \pm 1.46	60.6 \pm 0.29	56.95 \pm 3.04	91.4 \pm 0.74	91.61 \pm 1.14	58.68 \pm 1.28	61.52 \pm 0.72	67.65
SurpMark _{k=6}	99.44 \pm 0.06	97.60 \pm 0.22	98.32 \pm 0.57	94.38 \pm 0.16	97.22 \pm 0.16	99.47 \pm 0.07	99.65 \pm 0.1	92.71 \pm 1.45	89.28 \pm 1.69	96.45
SurpMark _{k=7}	99.27 \pm 0.12	97.29 \pm 0.61	97.63 \pm 0.17	94.31 \pm 0.12	96.79 \pm 0.52	99.53 \pm 0.06	99.86 \pm 0.02	93.61 \pm 0.41	89.42 \pm 0.95	96.41
SurpMark _{k=8}	99.9 \pm 0.01	96.85 \pm 1.06	97.61 \pm 0.38	93.93 \pm 0.24	96.48 \pm 0.4	99.59 \pm 0.03	99.87 \pm 0.03	91.65 \pm 0.37	90.37 \pm 1.43	96.25

Table 13: Detection results on WritingPrompts for text generated by 9 open-source models under the black-box setting.

	GPT2-XL	GPT-J-6B	GPT-Neo-2.7B	GPT-NeoX-20B	OPT-2.7B	Llama-2-13B	Llama-3-8B	Llama-3.2-3B	Gemma-7B	Avg
Likelihood	84.00 \pm 2.33	73.00 \pm 3.12	71.93 \pm 2.95	68.40 \pm 1.32	78.01 \pm 1.25	91.47 \pm 1.43	88.77 \pm 1.01	58.11 \pm 1.86	59.10 \pm 1.58	74.75
LogRank	88.39 \pm 2.06	78.14 \pm 0.96	78.13 \pm 2.26	72.85 \pm 1.45	83.68 \pm 1.2	93.55 \pm 0.59	90.48 \pm 1.3	64.69 \pm 0.64	62.41 \pm 1.72	79.15
Entropy	58.93 \pm 3.11	51.43 \pm 2.6	56.24 \pm 2.91	49.86 \pm 1.68	52.88 \pm 3.1	38.92 \pm 2.37	38.72 \pm 2.71	51.00 \pm 2.26	50.18 \pm 1.82	49.80
DetectLRR	93.05 \pm 0.11	85.61 \pm 1.24	89.56 \pm 1.01	80.38 \pm 1.19	92.28 \pm 1.05	94.98 \pm 0.35	91.47 \pm 1.45	77.14 \pm 1.09	70.89 \pm 2.31	86.15
Lastde	97.45 \pm 0.37	85.71 \pm 1.45	88.82 \pm 0.44	78.01 \pm 1.87	92.78 \pm 1.18	89.88 \pm 1.03	90.89 \pm 0.72	67.41 \pm 2.9	62.40 \pm 2.55	83.71
Lastde++	99.72 \pm 0.05	93.27 \pm 0.42	96.51 \pm 0.05	82.42 \pm 0.3	96.13 \pm 0.21	94.85 \pm 0.14	94.72 \pm 0.02	77.47 \pm 0.32	72.43 \pm 0.24	89.72
DNA-GPT	83.97 \pm 2.21	71.23 \pm 2.17	78.21 \pm 1.45	71.93 \pm 1.86	78.33 \pm 1.43	95.15 \pm 0.49	95.00 \pm 0.32	59.52 \pm 1.61	60.06 \pm 1.67	77.04
Fast-DetectGPT	98.60 \pm 0.05	88.09 \pm 1.05	89.00 \pm 1.18	81.79 \pm 1.58	92.89 \pm 0.6	97.32 \pm 0.28	97.32 \pm 0.05	67.56 \pm 2.47	69.29 \pm 0.61	86.87
DetectGPT	94.59 \pm 0.43	80.95 \pm 2.04	86.34 \pm 2.11	69.04 \pm 2.6	80.45 \pm 2.84	84.08 \pm 1.65	82.13 \pm 1.72	56.56 \pm 3.7	62.44 \pm 1.54	77.40
DetectNPR	94.64 \pm 0.26	83.59 \pm 1.24	87.34 \pm 1.29	75.01 \pm 2.13	83.07 \pm 1.78	93.09 \pm 0.69	90.18 \pm 1.05	63.52 \pm 2.43	67.25 \pm 1.7	81.97
R-Detect	63.58 \pm 0.97	55.04 \pm 0.64	60.28 \pm 1.67	52.77 \pm 2.64	51.03 \pm 1.72	88.16 \pm 0.69	81.06 \pm 0.87	53.03 \pm 2.77	47.02 \pm 3.4	61.33
Binoculars	99.09 \pm 0.04	88.91 \pm 1.03	89.49 \pm 0.46	76.66 \pm 1.21	89.49 \pm 0.27	95.1 \pm 0.02	94.04 \pm 0.3	63.46 \pm 0.46	67.77 \pm 2.58	84.89
FourierGPT	52.12 \pm 3.12	50.5 \pm 2.56	56.5 \pm 2.79	49.76 \pm 1.82	52.3 \pm 2.61	62.49 \pm 0.86	64.82 \pm 1.22	53.83 \pm 0.72	52.38 \pm 2.49	54.97
SurpMark _{k=6}	97.88 \pm 0.55	92.93 \pm 0.82	94.99 \pm 0.3	84.39 \pm 0.18	95.37 \pm 0.6	95.89 \pm 0.49	93.76 \pm 0.35	78.54 \pm 1.97	69.92 \pm 0.54	89.30
SurpMark _{k=7}	98.77 \pm 0.72	92.74 \pm 0.45	95.72 \pm 0.38	82.45 \pm 1.03	96.68 \pm 0.65	96.13 \pm 0.3	94.17 \pm 0.57	75.55 \pm 1.21	68.27 \pm 0.95	88.94
SurpMark _{k=8}	98.76 \pm 0.66	90.78 \pm 0.23	94.56 \pm 0.1	79.36 \pm 1.67	97.26 \pm 0.21	94.81 \pm 0.41	93.32 \pm 0.16	76.55 \pm 1.2	67.47 \pm 0.83	88.10

Table 14: Detection results on SQuAD for text generated by 9 open-source models under the black-box setting.

	Number of ref samples	N (approx. total transitions)	Empirical best k	$N^{1/5}$	$\frac{k}{N^{1/5}}$
100		15,000	6	6.84	0.88
300		45,000	7	8.52	0.82
400		60,000	7	9.03	0.78
600		90,000	7	9.80	0.71
900		135,000	9	10.62	0.85

Table 15: Scaling of the empirically optimal number of bins k with the total number of transitions N .

	A4.2.3 EMPIRICAL VALIDATION OF THE ASYMPTOTIC NORMAL APPROXIMATION				
While the asymptotic variance in Theorem 4.4 does not provide a simple closed-form expression, Appendix A3.3.3 along with Lemma A3.13 give an explicit numerical procedure to solve it. To quantitatively compare this theoretical variance with empirical fluctuations, we proceed as follows. We first compute the theoretical variance using the estimated Markov kernels from reference data. Then we estimate the empirical variance of ΔGJS_n in detection procedure. Table 16 reports theoretical variance and empirical variance with test length 250. Overall, the theoretical variance captures the right order of magnitude ΔGJS_n fluctuations, so we interpret it as a conservative asymptotic scale parameter rather than a precise finite-sample variance estimator.					
Finally, to assess the distributional shape, we ran Shapiro-Wilk tests on the obtained ΔGJS_n score, as shown in Table 17, the Shapiro-Wilk statistics are close to 1 and the p-values are not small					

1944	Model	Emp σ^2 (Human)	Emp σ^2 (LM)	Th σ^2 (Human)	Th σ^2 (LM)	Ratio Th/Emp (Human)	Ratio Th/Emp (LM)
1945	Llama3-8B	1.15×10^{-5}	1.06×10^{-5}	2.48×10^{-5}	7.50×10^{-5}	2.16	7.08
1946	Llama3.2-3B	1.12×10^{-5}	9.93×10^{-6}	2.73×10^{-5}	9.11×10^{-5}	2.44	9.17
1947	Gemma-7B	1.50×10^{-6}	5.96×10^{-7}	3.56×10^{-6}	2.43×10^{-6}	2.37	4.08

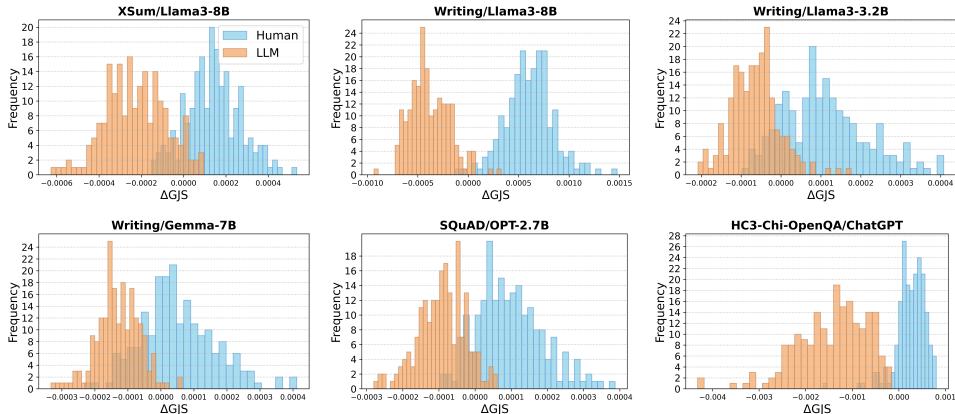
1948
1949 Table 16: Comparison between empirical and theoretical variances of ΔGJS under human and LM
1950 text.

1951	Setting	SQuAD@GPT-5-chat	WritingPrompts@Llama3-8B	XSum@Qwen3-8B
1953	H_1 (LM text) stat	0.9952	0.9856	0.9974
1954	H_1 (LM text) p-value	0.9078	0.1203	0.9969
1955	H_0 (human text) stat	0.9876	0.9854	0.9929
1956	H_0 (human text) p-value	0.2032	0.1143	0.6632

1957 Table 17: Shapiro-Wilk test statistics and p-values for ΔGJS_n under LM-generated (H_1) and human
1958 (H_0) text.

1960
1961 (larger than 0.05). This indicates no evidence against normality and empirically supports the central-
1962 limit-theorem-based approximation in Theorem A3.3.3, consistent with the variance comparison
1963 above.

1964 A4.2.4 SCORE DISTRIBUTION



1981 Figure 7: SurpMark’s score distribution.
1982
1983
1984
1985
1986
1987
1988
1989

A4.2.5 EFFECT OF TEST LENGTH

A4.2.6 TPR

In Table 18, we include TPR@FPR=1% and 5% for SurpMark and two strong baselines (Lastde++ and Fast-DetectGPT) across evaluation settings. Overall, these results indicate that SurpMark is particularly effective in the low-false-positive regime.

A4.2.7 CROSS-DOMAIN GENERALIZATION

A4.2.8 DECODING STRATEGIES

In Table 20, to evaluate the effect of decoding strategy, we use standard decoding strategies as described in Appendix A4.1, varying one hyperparameter at a time while keeping the others at their default values. For open-source models on HuggingFace and Gemini, we (i) set top-p = 0.96, (ii) set top-k = 40, (iii) set temperature = 0.7. For GPT-5-chat, we vary one parameter at a time: top-p = 0.96 or temperature = 0.7 (no top-k parameter is exposed). Across all three models and decoding strategies,

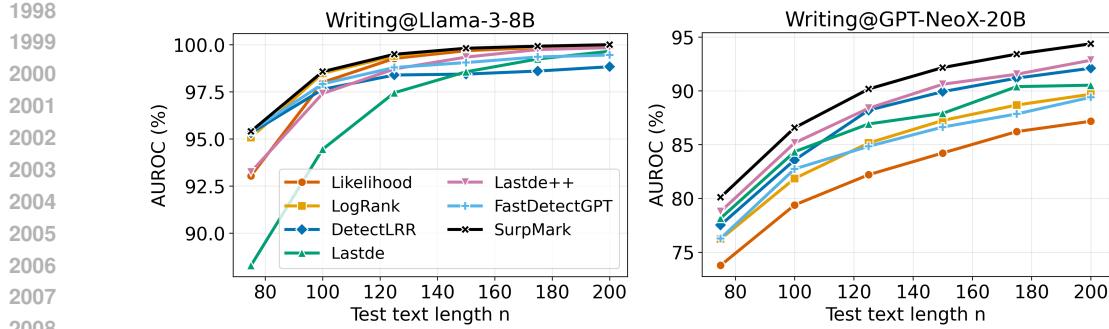


Figure 8: AUROC vs test length.

Method	XSum@ GPT-5-Chat	WritingPrompts@ GPT-4.1-mini	XSum@ Llama2-13B	SQuAD@ GPT-Neo-2.7B	WritingPrompts@ Llama3-8B	HC3-Chi-Psy
Lastde++	TPR@FPR=1% TPR@FPR=5%	4.00 12.67	6.00 18.67	76.67 82.67	53.33 81.33	97.33 99.33
	TPR@FPR=1% TPR@FPR=5%	2.00 4.00	3.30 22.00	80.67 86.67	47.33 77.33	31.33 40.00
Fast-DetectGPT	TPR@FPR=1% TPR@FPR=5%	31.33 37.33	31.33 50.00	75.33 90.00	41.33 90.00	100.00 90.00
	TPR@FPR=1% TPR@FPR=5%	31.33 37.33	31.33 50.00	90.00 90.00	100.00 100.00	97.33

Table 18: TPR at fixed FPR levels (1% and 5%) for different detectors and datasets.

SurpMark either matches or exceeds the best baseline, and is especially strong under top-p/top-k sampling.

A4.2.9 PARAPHRASING ATTACK

Here we examine the robustness of detection methods to the paraphrasing attack. For SurpMark, we consider three paraphrase scenarios. Ref-P applies paraphrasing only to the offline references. Test-P paraphrases only the incoming text, which is the most realistic case in practice. Both-P paraphrases both sides. We follow the setup of Lastde++ and Fast-DetectGPT, and use T5-Paraphraser to perform paraphrasing attacks on texts. Under the practically most relevant Test-P case, the losses are minimal. Under Ref-P, the changes are modest. Under Both-P the drop is larger but still competitive. It shows that SurpMark’s surprisal-dynamics features are largely invariant to semantics-preserving rewrites.

A4.2.10 PROMPT-ENGINEERED ADVERSARIAL ATTACKS

In this section, we run experiments with simple prompt-engineered attacks beyond plain paraphrasing. Specifically, for the XSum and WritingPrompts datasets, we design two types of attacks: **(attack 1)** prompts that ask the model to mimic human writing style, using instructions such as “Messy casual summary of the news article.” or “Short story in a quick, slightly messy human style.”; and **(attack 2)** prompts that explicitly instruct the model to evade detection, such as “Write a summary of the article that is designed to evade AI-text detectors.” or “Continue the story in a way that is hard for AI-text detectors.” See Table 22 for comparison. “SurpMark ref-attack” applies the adversarial prompts only when generating the reference machine texts, “SurpMark test-attack” applies them only to the test texts, and “SurpMark both-attack” applies the same adversarial prompts to both the reference and test texts. Across both datasets, SurpMark variants (especially the test-attack and both-attack settings) experience much smaller accuracy drops under all three attacks, showing the strongest overall robustness.

A4.2.11 ABLATION ON NECESSITY OF FIRST-ORDER MARKOV CHAIN

In Table 23, we evaluate the necessity of the use of first-order markov chain by comparing against the 1-gram distribution of surprisal states. Across the datasets, the first-order Markov features outperform the 1-gram distribution, with especially large gains on GPT-5-chat. This shows that modeling surprisal transitions, rather than only the stationary distribution, is particularly important for harder-to-detect models.

Test	self-ref	WritingPrompts-as-ref	XSum-as-ref	SQuAD-as-ref
XSum@Gemma_7b	72.97	68.32	–	73.81
WritingPrompts@Gemma_7b	89.42	–	86.60	90.00
SQuAD@Gemma_7b	68.27	72.92	70.44	–
XSum@GPT-Neox-20b	82.45	82.52	–	81.80
WritingPrompts@GPT-Neox-20b	94.31	–	93.45	92.48
SQuAD@GPT-Neox-20b	82.45	81.43	83.02	–

Table 19: AUROC of SurpMark under different reference choices across datasets and models.

Method / Data@Model	XSum@OPT-2.7B			XSum@Gemma-7B			WritingPrompts@GPT-5-chat	
	top-p	top-k	temperature	top-p	top-k	temperature	top-p	temperature
Likelihood	79.24	67.95	93.53	66.73	55.56	87.56	57.29	66.99
LogRank	82.01	72.11	94.72	68.28	59.25	88.69	55.03	65.60
Entropy	46.87	56.53	45.27	49.16	52.12	45.06	36.24	33.68
LRR	83.43	77.88	93.48	68.66	67.86	86.22	47.28	59.38
Lastde	86.09	81.26	94.19	68.34	58.24	85.03	39.38	47.74
Lastde++	92.64	87.38	97.24	81.43	69.42	93.15	45.15	57.26
Fast-DetectGPT	90.64	85.03	98.28	80.41	68.70	95.99	41.61	57.54
SurpMark $k = 6$	92.41	87.81	96.65	82.13	72.38	93.79	75.80	77.08
SurpMark $k = 7$	93.90	87.20	95.96	80.90	77.88	93.57	77.32	77.08

Table 20: AUROC of different detectors across decoding parameters, datasets, and models.

A4.2.12 ANALYSIS OF PERFORMANCE DISPARITY: MARGINAL VS. TRANSITION SURPRISAL

We investigate the performance disparity observed between closed-source (e.g., GPT-5-chat) and open-source models. Our analysis suggests that the distinguishing factor lies in the divergence between the generator and human text at the marginal surprisal level versus the transitional level.

For many open-source models, the marginal surprisal gap—the difference in the stationary distribution of token surprisals—is sufficiently large. Consequently, detectors relying on marginal statistics (e.g., Likelihood, LogRank, Entropy) perform well, and the relative gain from SurpMark is moderate. Conversely, for advanced closed-source models, this marginal gap is nearly negligible, rendering unigram-based methods ineffective. However, a significant transition gap persists in the surprisal dynamics. SurpMark captures these temporal dependencies, explaining its substantial performance advantage on proprietary models.

To quantify this, we compute the Jensen-Shannon (JS) divergence for both marginal surprisal distributions (JS_{marginal}) and first-order transition distributions ($JS_{\text{transition}}$) between human and machine text. As shown in Table 24, for GPT-5-chat, the ratio of transition divergence to marginal divergence is approximately 30, indicating that the signal primarily resides in the dynamics. In contrast, for GPT-J-6B, this ratio is close to 1, suggesting that marginal statistics alone are nearly as informative as transition statistics.

A4.2.13 THRESHOLD SELECTION

The natural decision rule is simply the sign test by setting $\tau = 0$. Our detector is built around the difference between two GJS divergences. Intuitively, ΔGJS is positive when the test sequence is closer to the machine reference than to the human reference, and negative in the opposite case. Also, ΔGJS can be viewed as a log-likelihood ratio $\Lambda_{n,N}$. In the classical Neyman-Pearson framework, the optimal likelihood-ratio test with equal class priors and symmetric costs is precisely $\Lambda_{n,N} \geq 0$. We additionally perform a threshold sensitivity study in Table 25. For each dataset and generator, we sweep τ over the full score range on the test set, compute precision/recall, and identify an optimal threshold τ^* that maximizes F1. We then compare F1 at our fixed choice $\tau = 0$. Across all generators and datasets, F1 at $\tau = 0$ is typically about 95–97% of the oracle F1. This shows that in practice, our parameter-free sign-based rule already operates very close to the best threshold.

In Lastde, the authors propose a fixed threshold of 2 for Lastde++ regardless of the source model, motivated by plotting score distributions and empirical performance across their experiments. In Table 26, we therefore compare F1 of two methods at their respective threshold. Across three of the four settings, SurpMark achieves higher AUROC, and in all four settings it attains a higher F1. On

	Xsum@Llama-3-8B		WritingPrompts@GPT-NeoX-20B		SQuAD@Llama-2-13B	
	Original	Paraphrased	Original	Paraphrased	Original	Paraphrased
Fast-DetectGPT	96.78	95.3 ($\downarrow 1.48$)	92.22	89.51 ($\downarrow 2.71$)	94.85	92.78 ($\downarrow 2.07$)
Lastde++	93.42	91.3 ($\downarrow 2.12$)	92.68	91.94 ($\downarrow 0.74$)	97.32	92.12 ($\downarrow 5.2$)
SurpMark Ref-P	97.77	97.06 ($\downarrow 0.61$)	94.31	93.12 ($\downarrow 1.19$)	96.13	94.89 ($\downarrow 1.24$)
SurpMark Test-P	97.77	97.33 ($\downarrow 0.44$)	94.31	94.05 ($\downarrow 0.26$)	96.13	95.46 ($\downarrow 0.67$)
SurpMark Both-P	97.77	97.17 ($\downarrow 0.6$)	94.31	92.22 ($\downarrow 2.09$)	96.13	93.98 ($\downarrow 2.15$)

Table 21: Robustness to paraphrase attacks. AUROC on three settings—XSum@Llama-3-8B, WritingPrompts@GPT-NeoX-20B, and SQuAD@Llama-2-13B. For SurpMark, Ref-P/Test-P/Both-P denote paraphrasing the reference set, the test text, or both.

	WritingPrompts@GPT-J-6B			XSum@GPT-J-6B		
	Original	Attack 1	Attack 2	Original	Attack 1	Attack 2
Lastde++	96.96	84.24 ($\downarrow 12.72$)	85.42 ($\downarrow 11.52$)	85.38	69.79 ($\downarrow 15.59$)	73.55 ($\downarrow 11.83$)
Fast-DetectGPT	93.80	85.95 ($\downarrow 7.85$)	79.26 ($\downarrow 14.54$)	78.60	75.44 ($\downarrow 3.16$)	74.09 ($\downarrow 4.51$)
SurpMark ref-attack	97.60	95.06 ($\downarrow 2.54$)	94.67 ($\downarrow 2.93$)	88.35	83.84 ($\downarrow 4.51$)	83.85 ($\downarrow 4.50$)
SurpMark test-attack	97.60	95.62 ($\downarrow 1.98$)	92.59 ($\downarrow 5.01$)	88.35	86.37 ($\downarrow 1.98$)	84.86 ($\downarrow 3.49$)
SurpMark both-attack	97.60	94.30 ($\downarrow 3.30$)	92.74 ($\downarrow 4.86$)	88.35	84.44 ($\downarrow 3.91$)	85.23 ($\downarrow 3.12$)

Table 22: AUROC under adversarial attacks for different detectors on GPT-J-6B.

SQuAD@Llama-3-8B, Lastde++ has slightly higher AUROC, but at their fixed thresholds SurpMark still achieves higher F1, indicating SurpMark’s sign-based decision rule is better calibrated and less sensitive to threshold choice.

2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

2160

2161

2162

2163

2164

Metric / Dataset	GPT-J-6B			GPT-5-chat		
	XSum	WritingPrompts	SQuAD	XSum	WritingPrompts	SQuAD
1-gram distribution	86.07	96.60	91.62	55.89	78.43	54.58
First-order Markov chain	88.35	97.60	92.93	84.16	82.25	68.57

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

Generator	Dataset	JS-marginal	JS-transition	Ratio (Transition / Marginal)
GPT-J-6B	XSum	0.00180	0.00228	≈ 1.27
	SQuAD	0.00358	0.00392	≈ 1.09
GPT-5-chat	XSum	0.00006	0.00170	≈ 29.97
	SQuAD	0.00024	0.00100	≈ 4.17
GPT-4.1-mini	XSum	0.00030	0.00160	≈ 5.33
	SQuAD	0.00052	0.00150	≈ 2.88

2182

2183

2184

Table 24: Comparison of Jensen-Shannon (JS) divergence on marginal surprisal distributions versus first-order transition distributions. The high ratio for closed-source models (e.g., GPT-5-chat) indicates that detection signals are dominated by transition dynamics rather than marginal statistics.

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

Setting	AUROC	τ^*	F1@ τ^*	F1@ $\tau = 0$
XSum@GPT-J-6B	89.12	2.92×10^{-5}	83.56	80.36
WritingPrompts@Llama-2-13B	99.75	-9.29×10^{-6}	98.66	98.66
SQuAD@Llama-3-8B	93.56	-4.49×10^{-5}	87.58	82.69
WritingPrompts@GPT-5-chat	80.63	-1.34×10^{-5}	76.13	75.07

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

Table 25: AUROC and F1 scores at the optimal threshold τ^* and at $\tau = 0$ across different settings.

Table 26: Comparison of AUROC and F1 at fixed thresholds for Lastde++ and SurpMark ($k = 6$) across different settings.

2211

2212

2213