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Abstract

While large language models (LLMs) are still being adopted to new do-
mains and utilized in novel applications, we are experiencing an influx
of the new generation of foundation models, namely multi-modal large
language models (MLLMs). These models integrate verbal and visual infor-
mation, opening new possibilities to demonstrate more complex reasoning
abilities at the intersection of the two modalities. However, despite the
revolutionizing prospect of MLLMs, our understanding of their reasoning
abilities is limited. In this study, we assess the nonverbal abstract reason-
ing abilities of open-source and closed-source MLLMs using variations
of Raven’s Progressive Matrices. Our experiments reveal the challenging
nature of such problems for MLLMs while showcasing the immense gap
between open-source and closed-source models. We also uncover critical
shortcomings of visual and textual perceptions, subjecting the models to
low-performance ceilings. Finally, to improve MLLMs’ performance, we
experiment with different methods, such as Chain-of-Thought prompting,
leading to a significant (up to 100%) boost in performance. Our code and
datasets are available at https://github.com/usc-isi-i2/isi-mmlm-rpm.

1 Introduction

Foundation models — mostly large language models (LLMs) and large vision models (LVMs)
— have revolutionized the field of artificial intelligence, demonstrating zero-shot (Radford
et al., 2019; Wang et al., 2023a) and few-shot (i.e., in-context) learning abilities (Brown et al.,
2020; Zhang et al., 2023b) that perform on-par or even surpass humans in some tasks (Webb
et al., 2023). These tasks cover both dimensions of general intelligence: crystallized in-
telligence focusing on retrieving knowledge from memory (Hartmann et al., 2023) and
fluid intelligence involving novel and abstract reasoning (Cattell, 1987). Following these
advancements, there has been a recent surge in the development of a new generation of
foundation models, namely, multi-modal large language models (MLLMs). These models
can process visual and textual cues (OpenAI, 2023; Zhao et al., 2023; Huang et al., 2023),
paving the way for solving far more complex tasks concerning both modalities.

Nonverbal abstract reasoning is a family of tasks that involve both modalities. It has
been studied extensively for measuring fluid intelligence (Shakeel et al., 2017), in which
reasoners need to demonstrate strong visual perception and high-level explicit reasoning
abilities to solve these tasks. Prior studies have explored the performance of LVMs (Zhuo &
Kankanhalli, 2020) and LLMs (Hu et al., 2023; Webb et al., 2023) on transformed versions
of these tasks in a uni-modal setting. However, theoretical and empirical evidence exists
for the benefits of the interplay between verbal and visual perceptions (Vyshedskiy, 2019;
Winawer et al., 2007; Vygotsky, 1962), suggesting that visual perception helps us better
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understand our surroundings, while language helps us symbolize and facilitate reasoning
through notions such as self-talk (Berk, 1994).

Inspired by prior works (Vygotsky, 1962; Lupyan, 2012; Nam et al., 2017; Colas et al., 2021)
that have explored the fusion of visual and verbal cues and their effect on cognition and
reasoning abilities, and considering the opportunity of experimenting with both modalities
in MLLMs, in this study, we strive to answer the following research question: “Do MLLMs
demonstrate faithful nonverbal abstract reasoning abilities?”

Figure 1: An example of model’s prediction on a
sample from the IQ50 dataset. Given a prompt
with a visual puzzle (top), the model generates a
response that includes its reasoning and the chosen
option.

Our contributions are as follows:

1. We evaluate the nonverbal abstract
reasoning abilities of 24 open-source
and closed-source MLLMs under
three Raven’s Progressive Matrices
(RPM) (Raven, 2003) benchmarks
(See Figure 1 for an example);

2. We evaluate MLLMs’ textual and
visual abilities in semi-isolated set-
tings that mitigate cross-modality
contamination, providing insights
into their performance ceiling.

3. We evaluate MLLMs’ zero-shot and
few-shot abilities, drawing a more
accurate picture of the alignment be-
tween their verbal and visual per-
ceptions;

All in all, we observe that while open-
source MLLMs perform poorly on non-
verbal abstract reasoning tasks, closed-
source models such as GPT-4V (Ope-
nAI, 2023) showcase non-trivial abil-
ities (See Section 4). Moreover, we
discover critical shortcomings in both
visual and verbal capabilities across
open-source and closed-source models,
partially explaining the observed poor
performances (See Section 5). Finally,
we find closed-source models’ textual
and visual perceptions to be relatively
aligned, allowing us to improve their
performance significantly by providing
guided prompts and in-context demon-
strations (See Section 6).

2 Related Work

Foundation Models’ Reasoning Abilities. With the advancements of large pre-trained
(i.e., foundation) models (Vaswani et al., 2017; Dosovitskiy et al., 2020), researchers have
extensively evaluated their reasoning abilities (Bubeck et al., 2023). These evaluations go
beyond simple knowledge retrieval (Zhu et al., 2023b; Hartmann et al., 2023), focusing on
tasks that require novelty and abstractions built on models’ knowledge (Rytting & Wingate,
2021), covering visual (Zhuo & Kankanhalli, 2020; Jahrens & Martinetz, 2020; Barrett et al.,
2018) and textual (Webb et al., 2023; Hu et al., 2023; Lu et al., 2022; Hill et al., 2019; Wei et al.,
2022) dimensions.

MLLMs. Wide-spread utilization of foundation models and their role as general-purpose
interfaces for different modalities (Hao et al., 2022) have led to the development of
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MLLMs (Li et al., 2022; Chen et al., 2022; Alayrac et al., 2022; Li et al., 2023a; Wang et al., 2022;
Zhu et al., 2023a) that can generate text conditioned on the combination of different modal-
ities, demonstrating zero-shot (Li et al., 2022), few-shot (Alayrac et al., 2022; Zhao et al.,
2023), and chain-of-thought abilities (Huang et al., 2023). To better understand their range of
abilities, prior studies have evaluated MLLMs for geometric understanding and reasoning
(Kazemi et al., 2023), text recognition (Liu et al., 2023b), mathematical reasoning (Lu et al.,
2024), college-level deliberate reasoning (Yue et al., 2023), and open-ended reasoning (Han
et al., 2023) abilities. Most similar to our study are the works of Qi et al. (2023) and Mitchell
et al. (2023), evaluating the abstract reasoning abilities of MLLMs; however, their evaluation
is either limited to a few examples or lack the rigor to provide an in-depth understanding.
In this study, we bridge the gap in the literature by conducting extensive experiments that
produce comprehensive insights into MLLMs’ abstract nonverbal reasoning abilities.

3 Experimental Setup

3.1 Datasets

IQ50. Introduced by Huang et al. (2023), IQ50 is a nonverbal reasoning benchmark contain-
ing 50 visual puzzles crawled from the internet. Given a set of images arranged in a matrix
or a sequence, the goal is to predict the missing piece of the puzzle from six given options.
To conduct our extensive experiments, we augment each puzzle with textual description
and hint annotations to explore the interplay between textual cues and visual perceptions.

RAVEN. Introduced by Zhang et al. (2019), RAVEN is a visual reasoning dataset containing
70,000 synthetic samples in seven categories (each 10,000). Each instance is created following
a sampled rule and contains a 3x3 matrix of images (with the bottom right piece missing)
and eight options, with a goal similar to IQ50. To reduce the computational costs, we
randomly sample 500 examples from each category (3,500 in total) to create RAVEN-S.

CCSE. We collected 175 visual abstractions and reasoning problems from the China Civil
Service Examination (CCSE), each containing a matrix or a sequence of images with four
options. This newly curated dataset serves as a challenging benchmark across various
reasoning patterns. See Appendix F for more details.

3.2 Models

Pre-Trained. The first set of models that we utilize in our experiments are state-of-the-art
pre-trained MLLMs. Specifically, we chose the following models due to their popularity and
accessibility: 1) BLIP-2 (Li et al., 2023a), 2) Fuyu (Bavishi et al., 2023), 3) IDEFICS (Laurençon
et al., 2023), and 4) Qwen-VL (Bai et al., 2023). Note that all these models, except for the
BLIP-2 family, have undergone a multi-task pre-training procedure, presumably allowing
them to have zero-shot abilities on a wide range of tasks (See Appendix B).

Instruction-Tuned. The second set of models that we use in our experiments are state-of-
the-art instruction-tuned MLLMs. Specifically, we chose the following models with similar
criteria as pre-trained MLLMs: 1) InstructBLIP (Dai et al., 2023), 2) MMICL (Zhao et al.,
2023), 3) LLaVA (Liu et al., 2023a) 4) IDEFICS (Laurençon et al., 2023), 5) Qwen-VL (Bai
et al., 2023), 6) GPT-4V (OpenAI, 2023), and 7) Gemini (Google, 2023).

Heuristics. Since most of our samples follow similar spatial patterns and the task is to fill
the missing image with the best candidate, we can write the expected representation of the
target image as a function of the provided query images. To this end, we first compute the
target image’s expected representation as

r = ∑
q∈Q

αqR(q), (1)

where R is a function mapping images to vector representations, Q is the set of all query
images, and αq ∈ R is the weight of image q. For simplicity, we only consider linear
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combinations. Then, we select the candidate p that has the highest similarity to r as our
prediction:

p = argmax
c∈C

S(r, R(c)), (2)

where C is the set of all candidate images, and S is the Euclidean distance. For example,
in Figure 1, a heuristic could be formulated as:

q12 − q11 = q22 − q21 ⇒ q22 = q21 + q12 − q11, (3)

which leads to αq11 = −1, αq12 = 1 and αq21 = 1. See Appendix C for details on selecting R
and calculating αq.

Control Baselines. We also report the random and majority-based performance for all the
datasets as control baselines, enabling us to put the posted performances in perspective.

3.3 Implementation Details Model IQ50 RAVEN-S CCSE

Pre-Trained

blip2-opt-2.7b 0.160 0.122 0.194
blip2-opt-6.7b 0.140 0.117 0.229
blip2-flan-t5-xl 0.160 0.117 0.229
blip2-flan-t5-xxl 0.180‡ 0.131‡ 0.211

idefics-9b 0.120 0.120 0.194
idefics-80b∗ 0.240‡ T 0.240

fuyu-8b 0.160 0.127‡ 0.297‡

Qwen-VL 0.180‡ 0.117 0.206

Instruction-Tuned

MMICL-vicuna-7b 0.200‡ 0.115 0.257‡

MMICL-vicuna-13b∗ 0.180‡ 0.126‡ 0.223
MMICL-Instructblip-T5-xl 0.160 0.126‡ 0.229
MMICL-Instructblip-T5-xxl 0.200‡ 0.126‡ 0.229

instructblip-vicuna-7b 0.140 0.126‡ 0.240
instructblip-vicuna-13b∗ 0.160 0.117 0.217
instructblip-flan-t5-xl 0.120 0.121 0.240
instructblip-flan-t5-xxl 0.240‡ 0.126‡ 0.211

idefics-9b-instruct 0.120 0.121 0.217
idefics-80b-instruct∗ 0.140 T 0.251‡

llava-1.5-7b-hf 0.160 0.123 0.269‡

llava-1.5-13b-hf∗ 0.240‡ 0.121 0.229
bakLlava-v1-hf 0.080 0.122 0.314‡

Qwen-VL-Chat 0.220‡ 0.117 0.286‡

Heuristics

Pixel 0.200 0.051 0.257
CLIP-ViT 0.480 0.099 0.234

Control Baselines

Random 0.167 0.125 0.250
Majority 0.220 0.130 0.314

Table 1: Zero-shot accuracy on IQ50, RAVEN-S,
and CCSE datasets using the generalized next-
token scoring method. For each dataset, the best
performance by MLLMs is boldfaced while the
second best performance is underlined. Legends:
T → Timeout after one week of running, ∗ → Ran
with half-precision (e.g., bfloat16) to fit in GPU
memory, ‡ → Performance better than the random
baseline.

We use greedy decoding (i.e., no sam-
pling) with temperature = 0.0 and
top p = 1.0 for all the tested mod-
els. Moreover, max generation length
is set to 512 across all experiments.
Furthermore, for gpt-4v, we set the
model’s resolution to auto. All our ex-
periments are carried out on a server
with 4 × Quadro RTX 8000 GPUs with
48GB VRAM, 251GB RAM, and 32
CPU cores. Finally, we implemented
our code using Hugging Face Trans-
formers (Wolf et al., 2020) and Py-
Torch (Paszke et al., 2019) libraries.

4 How good are MLLMs at
nonverbal abstract reasoning?

4.1 Automatic Scoring

Our early observations of the MLLMs’
responses indicated the possibility of
option markers (i.e., 1, 2, etc.) appear-
ing at different token positions. For
example, if the model generates “Num-
ber 4.”, the marker will be at position 3;
however, if the model generates “The
answer is 4.”, the marker will be at po-
sition 7. As such, we pivoted away
from the common next-token scoring
approach and used a pattern-matching
scheme. Specifically, we find all the
number tokens in the response and
then take the one with the largest logit
as the chosen option to be compared to
the ground truth. We further discuss
this approach in Appendix A, making
a comparison to another common au-
tomatic scoring method.

Table 1 presents our experimental results on IQ50, RAVEN-S, and CCSE datasets using
our automatic scoring method. Our main observation from this table is that no model
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(a) IQ50 (b) RAVEN-S (c) CCSE

Figure 2: Zero-shot accuracy concerning the number of parameters using the automatic
scoring method. Models are sorted from smallest (left) to largest (right), and those within
the same family are colored the same. The red dashed lines indicate the random baselines.

consistently beats the random baselines over the three datasets. Moreover, compared
to the random baselines, the models perform within the [−8.7%,+7.3%], [−1.0%,+0.6%],
and [−5.6%,+6.4%] ranges for IQ50, RAVEN-S, and CCSE, respectively. Although some
models achieve non-trivial gains over the random baselines and even outperform some
of the heuristic baselines, these results expose the difficulty of solving variations of the
RPM-style questions across a wide range of MLLMs.

Comparing the best-achieved performances with the majority baselines, we observe a
stark similarity (±2%). This begs the question of whether the posted numbers are true
representatives of the reasoning powers of MLLMs or simply a side-effect of their generation
biases (e.g., a model that always generates 1s will do very well on a dataset with many 1s as
gold labels). To this end, in Section 4.2, we manually examined the generated answers by the
instruction-tuned models. Moreover, looking at the results posted by the pre-trained models,
apart from fuyu-8b, we cannot observe a significant upside to the multi-task pre-trained
models.

It is also worth noting that, by examining the results posted within and beyond the same
family of models, we observe that the scaling law in terms of model size (Kaplan et al.,
2020) (i.e., the larger the model, the higher the performance) does not hold here. Figure 2
illustrates the models’ zero-shot accuracy concerning the number of parameters.

4.2 Manual Scoring Model ✓A ✓R ✗A ✓R ✓A ✗R

gpt-4v 0.26 0.16 0.10
gemini-pro-vision 0.10 0.14 0.16

llava-1.5-7b-hf 0.00 0.00 0.02
llava-1.5-13b-hf 0.04 0.02 0.10
idefics-9b-instruct 0.00 0.00 0.08
Qwen-VL-Chat 0.00 0.00 0.04

Table 2: Performances of instruction-tuned models
on IQ50, assessed by manual inspection, in terms
of Answer and Reasoning correctness, indicated
by A and R, respectively. The best performance is
boldfaced while the second best performance is
underlined.

One critical aspect of assessing such
models’ abilities is ensuring the correct-
ness and faithfulness of their reasoning.
As such, we manually inspect the gen-
erated responses to provide insights
into the results posted by the models
in the automatic scoring schemes. All
the inspections were done by a group
of three graduate students (See Ap-
pendix D for the rubric). Moreover,
to elicit reasoning, we appended the
phrase “Let’s think step by step.” to the
prompt (Kojima et al., 2022). Out of the
14 open-source instruction-tuned mod-
els (See Table 3), we were only able to get meaningful and coherent responses from the follow-
ing models: llava-1.5-7b-hf, llava-1.5-13b-hf, Qwen-VL-Chat, and idefics-9b-instruct.
Besides these models, we also manually measured the abstract reasoning abilities of closed-
source MLLMs (i.e., gpt-4v and gemini-pro-vision), as we don’t need access to the gen-
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erated logits anymore. For the remainder of our experiments, we relied on IQ50, a small,
challenging test set that is easy for humans to solve (see Appendix E), based on our prelimi-
nary tests, but difficult for MLLMs (See Table 1). This choice also allows us to expand our
study more efficiently with various experiments.

Table 2 presents the performance of the aforementioned models on IQ50, demonstrating
their poor explicit reasoning capabilities. More specifically, only one of the open-source
instruction-tuned models achieves a non-zero performance on the joint answer and rea-
soning correctness, with an abysmal performance of 4%, (i.e., an average of 1% across
open-source models). Meanwhile, the trend in the closed-source MLLMs is more promising,
with gpt-4v outperforming random and majority baseline, providing correct reasoning and
answers in 26% of the samples. Nevertheless, their performance still lags behind the simple
heuristics by a large margin (See Table 1). Regarding the faithfulness of answers to rea-
sonings, we only observe a meaningful level of faithfulness (alignment between reasoning
and answer when either is correct) in closed-source models, 50% for gpt-4v and 25% for
gemini-pro-vision. Observing such a high percentage of unfaithfulness to reasoning fur-
ther asserts the importance of conducting manual evaluations rather than merely reporting
performances using noisy automatic measurements.

Figure 3: Zero-shot CoT accuracy on IQ50 using text-
only prompts.

Figure 4: Visual awareness questions performances
on a subset of IQ50.

During our inspections, we observed
that although models generally un-
derstand the shapes in the query im-
ages, they tend to hallucinate about
specific features such as rotation,
shadows, and orientations. On the
reasoning side, the most prominent
issue was the models being overly
descriptive rather than being focused
on providing grounded logical rea-
soning. In other words, most of the
time, the generated responses were
the descriptions of the puzzle and
the candidate options. We believe
this to be an artifact of their train-
ing datasets; as such, we expected a
much better showing from the mod-
els that receive multi-task training
(See Table 3).

5 What are the root causes
of the poor performance?

Textual Reasoning. Since most
MLLMs fuse the information from
visual and textual modalities, they
are prone to error propagation from
each. Hence, if we bypass one
module, we can effectively evaluate
the remaining one. For the textual
module, we can do this by providing
the text-only version of each sample
(i.e., the textual description of the
puzzles) written by a human expert
(See Appendix G). Through these
experiments, we can gain insights
into the ceiling reasoning capabilities of each model. In our experiments, due to their
incompatibility with text-only prompts, we had to drop MMICL* and InstructBLIP* models.
Moreover, we dropped idefics-80b-instruct as we could not elicit reasonings from it.
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Figure 3 presents a comparison between open-source and closed-source MLLMs on IQ50
using text-only zero-shot CoT prompts. As evident, gpt-4v is the only model that achieves
a high level of performance, with gemini-pro-vision coming in as a distant second. These
results are consistent with our previous observations, where open-source models struggled
to achieve good results, showcasing a lag in textual reasoning abilities.

Visual Awareness. Correctly perceiving visual details is critical to nonverbal abstract
reasoning. However, Zhang et al. (2023a) have shown that MLLMs face difficulties when
isolating granular details in large images. As such, we ran a set of experiments to determine
the extent to which our tested MLLMs understand the presented puzzles. More concretely,
we developed 20 questions designed to test the models on understanding shape, relative
position, orientation, color, filling pattern, and fine-grained details. In our experiments, we
dropped MMICL-vicuna-13b as we could not elicit proper responses.

Figure 4 presents the performances posted on the visual awareness questions across open-
source and closed-source models. As evident, gpt-4v dominates the benchmark with a
comfortable lead; however, we find it very promising that some open-source models such as
llava* can keep up with the other closed-source model (i.e., gemini-pro-vision). Overall,
observing the low performances of open-source MLLMs in visual awareness and textual
reasoning paints a clearer picture of models’ shortcomings, explaining their results in
Section 4.

6 Can MLLMs’ performance be improved?

6.1 Guided Prompting

Prompt engineering has been one of the prominent methods to guide LLMs towards specific
desired outputs through better conditioning (Wei et al., 2022; Kojima et al., 2022; Wang et al.,
2023b; Li et al., 2023b). We experiment with three guided prompting setups, each providing
the models with different cues to understand how supplementary textual information is
utilized while generating responses. The three setups are as follows (See Appendix G for
examples):

• General. In this setup, we provide the models with broad cues on approaching such
visual puzzles, hinting at the common strategies without being sample-specific.

• Sample-specific. In this setup, we provide the models with one sample-specific hint
about the desired reasoning for solving each puzzle.

• Corrective. In this setup, in an interactive process, looking at the model’s reasoning when
prompted in a zero-shot setting, we add one hint to correct the most prominent error.

Figure 5: Guided prompting performance of
gpt-4v and gemini-pro-vision on IQ50 using dif-
ferent types of hints. Legend: Z-S → Zero-shot,
Gen → General, Sam → Sample-specific, and Cor
→ Corrective.

Figure 5 illustrates the performance of
closed-source models on IQ50 given
different hints. Looking at these re-
sults, we find sample-specific and gen-
eral hints detrimental to reasoning
and accuracy while observing a sig-
nificant boost when interactively uti-
lizing corrective hints, especially for
gpt-4v. Considering the distinct em-
bedded cues of sample-specific and cor-
rective hints, we believe that the mod-
els’ inherent chain of reasoning on the
provided puzzles is misaligned with
humans, which makes sample-specific
hints confusing rather than helpful.
However, we can correct models’ al-
ready laid-out solutions with corrective
hints, improving their performance by as much as 100%.
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(a) In-Distribution (b) Out-of-Distribution

Figure 6: Zero-shot and symmetrical few-shot accuracy on IQ50. In (a) In-Distribution, the
demonstrations are taken from IQ50, while in (b) Out-of-Distribution, the demonstrations
are taken from RAVEN-S. Each variation was executed five times with different seeds to
mitigate the effect of random sampling. The red dashed lines indicate the random baselines.

6.2 In-Context Learning

In-context learning (ICL) refers to emergent behavior in LLMs where they perform a task
conditioned on the provided demonstrations without further parameter optimization. Min
et al. (2022) have suggested that ICL is a mere mechanism for locating the already learned
ability of the model to respond to the query prompt. However, more recent studies have
shown that LLMs can learn various function classes through ICL (Garg et al., 2022; Mirchan-
dani et al., 2023; Lee et al., 2023).

6.2.1 Symmetrical Few-Shot

The most common form of ICL is few-shot, in which the model is provided with demonstra-
tions similar to the test sample. We call this variation “Symmetrical” as there is no imbalance
in the demonstrations’ textual and visual information pieces. Since symmetrical ICL requires
processing multiple image and text pairs, we only utilize models capable of processing
such inputs (See Table 3 for a list). Moreover, due to burdensome computation costs, we
exclude idefics-80b* models. In our experiments, we explored the effect of 1) changing
the sampling distribution of demonstrations and 2) including step-by-step reasoning with
demonstrations (See Appendix G for examples).

Effect of sampling distribution. Our experiments cover open-source models and utilize
our automatic scoring scheme over two variations: 1) In-Distribution (ID): demonstrations
are uniformly taken from the same dataset, and 2) Out-of-Distribution (OOD): demonstrations
are uniformly taken from another dataset. We used IQ50 as the evaluation source with
RAVEN-S as the OOD source. Moreover, we ran each variation five times to reduce the
impact of random sampling and up to 5-shot (i.e., 10% of the dataset) due to GPU limits.

Figure 7: Symmetrical few-shot CoT accuracy on
IQ50.

Figure 6 presents the results of our
experiments. As evident, there are
no consistent patterns across models
and variations. For example, while
idefics-9b* models generally benefit
from the few-shot scheme, we don’t
see monotonically increasing perfor-
mances with more demonstrations,
contrary to expected patterns in LLMs.
Simultaneously, we see a consistent de-
cline in performance in some variations
of Qwen-VL* models. We believe these
irregularities are caused by an inability
to understand the utility of the demonstrations, suggesting that the tested models do not
exhibit strong and consistent symmetrical ICL capabilities. As a result, the models cannot
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take advantage of the provided demonstrations properly, leading to poor responses and
subpar performances.

Effect of step-by-step reasoning. Inspired by its success, we experiment with the few-
shot Chain-of-Thought (CoT) prompting (Wei et al., 2022) to improve the performance
of our models. Our early experiments found open-source models, such as Qwen-VL-Chat
and idefics-9b-instruct, unable to comprehend CoT prompting. As such, we focused on
examining the closed-source models: gpt-4v and gemini-pro-vision.

Figure 7 presents the performance of closed-source models with CoT prompting. We can
observe that both models benefit significantly from CoT demonstrations, with gpt-4v’s
performance being boosted as much as 100%. These results emphasize the immense gap be-
tween the open-source and closed-source models while showcasing meaningful symmetrical
ICL abilities in these models. During our evaluation, we noticed an unusual phenomenon
with gemini-pro-vision in which the one-shot variation prevented the model from generat-
ing reasonings in almost all the examples, leading to an initial performance drop. Moreover,
in a similar setting for gpt-4v, we observed 1) a massive jump in the number of safeguard
triggers (4% → 18%), which precluded the model from generating a response, and 2) an
increased confusion regarding the boundaries of the provided demonstration (0% → 10%),
diminishing the model’s performance.

6.2.2 Asymmetrical Few-Shot

Adding new modalities has brought forth the possibility of providing lopsided (i.e., Asym-
metrical) information in the input prompt. As such, we conduct a set of few-shot experi-
ments that provide the models with text-only CoT demonstrations while keeping the query
unchanged (i.e., image + text). To encourage the models to use the demonstrations, we
append “Let’s solve the puzzle in the image, step by step, similar to the demonstrations.” to
our prompt. We hypothesize that similar to the findings of Min et al. (2022), the models will
better understand the input and output spaces and achieve improved performance.

Figure 8: Asymmetrical few-shot CoT accuracy on
IQ50.

Since we could not make open-source
models properly utilize the textual
demonstrations in our preliminary ex-
periments, we continued our experi-
ments only on closed-source models.
Figure 8 illustrates the results of our
experiments with asymmetrical few-
shot CoT prompting. As evident, this
approach does not yield meaningful
improvements and even causes degra-
dation in some cases, contrasting our
hypothesis. Moreover, we noticed in-
creased hallucinations, mostly confus-
ing the demonstrations with queries and detecting non-existent details in the shapes, leading
to unfaithfulness and instability in the responses. We leave further investigations and exper-
iments on this ICL scheme to future works.

7 Conclusion

In this study, we utilized different RPM-style tasks as a proxy for measuring the nonverbal
abstract reasoning abilities of MLLMs, covering 24 different open-source and closed-source
models. Although closed-source MLLMs showcased promising capabilities in our exper-
iments, we found the abilities of open-source models to be insufficient for solving these
tasks. Moreover, using pseudo-isolated experimental environments, we found that MLLMs
often fail at 1) gathering precise visual details from puzzles and 2) reasoning correctly
and faithfully, even when provided with expert-written and complete descriptions of the
puzzles. Furthermore, our experiments highlighted 1) the inability of open-source models
to consistently utilize demonstrations and 2) the ICL prowess of the closed-source models,
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which helped them benefit from interactive guidance or provided demonstrations with step-
by-step (i.e., CoT) reasoning. Although MLLMs have previously demonstrated proficiency
at various tasks, our study using a relatively simple reasoning task for humans has exposed
some critical shortcomings in MLLMs while highlighting the importance of more grounded
evaluations, even at small scales.
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Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz,
Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial
general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Raymond Bernard Cattell. Intelligence: Its structure, growth and action. Elsevier, 1987.

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz,
Sebastian Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-
scaled multilingual language-image model. arXiv preprint arXiv:2209.06794, 2022.

Cédric Colas, Tristan Karch, Clément Moulin-Frier, and Pierre-Yves Oudeyer. Lan-
guage as a cognitive tool: Dall-e, humans and vygotskian rl agents, 2021. URL
https://developmentalsystems.org/language as cognitive tool vygotskian rl.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng
Wang, Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose
vision-language models with instruction tuning, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

10

https://www.adept.ai/blog/fuyu-8b
https://www.adept.ai/blog/fuyu-8b
https://developmentalsystems.org/language_as_cognitive_tool_vygotskian_rl


Published as a conference paper at COLM 2024

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=YicbFdNTTy.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers
learn in-context? a case study of simple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

Gemini Team Google. Gemini: A family of highly capable multimodal models, 2023.

Xiaotian Han, Quanzeng You, Yongfei Liu, Wentao Chen, Huangjie Zheng, Khalil Mrini,
Xudong Lin, Yiqi Wang, Bohan Zhai, Jianbo Yuan, et al. Core-mm: Complex open-
ended reasoning evaluation for multi-modal large language models. arXiv preprint
arXiv:2311.11567, 2023.

Yaru Hao, Haoyu Song, Li Dong, Shaohan Huang, Zewen Chi, Wenhui Wang, Shuming
Ma, and Furu Wei. Language models are general-purpose interfaces. arXiv preprint
arXiv:2206.06336, 2022.

Valentin Hartmann, Anshuman Suri, Vincent Bindschaedler, David Evans, Shruti Tople,
and Robert West. Sok: Memorization in general-purpose large language models. arXiv
preprint arXiv:2310.18362, 2023.

Felix Hill, Adam Santoro, David GT Barrett, Ari S Morcos, and Timothy Lillicrap. Learning to
make analogies by contrasting abstract relational structure. arXiv preprint arXiv:1902.00120,
2019.

Xiaoyang Hu, Shane Storks, Richard L Lewis, and Joyce Chai. In-context analogical reason-
ing with pre-trained language models. arXiv preprint arXiv:2305.17626, 2023.

Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao, Saksham Singhal, Shuming Ma,
Tengchao Lv, Lei Cui, Owais Khan Mohammed, Qiang Liu, et al. Language is not
all you need: Aligning perception with language models. arXiv preprint arXiv:2302.14045,
2023.

Marius Jahrens and Thomas Martinetz. Solving raven’s progressive matrices with multi-
layer relation networks. In 2020 International Joint Conference on Neural Networks (IJCNN),
pp. 1–6. IEEE, 2020.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models, 2020.

Mehran Kazemi, Hamidreza Alvari, Ankit Anand, Jialin Wu, Xi Chen, and Radu Soricut.
Geomverse: A systematic evaluation of large models for geometric reasoning. arXiv
preprint arXiv:2312.12241, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners. Advances in neural information processing
systems, 35:22199–22213, 2022.
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A One-by-One Scoring

Figure 9: Zero-shot accuracy comparison on the
IQ50 dataset using the one-by-one and our auto-
matic scoring methods. Results with a † marker
are taken from Zhao et al. (2023). Due to runtime
errors, we could not replicate them (neither Hug-
gingface nor GitHub versions). The red dashed
line indicates the random baseline.

Introduced by Huang et al. (2023), in
this scoring method, we first flatten the
query image matrix and feed it into
the model along with exactly one op-
tion. We also surround these images
with textual instructions to help the
model better understand the desired
task (See Appendix G for examples).
Then, we calculate the probability of
the model generating “Yes”, represent-
ing the probability of that option being
the true missing piece. Finally, we de-
termine the model’s choice by taking
the option with the highest probabil-
ity. To improve the original method,
we introduce an equivalency condition
in which the max probability of dif-
ferent variations of the target token
(e.g., “YES” and “yes”) is taken as the
probability. The main shortcomings
of this method include 1) being more
computation-heavy as it needs to pro-
cess each option separately and 2) being compatible with only the models that accept
multiple images as input. Notably, among the open-source models utilized in this study,
only Qwen-VL* and idefics* models support multi-image inputs (See Table 3).

Figure 9 compares the experimental results with the one-by-one and our automatic scoring
methods. As evident, some models such as MMICL-Instructblip-T5-xxl, idefics-9b, and
idefics-9b-instruct benefit significantly from this scoring mode, while others such as
instructblip-flan-t5-xxl and Qwen-VL-Chat suffer extensively. This observation demon-
strates the validity of both methods, making the choice subject to the task/dataset being
evaluated. However, given these mixed results and the downsides of using this scoring
method, we conclude that our automatic scoring method is more practical for future studies.

B Models

Table 3 presents an attribute comparison over open-source and closed-source models.

BLIP-2 (Li et al., 2023a). BLIP-2 is a generic and efficient pre-training strategy that boot-
straps vision-language pre-training from off-the-shelf frozen pre-trained image encoders
and frozen large language models. BLIP-2 bridges the modality gap with a lightweight
Querying Transformer (Q-former), which is pre-trained in two stages. Despite having signif-
icantly fewer trainable parameters than existing methods, BLIP-2 achieves state-of-the-art
performance on various vision-language tasks.

Fuyu (Bavishi et al., 2023). Fuyu is a multi-modal text and image transformer trained
by Adept AI. Architecturally, Fuyu is a vanilla decoder-only transformer with no image
encoder. Image patches are instead linearly projected into the first layer of the transformer,
bypassing the embedding lookup. This simplification allows the model to support arbitrary
image resolutions. Fuyu-8B improves over Qwen-VL on 2 out of the 3 most commonly used
image-understanding datasets despite having 2B fewer parameters.

IDEFICS (Laurençon et al., 2023). IDEFICS (Image-aware Decoder Enhanced à la Flamingo
with Interleaved Cross-attentionS) is an open-access reproduction of Flamingo, a closed-
source visual language model developed by Deepmind. It is built on top of two unimodal
open-access pre-trained models with newly initialized parameters in the form of Transformer

15



Published as a conference paper at COLM 2024

Model Size Open
Source

Multi-Task
Pre-Training

Multi-Image
Input

Pre-Trained

blip2-opt-2.7b 3.7b ✓ ✗ ✗
blip2-opt-6.7b 7.8b ✓ ✗ ✗
blip2-flan-t5-xl 3.9b ✓ ✗ ✗
blip2-flan-t5-xxl 12.2b ✓ ✗ ✗

idefics-9b 8.9b ✓ ✗ ✓
idefics-80b 80.0b ✓ ✗ ✓

fuyu-8b 9.4b ✓ ✓ ✗
Qwen-VL 9.7b ✓ ✓ ✓

Instruction-Tuned

gpt-4-vision-preview U ✗ U ✓
Bard (Gemini Update) U ✗ U ✓

MMICL-vicuna-7b 7.9b ✓ ✓ ✓∗

MMICL-vicuna-13b 14.2b ✓ ✓ ✓∗

MMICL-Instructblip-T5-xl 4.0b ✓ ✓ ✓∗

MMICL-Instructblip-T5-xxl 12.3b ✓ ✓ ✓∗

instructblip-vicuna-7b 7.9b ✓ ✓ ✗
instructblip-vicuna-13b 14.2b ✓ ✓ ✗
instructblip-flan-t5-xl 4.0b ✓ ✓ ✗
instructblip-flan-t5-xxl 12.3b ✓ ✓ ✗

idefics-9b-instruct 8.9b ✓ ✗ ✓
idefics-80b-instruct 80.0b ✓ ✗ ✓

llava-1.5-7b-hf 7.1b ✓ ✓ ✗
llava-1.5-13b-hf 13.4b ✓ ✓ ✗
bakLlava-v1-hf 7.6b ✓ U ✗

Qwen-VL-Chat 9.7b ✓ ✓ ✓

Table 3: Comparison of open-source and closed-source models’ attributes. Legend: U →
Undisclosed, ∗ → We could not utilize this feature using the official code.

blocks to bridge the gap between the vision encoder and the language model. The model
is trained on image-text pairs and unstructured multi-modal web documents. IDEFICS-
instruct is the model obtained by further training IDEFICS on Supervised Fine-Tuning and
Instruction Fine-Tuning datasets. IDEFICS is on par with the original closed-source model
on various image-text benchmarks, including visual question answering (open-ended and
multiple choice), image captioning, and image classification when evaluated with in-context
few-shot learning.

Qwen-VL (Bai et al., 2023). Qwen-VL models are large-scale vision-language models
(LVLMs) designed to perceive and understand texts and images. Starting from the Qwen-LM
as a foundation, the model is endowed with visual capacity by the meticulously designed (i)
visual receptor, (ii) input-output interface, (iii) 3-stage training pipeline, and (iv) multilingual
multi-modal cleaned corpus. The resulting models, including Qwen-VL and Qwen-VL-Chat,
set new records for generalist models under similar model scales.

InstructBLIP (Dai et al., 2023). InstructBLIP models are instruction-tuned MLLMs based
on the pre-trained BLIP-2 models. They have been trained using 13 publicly available
datasets transformed into instruction tuning format. Additionally, the authors introduce
an instruction-aware Query Transformer, which extracts informative features tailored to
the given instruction. Trained on 13 held-in datasets, InstructBLIP attains state-of-the-art
zero-shot performance across all 13 held-out datasets, substantially outperforming BLIP-2
and larger Flamingo models.
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LLaVA-1.5 (Liu et al., 2024). LLaVA-1.5 achieves state-of-the-art performance on various
multimodal benchmarks through increased input resolution, additional layers of multimodal
projection, and a comprehensively curated visual instruction tuning dataset. The model’s
efficient and lightweight architecture facilitates high reproducibility, positioning it as a
versatile foundation for further research and development in the multimodal community.

MMICL (Zhao et al., 2023). Unlike previous work, MMICL utilizes a novel context scheme,
treating image and text representations equally and establishing the reference between image
and text via image declaration. It enables users to have the flexibility to input multiple
images and text in any desired order, with no restrictions on the quantity or placement of
images in contexts. MMICL achieves new state-of-the-art zero-shot performance on a wide
range of general vision-language tasks, especially for complex benchmarks, including MME
and MMBench. Moreover, MMICL effectively tackles the challenge of complex multi-modal
prompt understanding and emerges with impressive ICL ability.

GPT-4V (OpenAI, 2023). GPT-4 with vision (GPT-4V) enables users to instruct GPT-4 to
analyze image inputs provided by the user and is the latest capability OpenAI is making
broadly available.

Gemini (Google, 2023). The Gemini family consists of Ultra, Pro, and Nano sizes, suitable
for applications ranging from complex reasoning tasks to on-device memory-constrained
use cases. Evaluation on a broad range of benchmarks shows that the Gemini Ultra model
advances the state of the art in 30 of 32 of these benchmarks - notably being the first model
to achieve human-expert performance on the well-studied exam benchmark MMLU and
improving the state-of-the-art in every one of the 20 multi-modal benchmarks the authors
examined. At the time of this publication, only the Pro version was publicly available.

C Heuristics Details.

C.1 Selecting R

Pixel. Since raw pixel values are inputs to all MLLMs in this study, we utilize the flattened
pixel values as the first variation of R in our heuristics.

CLIP-ViT (Dosovitskiy et al., 2021; Radford et al., 2021). Contrasting Language-Image
Pre-Training (CLIP) is adopted by most of the open-sourced MLLMs as their visual encoder.
As such, we select CLIP encoding as the second variation of R in our heuristics.

C.2 Calculating αq

We first identify all possible 2 × 2 submatrices in the m × n query matrix. For the horizontal
axis, considering that each 2 × 2 pattern spans across two columns, the number of unique
horizontal positions is n − 1. Similarly, m − 1 unique vertical positions are on the vertical
axis. Therefore, the total number of distinct 2 × 2 patterns that can be extracted from an
m × n matrix is (m − 1)× (n − 1). To determine the expected target representation, we first
apply the formula 4 = 3 + 2 − 1 to each submatrix; then, we average over all the calculated
values. Finally, we choose the option with the smallest Euclidean distance (i.e., S) to the
expected target representation.

D Manual Inspection Rubric

Our main challenge was to overcome the nuances that appear in reasonings generated by
LLMs. As such, the evaluators first met to 1) determine the correct reasoning paths for
the samples in the dataset and 2) review a series of sample responses generated by the
models (e.g., GPT-4v, Gemini, etc.) to determine the evaluation strategy. Based on the
observations in this initial meeting, the evaluators decided to allow for extra/wrong details
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Figure 10: Example of the location pattern. Across the pieces, the triangle moves clockwise,
one block at a time in the inner circle, while the five-pointed star moves clockwise, two
blocks at a time in the outer circle.

in the generated responses as long as they did not affect or interfere with the alignment
of the generated response to correct reasoning paths. For example, in some instances, the
models perceived shadows (or incorrect colors) in the shapes that were not present in the
puzzle; however, as long as they correctly detected the row-wise and column-wise change of
patterns (e.g., square turning to circle) and grounded their reasoning on them, the evaluators
marked the response as correct. Moreover, each sample was annotated and assessed by
one person, and any uncertain case was flagged and shared among all three evaluators for
discussion. After discussions, the final label was determined by a majority vote (i.e., at
least 2 out of 3). All evaluators were mid-level to senior Computer Science PhD students
specializing in NLP with extensive experience working with and evaluating LLMs.

While we acknowledge the difficulty of scaling such manual experiments, one of the main
challenges of correctly assessing generated responses is that automatic metrics like ROUGE,
BERTScore, etc., fall short of adequately evaluating the semantic nuances. Hence, we
decided to go down the path of highly labor-intensive human expert evaluation to provide
precise, concrete, and grounded insights.

E Human Performance on IQ50

To establish a baseline, we ran a study with 25 college-level participants from diverse educa-
tional and demographic backgrounds. We provided each participant with ten randomly
selected samples from the IQ50 dataset (20% of the dataset) and instructed them to solve the
puzzle and give a short reason for their answer. The average performance of this group was
95.9%, with a standard deviation of 6.92%.

F CCSE Dataset Examples

CCSE tests models’ reasoning abilities over five general patterns (i.e., location, logic, pro-
gression, self-geometry, and relative-geometry) in three types of figure configurations (i.e.,
one-row, two-rows, matrix). See Figure 10 and Figure 11 for examples.
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Figure 11: Example of the logic pattern. Each row follows a cell color XOR operation (0 for
white and 1 for black) between the first and the second columns to make the piece in the
third column.

G Prompt Examples

Table 4 and Table 5 present examples of each prompt used in our experiments.

H Limitations

In this work, we focused on only a specific type of reasoning task (i.e., nonverbal abstract rea-
soning) while using only IQ50, a small but challenging dataset, in most of our experiments.
However, despite these limitations, we hypothesize that similar shortcomings could be
replicated in other reasoning tasks due to the fundamental and not task-specific nature of the
observed problems. Moreover, although our experiments yielded insightful results, further
analysis of the observations is still possible. For example, given the remarkable effectiveness
of corrective hints, we can utilize methods such as self-talk Press et al. (2023), automating
the whole process. Another example is the visual awareness tests, where it is possible
to examine the internal values of the models (e.g., attention weights, token probabilities,
etc.), as opposed to evaluating the generated responses. Finally, since the closed-source
models’ training datasets are unknown, test set contamination is possible, leading to their
superior performance. However, based on the relatively low performance of these models
and considering the low-level difficulty of the tests for humans, we believe contamination
to be unlikely.
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Experiment Prompt Example

Automatic scoring [IMG] You are given a puzzle. The puzzle features a set of visual patterns arranged in
a matrix on the top, with the bottom right piece missing and six options at the bottom
(marked by 1, 2, 3, 4, 5, or 6). Which option (either 1, 2, 3, 4, 5, or 6) fills the missing
piece best?

One-by-one scoring Here are three images: [IMG1] [IMG2] [IMG3] The following image is: [IMG4] Is it
correct?

Zero-shot CoT [IMG] You are given a puzzle. The puzzle features a set of visual patterns arranged in
a matrix on the top, with the bottom right piece missing and six options at the bottom
(marked by 1, 2, 3, 4, 5, or 6). Which option (either 1, 2, 3, 4, 5, or 6) fills the missing
piece best? Let’s think step by step.

Textual reasoning Puzzle:
[[yellow percentage sign, yellow percentage sign],
[yellow percentage sign, ?]]
Options:
1: yellow percentage sign
2: yellow plus sign
3: two yellow circles
4: one yellow circle
5: yellow division sign
6: yellow cross
You are given a puzzle. The puzzle features a set of patterns arranged in a matrix on
the top, with the bottom right piece missing and six options at the bottom (marked by
1, 2, 3, 4, 5, or 6). Which option (either 1, 2, 3, 4, 5, or 6) fills the missing piece best?
Let’s think step by step.

Visual awareness In candidate 4 at the bottom, are the arrows arranged clockwise or counterclockwise?

Guided prompting (General) [IMG] You are given a puzzle. The puzzle features a set of visual patterns arranged in
a matrix on the top, with the bottom right piece missing and six options at the bottom
(marked by 1, 2, 3, 4, 5, or 6). Which option (either 1, 2, 3, 4, 5, or 6) fills the missing
piece best? Hint: Focus on the row-wise and column-wise changes regarding color,
orientation, and shape of the puzzle pieces. Let’s think step by step.

Guided prompting (Sample-specific) [IMG] You are given a puzzle. The puzzle features a set of visual patterns arranged in
a matrix on the top, with the bottom right piece missing and six options at the bottom
(marked by 1, 2, 3, 4, 5, or 6). Which option (either 1, 2, 3, 4, 5, or 6) fills the missing
piece best? Hint: the focus should be on the column-wise changes. Let’s think step by
step.

Guided prompting (Corrective) Turn 1. [IMG] You are given a puzzle. The puzzle features a set of visual patterns
arranged in a matrix on the top, with the bottom right piece missing and six options
at the bottom (marked by 1, 2, 3, 4, 5, or 6). Which option (either 1, 2, 3, 4, 5, or 6) fills
the missing piece best? Let’s think step by step.
[Model’s Response]
Turn 2. Hint: Option 1 does not have a small circle inside it, and option 5 is a very
small circle itself.

Symmetrical few-shot You are given a puzzle. The puzzle features a set of visual patterns arranged in a
matrix on the top, with the bottom right piece missing and six options at the bottom
(marked by 1, 2, 3, 4, 5, or 6). Which option (either 1, 2, 3, 4, 5, or 6) fills the missing
piece best? Let’s think step by step.
[IMG1]
The answer is 4.
[IMG2]
The answer is 1.
[IMG3]

Table 4: Prompt examples for our experiments. Note that all “[IMG*]” are replaced with
actual images during inference.
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Experiment Prompt Example

Symmetrical few-shot CoT You are given a puzzle. The puzzle features a set of visual patterns arranged in a matrix on the
top, with the bottom right piece missing and six options at the bottom (marked by 1, 2, 3, 4, 5,
or 6). Which option (either 1, 2, 3, 4, 5, or 6) fills the missing piece best?
[IMG1]
To solve this puzzle, we need to identify a pattern or rule that applies to the rows or columns
of the matrix. Let’s examine the rows and columns to see if we can discern any patterns.
Looking at the first row, we see a yellow percentage sign followed by a yellow percentage
sign. Hence, nothing changes in the row, moving from left to right. In the second row, there’s
a yellow percentage sign. Following the above pattern, we deduce that the missing piece in
the second row is a yellow percentage sign. Now, let’s look at the columns. The first column
has a yellow percentage sign, followed by a yellow percentage sign. Hence, nothing changes
in the column, moving from top to bottom. The second column has a yellow percentage
sign. Following the above pattern, the missing piece in the second column must be a yellow
percentage sign. Combining the observations from rows and columns, we conclude that the
missing piece is a yellow percentage sign.
The provided options at the bottom are as follows:
1. Yellow percentage sign
2. Yellow plus sign
3. Two yellow circles
4. One yellow circle
5. Yellow division sign
6. Yellow cross
Given these options and our conclusion, option 1 fits our criteria and best fills the missing
piece.
[IMG2]

Asymmetrical few-shot CoT You are given a puzzle. The puzzle features a set of visual patterns arranged in a matrix on the
top, with the bottom right piece missing and six options at the bottom (marked by 1, 2, 3, 4, 5,
or 6). Which option (either 1, 2, 3, 4, 5, or 6) fills the missing piece best?
Demonstration 1:
Puzzle:
[[yellow percentage sign, yellow percentage sign],
[yellow percentage sign, ?]]
Options:
1: yellow percentage sign
2: yellow plus sign
3: two yellow circles
4: one yellow circle
5: yellow division sign
6: yellow cross
To solve this puzzle, we need to identify a pattern or rule that applies to the rows or columns
of the matrix. Let’s examine the rows and columns to see if we can discern any patterns.
Looking at the first row, we see a yellow percentage sign followed by a yellow percentage
sign. Hence, nothing changes in the row, moving from left to right. In the second row, there’s
a yellow percentage sign. Following the above pattern, we deduce that the missing piece in
the second row is a yellow percentage sign. Now, let’s look at the columns. The first column
has a yellow percentage sign, followed by a yellow percentage sign. Hence, nothing changes
in the column, moving from top to bottom. The second column has a yellow percentage
sign. Following the above pattern, the missing piece in the second column must be a yellow
percentage sign. Combining the observations from rows and columns, we conclude that the
missing piece is a yellow percentage sign.
The provided options at the bottom are as follows:
1. Yellow percentage sign
2. Yellow plus sign
3. Two yellow circles
4. One yellow circle
5. Yellow division sign
6. Yellow cross
Given these options and our conclusion, option 1 fits our criteria and best fills the missing
piece.
Let’s solve the puzzle in the image, step by step, similar to the demonstrations.
[IMG]

Table 5: Prompt examples for our experiments (Continued). Note that all “[IMG*]” are
replaced with actual images during inference.
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