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ABSTRACT

State Space Models (SSMs) have emerged as powerful alternatives to attention-
based Transformers, with Mamba demonstrating impressive efficiency and scala-
bility. As these models grow increasingly larger, the need for Parameter-Efficient
Fine-Tuning (PEFT) methods becomes critical to adapt pre-trained Mamba to
downstream tasks without prohibitive computational costs. However, previous
approaches simply apply traditional Transformer-tailored PEFT methods without
addressing the unique temporal processing dynamics of SSMs. To address this
limitation, we propose Memba, a membrane-driven PEFT approach specifically de-
signed for Mamba. Memba introduces Leaky Integrate Membrane (LIM) neurons
as bio-inspired gating mechanisms that naturally accumulate membrane potentials
over time, enhancing selective information retention. By strategically combining
LIM neurons with Low-Rank Adaptations (LoRA) and cross-layer membrane
transfer, our approach significantly improves Mamba’s temporal modeling capa-
bilities. Extensive experiments across language and vision tasks demonstrate that
Memba achieves substantial improvements over existing PEFT methods.

1 INTRODUCTION

State Space Models (SSMs) (Gu et al., 2021b;a; Fu et al., 2022) have emerged as powerful alternatives
to Transformer (Vaswani et al., 2017) architectures, offering linear computational complexity with
respect to sequence length while maintaining competitive performance. SSMs share functional
similarities with recurrent architectures, including Long Short-Term Memory (LSTM) (Hochreiter
& Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Chung et al., 2014), through evolving
hidden states, though they employ different mathematical foundations based on state space theory (Gu
et al., 2020). Recent advancements, particularly Mamba (Gu & Dao, 2023; Dao & Gu, 2024), have
demonstrated remarkable success across language modeling (Pióro et al., 2024; Wang et al., 2024),
computer vision (Liu et al., 2024c; Zhu et al., 2024), and other domains (Wang et al., 2025; Quan & Li,
2024; Ota, 2024; Hu et al., 2024) by introducing selective SSMs with data-dependent parameters. As
these models scale, Parameter-Efficient Fine-Tuning (PEFT) methods become crucial for adaptation
with minimal trainable parameters. While PEFT techniques have shown success in Transformer-based
models (Hu et al., 2022; Houlsby et al., 2019), their application to SSMs remains limited. Recent
works (Yoshimura et al., 2024; Halloran et al., 2024; Ham et al., 2024) have begun exploring PEFT
for Mamba, but simply transfer Transformer-tailored methods without addressing the unique temporal
processing dynamics of SSMs.

Although Mamba is meticulously designed based on state-space theory (Gu et al., 2020), current
architecture lacks the sophisticated gating structures found in traditional recurrent networks such as
LSTM (Hochreiter & Schmidhuber, 1997) and GRU (Chung et al., 2014), relying instead on a single
linear transformation. Traditional recurrent networks incorporate multiple trainable gates to manage
memory retention and forgetting over time. In contrast, Mamba’s simplified gating mechanism
lacks temporal selectivity, structured memory, and nonlinear control capabilities. We believe that
this limitation, shared with earlier SSMs such as S4 (Gu et al., 2021a), can hinder the model’s
ability to adaptively capture task-specific temporal information during fine-tuning. Furthermore,
recent studies (Yoshimura et al., 2024; Ham et al., 2024) have revealed that directly fine-tuning the
state-space components often degrades Mamba’s performance, suggesting that modifying temporal
processing mechanisms during adaptation is particularly challenging. This phenomenon raises a
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Figure 1: Overview of Memba architecture and performance comparison. (a) Architecture and
saliency map comparison between original SSM and Memba on a Pathfinder dataset image. The pink
lines in architectures represent gating branches, and the green dashed circle indicates the target path to
be identified. (b) Performance comparison on language (commonsense reasoning) and vision (VTAB-
1k) tasks using Mamba-790M and Vim-S architectures respectively. We compare Memba with SLL
LoRA, Additional-scan, Affix-tuning, and LoRA in (Yoshimura et al., 2024).

fundamental question: how can we effectively incorporate temporal adaptation during fine-tuning
without disrupting the balanced dynamics of pre-trained SSMs?

In this work, we propose Memba, which introduces a membrane-driven PEFT technique to enhance
SSM gating. At the core of our approach is the Leaky Integrate Membrane (LIM) neuron, a novel
mechanism that leverages the inherent hidden states of neuronal membrane potentials to strengthen the
selective gating capabilities of SSM. Unlike traditional gating with feed-forward layers (Hochreiter &
Schmidhuber, 1997; Chung et al., 2014), temporal chunked LIM neurons naturally accumulate the
membrane potential over time, providing a sophisticated yet computationally efficient solution for
temporal processing without requiring additional learnable parameters or complex recurrent structures.
Furthermore, we design the LIM neuron with continuous flow of membrane information across layers,
where each neuron transfers averaged membrane states to initialize neurons in subsequent layers,
creating uninterrupted temporal processing throughout the network. Our approach combines LIM
neurons with strategically placed LoRA on input and output projections, creating a comprehensive
PEFT method specifically tailored for Mamba models. Consequently, Memba achieves superior
performance to existing works (Yoshimura et al., 2024; Halloran et al., 2024) on Mamba fine-tuning
while requiring only a fraction of the trainable parameters.

To demonstrate the effectiveness of membrane-driven gating in SSM architectures, Figure 1 presents
an overall comparison between a standard SSM model and the proposed Memba. In Figure 1(a),
Memba exhibits sharper saliency focused along the true path, while the original SSM’s attention
remains diffused, highlighting the inherent benefit of membrane dynamics in promoting selective
information flow. Figure1(b) shows the fine-tuning performance comparisons across language and
vision tasks, where Memba consistently outperforms existing PEFT methods. The main contributions
of our work are as follows:

• We propose Memba, a membrane-driven PEFT approach that enhances Mamba’s gating
mechanisms, effectively introducing temporal adaptation without modifying the core state-
space components.

• We introduce a temporal chunked LIM neuron with cross-layer membrane propagation. This
LIM neuron efficiently processes long sequences while preserving temporal information
through evolving membrane potentials.

• Through extensive experiments across language (commonsense reasoning) and vision (vi-
sion adaptation) tasks, we demonstrate that Memba consistently achieves state-of-the-art
performance compared to existing PEFT methods.

2 RELATED WORKS

2.1 STATE SPACE MODEL

State Space Models (SSMs) present a promising direction in sequence modeling that combines the
parallel processing advantages of Transformer (Vaswani et al., 2017) with the recurrence properties
of Recurrent Neural Networks (RNNs) (Hochreiter & Schmidhuber, 1997; Chung et al., 2014). (Gu
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et al., 2021a) introduces structured state space sequence models (S4), which leverages efficient
parameterization of continuous-time state space models for sequence modeling, enabling parallel
computation. Subsequent architectures, including the Diagonal State Space (DSS) (Gupta et al.,
2022), the Gated State Space (GSS) (Mehta et al., 2022), and Hungry Hungry Hippos (H3) (Fu
et al., 2022), enhance the expressivity for better performance while simplifying the implementation
complexity. Most recently, Mamba (Gu & Dao, 2023; Dao & Gu, 2024) introduces selective SSMs
with data-dependent parameters, enabling dynamic adaptation to input context. This innovation has
led to competitive performance across several domains (Pióro et al., 2024; Li et al., 2024; Wang
et al., 2025; Quan & Li, 2024; Ota, 2024), establishing SSMs as viable alternatives to Transformer
architectures for sequence processing. Given its promising performance and efficiency, Mamba shows
significant potential to serve as a backbone for pre-trained foundation models (Gu & Dao, 2023;
Ham et al., 2024; Hatamizadeh & Kautz, 2024), making efficient adaptation techniques increasingly
important for future downstream applications.

2.2 PARAMETER-EFFICIENT FINE-TUNING

PEFT methods address the computational and storage challenges of adapting large pre-trained models
to downstream tasks. These approaches modify only a small subset of model parameters while
keeping the majority frozen. We differentiate the PEFT algorithms into four categories (Han et al.,
2024): additive, selective, parameterized, and hybrid fine-tuning. Additive fine-tuning (Houlsby
et al., 2019; He et al., 2021; Pfeiffer et al., 2020; Mahabadi et al., 2021) introduce new trainable
components while preserving the original weights, including adapters that insert modules between
layers, and prompt-based methods (Li & Liang, 2021; Liu et al., 2021; Lester et al., 2021; Liu
et al., 2024b) that augment inputs with learnable tokens. Selective fine-tuning identifies and updates
only a critical subset of the original parameters, either through unstructured approaches based on
importance metrics (Guo et al., 2020; Sung et al., 2021; Xu et al., 2021) or structured methods
targeting specific components (Zaken et al., 2021; He et al., 2023). Reparameterized fine-tuning
transforms the optimization space, primarily through low-rank techniques like LoRA (Hu et al.,
2022; Zhang et al., 2023) that decompose weight updates into smaller matrices, and its derivatives
that incorporate quantization (Dettmers et al., 2023) or direction-magnitude decoupling (Liu et al.,
2024a). Hybrid fine-tuning combines multiple paradigms to leverage their complementary strengths,
integrating various strategies to achieve optimal performance-efficiency trade-offs (He et al., 2021;
Zhang et al., 2024; Hu et al., 2023).

While PEFT methods have been extensively studied in Transformer architectures, their application to
SSM models like Mamba remains relatively unexplored. (Halloran et al., 2024) investigates the appli-
cation of LoRA to Mamba’s state space components, while (Yoshimura et al., 2024) comprehensively
evaluates various PEFT techniques for SSMs, revealing unique challenges posed by their selective
scanning mechanisms. (Ham et al., 2024) demonstrates that targeting projectors rather than state
space components yields superior performance through their diagonal-based adaptation approach,
focusing primarily on transfer learning. These initial studies indicate that although conventional
PEFT methods can be applied to Mamba with reasonable success, there remains significant room
for approaches that better leverage the architectural uniqueness of SSMs. The distinctive temporal
processing characteristics of SSM architectures create opportunities for specialized adaptation tech-
niques that enhance information flow control capabilities without modifying the core state-space
components. Our work addresses this opportunity by introducing a bio-inspired mechanism designed
to incorporate temporal dynamics into the gating mechanism.

3 PRELIMINARIES

Mamba (Gu & Dao, 2023) architecture addresses the quadratic computational complexity of transform-
ers by employing SSM with selective mechanisms. The standard continuous-time linear time-invariant
SSM is defined by:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t) +Dx(t), (1)
where x(t) ∈ R is the input sequence, h(t) ∈ RN is the hidden state with N being the state
dimension that controls the model’s representational capacity, and y(t) ∈ R is the output. The
parameters A ∈ R(N×N), B ∈ R(N×1), C ∈ R(1×N), and D ∈ R define the dynamics of the system.
For practical implementation with discrete inputs like tokens, Mamba employs Zero-Order Hold
(ZOH) discretization to derive equivalent discrete parameters with step size parameter ∆:

Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A)− I)∆B, C̄ = C, D̄ = D. (2)

3
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Figure 2: Overview of Memba architecture. On top of original Mamba architecture including
embedding, normalization, linear layers, and SSM, our Memba is designed with 1⃝ Leaky Integrate
Membrane (LIM), 2⃝ Low-Rank Adaptations (LoRAs) on input and output projection, and 3⃝
membrane transfer across layers.

This discretization transforms the continuous system into its discrete counterpart called as selective
scan (Scan):

ht = Āht−1 + B̄xt, yt = C̄ht + D̄. (3)

The key innovation in Mamba lies in its selective parameterization mechanism, where ∆, B, and
C become input-dependent, consequently making Ā, B̄, C̄, and D̄ input-dependent as well. This
is achieved through a structured parameter matrix that computes these values dynamically based
on input context, enabling adaptive behavior while maintaining linear computational complexity
with respect to sequence length. Critically, Mamba employs a multiplicative gating mechanism that
combines the output of selective scan with a transformed input:

ŷt = yt ⊙ σ(xt), (4)

where σ(·) is a SiLU activation and⊙ represents element-wise multiplication. This gating mechanism
plays a crucial role in controlling information flow through the network. However, while the
selective scan in the SSM branch effectively handles temporal processing with evolving hidden states,
(Yoshimura et al., 2024; Ham et al., 2024) have shown that fine-tuning this component directly leads
to suboptimal results. We address this limitation by introducing temporal adaptation capability to the
gating branch during fine-tuning. Detailed notations for the original Mamba architecture are provided
in Appendix D.

4 METHODOLOGY

In this section, we propose Memba, a membrane-driven PEFT approach for Mamba models that
introduces temporal processing in the gating branch during fine-tuning. We first present the overall
architecture of the Memba block, then introduce its three core components.

4.1 OVERALL ARCHITECTURE

We develop Memba by integrating three main components: 1⃝ Leaky Integrate Membrane (LIM),
which provides bio-inspired temporal processing; 2⃝ optimal placement of Low-Rank Adaptations,
which strategically modifies key projection layers; and 3⃝ cross-layer membrane potential transfer,
which maintains temporal coherence across network depth. These modifications build upon the
original Mamba architecture as illustrated in Figure 2.

When processing an input tensor Xinput ∈ RB×L×D, with B, L, and D representing batch size,
length of input sequence, and feature dimension respectively, Memba first applies normalization and
projection, then divides the resulting tensor into two parallel pathways:

XSSM,Xgate = Split(Win(RMS(Xinput))), (5)

where Win is the linear layer for input projection (”in proj”) doubling the channel dimension,
RMS represents RMS normalization, and the Split represents channel-wise division by two. The
XSSM ∈ RB×L×D processes information through the selective scan, while the Xgate ∈ RB×L×D

leverages our LIM mechanism. We detail the LIM mechanism in Section 4.2.

YSSM = Scan(XSSM), Ygate = σ(Wgate
out (LIM(Wgate

in (Xgate))). (6)

4
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Here, Scan represents the selective scan computation as shown in equation 3, σ indicates SiLU
activation, and Wgate

in , Wgate
out are the linear projections before and after the LIM neuron, respectively.

Wgate
in and Wgate

out reduce the computational overhead of LIM neuron operations through dimensionality
reduction. YSSM and Ygate are combined through multiplicative gating to produce the final output:

Yout = Wout(YSSM ⊙Ygate), (7)

where Wout is the linear layer for output projection (”out proj”). This architecture modification
enhances temporal adaptation through the gate path without directly altering the dynamics of the
selective scan computation.

4.2 KEY COMPONENTS OF MEMBA

1 LEAKY INTEGRATE MEMBRANE NEURON
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Figure 3: Overview of Leaky Integrate Membrane
(LIM). Each token chunk is processed with LIM
dynamics, and membrane outputs are concatenated
to form the final sequence representation. In this
figure, the input contains L = 8 tokens split into
T = 4 chunks, with each chunk (X1, X2, X3, X4)
containing 2 tokens.

Implementation To bring the temporal flow to
Mamba’s gate branch, we introduce the Leaky
Integrate Membrane (LIM) neuron shown in Fig-
ure 3. The LIM neuron is inspired by the Leaky
Integrate-and-Fire (LIF) neuron, described in de-
tail in Appendix A. Rather than processing each
token as an individual step, which would be ex-
pensive for long sequences, we adopt a chunking
strategy for practical implementation. Given an
input sequence of length L, we partition it into
T equal-sized chunks {X[1], X[2], ..., X[T ]},
where each chunk X[i] ∈ RB×L[i]×D for i ∈
{1, 2, ..., T} contains L[i] = ⌊L/T ⌋ tokens,
with B and D representing batch size and fea-
ture dimension respectively. Here, ⌊·⌋ denotes
the floor function, ensuring each chunk contains
the same number of tokens for consistent pro-
cessing. For this uniformity in chunk size, we
trim any remainder tokens when the sequence
length is not evenly divisible by the number of
chunks.

The key innovation in our LIM approach lies in
maintaining membrane continuity across chunk
boundaries while processing chunks sequentially. For each chunk (corresponding to one step), we
process the input tokens using the leaky integrate membrane dynamics with reset:

u[i+ 1]l = r(τu[i]l +WlX[i]), (8)

r(x) =

{
0 if x > Vth,

x otherwise
, (9)

where u[i]l ∈ RB×⌊L/T⌋×D is the membrane potential in l-th layer at i-th chunk, τ ∈ (0, 1] is the
leaky factor for membrane potential leakage, Wl is the weight of l-th layer, and r(·) is the reset
function which sets values above threshold to 0 while preserving others. Note that τ and Vth are
key parameters for deciding the membrane distribution, and we analyze the effects of τ and Vth in
Section 5.3. After processing all chunks sequentially, we concatenate the outputs to reconstruct the
full sequence representation of length L, zero padding if necessary to restore any trimmed tokens.
The detailed algorithm of LIM neuron is shown in Appendix B.

Membrane-Driven Temporal Processing The LIM neuron is designed to retain the temporal infor-
mation with selective memory through membrane dynamics. We analyze the membrane potential
behavior of the LIM neuron as shown in Figure 4. The input is divided into four colored chunks, flat-
tened into a sequence, and processed through the LIM neuron to generate membrane potentials. This
visualization reveals two key characteristics of our approach. (1) Critical path features, highlighted
in purple and pink boxes, generate pronounced peaks in the membrane potential, demonstrating
the model’s selective attention to task-relevant information. (2) We observe a gradual decrease in

5
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Figure 4: Membrane-driven temporal processing in Memba. (a) The input image is divided into spatial
chunks and flattened into a sequential representation. (b) Membrane distribution and (c) saliency
map through the LIM neuron show how the LIM neuron tracks main features while progressively
decreasing baseline potentials across chunks, demonstrating adaptive temporal attention. We provide
more visualizations in Appendix F.

baseline membrane potential across chunks, indicating progressive forgetting of memory as context
accumulates. This downward trend aligns with SSM’s natural behavior of retaining recent tokens
while forgetting earlier ones. Unlike the linear gate in the original Mamba, which delivers uniform
sensitivity, our membrane-based approach in Memba naturally modulates temporal responsiveness.

The LIM neuron not only enables efficient processing of long sequences but also provides theoretical
advantages for model optimization and generalization as follows:
Theorem 1. Let L(y) be a twice-differentiable loss function, and let yt = fθ(Xt) be the output of a
standard Mamba block. When augmented with our LIM mechanism, the effective output becomes
ŷt = yt ⊙ g(ut), where ut is the membrane potential. The expected loss satisfies:

E[L(ŷt)] = L(yt ⊙ g(ūt)) +R(yt, ūt) +O(∥εt∥3) (10)
where ūt = E[ut], εt = ut − ūt with E[εt] = 0, andR is a bounded regularization term satisfying
R(yt, ūt) ≤ γ

2 ·λmax · ϵ2, where λmax is the maximum eigenvalue of the Hessian of L and γ depends
on the model outputs and gate sensitivity.

This theorem reveals LIM’s dual effect: the mean membrane component provides temporal context in-
tegration through leaky dynamics, while the fluctuation component introduces bounded regularization
that adapts to model sensitivity and output magnitude. The smoother loss landscape geometry ob-
served in Appendix C.6 represents empirical evidence of how this theoretical regularization manifests
in practice. See Appendix C for complete derivation.

2 PLACEMENT OF LOW-RANK ADAPTATIONS

Table 1: Ablation study on the impact of
applying LoRA to different projection com-
ponents in Memba-130M.

All −dt −x −out −in

Avg. Acc. (%) 43.9 43.9 43.7 43.1 42.7
Acc. drop (%) - 0.0 0.2 ↓ 0.8 ↓ 1.2 ↓

Memba-790M

Memba-1.4B

Figure 5: Performance comparison be-
tween full fine-tuning and Memba with Lo-
RAs applied to in proj and out proj
across 790M and 1.4B models.

To identify the optimal application points for our
LIM neuron, we conduct an ablation study on the
main components of Memba-130M. We evaluate
applying LoRA to different projectors on common-
sense reasoning tasks. ”All” refers to simultane-
ously adapting four key projectors in original Mamba:
input (”in proj”), output (”out proj”), time-
scale (”dt proj”), and selective state (”x proj”)
as shown in Appendix D. We then systematically
exclude individual components, denoted by ”−dt”,
”−x”, ”−out”, and ”−in”. For example, in ”−dt”,
LoRAs are applied to in proj, out proj, and
x proj.

The results in Table 1 clearly show that input and
output projectors are most critical for fine-tuning
with the LIM neuron. Excluding either leads to
performance drops of 1.2% and 0.8% respectively,
suggesting these projectors act as crucial informa-
tion bottlenecks in the Memba architecture. We fur-
ther compare the accuracy of full fine-tuning against
Memba with LoRA applied to both in proj and
out proj on 790M and 1.4B architectures in Fig-
ure 5. Notably, our approach achieves higher performance than full fine-tuning while using fewer

6
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Table 2: Performance comparison between Memba and prior methods on commonsense reasoning
datasets. Reported values are accuracy percentages (%). Bold and underlined entries indicate the
best and second-best performance, respectively. HS and WG refer to the HellaSwag and WinoGrande
datasets. All results are from (Yoshimura et al., 2024), except for SLL LoRA (Halloran et al., 2024).

Model Method #Params(%) BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg.

Pythia 160M Full 100 61.3 62.9 37.1 30.7 50.6 41.5 24.3 27.8 42.0
LoRA 0.72 61.0 62.0 36.3 30.3 52.0 38.2 24.6 28.0 41.6

Mamba 130M

Full 100 56.1 65.3 38.7 35.3 52.0 46.4 25.7 32.8 43.8
SLL LoRA 1.45 56.3 63.3 38.2 34.6 51.6 43.5 23.6 30.6 42.7
Additional-scan 0.51 57.8 64.1 37.5 34.5 53.0 41.3 23.5 30.0 42.7
Affix-tuning 64.64 59.7 64.3 38.2 35.2 51.9 42.9 24.0 29.0 43.2
LoRA (in proj) 2.23 53.5 62.9 38.2 33.8 53.1 46.4 23.7 30.8 42.8
LoRAp (X) 2.67 61.7 64.0 39.5 34.3 52.2 43.5 25.3 29.4 43.7
Memba (in proj) 3.95 56.3 64.4 37.7 34.3 52.4 48.9 23.8 30.0 43.5
Memba (out proj) 3.10 58.4 64.9 38.8 34.4 51.8 50.0 24.2 30.0 44.0
Memba (in+out proj) 5.20 58.8 65.8 40.1 34.7 51.6 47.7 24.7 31.2 44.3

Pythia 410M Full 100 55.0 68.4 42.1 40.8 53.9 50.8 26.7 30.0 46.0
LoRA 0.77 61.3 67.7 40.8 39.2 54.9 48.1 24.7 28.6 45.7

Mamba 370M

Full 100 58.1 69.9 41.9 45.7 53.8 52.7 29.7 33.4 48.2
SLL LoRA 2.30 59.5 69.6 42.2 44.1 54.9 50.6 26.3 30.8 47.3
Additional-scan 0.47 61.9 69.3 41.2 45.3 54.9 49.5 28.4 31.4 47.7
Affix-tuning 68.88 61.2 68.4 39.6 46.2 55.4 48.2 28.2 30.6 47.2
LoRA (in proj) 2.07 55.4 68.6 41.0 44.7 54.1 52.4 28.3 33.4 47.2
LoRAp (X) 2.67 60.8 68.8 42.1 44.7 56.2 50.4 27.4 32.2 47.8
Memba (in proj) 3.67 59.1 69.2 42.7 45.1 54.0 55.2 28.0 33.0 48.3
Memba (out proj) 2.88 58.0 70.0 42.5 45.4 54.9 55.4 26.7 31.2 48.0
Memba (in+out proj) 4.83 58.7 69.8 42.5 45.4 53.7 55.6 28.0 34.0 48.5

Pythia 1B Full 100 55.0 70.2 42.5 47.5 54.4 54.1 29.7 33.2 48.3
LoRA 0.41 60.0 69.3 40.9 45.3 53.6 49.8 27.2 31.0 47.1

Mamba 790M

Full 100 62.0 72.1 44.8 54.0 55.9 57.7 31.2 35.2 51.6
SLL LoRA 3.1 60.7 72.0 42.4 54.7 56.9 55.3 29.4 34.2 50.7
Additional-scan 0.33 63.0 71.9 41.9 54.2 57.1 54.9 30.0 32.6 50.7
Affix-tuning 69.99 61.0 72.5 41.0 54.9 55.6 54.6 29.6 33.8 50.4
LoRA (in proj) 1.47 61.7 71.9 44.0 50.8 56.7 56.3 30.5 33.8 50.7
LoRAp (X) 1.75 59.9 72.2 44.2 52.8 58.0 53.7 30.8 34.8 50.8
Memba (in proj) 2.61 62.2 72.6 43.8 54.4 57.5 61.0 31.7 34.0 52.1
Memba (out proj) 2.04 57.9 72.0 44.3 55.2 56.7 60.4 31.2 34.0 51.5
Memba (in+out proj) 3.45 62.4 72.8 44.1 54.8 57.3 61.3 31.6 34.3 52.3

Pythia 1.4B Full 100 58.6 71.1 42.7 53.6 55.1 58.5 29.9 34.8 50.5
LoRA 0.44 60.1 71.3 42.5 50.1 58.9 57.6 29.6 33.6 50.5

Mamba 1.4B

Full 100 61.4 73.3 43.9 56.9 59.0 59.7 34.0 35.4 53.0
SLL LoRA 4.64 59.7 73.5 43.1 56.9 60.7 59.7 31.7 36.0 52.7
Additional-scan 0.26 63.0 73.5 42.8 57.5 60.5 60.9 32.4 37.4 53.5
LoRA (in proj) 1.13 62.6 73.6 43.7 55.6 59.7 58.3 31.7 35.6 52.6
LoRAp (X) 1.36 63.1 73.5 42.7 57.7 61.6 60.4 32.9 37.4 53.7
Memba (in proj) 2.02 63.1 74.0 43.0 58.5 61.7 63.8 33.2 37.4 54.3
Memba (out proj) 1.58 62.6 74.3 43.5 58.6 60.6 64.3 32.3 37.0 54.1
Memba (in+out proj) 2.68 64.4 74.3 43.4 58.6 60.7 64.2 33.0 37.4 54.5

trainable parameters. Full fine-tuning often suffers from overfitting due to the relatively large number
of trainable parameters compared to the size of downstream task datasets (Ham et al., 2024).

3 CROSS-LAYER MEMBRANE POTENTIAL TRANSFER

As large models scale in depth, maintaining temporal context across layers becomes challenging,
yet crucial for effective sequence modeling. To address this, we implement a cross-layer membrane
potential transfer technique that propagates temporal information throughout the network hierarchy
without increasing computational cost. After processing all chunks within a layer and obtaining
membrane potentials {ul[1],ul[2], ...,ul[T ]}, we compute the average membrane state, ūl across
all chunks. This averaged membrane potential ūl serves as the initial state for the first chunk of the
subsequent layer:

ūl =
1

T

T∑
i=1

ul[i], ul+1[1] = ūl. (11)

By transferring this compressed temporal context, we enable each layer to begin processing with
a summary of the temporal dynamics captured by the previous layer. This mechanism creates a
hierarchical flow of temporal information through the network, allowing deeper layers to build upon
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Table 3: Performance comparison between Memba and previous works on VTAB-1k datasets. Values
shown are accuracy percentages (%). Bold and underlined values represent the best and second-best
performance respectively. † represents our implementation, and other results are from (Yoshimura
et al., 2024).

Model Method #Params(K) Natural Specialized Structured Avg.

ViT-S

Scratch 21,704 10.66 56.12 24.83 26.20
Full 21,704 51.79 72.29 45.27 53.47
LoRA 628 73.60 82.22 57.61 68.68
Adaptformer 333 73.63 83.15 57.80 68.97
Adapter+ 122 74.68 83.57 58.82 69.87

Vim-S

Scratch 25,450 8.33 49.87 28.16 25.42
Full 25,450 59.35 68.74 34.39 50.08
LoRA (embed) 45 64.66 77.53 43.83 58.60
LoRA (x proj) 2,540 74.41 81.92 54.88 67.77
LoRA (dt proj) 2,442 75.35 83.05 57.12 69.30
LoRA (out proj) 2,663 76.42 83.96 60.08 71.12
LoRA (in proj) 1,483 76.58 84.08 60.16 71.25
LoRAp (Z) 1,778 76.15 84.26 59.72 70.94
LoRAp (X) 1,778 76.64 83.89 60.84 71.52
LoRA (in+out proj) 709 75.69 84.42 59.43 70.68
Hybrid (w/ proj) 117,236 77.00 84.41 61.55 72.05
Hybrid (w/o proj) 1,044 76.85 84.42 61.06 71.80
Memba (in proj) 2,064 76.91 85.10 60.70 71.81
Memba (out proj) 3,244 76.92 85.32 61.18 72.06
Memba (in+out proj) 4,718 77.07 85.66 61.70 72.40

Vanilla-VMamba-S

LoRA (in proj)† 3,993 77.76 86.05 63.44 73.48
LoRA (out proj)† 2,396 77.43 86.06 64.33 73.73
LoRA (in+out proj)† 6,389 77.31 85.81 63.30 73.20
Memba (in proj) 5,591 77.66 86.06 63.92 73.64
Memba (out proj) 3,993 77.77 85.98 64.87 74.07
Memba (in+out proj) 7,987 77.14 86.14 63.93 73.48

the representations learned by earlier layers. The use of averaged membrane potentials helps prevent
information loss that might occur if only the final state were propagated, ensuring that the model
maintains sensitivity to patterns that emerged at different points in the sequence.

5 EXPERIMENTS

In this section, we evaluate the proposed Memba approach on both language and vision tasks. For
language tasks, we fine-tune pre-trained Mamba on 8 commonsense reasoning benchmarks. For
vision tasks, we fine-tune two different architectures, Vim (Zhu et al., 2024) and VMamba (Liu
et al., 2024c), on the Visual Task Adaptation-Benchmark (VTAB)-1k dataset (Zhai et al., 2019). We
also present ablation studies to analyze the Memba architecture for a better understanding. Our
experimental setup follows the framework established in MambaPeft (Yoshimura et al., 2024), and
the experiments are implemented by A100 GPUs.

5.1 LANGUAGE TASK

Experimental Details To evaluate Memba, we begin by loading pre-trained Mamba models (Gu &
Dao, 2023) trained on the Pile dataset (Gao et al., 2020), apply the Memba architecture modifications,
and then fine-tune Memba on a combined dataset of approximately 170k examples from commonsense
reasoning tasks. We evaluate performance across eight individual benchmarks: BoolQ, PIQA, SIQA,
HellaSwag, WinoGrande, ARC-Challenge, ARC-Easy, and OpenbookQA. For fine-tuning, we follow
the setup of LLM-Adapter (Hu et al., 2023), and for evaluation, we use the lm eval framework (Gao
et al., 2024). Detailed hyperparameters are provided in Appendix E.

Results The overall results of Memba on language tasks are shown in Table 2. Our comparison
baselines are Transformer-based architecture Pythia (Biderman et al., 2023) and previous Mamba
fine-tuning approaches, including SLL LoRA (Halloran et al., 2024) and MambaPEFT (Yoshimura
et al., 2024). We present three variants of our approach for each model size: LoRA applied to
input projections (in proj), output projections (out proj), and both. We observe that our
Memba consistently achieves state-of-the-art performance. Notably, with the Mamba 790M model,
our in proj+out proj variant demonstrates a substantial 1.5% absolute improvement over the
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Table 4: Ablation studies of (a) key components of LIM and (b) membrane parameters.

1⃝ LIM 2⃝ LoRA 3⃝Membrane Transfer Mamba-130m Vim-S

✓ ✗ ✗ 43.1 83.8
✓ ✗ ✓ 43.3 84.0
✗ ✓ ✗ 43.8 85.3
✓ ✓ ✗ 44.0 85.5
✓ ✓ ✓ 44.3 85.7

(a) Accuracy comparison between combinations of key
components of LIM neuron.

τ (Vth = 1) 1/2 1/3 1/4 1/5

Averaged Acc.(%) 85.7 85.2 85.2 85.0
Vth (τ = 1/2) 0.5 1 2 3

Averaged Acc.(%) 85.4 85.7 85.3 85.2
(b) Impact of membrane parameters on vision
tasks. τ and Vth are leaky factor and threshold
respectively.

best results reported in MambaPEFT (Yoshimura et al., 2024), highlighting the effectiveness of our
membrane-based approach for larger models. The iso-parameter cases are shown in the Appendix H.2.

5.2 VISION TASK

Experimental Details We further investigate the effectiveness of Memba on vision tasks by fine-
tuning two pre-trained Mamba architectures: Vim (Zhu et al., 2024) and VMamba (Hatamizadeh &
Kautz, 2024), both initially trained on ImageNet-1k (Deng et al., 2009). Since the original VMamba
architecture removes the gate branch, we utilize Vanilla-VMamba, which preserves the gating
mechanism. We evaluate performance on the VTAB-1k image classification benchmark (Zhai et al.,
2019), which comprises Natural, Specialized, and Structured domains. For fine-tuning, we adopt the
DeiT (Touvron et al., 2021) training framework across all domains. Detailed hyperparameters are
provided in Appendix E.

Results Table 3 presents our Memba results on Vim (Zhu et al., 2024) and VMamba (Hatamizadeh
& Kautz, 2024) architectures, compared against ViT (Dosovitskiy et al., 2020) and previous PEFT
approaches from MambaPEFT (Yoshimura et al., 2024). As in our language experiments, we evaluate
variants with LoRA applied to input projections (in proj), output projections (out proj), or
both. Our Memba outperforms previous PEFT methods on both Vim-S and Vanilla-VMamba-S
architectures. Notably, with Vim-S, our out proj variant achieves 72.40% average accuracy across
all domains, surpassing the previous best result of Hybird method while using only 28% of the
trainable parameters. Per-task performances of each categories are shown in Appendix G.

5.3 ANALYSIS

Contribution of Key Components To quantify the impact of each component in Memba, we conduct
an ablation study examining combinations of our three key innovations: 1⃝ LIM neurons, 2⃝ LoRA,
and 3⃝ membrane transfer. Table 4(a) presents these results. For language tasks, we use the 130M
parameter Mamba model on commonsense reasoning, while for vision tasks, we use the Vim-S
architecture on the Specialized category of VTAB-1k, which includes Camelyon, EuroSAT, Resisc45,
and Retinopathy datasets. Our results show that while LoRA enables effective fine-tuning of Mamba
models, adding LIM neurons and membrane transfer further boosts performance.
Impact of Membrane Parameters In LIM neuron, two key hyperparameters control the membrane
dynamics: the leaky factor (τ ) and threshold (Vth) in equation 8 and equation 9. The leaky factor
determines how much previous membrane potential is retained, while the threshold governs the
reset mechanism. To understand their influence, we conduct experiments with various parameter
combinations using the Vim-S architecture on the Specialized category of VTAB-1k, as shown in
Table 4(b). For the leaky factor, higher values of τ yield better performance, confirming that stronger
retention of previous states benefits temporal processing. For the threshold, Vth = 1 provides optimal
performance, indicating lower values trigger excessive resets that disrupt information flow, while
higher values reduce reset frequency, hindering the model’s ability to filter irrelevant information.
These results demonstrate that balanced membrane dynamics are critical for effective temporal
processing. Additional extensive ablation studies are presented in Appendix H.

6 CONCLUSION
We introduce Memba, a membrane-driven PEFT approach for Mamba models that integrates Leaky
Integrate Membrane (LIM) neurons with strategic Low-Rank Adaptations (LoRAs). Without mod-
ifying state-space components, our method enhances temporal adaptation capabilities exclusively
through the gating branch, preserving the tuned dynamics of pre-trained SSMs. Experiments across
language and vision tasks demonstrate Memba’s consistent improvement over existing PEFT meth-
ods. Our approach represents an important step toward specialized adaptation techniques for SSMs,
opening possibilities for effective fine-tuning of these architectures across diverse applications. Our
separate limitation section is presented in the Appendix J.
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REPRODUCIBILITY STATEMENT

Our Memba implementation builds upon the MambaPEFT codebase (Yoshimura et al., 2024).
Complete hyperparameters and experimental configurations are provided in Appendix E, with the
LIM algorithm detailed in Appendix B. All datasets follow standard evaluation protocols with exact
settings documented. Code will be made available upon acceptance.
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fusion: Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247,
2020.
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A LEAKY INTEGRATE-AND-FIRE (LIF) NEURON

The Leaky Integrate-and-Fire (LIF) neuron (Burkitt, 2006) has emerged as an important component
for energy-efficient computation in SNNs (Maass, 1997; Roy et al., 2019). The LIF neuron processes
temporal information through its membrane potential dynamics as follows:

u[i+ 1]l = τu[i]l +Wlr(u[i]l−1), (12)

r(u[i]l) =

{
1 if u[i]l > Vth,

0 otherwise
, (13)

where, u[i]l is the membrane potential in l-th layer at timestep i, τ ∈ (0, 1] is the leaky factor
for membrane potential leakage, Wl is the weight of l-th layer, and f(·) is the LIF function with
threshold Vth. When the membrane u[i]l is higher than Vth, the LIF function generates a spike and
the membrane potential is reset to 0. The LIF neuron exhibits two core characteristics: (1) Leaky
Integration and (2) Reset Mechanism.

The term τu[i]l models the leaky accumulation of membrane potential in biological neurons’ mem-
branes. This leaky mechanism enables forgetting old, unnecessary information while focusing on
new inputs, mimicking how biological neurons naturally attenuate stale signals. The reset function
r(·) is analogous to the fire-and-reset mechanism in biological neurons, where the neuron discharges
its potential upon crossing a threshold Vth. In biological neurons, this generates a spike.

B THE DETAILS OF LIM ALGORITHM

We present the details of the LIM process, which involves efficient processing of sequential data
through temporal chunking and cross-layer membrane potential transfer.

Algorithm 1 Leaky Integrate Membrane

Input: Input sequence tensor Xinput ∈ RB×L×D, number of chunks T , leak factor τ , threshold
Vth, linear projection f(·), previous membrane potential uprev ∈ RB×⌊L/T⌋×D

Output: Output membrane uoutput ∈ RB×L×D, averaged membrane uprev ∈ RB×⌊L/T⌋×D

l← ⌊L/T ⌋ # Chunk size using floor function
r ← L− l × T # Calculate remainder
if r ̸= 0 then
X← Xinput[:, : −r, :] # Trim sequence to be divisible by T
L← L− r

end if
if uprev is None then
ucurrent ← 0

else
ucurrent ← uprev # Transfer membrane state from previous layer

end if
for i = 0 to T − 1 do

start idx← i× l
end idx← (i+ 1)× l
Xi ← X[:, start idx : end idx, :] # Extract current chunk
ucurrent ← τ · ucurrent + f(Xi) # Leaky integrate dynamics
ucurrent ← Reset(ucurrent) # Apply Reset with threshold Vth

ulist[i] = ucurrent
end for
uoutput ← concatenate(ulist, dim = 0) # Combine all chunks
uprev ← mean(ulist, dim = 0) # Average the membrane for transfer to next layer
if r ̸= 0 then
uoutput ← pad(uoutput) # Pad to original length

end if
return uoutput,uprev
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C THEORETICAL DERIVATION

C.1 DECOMPOSITION OF LIM SIGNAL

In our LIM mechanism, the membrane potential evolves according to the dynamics defined in equa-
tion 8:

ut = r(τut−1 +WXt) (14)
where r(·) is the reset function from equation 9.

We decompose the membrane potential ut into a mean component and a fluctuation component:

ut = ūt + εt, where E[εt] = 0 (15)

The mean component ūt = E[ut] captures the expected membrane potential, which represents the
temporal integration of input history. The fluctuation component εt = ut − ūt represents deviations
from this expected behavior.

Boundedness of fluctuations: Due to the reset mechanism in r(·), the membrane potential is
bounded:

0 ≤ ut ≤ Vth for all t (16)
Since the mean ūt = E[ut] is also bounded within the same range, the fluctuations are bounded:

∥εt∥ ≤ Vth (17)

The decomposition ut = ūt + εt enables us to analyze how membrane dynamics affect the loss
function: the mean component ūt provides stable temporal context integration, while the bounded
fluctuation component εt introduces controlled variability that, as we show in the following sections,
acts as an adaptive regularization mechanism.

C.2 MULTIPLICATIVE GATING ANALYSIS

In our architecture, the membrane potential influences the output through multiplicative gating:

ŷt = yt ⊙ g(ut) (18)

where yt is the output from the selective scan, g(·) is the gating function applied element-wise
(typically SiLU activation), and ⊙ denotes element-wise multiplication.

Using the decomposition of ut from the previous section:

g(ut) = g(ūt + εt) (19)

We apply an element-wise Taylor expansion of g around ūt:

g(ut) = g(ūt) + g′(ūt)⊙ εt +
1

2
g′′(ūt)⊙ ε2t +O(∥εt∥3) (20)

where g′(ūt) and g′′(ūt) denote element-wise derivatives, and ε2t represents element-wise squaring.

Therefore, the gated output becomes:

ŷt = yt ⊙ g(ūt) + yt ⊙ g′(ūt)⊙ εt +
1

2
yt ⊙ g′′(ūt)⊙ ε2t +O(∥εt∥3) (21)

C.3 ANALYSIS OF EXPECTED LOSS

We analyze the expected loss where the expectation is taken over the randomness in the membrane
reset process, treating the input sequence and resulting selective scan output yt as deterministic for a
given input.

We expand around y∗
t = yt ⊙ g(ūt), which represents the output when the membrane potential is

at its expected value. Note that this is not exactly E[ŷt] due to the nonlinearity of g, but serves as a
natural reference point that isolates the effects of membrane fluctuations.
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Let δyt = ŷt − y∗
t . From the multiplicative gating analysis:

δyt = yt ⊙ g′(ūt)⊙ εt +
1

2
yt ⊙ g′′(ūt)⊙ ε2t +O(∥εt∥3) (22)

The Taylor expansion of the loss function around y∗
t gives:

L(ŷt) = L(y∗
t + δyt) (23)

= L(y∗
t ) +∇L(y∗

t )
⊤δyt +

1

2
δy⊤

t ∇2L(y∗
t )δyt +O(∥δyt∥3) (24)

Taking expectation over the membrane fluctuations:

E[L(ŷt)] = L(y∗
t ) +∇L(y∗

t )
⊤E[δyt] +

1

2
E[δy⊤

t ∇2L(y∗
t )δyt] +O(E[∥δyt∥3]) (25)

Since yt and ūt are deterministic given the input, and E[εt] = 0:

E[δyt] = yt ⊙ g′(ūt)⊙ E[εt] +
1

2
yt ⊙ g′′(ūt)⊙ E[ε2t ] (26)

=
1

2
yt ⊙ g′′(ūt)⊙ E[ε2t ] (27)

For the second-order term, we assume independent fluctuations across dimensions with E[εt,iεt,j ] =
δijσ

2
i , which is reasonable given the independent reset behavior in each dimension. The dominant

contribution comes from the first-order term in δyt:
E[δy⊤

t ∇2L(y∗
t )δyt] ≈ E[(yt ⊙ g′(ūt)⊙ εt)

⊤∇2L(y∗
t )(yt ⊙ g′(ūt)⊙ εt)] (28)

=
∑
i

(yt,ig
′(ūt,i))

2[∇2L(y∗
t )]i,iσ

2
i (29)

We define the regularization term to include both the bias correction and the quadratic regularization:

R(yt, ūt) = ∇L(y∗
t )

⊤
(
1

2
yt ⊙ g′′(ūt)⊙ (σ2

1 , . . . , σ
2
d)

⊤
)
+

1

2

∑
i

(yt,ig
′(ūt,i))

2[∇2L(y∗
t )]i,iσ

2
i

(30)

Therefore:
E[L(ŷt)] = L(yt ⊙ g(ūt)) +R(yt, ūt) +O(∥εt∥3) (31)

C.4 BOUNDEDNESS OF THE LIM LOSS

To establish the theoretical foundation for our regularization analysis, we first demonstrate the
boundedness of E[L(ŷt)] by showing that both components of the gated output yt ⊙ g(ut) remain
bounded.

Boundedness of yt (Mamba output): The HiPPO theory (Gu et al., 2020) ensures that Mamba’s
hidden state remains bounded through its initialization strategy. Specifically, HiPPO initializes the
state matrix A with all negative real parts of eigenvalues, making the discretized system matrix
A = exp(∆A) contractive with spectral radius less than 1. This contractivity property ensures
that the recurrent dynamics (equation 3) cannot grow unboundedly. Even with Mamba’s input-
dependent discretization parameter ∆t, the constraint ∆t > 0 preserves the contractivity property
since exp(∆tA) maintains the same spectral properties as exp(A) when ∆t > 0. Therefore, for
bounded inputs ∥xt∥ ≤ Xmax, we have ∥ht∥ ≤ H for some constant H , which ensures ∥yt∥ ≤M
for some bound M .

Boundedness of g(ut): The gating function is bounded by the design of our LIM mechanism. Since
the reset function constrains 0 ≤ ut ≤ Vth and the activation function g(·) (typically SiLU) is
bounded on this interval, we have |g(ut)| ≤ Gmax for some constant Gmax.

Final boundedness: Since both components are bounded, the gated output satisfies ∥yt ⊙ g(ut)∥ ≤
M ·Gmax. For a Lipschitz continuous loss function L with Lipschitz constant Llip, we obtain:

E[L(ŷt)] ≤ L(0) + Llip ·M ·Gmax (32)

Therefore, the expected loss under our LIM mechanism is bounded, providing the theoretical founda-
tion for our subsequent regularization analysis.
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C.5 BOUNDING THE REGULARIZATION TERM

We now establish the bound on the regularization termR(yt, ūt) as stated in Theorem 1.

From the analysis in the previous section, the dominant contribution to R(yt, ūt) comes from the
quadratic term:

R(yt, ūt) ≈
1

2

∑
i

(yt,ig
′(ūt,i))

2[∇2L(y∗
t )]i,iσ

2
i (33)

Bounding the diagonal Hessian elements by the maximum eigenvalue λmax:

[∇2L(y∗
t )]i,i ≤ λmax(∇2L(y∗

t )) (34)

Therefore: ∑
i

(yt,ig
′(ūt,i))

2[∇2L(y∗
t )]i,iσ

2
i ≤ λmax(∇2L(y∗

t ))
∑
i

(yt,ig
′(ūt,i))

2σ2
i (35)

The term γ in Theorem 1 captures the combined effect of model outputs, gate sensitivity, and
fluctuation variance. We can bound:∑

i

(yt,ig
′(ūt,i))

2σ2
i ≤ γϵ2 (36)

where γ is a dimensionless constant and ϵ2 = E[∥εt∥2] =
∑

i σ
2
i .

Let λmax = maxt λmax(∇2L(y∗
t )).

Therefore:

R(yt, ūt) ≤
1

2
λmax · γϵ2 =

γ

2
· λmax · ϵ2 (37)

This establishes the bound stated in Theorem 1.

C.6 LOSS LANDSCAPE VISUALIZATION

To qualitatively verify our theorized regularization effect, Figure 6 presents a comparison of loss
landscapes between Mamba fine-tuned with standard LoRA and our Memba approach. The land-
scapes are visualized for models fine-tuned on the Diabetic Retinopathy dataset from the VTAB-1k
benchmark. The visualization reveals two key findings that align with our theoretical analysis: (1)
Memba achieves a lower overall loss (minimum error 0.2459 vs. 0.2811), demonstrating its better
optimization capability; and (2) Memba produces a smoother, more convex loss landscape with
more gradual contour transitions. The smoother geometry suggests LIM helps avoid sharp minima,
potentially contributing to its improved generalization performance and stability during fine-tuning.

MembaOriginal 
SSM

Figure 6: Loss landscapes of original SSM and Memba.
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Figure 7: Overall architecture of the original Mamba block.

D ORIGINAL MAMBA ARCHITECTURE

To facilitate understanding of our LoRA placement strategy in conjunction with the LIM neuron, we
present the overall architecture of the original Mamba block in Figure 7. The SSM core, enclosed in
the purple dotted box, follows the computations described in Equations equation 1, equation 2, equa-
tion 3, where Z represents the gating values. We highlight the four linear layers used for LoRA
insertion in blue: in proj, x proj, dt proj, and out proj. The ablation results reported in
Table 1 correspond to the impact of selectively applying LoRA to each of these layers in combination
with the LIM neuron.

E HYPERPARAMETER DETAILS

E.1 LANGUAGE TASK

For commonsense reasoning evaluation, we adopt the fine-tuning setup from (Hu et al., 2023;
Yoshimura et al., 2024). We train on a combined commonsense reasoning dataset containing approxi-
mately 170K examples for 3 epochs with a batch size of 16. Our LoRA configuration applies rank-64
adapters to the projection components (in proj and out proj, denoted as Win and Wout), and
rank-32 adapters to the gate components (Wgate

in and Wgate
out ). For the LIM neuron, we configure 4

chunks with a threshold of 1.0 and a leaky factor of 2.0. We employ model-specific learning rates:
1e-3 for Memba-130M, 5e-4 for Memba-370M and Memba-790M, and 1e-4 for Memba-1.4B. All
models are trained using a linear learning rate scheduler with 100 warmup steps.

E.2 VISION TASK

For vision evaluation, we use the VTAB-1K benchmark, which comprises 19 diverse datasets with
1,000 training examples each. Our training protocol consists of 100 epochs with a cosine learning
rate scheduler, 10 epochs of warmup, a learning rate of 1e-3, weight decay of 1e-4, and batch size of
32. For parameter-efficient fine-tuning, we employ architecture-specific LoRA configurations. The
Vim (Zhu et al., 2024) architecture uses ranks of 32 for Win, 96 for Wout, and 16 for gate-related
linear layers (Wgate

in and Wgate
out ). The VMamba (Liu et al., 2024c) architecture employs ranks of 64

for both Win and Wout, with rank 16 for gate components. For both architectures, we configure the
LIM neuron with 4 temporal chunks, a threshold of 1.0, and a leaky factor of 2.0.

E.3 S4 IMPLEMENTATION

We train the Memba-S4 architecture from scratch on the Long Range Arena (LRA) benchmarks (Tay
et al., 2020), which include ListOps, Text, Retrieval, Image, and Pathfinder tasks, in Section H.4.
These benchmarks are specifically designed to evaluate model performance on long-range sequence
processing. Table 5 provides the experimental configuration for our S4 implementation. For the
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gate modification component, we employ a 32-rank for gate components (Wgate
in and Wgate

out ), with 4
chunks. Additionally, we set the LIM threshold to 1.0 and use a leaky factor of 2.0.

Table 5: Experimental settings on training S4 architecture. #layers: the number of layers. d features:
dimension of feature maps. d state: dimension of state. lr: learning rate. we adopt the S5 (Smith
et al., 2022) training setup for other hyperparameters.

ListOps Text Retrieval Image Pathfinder

#layers 8 8 6 6 6
d feature 128 128 128 512 256
d state 64 4 4 64 64
batch size 50 16 32 50 64
lr 0.003 0.003 0.002 0.005 0.005
epoch 40 50 30 250 200

F VISUALIZATION OF TEMPORAL PROCESSING

(b) Saliency Map(a) Input (c) Membrane distribution

Figure 8: Membrane-driven temporal processing in Memba. Given input image (a), we present
saliency maps (b) and associated membrane distributions (c) throughout the sequence processing.

To understand Memba’s temporal processing, we analyze membrane dynamics on the Pathfinder task.
Figure 8 shows the relationship between visual attention and membrane activity during sequence
processing. Task-critical path segments, highlighted in purple and pink, trigger pronounced mem-
brane responses, demonstrating how the LIM neuron selectively amplifies relevant visual elements.
Additionally, the membrane baseline declines across temporal chunks, indicating adaptive forgetting
as new information accumulates.
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G INDIVIDUAL TASK ACCURACY FOR VTAB-1K BENCHMARK

We provide the details of individual task performance on VTAB-1K benchmark as shown in Table 6.
The Table 3 shows the averaged values of each category (Natural, Specialzed, and Structured).

Table 6: Per-task performances of VTAB-1k benchmark in Table 3. We separate three tables according
to baseline architecture: ViT-S, Vim-S, and Vanilla-VMamba-S. Avg. and Overall Avg. represent
average accuracy of each category and the average accuracy of overall tasks. Bold and underlined
values represent the best and second-best performance respectively.
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(a) ViT-S architecture pre-trained with ImageNet-1K.
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(b) Vim-S architecture pre-trained with ImageNet-1K.
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LoRA(in proj) 62.3 89.7 70.4 92.3 92.7 92.5 44.5 77.8 86.7 95.6 85.3 76.7 86.0 85.3 64.1 54.1 85.5 86.5 54.5 35.1 42.4 63.4 73.5
LoRA(out proj) 62.3 89.8 70.2 92.0 92.5 91.7 43.7 77.4 87.2 95.2 85.5 76.3 86.1 90.1 62.5 54.7 83.7 88.3 56.0 37.4 41.9 64.3 73.7
LoRA(in+out proj) 61.0 89.7 69.1 93.0 92.8 91.8 43.8 77.3 86.8 94.9 85.0 76.6 85.8 83.7 62.5 54.7 84.4 90.8 55.0 35.9 39.5 63.3 73.2
Memba(in proj) 62.3 89.9 70.4 92.7 93.0 91.5 43.9 77.7 87.0 95.3 85.4 76.5 86.1 88.1 64.0 53.6 84.1 89.3 55.3 34.1 42.8 63.9 73.7
Memba(out proj) 62.6 90.1 71.2 92.4 92.5 91.8 43.8 77.8 87.4 95.1 85.1 76.2 86.0 90.6 63.8 55.4 83.8 91.5 56.2 37.2 40.5 64.9 74.1
Memba(in+out proj) 61.1 87.8 68.4 93.2 92.2 92.8 44.5 77.1 87.9 95.0 85.1 76.7 86.1 88.1 63.9 54.6 83.7 90.4 54.1 35.9 40.8 63.9 73.5

(c) Vanilla-VMamba-S architecture pre-trained with ImageNet-1K.

H ADDITIONAL ABLATION STUDY

In this section, we conduct comprehensive ablation studies to provide deeper insights into Memba’s
design choices and performance characteristics. We systematically examine five key aspects: (1) the
impact of chunk count on LIM neuron performance, (2) accuracy comparisons under iso-parameter
conditions, (3) parameter allocation within the LIM neuron, (4) performance comparison with
traditional recurrent gating mechanisms, and (5) computational overhead analysis through inference
time measurements.

H.1 NUMBER OF CHUNKS

The number of chunks in the LIM neuron determines the computational iteration of membrane
dynamics. Table 7 presents accuracy comparisons across different numbers of chunks for both
language and vision tasks. For language tasks, we employ the Memba-130M architecture on
commonsense reasoning benchmarks. For vision tasks, we utilize the Vim-S architecture evaluated
on Camelyon, EuroSAT, Resisc45, and Retinopathy datasets from the VTAB-1K benchmark. Across
both task domains, LIM with 4 chunks achieves optimal performance while maintaining reasonable

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

inference time. The reported inference time corresponds to LIM neuron processing only. Notably,
inference time does not scale proportionally with the number of chunks, as increasing the chunk
count results in smaller sequence lengths per chunk.

Table 7: Accuracy comparison across different numbers of chunks. #chunk represents the number
of chunks in the LIM neuron. For language and vision tasks, we use Memba-130M and Vim-S
architectures, respectively. Inference times are measured during vision task evaluation.

#chunk Language (%) Vision (%) Inference time (ms)

2 43.9 85.60 1.5
4 44.3 85.66 1.7
6 44.1 85.43 1.8
8 43.7 85.36 2.0

H.2 ISO-PARAMETER ACCURACY COMPARISON

To verify the effectiveness of Memba under fair comparison conditions, we evaluate accuracy with
the same number of learnable parameters as previous works, particularly MambaPeft (Yoshimura
et al., 2024), as shown in Table 8. To match the parameter count, we apply LoRA only to the output
projection (Wout) and reduce the rank of gate components (Wgate

in and Wgate
out ) to 16. This configuration

matches the parameter count of MambaPeft’s ”LoRA (in proj)” setting, and our Memba consistently
achieves better performance across all architecture sizes.

Table 8: Performance comparison between Memba and MambaPeft (Yoshimura et al., 2024) on com-
monsense reasoning datasets. Reported values are accuracy percentages (%). Bold and underlined
entries indicate the best and second-best performance, respectively. HS and WG refer to the Hel-
laSwag and WinoGrande datasets.

Model Method #Params(%) BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg.

Mamba 130M

Full 100 56.1 65.3 38.7 35.3 52.0 46.4 25.7 32.8 43.8
Additional-scan 0.51 57.8 64.1 37.5 34.5 53.0 41.3 23.5 30.0 42.7
Affix-tuning 64.64 59.7 64.3 38.2 35.2 51.9 42.9 24.0 29.0 43.2
LoRA (in proj) 2.23 53.5 62.9 38.2 33.8 53.1 46.4 23.7 30.8 42.8
LoRAp (X) 2.67 61.7 64.0 39.5 34.3 52.2 43.5 25.3 29.4 43.7
Memba 2.23 56.3 64.5 39.1 34.4 51.6 48.0 24.0 29.4 43.4

Mamba 370M

Full 100 58.1 69.9 41.9 45.7 53.8 52.7 29.7 33.4 48.2
Additional-scan 0.47 61.9 69.3 41.2 45.3 54.9 49.5 28.4 31.4 47.7
Affix-tuning 68.88 61.2 68.4 39.6 46.2 55.4 48.2 28.2 30.6 47.2
LoRA (in proj) 2.07 55.4 68.6 41.0 44.7 54.1 52.4 28.3 33.4 47.2
LoRAp (X) 2.67 60.8 68.8 42.1 44.7 56.2 50.4 27.4 32.2 47.8
Memba 2.07 56.2 69.2 42.1 44.8 55.7 56.0 28.3 33.4 48.2

Mamba 790M

Full 100 62.0 72.1 44.8 54.0 55.9 57.7 31.2 35.2 51.6
Additional-scan 0.33 63.0 71.9 41.9 54.2 57.1 54.9 30.0 32.6 50.7
Affix-tuning 69.99 61.0 72.5 41.0 54.9 55.6 54.6 29.6 33.8 50.4
LoRA (in proj) 1.47 61.7 71.9 44.0 50.8 56.7 56.3 30.5 33.8 50.7
LoRAp (X) 1.75 59.9 72.2 44.2 52.8 58.0 53.7 30.8 34.8 50.8
Memba 1.47 58.8 72.2 44.1 54.7 58.3 61.5 31.1 34.0 51.8

Mamba 1.4B

Full 100 61.4 73.3 43.9 56.9 59.0 59.7 34.0 35.4 53.0
Additional-scan 0.26 63.0 73.5 42.8 57.5 60.5 60.9 32.4 37.4 53.5
LoRA (in proj) 1.13 62.6 73.6 43.7 55.6 59.7 58.3 31.7 35.6 52.6
LoRAp (X) 1.36 63.1 73.5 42.7 57.7 61.6 60.4 32.9 37.4 53.7
Memba 1.13 64.1 73.9 43.4 58.3 60.8 65.1 32.3 37.6 54.5

H.3 PARAMETER ALLOCATION ANALYSIS

To provide deeper insights into Memba’s parameter efficiency, Table 9 presents a detailed breakdown
of parameter allocation across different model sizes. Unlike traditional PEFT methods that distribute
parameters across various projection layers, Memba strategically allocates all trainable parameters to
the gate projections (Wgate

in and Wgate
out ) within the LIM neuron. For instance, in the Mamba-790M

configuration, Memba allocates 4.72M parameters to input gate projections and 7.08M parameters
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to output gate projections, totaling 11.80M parameters, identical to the baseline LoRA (in proj)
method. This targeted allocation enables Memba to enhance temporal processing capabilities while
maintaining parameter efficiency. Notably, Memba consistently outperforms baseline methods across
all model sizes: achieving 1.1% improvement over LoRA p(X) for Mamba-790M (51.8% vs 50.8%)
and 0.8% improvement for Mamba-1.4B (54.5% vs 53.7%), demonstrating that strategic parameter
placement in the gating mechanism is more effective than conventional projection-based adaptations.

Table 9: Parameter allocation and performance comparison for Memba. The ”#Params” column
represents the total number of trainable parameters, ”Wgate

in + Wgate
out ” shows the parameters dedicated

to the gate modules in the LIM neuron, and ”Others” represents all remaining parameters excluding
the gate modules.

Model Method # Params Wgate
in + Wgate

out Others Avg. Acc. (%)

Mamba-130M
LoRA (in proj) 2.95M - - 42.8
LoRA p(X) 3.54M - - 43.7
Memba 2.95M 1.18M 1.77M 43.4

Mamba-370M
LoRA (in proj) 7.87M - - 47.2
LoRA p(X) 9.44M - - 47.8
Memba 7.87M 3.15M 4.72M 48.2

Mamba-790M
LoRA (in proj) 11.80M - - 50.7
LoRA p(X) 14.16M - - 50.8
Memba 11.80M 4.72M 7.08M 51.8

Mamba-1.4B
LoRA (in proj) 15.73M - - 52.6
LoRA p(X) 18.87M - - 53.7
Memba 15.73M 6.29M 9.44M 54.5

H.4 COMPARISON WITH TRADITIONAL RECURRENT GATING MECHANISMS

Our LIM neuron is designed to enhance Mamba’s temporal adaptation capabilities through recur-
rently evolving membrane potentials. To evaluate this approach against established alternatives, we
compare LIM with traditional recurrent architectures by replacing LIM with LSTM (Hochreiter &
Schmidhuber, 1997) and GRU (Chung et al., 2014) in the gate path.

Table 10 presents a comprehensive comparison across two distinct scenarios: vision adaptation tasks
using the Vim-S architecture on VTAB-1k, and sequence modeling tasks on the Long Range Arena
(LRA) benchmark (Tay et al., 2020) using S4 (Gu et al., 2021a) trained from scratch. Our LIM
neuron consistently outperforms both LSTM and GRU across domains while offering two significant
advantages: (1) zero learnable parameters and (2) lower inference latency. The superior performance
of LIM stems from its temporal processing driven by membrane dynamics, whereas LSTM and GRU
rely on parameter-heavy gating units that increase computational cost with trivial improvement to
temporal modeling capability.

Table 10: Comparison of LIM with other recurrent units in terms of performance, parameter count, and
latency. We report average accuracy (%) on two benchmarks: VTAB (using the Vim-S architecture)
and Long Range Arena (using the S4 architecture). # Params denotes the number of learnable
parameters per unit given a hidden dimension H , excluding the input and output projection layers
(Wgate

in and Wgate
out ) which are applied consistently across all methods. Latency refers to inference

time per batch measured on the S4 architecture using an A100 GPU.

Gate # Params Vim-S S4 Latency (s)
VTAB ListOps Text Retrieval Image Pathfinder Avg.

LSTM 8H2 + 4H 71.59 62.10 88.00 91.37 89.60 96.75 85.57 0.189
GRU 6H2 + 3H 71.68 61.80 87.97 91.70 89.02 96.81 85.46 0.188
LIM (ours) 0 72.33 62.05 89.60 91.52 89.88 97.12 86.04 0.150
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H.5 INFERENCE TIME ANALYSIS

The proposed Memba incorporates the LIM neuron, which introduces inevitable recurrent computa-
tion for membrane accumulation and reset mechanisms. To quantify this computational overhead
compared to previous PEFT methods on Mamba, we provide an inference time comparison based on
Table 4(a). Table 11 demonstrates how the LIM module affects both accuracy and inference time.
Since membrane transfer has a negligible impact on inference time, we exclude its influence from our
analysis. We conduct experiments on language and vision tasks using the Memba-130M and Vim-S
architecture, with inference times measured on single-batch evaluation.

Memba, which integrates LIM, LoRA, and membrane transfer, achieves higher performance on both
language and vision tasks. However, this comes with an 8.8% inference time overhead compared to
Mamba with LoRA. This overhead stems from the iterative operations required for membrane accu-
mulation in the LIM neuron. Nevertheless, the 8.8% increase represents a modest computational cost,
and our chunked sequence processing approach in the LIM neuron effectively balances performance
gains with inference efficiency.

Table 11: Inference time analysis with different Memba components. The table shows the impact of
each component on accuracy and computational overhead. For language and vision tasks, we use
Memba-130M and Vim-S architectures, respectively. Inference times are measured during vision
task evaluation on a single batch.

1⃝ LIM 2⃝ LoRA 3⃝Membrane Transfer Language (%) Vision (%) Inference Time (s)

✗ ✓ ✗ 43.8 85.3 0.517
✓ ✓ ✓ 44.3 85.7 0.563

I COMPREHENSIVE MEMORY AND LATENCY ANALYSIS

To provide a complete understanding of the computational requirements of Memba, we present
comprehensive GPU memory and inference latency comparisons across baseline methods, model
sizes, and task domains. For language tasks, we measure GPU peak memory during fine-tuning and
per-sample inference latency on the ARC-Easy benchmark, shown in Table 12.

Table 12: GPU memory and inference latency comparison on language tasks (ARC-Easy benchmark).
Latency represents per-sample inference time.

Model Method Learnable Param (%) GPU Peak Memory (GB) Latency (s)

Mamba-130M

SLL LoRA 1.45 2.62 0.015
Additional-scan 0.51 2.17 0.014
Affix-tuning 0.17 2.49 0.013
LoRA (in+out) 3.53 2.51 0.014
Memba 3.95 2.82 0.020

Mamba-370M

SLL LoRA 2.30 5.00 0.027
Additional-scan 0.47 4.15 0.023
Affix-tuning 0.16 4.50 0.021
LoRA (in+out) 2.28 5.00 0.024
Memba 3.67 5.80 0.044

Mamba-790M

SLL LoRA 3.10 8.20 0.028
Additional-scan 0.33 6.56 0.023
Affix-tuning 0.11 6.97 0.021
LoRA (in+out) 2.32 8.03 0.024
Memba 2.61 9.21 0.045

Mamba-1.4B

SLL LoRA 4.64 12.49 0.028
Additional-scan 0.26 9.65 0.024
Affix-tuning 0.09 9.71 0.021
LoRA (in+out) 1.80 11.90 0.025
Memba 2.02 13.60 0.045

Memba incurs approximately 12-14% additional GPU memory overhead compared to LoRA (in+out),
which is required for storing membrane potentials across layers to enable cross-layer membrane
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transfer. We observe that inference latency appears to be largely independent of hidden dimension size.
Mamba-370M, 790M, and 1.4B exhibit similar latency despite having different hidden dimensions,
as they share the same number of layers. In contrast, Mamba-130M shows noticeably lower latency
due to its shallower architecture with fewer layers. Regarding the latency overhead introduced by
recurrent operations in the LIM neuron, as discussed in the Limitation section (Section J), this latency
can be substantially reduced through CUDA kernel optimization.

Table 13: GPU memory and inference latency comparison on vision tasks (Caltech101 dataset in
VTAB-1k benchmark).

Model Method Learnable Param (%) GPU Peak Memory (GB) Latency (s)

Vim-S LoRA (in+out) 13.98 7.68 0.517
Memba 15.60 9.85 0.563

For vision tasks in Table 13, we observe similar patterns on the VTAB-1k benchmark using the Vim-S
architecture. The memory overhead is approximately doubled compared to language tasks because
Vim-S uses bidirectional SSM with two gate paths, requiring storage of membrane potentials for two
LIM neurons. The inference latency increase remains modest. These resource requirements represent
a reasonable trade-off given the substantial performance improvements demonstrated in Tables 2
and 3.

J LIMITATIONS

We propose Memba to enable temporal adaptation during fine-tuning without disrupting the balanced
dynamics of pre-trained SSMs. To achieve this, we introduce the LIM neuron in the gate pathway
while preserving the original SSM components. The LIM neuron accumulates membrane dynamics
with a reset function, which inherently introduces recurrent computation and consequently incurs
additional computational overhead. Although the selective scan operation in SSMs also involves
recurrent computation, Gu et al. (Gu & Dao, 2023) address this efficiency challenge through special-
ized hardware kernel modifications. Similarly, our LIM algorithm can be integrated into optimized
CUDA kernels in future implementations. The widely-used SpikingJelly framework (Fang et al.,
2023) demonstrates that custom CUDA kernels for LIF neurons achieve up to 30× speedups through
operator fusion, where element-wise operations (leaky decay, addition, reset) are fused into a single
kernel launch. Our chunk-based recurrent operations can directly leverage this optimization approach,
as the sequential dependency between chunks does not prevent intra-chunk parallelization. We expect
this would achieve negligible computational overhead comparable to the selective scan kernel.
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