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Abstract

We address the problem of multi-object 3D pose control in image diffusion models.
Instead of conditioning on a sequence of text tokens, we propose to use a set of per-
object representations, Neural Assets, to control the 3D pose of individual objects
in a scene. Neural Assets are obtained by pooling visual representations of objects
from a reference image, such as a frame in a video, and are trained to reconstruct the
respective objects in a different image, e.g., a later frame in the video. Importantly,
we encode object visuals from the reference image while conditioning on object
poses from the target frame. This enables learning disentangled appearance and
pose features. Combining visual and 3D pose representations in a sequence-of-
tokens format allows us to keep the text-to-image architecture of existing models,
with Neural Assets in place of text tokens. By fine-tuning a pre-trained text-to-
image diffusion model with this information, our approach enables fine-grained 3D
pose and placement control of individual objects in a scene. We further demonstrate
that Neural Assets can be transferred and recomposed across different scenes. Our
model achieves state-of-the-art multi-object editing results on both synthetic 3D
scene datasets, as well as two real-world video datasets (Objectron, Waymo Open).
Additional details and video results are available at our project page.

1 Introduction

From animation movies to video games, the field of computer graphics has long relied on a traditional
workflow for creating and manipulating visual content. This approach involves the creation of 3D
assets, which are then placed in a scene and animated to achieve the desired visual effects. With the
recent advance of deep generative models [26, 50, 77, 82], a new paradigm is emerging. Diffusion
models have achieved promising results in content creation [22, 44, 70, 79] by training on web-scale
text-image data [85]. Users can now expect realistic image generation, depicting almost everything
describable in text. However, text alone is often insufficient for precise control over the output image.

To address this challenge, an emerging body of work has investigated alternative ways to control
the image generation process. One line of work studies different forms of conditioning inputs,
such as depth maps, surface normals, and semantic layouts [59, 103, 116]. Another direction is
personalized image generation [30, 58, 81], which aims to synthesize a new image while preserving
particular aspects of a reference image (e.g., placing an object of interest on a desired background).
However, these approaches are still fundamentally limited in their 3D understanding of objects. As a
result, they cannot achieve intuitive object control in the 3D space, e.g., rotation. While some recent
works introduce 3D geometry to the generation process [8, 61, 67], they cannot handle multi-object
real-world scenes as it is hard to obtain scalable training data (paired images and 3D annotations).
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Figure 1: 3D-aware editing with our Neural Asset representations. Given a source image and
object 3D bounding boxes, we can translate, rotate, and rescale the object. In addition, we support
compositional generation by transferring objects or backgrounds across images.

We address these limitations by taking inspiration from cognitive science to propose a scalable solution
to 3D-aware multi-object control. When humans move through the world, their motor systems keep
track of their movements through an efference copy and proprioceptive feedback [4, 96]. This allows
the human perceptual system to track objects accurately across time even when the object’s relative
pose to the observer changes [28]. We use this observation to propose the use of videos of multiple
objects as a scalable source of training data for 3D multi-object control. Specifically, for any two
frames sampled from a video, the naturally occurring changes in the 3D pose (e.g., 3D bounding
boxes) of objects can be treated as training labels for multi-object editing.

With this source of training data, we propose Neural Assets – per object latent representations with
consistent 3D appearance but variable 3D pose. Neural Assets are trained by extracting their visual
appearances from one frame in a video and reconstructing their appearances in a different frame in
the video conditioned on the corresponding 3D bounding boxes. This supports learning consistent
3D appearance disentangled from 3D pose. We can then tokenize any number of Neural Assets and
feed this sequence to a fine-tuned conditional image generator for precise, multi-object, 3D control.

Our main contributions are threefold: (i) A Neural Asset formulation that represent objects with
disentangled appearance and pose features. By training on paired video frames, it enables fine-grained
3D control of individual objects. (ii) Our framework is applicable to both synthetic and real-world
scenes, achieving state-of-the-art results on 3D-aware object editing. (iii) We extend Neural Assets to
further support compositional scene generation, such as swapping the background of two scenes and
transferring objects across scenes. We show the versatile control ability of our model in Fig. 1.

2 Related Work

2D spatial control in diffusion models (DMs). With the rapid growth of diffusion-based visual
generation [22, 44, 70, 79, 82, 94], there have been many works aiming to inject spatial control to
pre-trained DMs via 2D bounding boxes or segmentation masks. One line of research achieves this
by manipulating text prompts [11, 32, 51], intermediate attention maps [12, 16, 17, 27, 41, 52, 110]
or noisy latents [25, 64, 69, 90] in the diffusion process, without the need to change model weights.
Closer to ours are methods that fine-tune pre-trained DMs to support additional spatial conditioning
inputs [5, 29, 33, 45, 112, 114]. GLIGEN [59] introduces new attention layers to condition on
bounding boxes. InstanceDiffusion [103] further supports object masks, points, and scribbles with a
unified feature fusion block. To incorporate dense control signals such as depth maps and surface
normals, ControlNet [116] adds zero-initialized convolution layers around the original network
blocks. Recently, Boximator [99] demonstrates that such 2D control can be extended to video models
with a similar technique. Several existing works [3, 107] leverage natural motion observed in video
and similar to our work propose to train on paired video frames to achieve pixel-level control. In our
work, we build upon pre-trained DMs and leverage 3D bounding boxes as spatial conditioning, which
enables 3D-aware control such as object rotation and occlusion handling.
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3D-aware image generation. Earlier works leverage differentiable rendering to learn 3D Generative
Adversarial Networks (GANs) [34] from monocular images, with explicit 3D representations such
as radiance fields [14, 15, 37, 71, 86, 111] and meshes [18, 19, 31, 73, 74]. Inspired by the great
success of DMs in image generation, several works try to lift the 2D knowledge to 3D [49, 60, 62,
66, 75, 89, 98, 105]. The pioneering work 3DiM [105] and follow-up work Zero-1-to-3 [61] directly
train diffusion models on multi-view renderings of 3D assets. However, this line of research only
considers single objects without background, which cannot handle in-the-wild data with complex
backgrounds. Closest to ours are methods that process multi-object real-world scenes [2, 72, 84, 115].
OBJect-3DIT [67] studies language-guided 3D-aware object editing by training on paired synthetic
data, limiting its performance on real-world images [115]. LooseControl [8] converts 3D bounding
boxes to depth maps to guide the object pose. Yet, it cannot be directly applied to edit existing images.
In contrast, our Neural Asset representation captures both object appearance and 3D pose. It can be
easily trained on real-world videos to achieve multi-object 3D edits.
From a methodology perspective, there have been prior works learning disentangled appearance and
pose representations for 3D-aware multi-object image editing [71, 100, 111]. However, they are
all based on the GAN framework [34] and do not learn generalizable object representations via an
encoder. In contrast, we build upon a large-scale pre-trained image diffusion model [79] and powerful
feature extractors [13], enabling editing of complex real-world scenes.

Personalized image generation. Since the seminal works DreamBooth [81] and Textual Inver-
sion [30] which perform personalized generation via test-time fine-tuning, huge efforts have been
made to achieve this in a zero-shot manner [47, 58, 88, 101, 106, 109]. Most of them are only able to
synthesize one subject, and cannot control the spatial location of the generated instance. A notable
exception is Subject-Diffusion [65], which leverages frozen CLIP embeddings for object appearance
and 2D bounding boxes for object position. Still, it cannot explicitly control the 3D pose of objects.

Object-centric representation learning. Our Neural Asset representation is also related to recent
object-centric slot representations [48, 63, 91, 92, 108] that decompose scenes into a set of object
entities. Object slots provide a useful interface for editing such as object attributes [93], motions [87],
3D poses [46], and global camera poses [83]. Nevertheless, these models show significantly degraded
results on real-world data. Neural Assets also consist of disentangled appearance and pose features of
objects. Different from existing slot-based models, we fine-tune self-supervised visual encoders and
connect them with large-scale pre-trained DMs, which scales up to complex real-world data.

3 Method: Neural Assets

Inspired by 3D assets in computer graphics software, we propose Neural Assets as learnable object-
centric representations. A Neural Asset comprises an appearance and an object pose representation,
which is trained to reconstruct the object via conditioning a diffusion model (Sec. 3.2). Trained on
paired images, our method learns disentangled representations, enabling 3D-aware object editing and
compositional generation at inference time (Sec. 3.3). Our framework is summarized in Fig. 2.

3.1 Background: 3D Assets in Computer Graphics

3D object models, or 3D assets, are basic components of any 3D scene in computer graphics software,
such as Blender [20]. A typical workflow includes selecting N 3D assets {â1, ..., âN} from an asset
library and placing them into a scene. Formally, one can define a 3D asset as a tuple âi , (Ai,Pi),
where Ai is a set of descriptors defining the asset’s appearance (e.g., canonical 3D shape and surface
textures) and Pi describes its pose (e.g., rigid transformation and scaling from its canonical pose).

3.2 Neural Assets

Inspired by 3D assets in computer graphics, our goal is to enable such capabilities (i.e., 3D control
and compositional generation) in recent generative models. To achieve this, we define a Neural Asset
as a tuple ai , (Ai, Pi), where Ai ∈ R(K×D) is a flattened sequence of K D-dimensional vectors
describing the appearance of an asset, and Pi ∈ RD′

is a D′-dimensional embedding of the asset’s
pose in a scene. In other words, a Neural Asset is fully described by learnable embedding vectors,
factorized into appearance and pose. This factorization enables independent control over appearance
and pose of an asset, similar to how 3D object models can be controlled in traditional computer
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Figure 2: Neural Assets framework. (a) We train our model on pairs of video frames, which contain
objects under different poses. We encode appearance tokens from a source image with RoIAlign,
and pose tokens from the objects’ 3D bounding boxes in a target image. They are combined to form
our Neural Asset representations. (b) An image diffusion model is conditioned on Neural Assets
and a separate background token to reconstruct the target image as the training signal. (c) During
inference, we can manipulate the Neural Assets to control the objects in the generated image: rotate
the object’s pose (blue) or replace an object by a different one from another image (pink).

graphics software. Importantly, besides the 3D pose of assets, our approach does not require any
explicit mapping of objects into 3D, such as depth maps or the NeRF representation [68].

3.2.1 Asset Encoding

In the following, we describe how both the appearance Ai and the pose Pi of a Neural Asset ai
are obtained from visual observations (such as an image or a frame in a video). Importantly, the
appearance and pose representations are not necessarily encoded from the same observation, i.e., they
can be encoded from two separate frames sampled from a video. We find this strategy critical to learn
disentangled and controllable representations, which we will discuss in detail in Sec. 3.3.

Appearance encoding. At a high level, we wish to obtain a set of N Neural Asset appearance tokens
Ai from a visual observation xsrc, where xsrc can be an image or a frame in a video. While one could
approach this problem in a fully-unsupervised fashion, using a method such as Slot Attention [63]
to decompose an image into a set of object representations, we choose to use readily-available
annotations to allow fine-grained specification of objects of interest. In particular, we assume that a
2D bounding box bi is provided for each Neural Asset ai, specifying which object should be extracted
from xsrc. Therefore, we obtain the appearance representation Ai as follows:

Ai = Flatten(RoIAlign(Hi, bi)) , Hi = Enc(xsrc) , (1)

where Hi is the output feature map of a visual encoder Enc. RoIAlign [38] extracts a fixed size
feature map using the provided bounding box bi which is flattened to form the appearance token
Ai. This factorization allows us to extract N object appearances from an image with just one
encoder forward pass. In contrast, previous methods [65, 109] crop each object out to extract features
separately, and thus requires N encoder passes. This becomes unaffordable if we jointly fine-tune the
visual encoder, which is key to learning generalizable features as we will show in the ablation study.

Pose encoding. The pose token Pi of a Neural Asset ai is the primary interface for controlling the
presence and 3D pose of an object in the rendered scene. In this work, we assume that the object
pose is provided in terms of a 3D bounding box, which fully specifies its location, orientation, and
size in the scene. Formally, we take four corners spanning the 3D bounding box1 and project them to
the image plane to get {cji = (hji , w

j
i , d

j
i )}4j=1, with the projected 2D coordinate (hji , w

j
i ), and the

3D depth di,j . We obtain the pose representation Pi for a Neural Asset as follows:

Pi = MLP(Ci) , Ci = Concat[c1i , c
2
i , c

3
i , c

4
i ] , (2)

where we first concatenate the four corners cji to form Ci ∈ R12, and then project it to Pi ∈ RD′
via

an MLP. We tried the Fourier coordinate encoding in prior works [59, 103] but did not find it helpful.

There are alternative ways to represent 3D bounding boxes (e.g., concatenation of center, size, and
rotation commonly used in 3D object detection [57]), which we compare in Appendix B.4. In this

1Only three corners are needed to fully define a 3D bounding box, but we found a 4-corner representation
beneficial to work with. Previous research [118] also shows that over-parametrization can benefit model learning.
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work, we assume the availability of training data with 3D annotations – obtaining high-quality 3D
object boxes for videos at scale is still an open research problem, but may soon be within reach given
recent progress in monocular 3D detection [102], depth estimation [7, 113], and pose tracking [9].

Serialization of multiple Neural Assets. We encode a set of N Neural Assets into a sequence of
tokens that can be appended to or used in place of text embeddings for conditioning a generative
model. In particular, we first concatenate the appearance tokenAi and the pose token Pi channel-wise,
and then linearly project it to obtain a Neural Asset representation ai as follows:

ai = Linear(ãi) , ãi = Concat[Ai, Pi] ∈ RK×D+D′
. (3)

Channel-wise concatenation uniquely binds one pose token with one appearance representation in
the presence of multiple Neural Assets. An alternative solution is to learn such association with
positional encoding. Yet, it breaks the permutation-invariance of the generator against the order of
input objects and leads to poor results in our preliminary experiments. Finally, we simply concatenate
multiple Neural Assets along the token axis to arrive at our token sequence, which can be used as a
drop-in replacement for a sequence of text tokens in a text-to-image generation model.

Background modeling. Similar to prior works [71, 111], we found it helpful to encode the scene
background separately, which enables independent control thereof (e.g., swapping out the scene, or
controlling global properties such as lighting). We choose the following heuristic strategy to encode
the background: to avoid leakage of foreground object information, we mask all pixels within asset
bounding boxes bi. We then pass this masked image through the image encoder Enc (shared weights
with the foreground asset encoder) and apply a global RoIAlign, i.e., using the entire image as region
of interest, to obtain a background appearance token Abg ∈ R(K×D). Similar to a Neural Asset, we
also attach a pose token Pbg to Abg. This can either be a timestep embedding of the video frame
(relative to the source frame) or a relative camera pose embedding, if available. In the serialized
representations, the background token is treated the same as Neural Assets, i.e., we concatenate Abg

and Pbg channel-wise and linearly project it. Finally, the foreground assets ai and the background
token are concatenated along the token dimension and used to condition the generator.

3.2.2 Generative Decoder

To generate images from Neural Assets, we make minimal assumptions about the architecture or
training setup of the generative image model to ensure compatibility with future large-scale pre-
trained image generators. In particular, we assume that the generative image model accepts a sequence
of tokens as conditioning signal: for most base models this would be a sequence of tokens derived
from text prompts, which we can easily replace with a sequence of Neural Asset tokens.

As a representative for this class of models, we adopt Stable Diffusion v2.1 [79] for the generative
decoder. See Appendix C for details on this model. Starting from the pre-trained text-to-image
checkpoint, we fine-tune the entire model end-to-end to accept Neural Assets tokens instead of text
tokens as conditioning signal. The training and inference setup is explained in the following section.

3.3 Learning and Inference

Learning from frame pairs. As outlined in the introduction, we require a scalable data source of
object-level "edits" in 3D space to effectively learn multi-object 3D control capabilities. Video data
offers a natural solution to this problem: as the camera and the content of the scene moves or changes
over time, objects are observed from various view points and thus in various poses and lighting
conditions [78]. We exploit this signal by randomly sampling pairs of frames from video clips, where
we take one frame as the "source" image xsrc and the other frame as the "target" image xtgt.

As described earlier, we obtain the appearance token Ai of Neural Assets from the source frame xsrc
by extracting object features using 2D box annotations. Next, we obtain the pose token Pi for each
extracted asset from the target frame xtgt, for which we need to identify the correspondences between
objects in both frames. In practice, such correspondences can be obtained, for example, by applying
an object tracking model on the underlying video. Finally, with the associated appearance and pose
representations, we condition the image generator on them and train it to reconstruct the target frame
xtgt, i.e., using the denoising loss of Stable Diffusion v2.1 in our case. Such a paired frame training
strategy forces the model to learn an appearance token that is invariant to object pose and leverage
the pose token to synthesize the new object, avoiding the trivial solution of simple pixel-copying.
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Figure 3: Single-object editing results on OBJect unseen object subset. We evaluate on the
Translation, Rotation, and Removal tasks. We follow 3DIT [67] to compute metrics inside the edited
object’s bounding box. Our results are averaged over 3 random seeds.
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Figure 4: Multi-object editing results on MOVi-E, Objectron, and Waymo Open (denoted as
Waymo in the figures). We compute metrics inside the edited objects’ bounding boxes.

Test-time controllability. The learned disentangled representations naturally enable multi-object
scene-level editing as we will show in Sec. 4.3. Since we encode 3D bounding boxes to pose tokens
Pi, we can move, rotate, and rescale objects by changing the box coordinates. We can also compose
Neural Assets ai across scenes to generate new scenes. In addition, our background modeling design
supports swapping the environment map of the scene. Importantly, as we will see in the experiments,
our image generator learns to naturally blend the objects into their new environment at new positions,
with realistic lighting effects such as rendering and adapting shadows correctly.

4 Experiments

In this section, we conduct extensive experiments to answer the following questions: (i) Can Neural
Assets enable accurate 3D object editing? (ii) What practical applications does our method support
on real-world scenes? (iii) What is the impact of each design choice in our framework?

4.1 Experimental Setup

Datasets. We select four datasets with object or camera motion, which span different levels of
complexity. OBJect [67] is introduced in 3DIT [67], which is one of our baselines. It contains 400k
synthetic scenes rendered by Blender [20] with a static camera. Up to four Objaverse [21] assets
are placed on a textured ground and only one object is randomly moved on the ground. For a fair
comparison with 3DIT, we use 2D bounding boxes plus rotation angles as object poses, and follow
them to base our model on Stable Diffusion v1.5 [79]. MOVi-E [36] consists of Blender simulated
videos with up to 23 objects. It is more challenging than OBJect as it has linear camera motion and
there can be multiple objects moving simultaneously. Objectron [1] is a big step up in complexity as
it captures real-world objects with complex backgrounds. 15k object-centric videos covering objects
from nine categories are recorded with 360◦ camera movement. Waymo Open [97] is a real-world
self-driving dataset captured by car mounted cameras. We follow prior work [111] to use only the
front view and filter out cars that are too small. See Appendix A.1 for more details on datasets.

Baselines. We compare to methods that can perform 3D-aware editing on existing images and have
released their code. 3DIT [67] fine-tunes Zero-1-to-3 [61] on the OBJect dataset to support translation
and rotation of objects. However, it cannot render big viewpoint changes as it does not encode camera
poses. Following [67], we create another baseline (dubbed Chained) by using SAM [55] to segment
the object of interest, removing it using Stable Diffusion inpainting model [79], running Zero-1-to-3
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Figure 5: Qualitative comparison on MOVi-E, Objectron, and Waymo Open. All models gen-
erate a new image given a source image and the 3D bounding box of target objects. Our method
performs the best in object identity preservation, editing accuracy, and background modeling.

to rotate and scale the object, and stitching it to the target position. Since none of these baselines can
control multiple objects simultaneously, we apply them to edit all objects sequentially.

Evaluation settings. We report common metrics to measure the quality of the edited image – PSNR,
SSIM [104], LPIPS [117], and FID [42]. Following prior works [49, 67], we also compute object-
level metrics on cropped out image patches of edited objects. To evaluate the fidelity of edited objects,
we take the DINO [13] feature similarity metric proposed in [81]. On video datasets, we randomly
sample source and target images in each testing video and fix them across runs for consistent results.

Implementation Details. For all experiments, we resize images to 256× 256. DINO self-supervised
pre-trained ViT-B/8 [13] is adopted as the visual encoder Enc, and jointly fine-tuned with the
generator. All our models are trained using the Adam optimizer [53] with a batch size of 1536 on
256 TPUv4 chips. For inference, we generate images by running the DDIM [95] sampler for 50 steps.
For more training and inference details, please refer to Appendix A.4.

4.2 Main Results

Single-object editing. We first compare the ability to control the 3D pose of a single object on the
OBJect dataset. Fig. 3 presents the results on the unseen object subset. We do not show FID here as it
mainly measures the visual quality of generated examples, which does not reflect the editing accuracy.
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Figure 6: Object translation and rotation by manipulating 3D bounding boxes on Waymo Open.
See our project page for videos and additional object rescaling results.

RemoveOriginal Image SegmentReconstruction Replace Recompose

Figure 7: Compositional generation results on Waymo Open. By composing Neural Assets, we
can remove and segment objects, as well as transfer and recompose objects between scenes.

For results on the seen object subset and FID, please refer to Appendix B.1, where we observe similar
trends. Compared to baselines, our model does not condition on text (e.g., the category name of
the object to edit) as in 3DIT and is not trained on curated multi-view images of 3D assets as in
Zero-1-to-3. Still, we achieve state-of-the-art performance on all three tasks. This is because our
Neural Assets representation learns disentangled appearance and pose features, which is able to
preserve object identity while changing its placement smoothly. Also, the fine-tuned DINO encoder
generalizes better to unseen objects compared to the frozen CLIP visual encoder used by baselines.

Multi-object editing. Fig. 4 shows the results on MOVi-E, Objectron, and Waymo Open, where
multiple objects are manipulated in each sample. Similar to the single-object case, we compute
metrics inside the object bounding boxes, and leave the image-level results to Appendix B.1. Our
model outperforms baselines by a sizeable margin across datasets. Fig. 5 presents the qualitative
results. When there are multiple objects of the same class in the scene (e.g., boxes in the MOVi-E
example and cars on Waymo Open), 3DIT is unable to edit the correct instance. In addition, it
generalizes poorly to real-world scenes. Thanks to the object cropping step, Chained baseline can
identify the correct object of interest. However, the edited object is simply pasted to the target
location, leading to unrealistic appearance due to missing lighting effects such as shadows. In
contrast, our model is able to control all objects precisely, preserve their fidelity, and blend them into
the background naturally. Since we encode the camera pose, we can also model global viewpoint
change as shown in the third row. See Appendix B.1 for additional qualitative results.

4.3 Controllable Scene Generation

In this section, we show versatile control of scene objects on Waymo Open. For results on Objectron,
please refer to Appendix B.3. As shown in Fig. 6, we can translate and rotate cars in driving scenes.
The model understands the 3D world as objects zoom in and out when moving, and show consistent
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Figure 8: Transfer backgrounds between scenes by replacing the background token on Waymo
Open. The objects can adapt to new environments, e.g., the car lights are turned on at night.
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(b) Background modeling.
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Figure 9: Comparison of (a) visual encoders, (b) background modeling, and (c) training strate-
gies on Objectron. Bold entry denotes our full model. See text for each variant. We report PSNR
and LPIPS computed within object bounding boxes, and leave other metrics to Appendix B.2.

novel views when rotating. Fig. 7 presents our ability of compositional generation, where objects are
removed, segmented out, and transferred across scenes. Notice how the model handles occlusion
and inpaints the scene properly. Finally, Fig. 8 demonstrates background swapping between scenes.
The generator is able to harmonize objects with the new environment. For example, the car lights are
turned on and rendered with specular highlight when using a background image from a night scene.

4.4 Ablation Study

We study the effect of each component in the model. All ablations are run on Objectron since it is a
real-world dataset with complex background, and has higher object diversity than Waymo Open.

Visual encoder. Previous image-conditioned diffusion models [49, 61, 62] usually use the frozen
image encoder of CLIP [76] to extract visual features. Instead, as shown in Fig. 9a, we found that
both MAE [39] and DINO [13] pre-trained ViTs give better results. This is because CLIP’s image
encoder only captures high-level semantics of images, which suffices in single-object tasks, but fails
in our multi-object setting. In contrast, MAE and DINO pre-training enable the model to extract more
fine-grained features. Besides, DINO outperforms MAE as its features contain richer 3D information,
which aligns with recent research [6]. Finally, jointly fine-tuning the image encoder learns more
generalizable appearance tokens in Neural Assets, leading to the best performance.

Background modeling. We compare our full model with two variants: (i) not conditioning on any
background tokens (dubbed No-BG), and (ii) conditioning on background appearance tokens but not
using relative camera pose as pose tokens (dubbed No-Pose). As shown in Fig. 9b, our background
modeling strategy performs the best in image-level metrics as backgrounds usually occupy a large
part of real-world images. Interestingly, our method also achieves significantly better object-level
metrics. This is because given background appearance and pose, the model does not need to infer
them from object tokens, leading to more disentangled Neural Assets representations.
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(b) Object-camera motion entanglement(a) Symmetry ambiguity when rotating objects

Figure 10: Failure case analysis. Our model mainly has two failure cases: (a) symmetry ambiguity,
where the handle of the cup gets flipped when it rotates by 180 degrees; (b) camera-object motion
entanglement, where the background also moves when we translate the foreground object. Both
issues will likely be resolved if we train our Neural Assets model on more diverse data.

Training strategy. As described in Sec. 3.3, we train on videos and extract appearance and pose
tokens from different frames. We compare such design with training on a single frame in Fig. 9c. Our
paired frame training strategy clearly outperforms single frame training. Since the appearance token
is extracted by a ViT with positional encoding, it already contains object position information, which
acts as a shortcut for image reconstruction. Therefore, the model ignores the input object pose token,
resulting in poor controllability. One way to alleviate this is removing the positional encoding in the
image encoder (dubbed NO-PE), which still underperforms paired frame training. This is because to
reconstruct objects with visual features extracted from a different frame, the model is forced to infer
their underlying 3D structure instead of simply copying pixels. In addition, the generator needs to
render realistic lighting effects such as shadows under the new scene configuration.

5 Conclusion

In this paper, we present Neural Assets, vector-based representations of objects and scene elements
with disentangled appearance and pose features. By connecting with pre-trained image generators,
we enable controllable 3D scene generation. Our method is capable of controlling multiple objects in
the 3D space as well as transferring assets across scenes, both on synthetic and real-world datasets.
We view our work as an important step towards general-purpose neural-based simulators.

Limitations and future works. One main failure case of our model is symmetry ambiguity. As can
be seen from the rotation results in Fig. 10 (a), the handle of the cup gets flipped when it rotates by
180 degree. Another failure case that only happens on Objectron is the entanglement of global camera
motion and local object movement (Fig. 10 (b)). This is because Objectron videos only contain
camera motion while objects always stay static. Both issues will likely be resolved if we train our
model on larger-scale datasets with more diverse object and camera motion.

An ideal Neural Asset should enable control over all potential configurations of an object such
as deformation (e.g., a walking cat), rigid articulation (e.g., opening of a scissor), and structural
decomposition (e.g., tomatoes being cut). In this work, we first tackle the foremost important aspect,
i.e., controlling 3D rigid object pose and background composition which applies to almost all the
objects. Hence our current method does not allow for controlling structural changes. However, it can
be adapted when suitable datasets are developed that capture other changes in objects.

Another limitation is that our approach is currently limited to existing datasets that have 3D bounding
box annotations. Yet, with recent advances in vision foundation models [9, 55, 113], we may soon
have scalable 3D annotation pipelines similar to their 2D counterparts. One notable example is
OmniNOCS [56], which works on both Waymo and Objectron (datasets we used in this work), and
diverse, in-the-wild Internet images for a wide range of object classes. It can be used to create larger
open domain datasets to learn Neural Assets. We see this as an interesting future direction.
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A Detailed Experimental Setup

In this section, we provide full details on the datasets, baselines, evaluation settings, and the training
and inference implementation of our model.

A.1 Datasets

OBJect [67] consists of Blender [20] rendered scenes where multiple (up to four) objects are placed
on a flat textured ground. The objects come from a 59k subset of Objaverse dataset [21]. A total of
18 background maps are used to provide environmental lighting. Four types of object-level editing
are provided – translation, rotation, removal, and insertion, each with 100k simulated data. Notably,
only one object is edited in each data, and the translation and rotation is always on the ground (i.e.,
perpendicular to the gravity vector). For a fair comparison with the 3DIT baseline [67], we use the 2D
rotated bounding box to represent object pose, which is composed of two corners of the 2D bounding
box and the rotation angle over the gravity axis. This dataset is under the Open Data Commons
Attribution License (ODC-By)2.

MOVi-E [36] contains 10k videos simulated using Kubric [36]. Each scene contains 11 to 23
real-world objects from the Google Scanned Objects (GSO) repository [23]. At the start of each
video, several objects are thrown to the ground to collide with other objects. Similar to OBJect,
environmental lighting is provided by a randomly sampled environment map image. The camera
follows a small linear motion. The full data generation pipeline is under the Apache 2.0 license3.

Objectron [1] contains 15k object-centric video clips of common daily objects covering nine cate-
gories. Each video comes with object pose tracking throughout the video, and we process it to obtain
3D bounding boxes. Since this dataset does not provide 2D bounding box labels, we project the eight
corners of 3D boxes to the image, and take the tight bounding box of projected points as 2D boxes.
Objectron is licensed under the Computational Use of Data Agreement 1.0 (C-UDA-1.0)4.

Waymo Open [97]. The Waymo Open Dataset consists of 1k videos of self-driving scenes recorded
by car mounted cameras. Following prior works [24, 111], we take the front view camera and
bounding box annotations of cars. Notably, the 3D bounding boxes only have a heading angle
(rotation along the yaw-axis) annotation, and thus we treat the other two rotation angles as 0. Besides,
the provided 2D boxes and 3D boxes are not aligned, preventing us from doing paired frame training.
We instead project 3D boxes to get associated 2D boxes similar to on Objectron. Waymo Open is
licensed under the Waymo Dataset License Agreement for Non-Commercial Use (August 2019)5.

Data Pre-processing. For all datasets, we resize the images to 256× 256 regardless of the original
aspect ratio. On Objectron, we discard all videos from the bike class as it contains many blurry
frames and inaccurate 3D bounding box annotations. On Waymo, we remove all cars whose 2D
bounding box is smaller than 1% of the image area. We do not apply data augmentation except on
Waymo Open, where we apply random horizontal flip and random resize crop following [24].

A.2 Baselines

3DIT [67] fine-tunes Zero-1-to-3 [61] to support scene-level 3D object edits. We generate the editing
instruction from the target object pose, such as the translation coordinate and the rotation angle.
However, this method does not support large viewpoint changes as it does not encode camera poses.
We take their official code and pre-trained weights of the Multitask variant. 3DIT is under the
CreativeML Open RAIL-M license6.

Chained. This baseline is inspired by [67, 72], where we chain multiple models together to achieve
3D-aware object editing. An editing step usually contains three steps: (i) crop out the object of
interest and inpaint its region with backgrounds, (ii) synthesize the object under the new pose, and
(iii) place the object to the new location. For (i), we apply SAM [55] to segment the object using
2D bounding box prompt, and inpaint the original object region with Stable Diffusion v2 inpainting

2https://huggingface.co/datasets/allenai/object-edit/blob/main/README.md
3https://github.com/google-research/kubric/blob/main/LICENSE
4https://github.com/google-research-datasets/Objectron#license
5https://waymo.com/open/terms
6https://github.com/allenai/object-edit/blob/main/LICENSE
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model [79]. For (ii), we run Zero-1-to-3 [61] to re-pose the object according to the target 3D bounding
box. For (iii), following [61], we first get the alpha mask of the re-posed object using an online tool7,
and insert it to the new position via alpha blending. It is worth noting that Zero-1-to-3 does not
support camera rotation over the roll axis. For all models, we take their official code and pre-trained
weights. SAM is under the Apache 2.0 license8. Stable Diffusion v2 inpainting model is under the
CreativeML Open RAIL++-M License9. Zero-1-to-3 is under the MIT license10. The online alpha
mask extraction tool is under the Apache 2.0 license11.

A.3 Evaluation Settings

We report PSNR, SSIM [104], LPIPS [117], and FID [42] to measure the accuracy of the edited
image. We compute metrics both on the entire image, and within the 2D bounding box of edited
objects. For box-level metrics, we follow [67] to crop out each object and directly run the metric
without resizing. We also evaluate the identity preservation of objects using the DINO [13] feature
similarity proposed in [81], which runs a DINO self-supervised pre-trained ViT on cropped object
patches to extract features and compute the cosine similarity between predicted and ground-truth
image.

A.4 Our Implementation Details

Model architecture. We take Stable Diffusion (SD) v2.1 [79] as our image generator except for
experiments on the OBJect dataset, where we use SD v1.5 for a fair comparison with baselines.
Similar to prior works [49, 89], we also observe clearly better performance using SD v2.1 compared
to v1.5. However, we note that our Neural Assets framework generalizes to any image generator
that conditions on a sequence of tokens. We implement the visual encoder Enc with a DINO self-
supervised pre-trained ViT-B/8 [13], which outputs a feature map of shape 28× 28 given a 256× 256
image. For each object, we apply RoIAlign [38] to extract a 2×2 small feature map and flatten it, i.e.,
the appearance token Ai has a sequence length of K = 4. Since the conditioning token dimension
of pre-trained SD v2.1 is 1024, we use a two-layer MLP to transform the 3D bounding boxes input
to D′ = 1024, and linearly project the concatenated appearance and pose token back to 1024. For
background modeling, we mask all pixels within object boxes by setting them to a fixed value of 0.5,
and extract features with the same DINO encoder. Instead, the pose token is obtained by applying a
different two-layer MLP on the relative camera pose between the source and the target image.

Training. We implement the entire Neural Assets framework in JAX [10] using the Flax [40] neural
network library. We train all model components jointly using the Adam optimizer [53] with a batch
size of 1536 on 256 TPUv5 chips (16GB memory each). We use a peak learning rate of 5× 10−5

for the image generator and the visual encoder, and a larger learning rate of 1× 10−3 for remaining
layers (MLPs and linear projection layers). Both learning rates are linearly warmed up in the first
1,000 steps and stay constant. A gradient clipping of 1.0 is applied to stabilize training. We found that
the model overfits more severely on real-world data with complex backgrounds compared to synthetic
datasets. Therefore, we train the model for 200k steps on OBJect and MOVi-E which takes 24 hours,
and 50k steps on Objectron and Waymo Open which takes 6 hours. In order to apply classifier-free
guidance (CFG) [43], we randomly drop the appearance and pose token (i.e., setting them as zeros)
with a probability of 10%. CFG improves the performance and also alleviates overfitting in training.

Inference. We run the DDIM sampler [95] for 50 steps to generate images. We found the model
works well with CFG scale between 1.5 and 4, and thus choose to use 2.0 in all the experiments.

7https://github.com/OPHoperHPO/image-background-remove-tool
8https://github.com/facebookresearch/segment-anything#license
9https://huggingface.co/stabilityai/stable-diffusion-2-inpainting

10https://github.com/cvlab-columbia/zero123/blob/main/LICENSE
11https://github.com/OPHoperHPO/image-background-remove-tool/blob/master/LICENSE
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Table 1: Single-object editing results on OBJect. We evaluate on the Translation, Rotation, and
Removal tasks. We follow 3DIT [67] to evaluate on both seen and unseen object subsets, and compute
metrics inside the edited object’s bounding box. Our results are averaged over 3 random seeds.

Seen Objects Unseen Objects
Model PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

Task: Translation

Chained 13.70 0.309 0.485 0.94 14.13 0.326 0.467 0.97
3DIT 15.21 0.300 0.472 0.24 15.20 0.292 0.477 0.25
Ours 20.58±0.62 0.439±0.013 0.273±0.008 0.15±0.004 20.13±0.81 0.429±0.016 0.274±0.008 0.16±0.006

Task: Rotation

Chained 13.18 0.269 0.540 1.00 12.85 0.270 0.538 1.69
3DIT 16.86 0.382 0.429 0.25 16.28 0.366 0.447 0.24
Ours 18.52±0.35 0.391±0.012 0.354±0.006 0.14±0.002 18.39±0.57 0.377±0.016 0.365±0.009 0.15±0.008

Task: Removal

Chained 12.49 0.383 0.465 0.80 12.12 0.379 0.459 1.05
3DIT 24.98 0.585 0.249 0.24 24.66 0.568 0.260 0.24
Ours 28.86±0.88 0.616±0.015 0.167±0.010 0.14±0.007 28.44±0.91 0.613±0.016 0.169±0.010 0.15±0.005

Table 2: Multi-object editing results on MOVi-E, Objectron, and Waymo Open. We compute
metrics on the entire image and inside the object bounding boxes. Ours are averaged over 3 seeds.

Image-Level Object-Level
Model PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DINO ↑

Dataset: MOVi-E

Chained 14.46 0.409 0.481 4.46 15.06 0.303 0.436 0.554
3DIT 14.33 0.385 0.671 5.89 12.41 0.214 0.663 0.336
Ours 22.03±0.95 0.594±0.015 0.277±0.007 2.20±0.024 20.05±0.43 0.547±0.009 0.289±0.006 0.738±0.017

Dataset: Objectron

Chained 11.23 0.262 0.586 2.03 11.24 0.171 0.415 0.555
3DIT 11.69 0.281 0.559 1.99 11.30 0.150 0.444 0.547
Ours 14.83±0.45 0.348±0.012 0.446±0.021 0.55±0.011 16.41±0.33 0.477±0.009 0.233±0.008 0.790±0.015

Dataset: Waymo Open

Chained 18.28 0.501 0.454 2.88 16.20 0.310 0.383 0.596
3DIT 17.32 0.421 0.474 3.32 14.41 0.174 0.537 0.449
Ours 18.71±0.50 0.494±0.018 0.404±0.010 1.64±0.003 17.67±0.30 0.343±0.011 0.348±0.013 0.653±0.019

B Additional Experimental Results

B.1 Full Benchmark Results

We present full quantitative results on OBJect in Tab. 1, and on MOVi-E, Objectron, and Waymo Open
in Tab. 2. Compared to the main paper, we report additional FID metrics and results on the unseen
object subset for OBJect, while for the other three datasets, we report additional FID and DINO
feature similarity metrics, plus results computed over the entire image (Image-Level). Overall, we
observe similar trends as in the main paper, where our Neural Assets model significantly outperforms
baselines across all datasets. In Fig. 11, we show additional qualitative comparisons.

B.2 Full Ablation Results

We present all quantitative results of our ablation studies on Objectron (Sec. 4.4) in Tab. 3, Tab. 4,
and Tab. 5. We observe similar trends on all metrics at both image- and object-level.
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Figure 11: More qualitative results on MOVi-E, Objectron, and Waymo Open.

B.3 Controllable Scene Generation

In Fig. 12 and Fig. 13, we show controllable scene generation results on Objectron. Objectron videos
only have global camera movement, while the objects are static. Still, our Neural Assets model learns
disentangled foreground and background representations. As can be seen from the results, we can
rotate the foreground objects while keeping the background fixed, or swap background between
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Table 3: Ablation of image encoders on Objectron. FT-DINO stands for fine-tuning DINO ViT.

Image-Level Object-Level
Encoder PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DINO ↑
CLIP 12.95 0.309 0.532 0.66 14.13 0.339 0.333 0.709
MAE 13.64 0.317 0.501 0.59 14.93 0.369 0.296 0.735
DINO 13.75 0.325 0.498 0.57 15.03 0.388 0.296 0.747
FT-FINO 14.83 0.348 0.446 0.55 16.41 0.477 0.233 0.790

Table 4: Ablation of background modeling on Objectron. No-BG means not doing background
modeling at all, while No-Pose stands for not using the relative camera pose between two frames.

Image-Level Object-Level
Background PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DINO ↑
No-BG 12.98 0.308 0.513 1.18 14.49 0.394 0.297 0.712
No-Pose 13.71 0.326 0.496 0.72 15.39 0.423 0.273 0.751
Ours 14.83 0.348 0.446 0.55 16.41 0.477 0.233 0.790

Table 5: Ablation of training data on Objectron. Single and Paired refer to training on one image
or source-target pairs. No-PE means removing the positional encoding in the ViT image encoder.

Image-Level Object-Level
Training Data PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DINO ↑
Single 12.63 0.298 0.544 1.07 13.41 0.259 0.381 0.651
Single (No-PE) 13.74 0.323 0.503 1.01 14.51 0.315 0.337 0.683
Paired 14.83 0.348 0.446 0.55 16.41 0.477 0.233 0.790

scenes. Importantly, our model inpaints the masked background regions not occupied by the novel
object, and renders realistic shadows around the object, which is far beyond simple pixel copying.

B.4 Ablation on 3D Pose Representations

In Fig. 14, we visualize the object pose representation we use. Given a 3D bounding box of an
object, we project its four corners to the image space, and concatenate their 2D coordinates and depth
values to obtain a 12-D pose vector. The 2D projected points resemble a local coordinate frame for
the object, specifying its position, rotation, and scale. On the other hand, the depth is useful for
determining the occlusion of objects.

There are alternative ways to represent the object pose, e.g., the coordinate of the 3D box center C
with its size and rotation which is commonly used in 3D object detection [57]. These representations
achieve similar results on MOVi-E and Objectron. However, their learned rotation controllability is
significantly worse than our representation on Waymo. This is because most of the cars on Waymo
are not rotated (turn left / right), leading to very few training data on object rotation. If we directly
input the rotation angle to the model, it tends to ignore it. In contrast, due to prospective projection,
the projected local coordinate frame of unrotated cars still look "rotated" when they are not strictly in
front of the ego vehicle. This provides much more training signal to learn the rotation of objects.

C Background on Stable Diffusion

Diffusion model [44, 94] is a class of generative models that learns to generate samples by iteratively
denoising from a standard Gaussian distribution. It consists of a denoiser εθ, usually implemented
as a U-Net [80], which predicts the noise ε added to the data x. Instead of denoising raw pixels,
Stable Diffusion introduces a VAE [54] tokenizer to map images to low-dimensional latent code z
and applies the denoiser on it. In addition, the denoiser is conditioned on text and thus supports
text-to-image generation. In this work, we simply replace the text embeddings with Neural Assets ai
and fine-tune the model to support appearance and pose control of 3D objects.
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Translate RotateOriginal Image

Figure 12: Object translation and rotation results on Objectron. Although there is only camera
movement on this dataset (i.e., objects never move), the model still learns to disentangle the object
pose and the camera pose. As shown in the object rotation results, the background stays fixed. See
our project page for videos and additional object rescaling results.

Replace
Background

Figure 13: Transfer backgrounds between scenes by replacing the background token on Objectron.
Note how the global camera viewpoint is adjusted to fit the foreground object. In addition, the
generator is able to synthetic lighting effects such as shadows on the surfaces.
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(a) Object pose as 3D bounding box

(b) Sample pose representation 1 (c) Sample pose representation 2

Figure 14: Illustration of our object pose representation (a) and two examples (b). We project
four corners P0,P1,P2,P3 of a 3D bounding box to the 2D image plane and concatenate them to
obtain the pose token. The projected four corners form a local coordinate system of the object.

D Broader Impacts

Controllable visual generation is an important task in computer vision. Neural Assets equip generative
models with an intuitive interface to control their behaviors, which enables more interpretable AI
algorithms and may potentially benefit other fields such as computer graphics and robotics. We
believe this work will benefit the whole research community and the society.

Potential negative societal impacts. Since we fine-tune large-scale pre-trained generative models
in our pipeline, we inherit limitations of these base models, such as dataset selection bias. Such bias
might be problematic when human subjects are involved, though our current approach is only capable
of rigid object control and does not consider humans as an "asset" yet. Further study on how such
bias affects model performance is required for mitigating negative societal impacts that could arise
from this work [35].

E Funding Disclosure

This work was carried out at Google. Igor Gilitschenski contributed to the project in an advisory
capacity.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose Neural Assets, a new form of representations that supports multi-
object controllable 3D scene generation. We have verified it with extensive experiments in
Sec. 4 and Appendix B.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in Sec. 5.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all implementation details about dataset processing, model archi-
tecture, and training and inference in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide all the details about our implementations in Appendix A.1 and
Appendix A.4. See our project page, neural-assets.github.io, for further details.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all implementation details about dataset processing, model archi-
tecture, evaluation metrics, and training and inference in Appendix A.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All main results are averaged over 3 random seeds and we report error bars.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide all required information in Appendix A.4.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss potential positive and negative society impacts in Appendix D.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discuss safeguards on our image generator in Appendix D.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide the license information in Appendix A.1 and Appendix A.2.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new asset is introduced in the submission.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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