© © N O O A~ W N =

27
28
29
30
31
32

33
34
35
36

SCALAR: Self-Supervised Composition and Learning
of Skills with LLM Planning and RL

Anonymous Author(s)
Affiliation
Address

email

Abstract

A core challenge in reinforcement learning (RL) is effective exploration, particu-
larly for long-horizon tasks. Recent approaches have explored the utility of large
language models (LLMs), combining capabilities to 1) decompose objectives into
skills and 2) generate code such as rewards and verifiers. However, ad hoc prompt
and program designs, as well as their reliance on single proxy rewards, can lead to
reward hacking and hallucinations. Furthermore, synthesizing the correct functions
remains challenging without actual environment interactions. To address these
challenges, we propose Self-Supervised Composition and Learning of Skills
(SCALAR), an iterative, bi-directional framework that couples an LLM planner
and low-level RL controllers through a skill library. The skill library is a set of
skills that, when composed, define a set of furthest reachable states by the current
agent. In SCALAR, the library is iteratively expanded by a high-level LLM planner
in conjunction with low-level RL agents. In one direction, an LLM planner uses in-
formation in the skill library to propose new skills with (1) preconditions reachable
through existing skill compositions and (2) termination conditions unachievable by
current skills. Reusing existing skill compositions narrows the task of the RL agent
to exploring (2) rather than returning to known states (1). In the other direction, the
LLM planner refines its world knowledge concurrently with RL training by ana-
lyzing successful RL trajectories. We call this process Pivotal Trajectory Analysis.
We evaluate SCALAR on the Crafter benchmark, a challenging long-horizon task,
in which SCALAR achieves 86.3% diamond-collection success, surpassing the
previous state-of-the-art methods in overall performance and convergence speed.
These results show that frontier-guided skill composition, together with verifier-
based learning and bi-directional refinement, yields substantially more reliable
long-horizon control under sparse rewards.

1 Introduction

Recent progress in large language models (LLMs) [} 2} 13} 14115, 16} [7] and inference-time scaling [8} 9]
has led to rapid advancements in LLM-based Al agents [10} [11} 12} [13} 14} [15} [16} 17, [18} [19} 20].
However, large language models suffer from extended inference times that may not be suitable for
real-time control. By contrast, Reinforcement Learning (RL) can produce strong low-level control
policies given sufficient trials and supervision [21} 22| 23], 24| |25]], but RL agents lack the extensive
prior knowledge and explicit reasoning capabilities available to LLMs.

Integrating LLMs and RL promises to combine complementary strengths: the structured reasoning
and common-sense knowledge of language models with the sample-efficient low-level control of RL.
Early work has demonstrated promising results by using LLMs for reward shaping [26} 27, 28| 29/ 30]
and policy guidance [17,130]. In particular, LLMs are effective at generating reward functions and

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40

41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68

69
70
71
72

73

74
75

Dynamic Skill Composition Diamond Collected (%)

Frontier of RL Exploration
to Reach Frontier of o

LLM Suggests the
Next Frontier Skill &

4 R
' \
J
| O
Context @ X y
0 200 400 600 800 1000

skill2
World Knowledge Frames (M)

* Knowledge Base X Trajectory Analysis t“l RLon S —— SCALAR-Dense (Our Method) === PPO-FC ic™
« Skill Library 2 SCALAR-Sparse (Our Method) E38 PPO-RND

== PPO-RNN

~
IS

& ?
Diamond Collected (%)
2 o o

s 3 3

Figure 1: Left: SCALAR maintains 1) a frontier skill library, which is used to inform RL of next
task outside of the exploration frontier, and 2) a knowledge base, which stores current knowledge and
assumptions the LLM has about the environment. Right: SCALAR has 2x higher success rate for
collecting diamond, the hardest achievement in the Crafter benchmark.

assisting with task decomposition due to their coding and problem-solving capabilities—features
we seek to leverage for RL integration. However, real-world tasks often involve domain-specific
knowledge and long-horizon planning requirements, which increase compositional complexity and
make reasoning more challenging for LLMs [[16,[31].

In this work, we propose Self-Supervised Composition and Learning of Skills (SCALAR), an iterative,
bi-directional framework designed to address these challenges by tightly coupling symbolic high-level
LLM planning with low-level RL. The core of SCALAR is a skill library, a set of skills that, when
composed, define the set of furthest reachable states by the current agent. This definition formally
connects the dots between RL exploration [32] with few-shot LLM planning [[12]. Under SCALAR,
the LLM planner proposes new candidate skills with symbolic preconditions and gains, along with
reward/verifier templates; candidates are admitted only if they are both feasible from and novel with
respect to the current frontier of reachable symbols. During RL training, SCALAR exploits the
feasibility by composing existing skills from the skill library to effectively return to the starting states
of new skills before initiating RL training. This design focuses RL training on novel scenarios and
reduces the burden of long horizon explorations [32].

Under SCALAR, the LLM planner and RL controller could be viewed as a single agent tasked to
expand the set of reachable symbols/states defined by the skill library. Therefore, trajectories from
low-level RL controllers should not only benefit RL training, but also improve the LLM planner.
Motivated by [33] we take the first few successful RL trajectories (pivotal trajectories) and feed
them back to the planner via Pivotal Trajectory Analysis. The LLM planner reasons with the pivotal
trajectories, (i) refines the proposed skill’s preconditions and gains to match the environment’s
affordances, and (ii) expands the symbolic knowledge used for future proposals. This iterative
feedback loop improves the planner’s priors, enabling progressively richer and more compositional
behaviors.

We evaluate SCALAR on the Crafter benchmark [34], a long-horizon, sparse-reward survival and
crafting environment where purely scalar rewards and standard exploration techniques struggle.
Across environments, SCALAR consistently expands the frontier of reachable states and converts
symbolic proposals into executable skills with high success rates. Empirically, this produces sub-
stantially higher diamond-collection rates and shorter training episodes compared to SOTA baselines
(Fig.[T), demonstrating that combining skill composition with verifier-based training enables agents
to solve tasks that are otherwise difficult to reach using scalar rewards alone. Our contributions are as
follows:

* Combining LLM-guided planning and RL-based skill grounding within bi-directional loop

» Formalization of frontier skill discovery, connecting RL exploration [32]] and LLM planning [12]
* Pivotal Trajectory Analysis for concurrently refining skill specifications using successful rollouts
» Substantial performance and efficiency improvements on the Crafter vs PPO baselines

2 Related Work

Reward Shaping with LLMs Reinforcement learning for long-horizon tasks faces significant
challenges in defining precise reward functions that effectively guide learning without introducing

76
77
78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102

104
105
106
107
108
109
110
111
112

113

114
115
116
117
118
119
120
121

122
123
124

125
126

unintended behaviors [35} 136} 137]]. To address these limitations, intrinsic motivation and reward
shaping techniques have been developed to provide additional unsupervised learning signals [38]].
Recent work has investigated leveraging the code generation and reasoning capabilities of language
models to automatically construct reward functions from task descriptions. Early explorations of
LLMs for reward shaping [26} 27, 28] began with applications where the LLM generates a reward
function for the whole task without direct involvement in agent interactions. [39] extends this
by allowing LLMs to provide dynamic reward adjustments based on agent interactions, assigning
positive feedback to beneficial actions and negative feedback to detrimental ones. [40]] integrates
LLM-generated subgoal hints into model rollouts, providing intrinsic rewards for goal completion
and guiding agents toward meaningful exploration in challenging tasks.

Skill Decomposition and Learning An alternative approach to handling long-horizon tasks in-
volves learning a collection of skills rather than a single monolithic policy. Traditional skill discovery
methods [41}[32] focus on identifying useful behavioral primitives through exploration and graph-
based representations. [42] develops multi-level skill hierarchies for navigation in maze-like domains,
while a large body of work frames skill emergence as maximizing dependence between states and
skill labels via mutual information (MI) [43] 144l 45|46l 47, 48]]. However, discriminator-based MI
objectives can saturate once a classifier perfectly separates skills, often yielding behaviors that differ
only in subtle, non-salient ways [44]. To promote more behaviorally distinct skills, recent methods
replace MI with Wasserstein dependency measures [49, 150, [51} 152} 53], pairing the objective with a
task-relevant metric (e.g., Euclidean distance in state space [51]] or controllability-aware distances that
favor rare transitions [52f]). The advent of LLMs has further enabled skill decomposition by turning
high-level goals into skill definitions with dense rewards and termination conditions [54} 155 56], or by
generating subgoal sequences before training [S7]]; yet these typically follow a one-shot, feedforward
plan that is not refined from interaction.

Learning from Environment Interactions A critical limitation of current LLM-based skill de-
composition methods is their reliance on static, one-shot planning that cannot adapt when the initial
context provided to the LLM is insufficient for the task at hand. Learning about the environment
from interactions becomes essential when the LLM’s initial understanding is incomplete or incorrect.
LLM self-improvement through environment feedback has shown success in coding [58} 159] and
planning agents [[17, 60], with structured prompting techniques enabling generate-evaluate-reflect
cycles. [60] demonstrates that LLMs can gather and store information about environment dynamics
from low-level interactions, though prior work primarily considers LLM-as-agent settings. Our
approach, SCALAR, addresses the gap in existing LLM-based skill decomposition methods by
introducing bi-directional learning from environmental interactions. Unlike previous approaches that
generate static skill decompositions, SCALAR continuously refines its understanding of both skill
specifications and environment dynamics through Pivotal Trajectory Analysis, enabling adaptive skill
learning that improves with experience.

3 Preliminaries

Our goal is to learn a library of temporally extended skills that can be composed to solve long-horizon,
partially observable tasks. The agent interacts with an environment while an external proposer (e.g.,
an LLM) suggests candidate skills and reward specifications; the algorithm must decide when a
skill may start, when it ends, and what it achieves. To support these decisions, we introduce a
symbolic abstraction of observations into Boolean fluents and define options over this symbolic state.
This lets us compute which fluents are currently reachable with the available skills and identify the
boundary—the exploration frontier—where learning the next skill is most useful. The definitions
below establish this formal footing used by our method in later sections.

Tasks as POMDPs. We model tasks as POMDPs (S, A, T, R,Q, O,), where S are states, A
actions, 7" the transition kernel, R : S x A— R rewards, () observations, O the observation kernel,
and v € [0, 1) the discount.

Symbolic abstraction. We encode observation histories with ® : Q — Z so that z; = ®(0p..),
mapping into symbolic states in alphabet Z. Let F be the universe of atomic symbols (“fluents”); a

127
128

129
130

131
132

133

134

135
136

137
138

139

140

141

142
143
144
145

Frontier Skill Library £

a) Collect Wood Dynamic Composition
Requires: N/A to Reach Exploration Frontier F
Knowledge Base K Produces: Wood * 1

* Collect Wood requires N/A :) Craﬂ Y\\,I\;)oj l?rlc:laxe Generated Reward
(confirmed) equires: Wood, Table Verified
S Produces: Wood Pickaxe * 1 ¥ Verifie
« Iron Pickaxe requires 3 Irons (to
be confirmed) ° qulect Stong Generated Reward
Requires: Wood Pickaxe * 1 &l
-~ Produces: Stone * 1
=
@ Produces: Stone * 1

T1 72 73 T4 T5 76 7 T8 | Success 2
g — |
1|2 [73 14 [75 |77 [7 |78] ... Failure X

RL Training Trajectories

0) Craft Stone Pickaxe 100 :

| Requires: Stone * 1, Wood *1 Generated. Beward i Reward RL Training tm
i Unverified !
: ; (o o o]

Skill
Generation

Figure 2: Method: frontier-guided RL with skill generation and verifier-decoupled rewards. The
LLM proposes candidate skills with preconditions and outputs; rewards for each skill are generated
and verified. Skills are dynamically composed to reach the exploration frontier, and the agent performs
RL using these rewards, yielding success/failure trajectories. Successful (pivotal) trajectories update
the knowledge base and extend the frontier.

labeling map L : Z — 27 returns the fluents true in z, i.e., L(z) C F. These fluents specify skill
initiation, termination, and achievements.

Skills. A skill o is an option 0 = (I, 7, 8,) [61]] with initiation set I, C S, policy 7, and
termination S, : S — [0, 1]; equivalently it terminates in B, = {s: ,(s) =1}.

Skills over symbols. We lift initiation and termination to the symbolic layer via fluent predicates
o, Ty : 27 — {0,1}. The symbolic initiation and symbolic termination regions are

IZ={z€Z:1,(L(z) =1}, BZ={z€Z:7,(L(z))=1}.
Execution of o may start at any z € IZ and terminates upon first entry into BZ.
Reachability and the frontier. Let X be the skill library. For each o € ¥, fix a conservative

achievement set A, C F of fluents that hold upon termination, and given known fluents P C F,
define the one-step fluent closure:

A, C m L(z), Closex(P) = P U U A,
2€BZ 0EX: 1, (P)=1

Starting from base fluents Py = L(z) of the current symbolic state, the reachable fluents form the
least fixed point

Fo(Py) = lim Closel™ (Py).
k— o0
We call 7%, (Py) the frontier. The induced set of frontier symbolic states
Z5(Po) = {2 € 2: L(z) C Fy(Ry))

identifies starting points for learning new skills that extend reach beyond the current frontier.

4 SCALAR: Self-Supervised Composition and Learning of Skills

This section introduces SCALAR, an iterative procedure that augments the skill library ¥ with
frontier-expanding skills: the initiation region is reachable from Py = L(z), and the termination
region contributes new fluents beyond F%,(FPp). Concretely, a proposed skill oney comes with
initiation and termination predicates over fluents (i, , o,). SCALAR forms a closed loop for

146
147
148
149
150

151
152
153
154

155
156
157

158
159
160
161
162
163
164

165
166

167
168
169
170
171

172
173

174
175
176
177
178
179
180
181
182
183
184

185

186
187
188

189
190
191
192

LLM-guided skill discovery: an agent explores a game-like world while an LLM analyzes trajectories,
hypothesizes new skills with reward functions, verifies those rewards from execution data, and stores
confirmed facts in a growing knowledge base KC. The LLM then dynamically composes verified
skills to push the agent farther to the exploration frontier, creating bi-directional feedback between
symbolic planning and RL execution. An overview is given in Algorithm [2]and Figure 2]

Knowledge base and initialization. We initialize X from plain-text specs of the agent’s world: a
list of state symbols (e.g., block names, inventory item names and counts) and the discrete actions the
agent can take. From these definitions we instantiate a small predicate set over Z and mechanically
compose actions with state predicates to generate hypothesized initiation/termination pairs

(LU, Tg) : 2}-%{0,1},
All such predicates/sets are explicitly marked as hypotheses. For example, the knowledge base might

initially contain “Iron Pickaxe requires 3 Irons (to be confirmed)” based on general world knowledge,
even though the actual requirement in this environment may differ.

Proposing new skills with LLM priors. Guided by K, a language model proposes a new skill
Onew = (Loyew s Tonews 25 K2) Dy specifying symbolic initiation and termination along with learning
signals, where rz : Z x A x Z — R is a proposed shaping/reward and vz : Z — {0,1} is a
completion indicator consistent with termination, typically kz(z) = 7, (L(z)). The knowledge
base induces priors (i, , Tonew) ~ Hprea(- | prompt,) and (rz,xz) ~ Ily(- | prompt, K). For
instance, the LLM might propose “craft iron pickaxe” with initiation requiring 2 wood, 3 iron, and a
crafting table (based on Minecraft priors) and termination achieving +1 iron pickaxe.

Pre-policy verification. Before any learning, we test the proposed skill against the current frontier
F5(Po):
(Novelty) 3P C Fs.t. 75, (P)=1and P F5(Fy), (Feasibility) ¢y, (F5(FP)) =1.

The first check rules out skills whose termination condition does not imply any fluent beyond what is
already reachable by composing existing skills; the second ensures the proposed initiation condition
can be satisfied with the current skill library. For instance, if crafting an iron pickaxe is already the
gain of another skill, the novelty check would reject the proposal, while if we lack skills to collect
wood or iron, the feasibility check would fail.

Training Only proposals passing the above criteria proceed to learning. Let the admissible start set
for opew bE

Sstart(Onew) = {2 € Z ¢ 16, (L(2)) =1 and L(z) C F5(P) }.

We sample a start state z* uniformly from S (Onew) and first return to that state using only existing
capabilities: if the environment supports resets we initialize at an observation oy with ®(0p) = 2*;
otherwise we execute a feasible composition of skills from X until the encoded state satisfies
®(04) = z*. Once z* is reached, we then explore by collecting experience to learn 7, under the
proposed reward rz (or members of the ensemble R), while success is determined exclusively by
the termination predicate 7, (L(z;)) = 1 (equivalently, £z (z;) = 1). Episodes terminate when
Tonew (L(2¢)) = 1 or after a fixed horizon H. For the iron pickaxe example, we would first navigate
to a state with 2 wood, 3 irons, and a crafting table, then explore actions to learn the crafting behavior.
This first-return-then-explore regimen isolates exploration in neighborhoods where the initiation
condition holds and stabilizes credit assignment by isolating the new behavior from the roll-in. An
instantiation with PPO is given in Algorithm T}

O

Pivotal Trajectory Analysis From successful rollouts o, = (.,Z(T’Z)) we form fluent

trajectories s(*) = (L(z(()k)), Cee L(zgz))). An LLM analyzes these trajectories to refine the symbolic

specification of the skill by tightening its initiation and termination predicates and updating the
knowledge base. Concretely, we obtain

(fosen Tonens K') = ULLM(’C§ {S(k)}k>,

where o To o — {0, 1} are revised predicates consistent with observed starts and termi-
nations. For instance, successful iron pickaxe trajectories might reveal that only 1 iron (not 3) is
actually consumed, leading to updated knowledge base entries and revised initiation conditions. We
add the refined skill to ¥ with (7, ., To,..), update K < K’, and recompute the frontier 75 (P).

: 27

193
194

195
196

197
198
199
200
201
202

203

204
205
206
207
208

210
211
212

213
214
215
216

217
218
219
220

Method Setup (%) Pickaxes (%) Goal (%) Survival Episodes

Method Table Furnace Wood Stone Iron Diamond Energy Food Drink Ep. Len.
Baselines

PPO-RNN 100.0 99.9 100.0 99.7 97.8 40.8 74 9.1 105 284.1
PPO-FC 100.0 99.8 999 99.1 932 354 12.8 16.0 184 515.9
PPO-RND 99.9 99.7 999 98.8 96.7 38.1 145 184 209 591.7
ICM 0.0 00 00 0.0 00 0.0 86 89 92 306.7
E3B 4.0 00 02 0.0 0.0 0.0 28 43 53 140.2
Our Method (Ablations)

No Trajectory Analysis 99.6 942 99.6 993 93.7 74.1 135 17.1 195 558.2
Shared Networks 99.9 989 999 99.8 98.5 57.4 6.8 80 96 258.8
Our Method

SCALAR-Dense 99.9 98.1 999 99.7 97.8 81.8 145 18.7 21.2 610.3
SCALAR-Sparse 99.9 98.1 999 99.7 97.8 86.3 13,5 172 20.1 564.1

Table 1: Final performance comparison on Craftax-Classic diamond collection task. Achievement
rates reported as percentages; survival metrics (Energy/Food/Drink) show mean intrinsic recovery
per episode; episode lengths as raw values.

Mitigating reward hacking. Instead of committing to a single predicted shaping reward for a
candidate skill, we sample an ensemble

R = {r(zj) Nil ~ TIy(- | prompt, K)

and train a policy 7/) under each r(zj). Treating ~z purely as a task-level verifier, we esti-

mate the verified success rate §) = Pr[kz(zr) = 1|7\] from rollouts. We then select
j* € argmax;cqy, vy 89 (optionally restricting to j with $) > 1) and use 70" as the learned
controller for the skill. For example, one reward function might incentivize approaching crafting
tables, while another rewards inventory changes; however, regardless of reward, only the policy
that actually produces an iron pickaxe receives high verified success. By decoupling learning from
evaluation, policies that exploit proxy rewards without accomplishing the task receive low verified
success and are not selected.

S Experiments

We evaluate SCALAR on Craftax-Classic [34,62] against strong model-free baselines and targeted
ablations, using a JAX implementation of PPO for policy learning and GPT-4.1 as the LLM prior.
Across the suite, SCALAR matches or exceeds strong model-free baselines on achievements that
standard policies already master (e.g., Table, Furnace, Wood/Stone/Iron pickaxes); see Table
Consequently, we focus our analysis on the hardest benchmark, Diamond, where sparse progress
signals and long survival horizons are essential. On this task, SCALAR attains substantially higher
success than PPO variants while maintaining competitive upstream achievements (Table [T} learning
curves in Fig. [3] left). We report achievement success, survival behaviors (sleep/drink/eat), and
episode length.

Defining a Symbolic Encoder The observation space of Craftax-Classic is symbolic: an egocentric
7x9 local map (blocks/mobs), nearest-block offsets, inventory, and vitals. We take this parsed state
as our encoder and treat the current observation as sufficient for the symbol, so that z; = ®(0;) and

Skills In SCALAR, each skill o consists of reward, completion, requirements, consumption, and
gain functions, written as o = (7’27 kz, req(o), cons(o), gain(a)). These are consistent with the
formal predicates from Sec. [d} the requirement set encodes initiation, while gains/consumption
summarize the effects at termination:

(L) =1 <> req(o) CL(z), rz(2) = m(L(2) = 1.

221
222
223
224
225
226

227
228
229
230
231
232

233
234
235

237
238
239
240

241
242
243
244
245
246

247
248
249
250
251

Diamond Collected (%) Average Episode Length

Diamond Collected (%)

0 200 400 600 800 1000 0 200 400 600 800 1000
Frames (M) Frames (M)
== SCALAR-Dense (Our Method) === No Trajectory Analysis
SCALAR-Sparse (Our Method) ===« Shared Networks

Figure 3: Diamond collection success rate and episode length during SCALAR training. Left:
percentage of episodes collecting diamond (higher is better). Right: mean episode length during
training. Bold curves show moving window averaged performance; shaded regions/faint traces
show raw per epoch performance. Methods: SCALAR-Dense (blue), SCALAR-Sparse (green), No
Trajectory Analysis (orange dashed), Shared Networks (red dotted).

Intuitively, gain(c) C F collects fluents that (typically) hold upon termination, and cons(o) C
F captures fluents that are consumed or no longer hold after termination (e.g., spent resources).
For instance, craft iron pickaxe might have req(c) = {2 wood, 1 iron, NEAR(CRAFTINGTABLE)},
cons(o) = {2 wood, 1 iron}, and gain(o) = {1 iron pickaxe}. For count-valued fluents (inventory
quantities), we parameterize required/consumed/gained amounts with simple linear forms f(n) =
an + b in the number of executions n. The induced sets are

If:{z: req(o) C L(z) }, Bf:{z:Tg(L(z)):l}.

Ephemeral skills. We mark a skill o as ephemeral when its gains are not persistent across time or
position (e.g., NEAR(CRAFTINGTABLE) after walking away). The LLM decides ephemerality from
symbolic rollouts. During planning, if an ephemeral skill appears as a prerequisite, we substitute it
by its requirements: if PLACECRAFTINGTABLE requires 4 wood, then CRAFTPICKAXE requires
{6 wood, 1 iron} instead of {2 wood, 1 iron, NEAR(CRAFTINGTABLE)}. This ensures the frontier
reflects persistent capabilities rather than transient intermediates.

Skill Composition and Frontier Approximation Given a library ¥, we compose skills to reach
frontier states that satisfy a proposed skill’s requirements. Computing the full frontier 75 (Pp)
online is not compatible with JAX compilation, so we approximate it by tracing backwards from the
proposed skill’s requirements through the dependency graph induced by enumerating each skill’s
requirements, consumption, and gains. A level-order (BFS) traversal of this graph yields an execution
order in which all prerequisites of any skill appear in earlier layers; thus, when the proposed skill is
reached, its requirements are met. This produces a tractable subset of reachable fluents sufficient for
feasibility/novelty checks and, in practice, matches the states visited by the executed plan.

Training and Evaluation Protocol We train policies with PPO. Episodes initialize the environment
state randomly, as in standard RL, but execution follows the layer order from the dependency graph so
that, by the time the trajectory reaches the proposed skill, the encountered state distribution satisfies
its preconditions. We consider a skill successfully trained when its success rate matches at least some
« which in practice we set to 0.8. For a Goal Task, such as collecting diamond, we set o = 0.99 and
use all remaining budgeted frames once collect diamond skill is reached.

Baselines include PPO-FC/RND/RNN and intrinsic-motivation methods. Ablations remove trajectory
analysis, replace sparse rewards with dense shaping, or replace per-skill heads with a single shared
network while keeping the same execution order. We report Diamond success, survival proxies, and
episode length; early sample efficiency is summarized at 100M frames and final performance at the
training horizon, with matched budgets for fairness (cf. Fig[3] Fig[4] Table|[T).

252
253
254
255
256
257

259

261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282

284

286
287
288
289
290
291
292

293
294
295
296
297
298

299
300
301

303
304

Knowledge Base / Skill Updates via Pivotal Trajectory Analysis After each skill returns a
successful trajectory we run pivotal trajectory analysis that compares the skills inferred prerequisites
to what was actually required for the successful trajectory. This information is used to update the
prerequisites of the skill and update the knowledge base. For example, if our iron pickaxe skill
was initially learned with requirements {2 wood, 3 iron, NEAR(CRAFTINGTABLE)} but successful
trajectories show it only consumes 1 iron, the analysis updates the knowledge base to “Iron Pickaxe
requires 1 Iron (confirmed)” and revises future skill proposals accordingly. Prompts for this process
are detailed in Appendix [E]

5.1 Focused Rewards Enable Survival Learning

A notable qualitative difference is that SCALAR
learns to "live forever” in the sense of sustaining
long episodes before and during diamond search.
Because the environment’s native reward does not
directly incentivize sleeping, eating, or drinking,
early learning is dominated by other reward sig-
nals. Once the Diamond objective is introduced,
its sparsity makes the per-timestep health penalty
comparatively larger; the agent is thereby driven to

Diamond Collection Skill

Frontier Training Efficiency (%)

master survival subskills so that exploration for di- 0 0 ey
amond can proceed without premature termination. == SCALAR-Dense (Our Method) == No Trajectory Analysis
Empirically, mean episode length grows markedly SCALAR-Sparse (Our Method) -+« Shared Networks
during training (Fig.[3] right), coinciding with the

onset of reliable diamond collection. Figure 4: Fraction of training time spent on di-

amond collection vs. prerequisite skills. Y-axis
shows percent of total training frames allocated
to the target diamond skill after reaching the
iron-pickaxe frontier state. Higher values indi-
cate more efficient utilization of training budget.

This advantage becomes evident when examin-
ing survival behaviors conditional on episode
outcomes. In failed episodes, SCALAR agents
achieve dramatically better survival metrics—20.9
energy, 26.8 food, and 30.2 drink recovery com-
pared to the best baseline (PPO-RND) at only 13.9, 17.6, and 20.1 respectively (Table [5)). This
difference stems from reward focus: SCALAR’s diamond skill receives reward only for diamond
collection, making the health penalty relatively significant and driving survival behavior learning.
Baseline policies receive rewards for every achievement, diluting the importance of the health penalty
and preventing effective survival learning.

5.2 Dense vs. Sparse Reward Trade-offs

We compare training with LLM proposed dense shaping signals against strictly sparse objectives.
Dense rewards provide clear advantages for sample efficiency—SCALAR-Dense reaches 5.3%
diamond collection by 100M frames compared to only 0.3% for SCALAR-Sparse (Table), with the
learning-curve advantage evident in Fig[3] However, this early advantage comes at a cost: beyond
~300M frames, the sparse-only variant learns survival behaviors more aggressively, achieving higher
intrinsic recovery (17.2 energy, 20.1 food, 20.1 drink vs. 14.5, 18.7, 21.2 for dense), and ultimately
surpassing dense shaping in final diamond performance (86.3% vs. 81.8%; Table[I).

This trade-off reveals a fundamental tension: dense shaping accelerates initial skill acquisition by
providing intermediate feedback signals, but can inadvertently compete with the sparse health penalty
that drives long-horizon survival learning. Once diamond collection becomes the primary objective,
its sparsity amplifies the relative importance of health maintenance, driving agents to master sleeping,
eating, and drinking. Dense rewards may dilute this crucial signal, leading to shorter episodes and
reduced final performance despite faster initial progress.

Computational Cost. A key advantage of SCALAR’s architecture is that the LLM is not invoked
in the RL training loop. LLM calls are only made between training runs for high-level planning:
proposing new skills, generating reward/verifier code, and performing pivotal trajectory analysis. This
amortizes the cost of LLM inference over millions of environment steps. For all experiments reported,
including all baselines and ablations, the total cost of LLM queries was $2.83, corresponding to
1.429M input tokens and 125k output tokens.

305

306
307
308
309
310
311
312

314
315
316
317
318
319
320
321
322
323

324
325
326
327
328

330
331
332
333
334
335

336

337
338
339
340
341
342
343
344
345
346

347

349
350
351
352
353
354
355
356
357

5.3 Ablations

Pivotal Trajectory Analysis. We ablate the

trajectory analysis step that updates domain Resource No Traj Traj
knowlf.:dge from succe;sful rolloqts. Without Wood 19 9
analysis, the LLM prior overestimates mate- Stone 11 5
rial requirements (e.g., predicting that additional Coal 1 1
wood/stone/iron are needed before each pick- Iron 3 1
axe), leading to systematic over-collection be- Diamond 1 1
fore attempting diamond. This effect is visible Wood pickaxe 1 1
in the resources accumulated before success (Ta- Stone pickaxe 1 1
ble 2)—without trajectory analysis, agents collect Iron pickaxe 1 1

19 wood vs. 9 wood, 11 stone vs. 5 stone, and 3
iron vs. 1 iron before achieving diamond—and
manifests as worse frontier training efficiency,
where the agent spends more time reaching the
iron-pickaxe frontier and accrues fewer training frames on the target skill (Fig[d). Quantitatively,
at 100M frames the no-analysis variant collects diamonds only 0.8% of the time versus 5.3% for
full SCALAR-Dense (Table E]) Over the full budget, final diamond success is also lower (74.1% vs.
81.8% for SCALAR-Dense; Table|[T).

Table 2: Resources collected before collecting
Diamond with and without trajectory analysis.

Shared networks vs. per-skill networks. Finally, we replace SCALAR’s per-skill networks with
a single shared network trained on the same curriculum (execution order) discovered by SCALAR.
While this removes modularity and thus the ability to reorder skills at test time, it also degrades
learning. The shared model exhibits worse frontier efficiency than even the no-analysis ablation
(FigH4), substantially shorter episodes (258.8 average steps), and fails to acquire key survival behaviors
(e.g., only 6.8 energy, 8.0 food, and 9.6 drink recovery per episode compared to 14.5, 18.7, and 21.2 for
SCALAR-Dense), all while achieving a lower final diamond rate (57.4%; Table EI) These trends are
consistent with interference and credit-assignment challenges in the shared representation: coupling
all skills into one network entangles execution order with control, hindering both sample efficiency
and the emergence of long-horizon survival. Nevertheless, even this non-modular variant outperforms
hand-engineered reward baselines on Diamond (cf. Table E]), indicating that the SCALAR-derived
curriculum provides a stronger learning signal than human-designed shaping alone.

6 Conclusion and Future Work

With SCALAR, we propose a novel formal perspective of understanding the synergy between LLM
planners and RL agents. SCALAR advances long-horizon control by learning a library of composable
skills that can be recombined to meet user-specified goals. Empirically, it (1) achieves state-of-the-art
performance on the most challenging Craftax-Classic task, Diamond, while matching strong baselines
on easier achievements; (2) induces survival behaviors as a prerequisite to sparse diamond reward,
resulting in substantially longer episodes; (3) yields controllable policies—skill compositions execute
desired goals with fewer unrelated actions; and (4) achieves these results by performing pivotal
trajectory analysis that writes back experience to the knowledge base, sharpening the learned world
model beyond the default LLM prior; coupled with per-skill modularization for composability, this
yields superior sample efficiency, robust survival behavior, and higher final performance.

Limitations and future work. SCALAR has several limitations that point toward future research
directions. First, our experiments assume LLM priors with meaningful domain knowledge. Future
work should stress-test SCALAR in systematically incorrect prior settings: long-horizon, procedurally
generated worlds that violate common-sense rules, augmenting trajectory analysis with counterfactual
querying and active knowledge refinement. Second, SCALAR requires high-quality symbolic
encoders, whose construction affects proposal filtering and verifier accuracy. Third, per-skill networks
improve modularity but increase memory/compute costs; future work should develop composability
with shared backbones (e.g., goal-conditioned policies with skill heads) to retain explicit contracts
while reducing compute. Additional directions include improving data efficiency in low-sample
regimes (<1M frames), scaling to full Craftax with richer hazards, and applying SCALAR to broader
domains where symbolic structure is less obvious (e.g., robotics, UI automation).

358

359
360
361

362

363
364

365
366
367

368
369
370

371
372
373

374
375
376
377

379

380

382
383

384
385
386

387
388
389

390
391

393
394
395
396
397
398

399
400
401

402
403
404

References

(1]

(2]
(3]

(4]

(5]

(6]

(71

(8]
(9]

[10]

[11]

[12]

[13]

[14]

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

OpenAl. Gpt-4 technical report, 2023.

James Manyika. An overview of bard: an early experiment with generative ai. https!
//ai.google/static/documents/google-about-bard.pdf. Accessed: May 27, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat
Lee. Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463,
2023.

Jupinder Parmar, Shrimai Prabhumoye, Joseph Jennings, Mostofa Patwary, Sandeep Subrama-
nian, Dan Su, Chen Zhu, Deepak Narayanan, Aastha Jhunjhunwala, Ayush Dattagupta, Vibhu
Jawa, Jiwei Liu, Ameya Mahabaleshwarkar, Osvald Nitski, Annika Brundyn, James Maki,
Miguel Martinez, Jiaxuan You, John Kamalu, Patrick LeGresley, Denys Fridman, Jared Casper,
Ashwath Aithal, Oleksii Kuchaiev, Mohammad Shoeybi, Jonathan Cohen, and Bryan Catanzaro.
Nemotron-4 15b technical report, 2024.

OpenAl. Introducing openai ol. https://openai.com/o01/. [Accessed 17-04-2025].

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In The Eleventh
International Conference on Learning Representations, 2022.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: Language agents with verbal reinforcement learning. In Advances in Neural Information
Processing Systems, volume 36, 2023.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David,
Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel
Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano,
Kyle Jeffrey, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang,
Kuang-Huei Lee, Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell
Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers,
Clayton Tan, Alexander Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu,
Mengyuan Yan, and Andy Zeng. Do as i can, not as i say: Grounding language in robotic
affordances, 2022.

Yuging Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. arXiv preprint arXiv:2302.06692, 2023.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and

select: Interactive planning with large language models enables open-world multi-task agents.
arXiv preprint arXiv:2302.01560, 2023.

10

https://ai.google/static/documents/google-about-bard.pdf
https://ai.google/static/documents/google-about-bard.pdf
https://ai.google/static/documents/google-about-bard.pdf
https://openai.com/o1/

405
406
407

408
409
410

411
412
413

414
415

416
417
418
419

420
421

422
423
424
425

426
427

428
429
430

431
432

433
434

435

437

438
439
440

441
442
443

444
445
446

447
448
449

450
451
452
453

[15] Yue Wu, So Yeon Min, Yonatan Bisk, Ruslan Salakhutdinov, Amos Azaria, Yuanzhi Li, Tom
Mitchell, and Shrimai Prabhumoye. Plan, eliminate, and track—language models are good
teachers for embodied agents. arXiv preprint arXiv:2305.02412, 2023.

[16] Yue Wu, So Yeon Min, Shrimai Prabhumoye, Yonatan Bisk, Russ R Salakhutdinov, Amos
Azaria, Tom M Mitchell, and Yuanzhi Li. Spring: Studying papers and reasoning to play games.
In Advances in Neural Information Processing Systems, volume 36, 2023.

[17] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

[18] OpenAl Introducing deep research. https://openai.com/index/
introducing-deep-research/. [Accessed 17-04-2025].

[19] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-
action models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818,
2023.

[20] Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, Pieter Abbeel, Dan Klein, and Anca
Dragan. Learning to model the world with language. arXiv preprint arXiv:2308.01399, 2023.

[21] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, pages 1928-1937. PMLR,
2016.

[22] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[23] David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. nature, 550(7676):354-359, 2017.

[24] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. arXiv preprint arXiv:2010.02193, 2020.

[25] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

[26] Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria, Yuanzhi Li, and Tom M Mitchell. Read
and reap the rewards: Learning to play atari with the help of instruction manuals. Advances in
Neural Information Processing Systems, 36, 2024.

[27] Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang,
and Tao Yu. Text2reward: Reward shaping with language models for reinforcement learning.
arXiv preprint arXiv:2309.11489, 2023.

[28] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh
Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design
via coding large language models. arXiv preprint arXiv:2310.12931, 2023.

[29] Shengjie Sun, Runze Liu, Jiafei Lyu, Jing-Wen Yang, Liangpeng Zhang, and Xiu Li. A large
language model-driven reward design framework via dynamic feedback for reinforcement
learning. arXiv preprint arXiv:2410.14660, 2024.

[30] Shaoteng Liu, Haoqi Yuan, Minda Hu, Yanwei Li, Yukang Chen, Shu Liu, Zongqing Lu, and
Jiaya Jia. Rl-gpt: Integrating reinforcement learning and code-as-policy. Advances in Neural
Information Processing Systems, 37:28430-28459, 2024.

[31] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri
Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy:
Compiling declarative language model calls into self-improving pipelines. arXiv preprint
arXiv:2310.03714, 2023.

11

https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/

454
455

456
457

458
459

461

462
463

464
465

467
468
469

470
471
472

473
474

475
476
477

478
479
480

481
482

483
484

486
487
488

489
490
491

492
493

494
495
496

497
498
499

[32] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore:
a new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

[33] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476-15488, 2022.

[34] Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint
arXiv:2109.06780, 2021.

[35] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse
reward design. Advances in neural information processing systems, 30, 2017.

[36] Victoria Krakovna, Laurent Orseau, Richard Ngo, Miljan Martic, and Shane Legg. Avoiding
side effects by considering future tasks, 2020.

[37] Tom Everitt, Marcus Hutter, Ramana Kumar, and Victoria Krakovna. Reward tampering
problems and solutions in reinforcement learning: A causal influence diagram perspective,
2021.

[38] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pages 2778—
2787. PMLR, 2017.

[39] Yongxin Deng, Xihe Qiu, Jue Chen, and Xiaoyu Tan. Reward guidance for reinforcement
learning tasks based on large language models: The Imgt framework. Knowledge-Based Systems,
page 113689, 2025.

[40] Zeyuan Liu, Ziyu Huan, Xiyao Wang, Jiafei Lyu, Jian Tao, Xiu Li, Furong Huang, and Huazhe
Xu. World models with hints of large language models for goal achieving, 2024.

[41] Akhil Bagaria, Jason K Senthil, and George Konidaris. Skill discovery for exploration and
planning using deep skill graphs. In International conference on machine learning, pages
521-531. PMLR, 2021.

[42] Joshua Benjamin Evans and Ozgiir Simgek. Creating multi-level skill hierarchies in rein-
forcement learning. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

[43] Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

[44] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In International Conference on Learning
Representations, 2018.

[45] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-
aware unsupervised discovery of skills. In International Conference on Learning Representa-
tions, 2019.

[46] Steven Hansen, Will Dabney, Andre Barreto, David Warde-Farley, Tom Van de Wiele, and
Volodymyr Mnih. Fast task inference with variational intrinsic successor features. In Inferna-
tional Conference on Learning Representations, 2019.

[47] Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In International
Conference on Machine Learning, pages 6736-6747. PMLR, 2021.

[48] Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter Abbeel.
Unsupervised reinforcement learning with contrastive intrinsic control. In Advances in Neural
Information Processing Systems, 2022.

[49] Sherjil Ozair, Corey Lynch, Yoshua Bengio, Aaron Van den Oord, Sergey Levine, and Pierre
Sermanet. Wasserstein dependency measure for representation learning. Advances in Neural
Information Processing Systems, 32, 2019.

12

500
501
502

503
504
505

506
507
508

509
510
511

512
513

514

516

517

519
520

521
522
523
524
525
526

527
528
529

530

532

533

535

536

538

539

540
541
542

543

544
545

[50] Shuncheng He, Yuhang Jiang, Hongchang Zhang, Jianzhun Shao, and Xiangyang Ji. Wasserstein
unsupervised reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 6884—-6892, 2022.

[51] Seohong Park, Jongwook Choi, Jackyeom Kim, Honglak Lee, and Gunhee Kim. Lipschitz-
constrained unsupervised skill discovery. In International Conference on Learning Representa-
tions, 2021.

[52] Seohong Park, Kimin Lee, Youngwoon Lee, and Pieter Abbeel. Controllability-aware unsuper-
vised skill discovery. In International Conference on Machine Learning, pages 27225-27245.
PMLR, 2023.

[53] Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-
aware abstraction. In The Twelfth International Conference on Learning Representations,
2023.

[54] Shuo Cheng and Danfei Xu. League: Guided skill learning and abstraction for long-horizon
manipulation. IEEE Robotics and Automation Letters, 8(10):6451-6458, 2023.

[55] Zhaoyi Li, Kelin Yu, Shuo Cheng, and Danfei Xu. League++: Empowering continual robot
learning through guided skill acquisition with large language models. In ICLR 2024 Workshop
on Large Language Model (LLM) Agents, 2024.

[56] Wensen Mao, Wenjie Qiu, Yuanlin Duan, and He Zhu. Skill discovery using language models,
2025.

[57] Chak Lam Shek and Pratap Tokekar. Option discovery using llm-guided semantic hierarchical
reinforcement learning, 2025.

[58] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-
refine: Iterative refinement with self-feedback. In A. Oh, T. Neumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems, vol-
ume 36, pages 46534-46594. Curran Associates, Inc., 2023.

[59] Yiyang Jin, Kunzhao Xu, Hang Li, Xueting Han, Yanmin Zhou, Cheng Li, and Jing Bai. Reveal:
Self-evolving code agents via iterative generation-verification. arXiv preprint arXiv:2506.11442,
2025.

[60] Yue Wu, Yewen Fan, So Yeon Min, Shrimai Prabhumoye, Stephen McAleer, Yonatan Bisk,
Ruslan Salakhutdinov, Yuanzhi Li, and Tom Mitchell. Agentkit: structured 1lm reasoning with
dynamic graphs. arXiv preprint arXiv:2404.11483, 2024.

[61] Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181—
211, 1999.

[62] Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,
Samuel Coward, and Jakob Foerster. Craftax: A lightning-fast benchmark for open-ended
reinforcement learning. In International Conference on Machine Learning (ICML), 2024.

A Implementation Details
This section provides implementation details for SCALAR (Self-Supervised Composition and Learn-

ing of Skills), covering reinforcement learning hyperparameters, skill composition mechanisms, LLM
integration, and system architecture decisions.

A.1 Reinforcement Learning Configuration

PPO Hyperparameters We use Proximal Policy Optimization (PPO) as the base RL algorithm
with the hyperparameters specified in Table

13

546
547
548
549
550
551
552
553
554

555

556

558
559
560
561
562
563

565
566
567
568
569
570
571
572
573

574
575
576
577
578

580
581

Hyperparameter Value

Learning rate 2 x 10~* (with linear annealing)
Discount factor (vy) 0.99
GAE lambda () 0.8
Clip coefficient 0.2
Entropy coefficient 0.01
Value function coefficient 0.5
Maximum gradient norm 1.0
Update epochs per iteration 4
Number of minibatches 8
Steps per environment rollout 64
Parallel environments 1024
Total training timesteps 10°
Network layer size 512
Activation function Tanh

Table 3: PPO hyperparameters used in SCALAR training.

Mixture-of-Experts Architecture SCALAR employs a mixture-of-experts (MoE) approach where
each skill maintains separate actor and critic networks rather than sharing parameters. The implemen-
tation creates dedicated network instances for each task, with the active network selected based on the
current player state through a mapping function map_player_state_to_skill. This architecture
enables independent learning of different skills without interference, as each expert can specialize
in its assigned task without catastrophic forgetting from other skills. The modular design further
facilitates compositional reuse of learned behaviors, allowing trained skills to be invoked as building
blocks for more complex tasks. Additionally, this separation provides task-specific credit assignment,
ensuring that learning signals for each skill are not diluted by conflicting objectives from other tasks.

A.2 Skill Composition and Frontier Implementation

Dependency Graph Construction Skill composition is implemented through a dependency res-
olution system that constructs a directed acyclic graph (DAG) where nodes represent skills and
edges represent prerequisite relationships. The system first preprocesses skills to inline ephemeral
requirements—those that do not persist across time or location—directly into their dependent skills.
The graph construction process recursively builds dependency chains while tracking visited nodes to
prevent cycles. Once constructed, the system prunes unnecessary tool productions by identifying and
removing redundant intermediate steps, such as avoiding multiple crafting table placements when
one suffices. A level-order traversal determines the execution sequence for just-in-time resource
collection while respecting dependency constraints.

Frontier Approximation Computing the exact frontier 7% (P,) is computationally expensive and
incompatible with JAX compilation due to dynamic graph operations. Instead, we approximate the
reachable fluent set by tracing backwards from proposed skill requirements through the dependency
graph using breadth-first search to identify achievable fluent combinations. The system employs
caching mechanisms to store computation results and avoid redundant graph traversals when evaluat-
ing multiple candidate skills. During skill admission, the approximated frontier enables validation of
both feasibility constraints—ensuring that proposed skill preconditions can be satisfied with current
capabilities—and novelty constraints—verifying that the skill’s termination conditions extend the
agent’s reachable state space.

Inventory Constraints The system enforces Craftax’s inventory limits (maximum 9 items per type)
through a resource management strategy that tracks current inventory levels throughout skill execution.
When a collection skill would exceed the capacity limit, the system splits the task into smaller chunks
that respect the constraint while maintaining task completion. The algorithm schedules intermediate
consumption of excess resources by identifying skills that consume specific items and inserting
them at appropriate points in the execution sequence. The system also adjusts the execution order to
minimize inventory pressure by deferring collections until items are needed and inserting deferred
collection nodes when capacity becomes available after consumption events.

14

582

583
584
585
586
587
588
589
590

591
592
593
594
595
596
597
598
599
600

602
603
604
605
606
607
608
609
610

611

612
613
614
615
616
617
618
619
620
621

622
623
624
625

627
628

629
630

632
633

A.3 LLM Integration and Prompt Engineering

Model Configuration We use GPT-4.1 as the planning LLM with a maximum generation limit of
4096 tokens per query. The model operates with default temperature settings that vary by prompt
type to balance creativity and consistency depending on the reasoning task. Each query context
includes environment specifications (BlockType, Action, and Achievement enumerations), the current
knowledge base state, and descriptions of existing skills. The system employs structured output
formats using JSON schemas for skill specifications to ensure consistent parsing and integration with
the RL training pipeline. Multi-step reasoning is facilitated through chain-of-thought prompting that
guides the LLM through problem decomposition and solution construction.

Prompt Structure Our prompting system employs specialized templates for different phases of the
skill discovery process. The Skill Proposal template provides context including environment con-
stants (BlockType, Action, Achievement enumerations), the current knowledge base with confirmed
and hypothetical facts, and specifications of existing skills to inform the LLM’s decision-making
process. The Code Generation template focuses on producing syntactically correct reward and
completion functions with proper JAX compatibility, including necessary imports and function
signatures that integrate with the training pipeline. Trajectory Analysis prompts guide the LLM
through examination of successful rollouts to identify discrepancies between predicted and actual
skill requirements, enabling refinement of skill specifications. Knowledge Base Update templates
facilitate the incorporation of verified facts and the removal of outdated hypotheses based on empirical
evidence from RL execution.

Code Validation Generated code undergoes multiple validation steps to ensure correctness and
compatibility. The system first performs syntax verification using Python AST parsing to catch basic
syntactic errors before execution. JAX compatibility checking follows, testing the generated functions
under JIT compilation to identify any operations incompatible with JAX’s functional programming
constraints. Function signature validation ensures that generated reward and completion functions
conform to expected interfaces, including proper parameter names and return types required by the
training pipeline. The system also conducts logical consistency checks by executing the functions
with sample environment states to verify that they produce reasonable outputs and handle edge cases
appropriately, with failed validations triggering code regeneration.

A.4 Training Protocol and Evaluation

Skill Training Process Each skill follows a standardized training protocol that begins with pre-
training validation to check feasibility and novelty constraints before committing computational
resources. The system then performs frontier navigation by executing the dependency chain to reach
the skill’s preconditions, ensuring that the agent starts training from appropriate initial states. Policy
learning follows, training the skill-specific policy head using the proposed reward functions while
maintaining separation from other skills through the MoE architecture. Success evaluation measures
performance using verifier functions that assess task completion independent of the reward signal
used for training. Finally, trajectory analysis examines successful rollouts to identify discrepancies
between predicted and actual requirements, enabling refinement of skill specifications and knowledge
base updates.

Success Thresholds We use different success criteria for different skill types based on their role in
the overall task hierarchy. Intermediate skills require an 80% success rate threshold to be considered
adequately learned, providing a balance between training efficiency and reliability when these skills
are composed into longer chains. Goal tasks such as diamond collection are set to a higher 99%
success rate threshold to consume the remaining training budget. Survival skills emerge through health
penalty optimization rather than explicit thresholds, as the agent naturally learns these behaviors when
the health penalty becomes significant relative to sparse task rewards during long-horizon episodes.

Reward Ensemble Strategy To mitigate reward hacking, we employ an ensemble approach that
generates multiple reward functions for each proposed skill, capturing different aspects of the desired
behavior or alternative formulations of the same objective. The system trains separate policies under
each reward variant, allowing different learning dynamics and exploration strategies to emerge from
the various reward signals. All trained policies are then evaluated using task-specific verifiers that

15

634
635
636

637

638
639
640
641
642
643
644
645
646

647
648
649
650
651
652
653
654

655
656
657
658
659
660
661
662
663

664

665
666
667
668
669
670
671
672
673
674

675
676
677
678
679
680
681
682

measure actual task completion independent of the reward functions used during training. Finally, we
select the policy with the highest verified success rate, ensuring that the chosen behavior achieves the
intended objective rather than exploiting weaknesses in any individual reward formulation.

A.5 System Architecture

Modular Design The codebase is organized into several key modules that separate concerns and
enable maintainable development. The flowrl.ppo_flow module contains the extended PPO
implementation with MoE support, handling the core reinforcement learning training loop and skill-
specific policy management. flowrl.11lm.flow serves as the main orchestration class that manages
the interaction between the LLM planning system and RL training components, coordinating skill
proposal, validation, and learning cycles. The flowrl.skill_dependency_resolver module
implements graph-based skill composition, handling dependency resolution, execution ordering, and
inventory constraint management. Finally, flowrl.11lm.craftax_classic contains environment-
specific prompts and code generation utilities tailored to the Craftax domain.

Checkpointing System SCALAR includes a checkpointing mechanism that saves skill library
state after each successful skill acquisition, preserving both the learned policies and their symbolic
specifications. The system stores the refined knowledge base with confirmed facts and updated
hypotheses, enabling the LLM to build upon verified domain knowledge in future iterations. This
design enables resumption from arbitrary training stages without loss of accumulated learning,
supporting long-running experiments that may span multiple days or weeks. The implementation
maintains backward compatibility with previous checkpoint formats to ensure robustness against
system updates and facilitate reproducibility of earlier experiments.

JAX Optimization Performance optimizations leverage JAX’s compilation and parallelization
capabilities to achieve efficient large-scale training. JIT compilation is applied to all training loops
and environment steps, eliminating Python interpreter overhead and enabling optimized execution on
both CPU and GPU hardware. Persistent compilation caching reduces startup overhead by storing
compiled functions across runs, particularly beneficial for iterative experiments that restart frequently
during skill discovery. Vectorized environment execution operates across 1024 parallel instances,
maximizing throughput and sample collection efficiency. The system employs optimized memory
layouts for large-scale trajectory storage, minimizing memory allocation overhead and enabling
efficient batch processing of experience data.

A.6 Environment Integration

Craftax-Classic Interface We interface with Craftax-Classic through several key mechanisms
that enable SCALAR’s skill-based approach. Symbolic observation encoding directly maps the
environment’s structured observations to fluent sets, providing the symbolic representations required
for LLM reasoning and frontier computation. Custom reward function injection allows skill-specific
training by dynamically replacing the environment’s default reward with LLM-generated reward
functions tailored to individual skills. Episode termination control enables skill completion detection
by monitoring verifier functions and terminating episodes when skills are successfully completed
or predetermined time limits are reached. Achievement tracking provides progress monitoring by
maintaining records of completed tasks and environmental milestones that inform both the LLM’s
planning decisions and the evaluation of skill success rates.

State Encoding The symbolic encoder maps Craftax observations to fluent sets through a structured
transformation process. Inventory quantities are extracted as count-valued fluents, representing the
number of each item type currently possessed by the agent and forming the basis for skill prerequisite
checking. Spatial information including nearby blocks and distances are encoded as positional
fluents that capture the agent’s local environment and proximity to relevant resources or structures.
Achievements are represented as binary fluents that track completed milestones and unlock access to
new skills or capabilities. Player vitals such as health, food, drink, and energy levels are maintained
as continuous fluents that influence survival behavior and long-term planning considerations.

16

Method Setup (%) Pickaxes (%) Goal (%)

Table Furnace Wood Stone Iron Diamond

Baselines

PPO-RNN 100.0 99.0 99.5 952 545 0.9
PPO-FC 100.0 97.7 100.0 93.0 49.1 1.2
E3B 5.1 0.0 0.0 00 00 0.0
ICM 0.0 0.0 0.0 00 00 0.0
PPO-RND 100.0 98.4 99.7 90.6 21.8 0.3
Our Method

SCALAR-Dense 99.8 84.6 998 976 76.8 5.3
SCALAR-Sparse 99.8 852 99.8 97.8 76.1 0.3
Ablations

No Trajectory Analysis 99.1 734 99.1 96.7 69.4 0.8
Shared Networks 99.9 79.5 994 96.6 53.8 2.0

Table 4: Baselines (top); Our Method (mid); and ablations (bottom), all evaluated at 100M frames.
Baselines are aggregated using the same timesteps as the reference ablation run (within the 100M
cutoff) to ensure an equal training horizon. Values are means over 1000 trajectories; achievements
reported as percentages.

Method Success Episodes Failure Episodes
Method Energy Food Drink Length Energy Food Drink Length
Baselines

PPO-RNN 74 9.1 104 2850 74 9.1 105 2834
PPO-FC 13.1 163 18.6 526.1 127 159 183 5103
PPO-RND 154 19.6 22.1 6328 139 17.6 20.1 566.4
ICM — — — — 86 89 92 3067
E3B — — — — 28 43 53 1402
Our Methods

SCALAR-Dense (Our Method) 130 169 192 5436 209 268 30.2 9094
SCALAR-Sparse (Our Method) 124 159 186 5137 204 257 29.7 8817
No Trajectory Analysis 132 169 193 5429 144 17.7 202 6019
Shared Networks 53 62 76 1854 89 104 124 3578

Table 5: Conditional survival metrics from local experiments. Values show mean metrics for episodes
that succeeded (collected diamond) vs failed.

17

ees B Craftax-100M Ablation
s« C Conditional Distribution on Success

ess D Algorithm Definitions

Algorithm 1: TrainSkill (on-policy PPO; first-return then explore)

Input: Skill predicates (¢, 75), reward r z, encoder P, labeler L, library 3, frontier
F=F%,(Py), horizon H, total step budget B, PPO hyperparameters
(7, A, €, K, M, ¢y, Cent), pOlicy mg, value Vi,
Output: Trained 7y, success rate s
1 Ssart — {2 € Z | 1o(L(2))=1ANL(z) C F};
2 if Sy = 0 then
3 | return (m,0)

4 S50, E+~0,J<«0;
5 while J < B do
6 Sample 2* ~ Unif (Syar);
// First return to 2* using only existing skills
if env can reset to z* then
| reset to op with ®(0g) = 2*

else
10 L compose skills in ¥ until current z = z*
1 D+ 0;;
12 R A
13 t < 0;;
14 done < false,;

// On-policy rollout (no replay reuse)
15 while ¢t < H and —done and J < B do

16 sample a ~ my(- | z); execute a; observe 0'; 2’ + ®(0');
17 r+rz(z,a,2');
18 done + [15(L(2"))=1];;
686 19 store (z,a,r, 2, done,log mg(a|z)) in D;
20 z 25
21 t <+ t+1;;
22 J +— J+1;
23 FE + E+1;;
24 if done then

25 | S+ S+1

// PPO advantage/return computation (GAE)
26 compute V; + Vi (z;) forall (z;,-) € D;;

2 | 6 =1+ y(1—done;)Vipy — Vis;

2| A D (V) T o

29 R+ A; + Vi

// PPO updates with clipping

30 for k =1to K do

31 split D into minibatches of size M

32 foreach minibatch B C D do

3 compute p; < exp(log my(a;|z;) — log w34 (a,|2;)) fori € B;

34 Let® — ‘7& ZieB min(piAia Chp(pia 1—e, 1+€)Al)7

35 LV — ﬁ ZZEB(Rl — Vw(Zi))Q, Lent < I?}‘ ZiEB 7‘[(7‘(’9('|Zi));

36 maximize LP + cop L — ey LY wort. (0,1));

3 | setlogmg(:|-) < logmy(-|) ; // refresh on-policy baseline

38 §+ S/max(1,E);
39 return (7g, §);

18

687

688

689

690
691

692
693
694
695
696

697

698
699
700

701
702
703

704
705
706
707

708
709
710

711

712
713
714
715
716
717
718
719
720
721
722
723
724

Algorithm 2: SCALAR

Input: }C (KB), X (skills), Py, priors (7req, Teain, L), verifier x z, rewards R, threshold 7
1 repeat

2 Propose: Sample (req, gain) and (rz, kz) from priors.

3 Verify: Reject if not novel (??) or not feasible (??).

4 Start state: Pick z* where req holds within 75 (Fo).
5

6

First return: Reset/compose with X until ¢(0) = z*.

Train & prune: For each r € R learn 7, estimate verified success § with xz; keep {r : §>n} and
select 7*.

7 Analyze: From successful traces infer (req, gain, K').

8 Update: Add (r*, sz, req, gain) to X; set K <+ K’ U {req = gain}; recompute F,(FPp).

9 until budget exhausted or converged

E Prompt Details

E.1 Skill Proposal and Instantiation (Prompts & Procedure)

We use a four-stage, LLM-guided pipeline to propose and instantiate new skills that expand the
reachable frontier while staying compatible with existing skills and the knowledge base.

Overview. Given the current knowledge base (KB) and library of learned skills, we (i) select
a new next skill whose prerequisites are already satisfiable by existing skills, (ii) formalize its
requirements/consumption/gain using lambda forms in terms of existing skill gains, (iii) design
anti-gaming (sparse) and shaped (dense) reward signals, and (iv) generate executable code for success
checking and rewards. Each stage is driven by a dedicated prompt; we include all raw prompts below.

Procedure.

1. Choose the next skill (next_task). Review the KB and existing skills; list candidate
objectives and select one that is new (not in the library) and feasible with current abilities.
Output a compact JSON summary (name, one-line description, target gain).

2. Specify requirements/consumption/gain (next_subtask). Express requirements and
consumption as Python lambda strings of the form "lambda n: a*n + b" keyed strictly
by names that appear as gains of existing skills; mark whether the skill is ephemeral.

3. Design rewards with hacking analysis (create_skill_densify_reward_reasoning).
Analyze per-timestep factors, rule out reward-cycling exploits, and produce a minimal sparse
reward plus (optional) dense terms with small coefficients that cannot dominate the sparse
signal.

4. Emit code stubs (create_skill_coding). Generate JAX-compilable implementations of
task_is_done, task_reward, and task_network_number that follow the environment
contracts and avoid stateful assumptions.

Raw prompt: next_task.

Environment Details:
@struct.dataclass
class Inventory:
wood: int = 0
stone: int = 0
coal: int = 0
iron: int =0
diamond: int = 0
sapling: int = 0
wood_pickaxe: int = 0
stone_pickaxe: int = 0
iron_pickaxe: int = 0

19

725 wood_sword: int = 0

726 stone_sword: int = O

727 iron_sword: int = 0

728 #max inventory size is 9 for each item
729

730 # ENUMS

731 class BlockType (Enum) :
732 INVALID = O

733 OUT_OF_BOUNDS = 1
734 GRASS = 2

735 WATER = 3

736 STONE = 4

737 TREE = 5

738 wooD = 6

739 PATH = 7

740 COAL = 8

741 IRON = 9

742 DIAMOND = 10

743 CRAFTING_TABLE = 11
744 FURNACE = 12

745 SAND = 13

746 LAVA = 14

747 PLANT = 15

748 RIPE_PLANT = 16

749
750 class Action(Enum):

751 NOOP = 0 #

752 LEFT =1 # a

753 RIGHT = 2 # d

754 UP =3 #w

755 DOWN = 4 # s

756 DO = 5 # space

757 SLEEP = 6 # tab

758 PLACE_STONE =7 # r

759 PLACE_TABLE = 8 # t

760 PLACE_FURNACE = 9 # f

761 PLACE_PLANT = 10 # p

762 MAKE_WOOD_PICKAXE = 11 # 1
763 MAKE_STONE_PICKAXE = 12 # 2
764 MAKE_IRON_PICKAXE = 13 # 3
765 MAKE_WOOD_SWORD = 14 # 4
766 MAKE_STONE_SWORD = 15 # 5
767 MAKE_IRON_SWORD = 16 # 6
768

769 class Achievement (Enum) :

770 COLLECT_WOOD = 0O

771 PLACE_TABLE = 1

772 EAT_COW = 2

773 COLLECT_SAPLING = 3

774 COLLECT_DRINK = 4

775 MAKE_WOOD_PICKAXE = 5

776 MAKE_WOOD_SWORD = 6

777 PLACE_PLANT = 7

778 DEFEAT_ZOMBIE = 8

779 COLLECT_STONE = 9

780 PLACE_STONE = 10

781 EAT_PLANT = 11

782 DEFEAT_SKELETON = 12

783 MAKE_STONE_PICKAXE = 13

20

784
785
786
787
788
789

791
792
793
794
795

797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815

817
818
819
820
821
822
823

824

826
827
828
829
830

832
833
834
835
836
837
838
839
840

MAKE_STONE_SWORD = 14
WAKE_UP = 15
PLACE_FURNACE = 16
COLLECT_COAL = 17
COLLECT_IRON = 18
COLLECT_DIAMOND = 19
MAKE_IRON_PICKAXE = 20
MAKE_IRON_SWORD = 21

Knowledgebase:

$db.knowledge_base$

Existing Skills:

$db.skills_without_code$

Instruction

Consider the knowledgebase, and existing skills. Identify the next skill that should be learned.

Fill out the following sections explicitly before arriving at the final formatted output.

Review Existing Skills
In a few sentences, review existing skills.

Future Objectives
List up to 3 potential future objectives that the player could work toward next. For each object:

Immediate Objective
Identify the next skill the player should learn based on your analysis. CRITICAL: Do NOT propose

Formatting

Finally, complete the following Json dictionary as your output.
(((json

{

"skill_name": # name of the objective

"description": # (string) 1-line description of the objective
"gain": # (str) what the player will gain after applying the skill.
}

Raw prompt: next ubtask.

Consider the Knowledgebase and existing skills.
Knowledgebase:

$db.knowledge_base$

Existing Skills

$db.skills$

Skill to Learn

$db.current.skill$

Instruction

21

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872

874
875
876
877
878
879
880
881
882
883
884

885

886
887
888
889
890
891
892
893
894
895
896
897

Analyze Knowledgebase
Identify and draw connections between the skill to learn and any relevant existing knowledge.
Task Analysis

Explicitly analyze the current skill:
® What is the core objective?
® What are the specific requirements?
® What resources are consumed when applying the skill.

Previous Skill Analysis

In a bulleted list, write what each skill gains. The requirements and consumption dictionaries f
Ephemeral Analysis

Determine if this skill is ephemeral. A skill is ephemeral if the gain itself is not observable

Note

e Distance/adjaceny CANNOT be directly verified or quantified, but you can use the closest blocl
Skills should be explicit and complete on their own, and should convey a clear quantifiable g
Requirements are a SUPERSET of consumption: requirements include everything needed (both cons:
Each value in requirements/consumption should be written as a Python lambda function string tl
a = amount of resource consumed PER unit of gain (scales with n)
b = amount of resource required but NOT consumed (fixed amount regardless of n)

Ask yourself: ‘Does this requirement scale with the number of times I apply the skill?”’

If YES (scales with n): use ‘lambda n: a*n + 0’ format

If NO (fixed amount): use ‘‘lambda n: O*n + b’ format
Requirements do not support ‘or’
Each key in requirements/consumption must be a key in the gain of an existing skill.

Formatting

Finally, complete the following Json dictionary as your output.

{

"skill_name": , # name of the current skill

"requirements": , # (dict) total amount needed available using "lambda n: a*n + b" format. Each I
"consumption": , # (dict) amount consumed using "lambda n: a*n + b" format. Each key must exactl:
"gain": , # (dict) a dictionary of what is gained by applying the skill. The gain for the skill
"ephemeral": , # (bool) true if the gain itself is not observable in the inventory, false if the
b

Raw prompt: create killjensify,.eward,.easoning.

All factors
Environment definitions:

class BlockType (Enum) :

INVALID = O
OUT_OF_BOUNDS = 1
GRASS = 2

WATER = 3

STONE = 4

TREE = 5

22

898 Ww0oD = 6

899 PATH = 7

900 COAL = 8

901 IRON = 9

902 DIAMOND = 10

903 CRAFTING_TABLE = 11
904 FURNACE = 12

905 SAND = 13

906 LAVA = 14

907 PLANT = 15

908 RIPE_PLANT = 16

909 # Max inventory value is 9, max player intrinsics values are also 9
910 @struct.dataclass
911 class Inventory:

912 wood: int = O

913 stone: int = 0

914 coal: int = 0

915 iron: int = 0

916 diamond: int = 0

917 sapling: int = 0

918 wood_pickaxe: int = 0
919 stone_pickaxe: int = 0
920 iron_pickaxe: int = 0
921 wood_sword: int = O
922 stone_sword: int = 0
923 iron_sword: int = 0
924

925 class Achievement (Enum) :
926 COLLECT_WOOD = 0

927 PLACE_TABLE = 1

928 EAT_COW = 2

929 COLLECT_SAPLING = 3
930 COLLECT_DRINK = 4

931 MAKE_WOOD_PICKAXE = 5
932 MAKE_WOOD_SWORD = 6
933 PLACE_PLANT = 7

934 DEFEAT_ZOMBIE = 8

935 COLLECT_STONE = 9

936 PLACE_STONE = 10

937 EAT_PLANT = 11

938 DEFEAT_SKELETON = 12
939 MAKE_STONE_PICKAXE = 13
940 MAKE_STONE_SWORD = 14
941 WAKE_UP = 15

942 PLACE_FURNACE = 16

943 COLLECT_COAL = 17

944 COLLECT_IRON = 18

945 COLLECT_DIAMOND = 19
946 MAKE_IRON_PICKAXE = 20
947 MAKE_IRON_SWORD = 21

948
949 The reward function is calculated independently at each timestep using these available factors:
950 @ inventory_diff (Inventory): The change in the player’s inventory between the current and prev:
951 ® closest_bocks_changes (numpy.ndarray): The changes in distance to closest blocks of each type
952 @ player_intrinsics (jnp.ndarray): The intrinsic values

953 ® player_intrinsics_diff (jnp.ndarray): The changes in current intrinsic values from the last t:
954

955 Other Information

956 ® This reward function is called independently at each timestep

23

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010

1011

1012
1013

Each timestep’s reward is calculated using only information from the current and previous tim
The reward at timestep t cannot access information from timestep t-2 or earlier

The completion criteria is a separate function; do not worry about implementing it

No state can be stored between timesteps - each reward calculation must be independent

Skill

Given the following skill, design the reward function for the Skill $db.current.skill_name$
$db.current.skill_with_consumption$

Steps

Explicitly complete the following steps before arriving at your final formatted output
0. Analyze Skill Gains and identify appropriate reward factors:
What is the core objective of this subtask?
What specific behaviors or outcomes need to be rewarded?
For each available factor, determine if it can provide meaningful feedback for the required b«
Remove any factors that are irrelevant to the subtask objectives or should not be used.
® Assume all requirements for the skill has been met before the skill is applied.
List the remaining factors that will be analyzed in subsequent steps.

1. Analyze each factor’s per-timestep behavior, responding to each question explicitly:

® How does the raw factor behave at each individual timestep?

® What does a positive vs negative value mean at a single timestep?

® What is measured when we use this raw factor as a direct reward?

® Write out a sequence of timestep values for a potential reward hacking attempt. Sum these val
® Based on the sequence sum: Does the reward cycling result in positive net reward? If so, stat
® Write the exact transformation: If we concluded the raw factor naturally prevents reward hack:
2. Filter out factors with no obvious non-hackable reward functions or those that are not relev:
3. Classify the remaining factors in to dense and sparse rewards. The chosen sparse reward shou
4. Design a minimalistic sparse reward formula:

® Use the raw factor directly if it was shown to naturally prevent reward hacking

® Include only the minimum operations needed for the reward signal

® Verify the formula matches your timestep sequence analysis from step 1

5. Design a dense reward formula:

® For each factor proven safe in step 1, include it directly

® If multiple factors are valid, combine them through simple addition

® No additional transformations beyond what was proven necessary in step 1

® For each factor included, include a coefficient between 0.0 and 1.0 such that the the magnitu
® The sum of the sparse reward across timesteps should be greater then the sum of the dense rew:
® Write ‘“NA”” if no dense reward is needed

6. Write both rewards into mathematical formula, and double-check for redundancy

Note
® The optimization stops when completion critiera is met, so no more rewards will be provided a:

If no dense reward function is possible or needed for this task, simply state NA.

{
"sparse_reward_only_function": # (str) Minimal reward pseudocode
"dense_reward_function": # (str) Dense reward pseudocode, "NA" if not available

}

Raw prompt: create kill.oding.

class BlockType (Enum) :

24

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072

INVALID = O
OUT_OF_BOUNDS = 1
GRASS = 2
WATER = 3
STONE = 4
TREE =
WoaD
PATH
COAL
IRON =
DIAMOND = 10
CRAFTING_TABLE = 11
FURNACE = 12
SAND = 13
LAVA = 14
PLANT = 15
RIPE_PLANT = 16
Max inventory value is 9, max player intrinsics values are also 9
@struct.dataclass
class Inventory:
wood: int = 0
stone: int = 0
coal: int = 0
iron: int = 0
diamond: int = 0
sapling: int = 0O
wood_pickaxe: int = 0
stone_pickaxe: int = 0
iron_pickaxe: int = 0
wood_sword: int = 0
stone_sword: int = 0
iron_sword: int = 0

5
6
7
8
9

class Achievement (Enum) :
COLLECT_WOOD = 0
PLACE_TABLE = 1
EAT_COW = 2
COLLECT_SAPLING = 3
COLLECT_DRINK = 4
MAKE_WOOD_PICKAXE =
MAKE_WOOD_SWORD = 6
PLACE_PLANT = 7
DEFEAT_ZOMBIE
COLLECT_STONE
PLACE_STONE = 10
EAT_PLANT = 11
DEFEAT_SKELETON = 12
MAKE_STONE_PICKAXE = 13
MAKE_STONE_SWORD = 14
WAKE_UP = 15
PLACE_FURNACE = 16
COLLECT_COAL = 17
COLLECT_IRON = 18
COLLECT_DIAMOND = 19
MAKE_IRON_PICKAXE = 20
MAKE_IRON_SWORD = 21

|
[¢)]

8
9

#when indexing an enum make sure to use .value

25

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131

#Here are example docstrings:

def

def

def

task_is_done(inventory, inventory_diff, closest_blocks, closest_blocks_prev, player_intrinsi
\ll\ll\ll

Determines whether Task ‘$db.current.skill_name$‘ is complete.

Do not call external functions or make any assumptions beyond the information given to you.

Args:

inventory (Inventory): The player’s current inventory, defined in the above struct
inventory_diff (Inventory): The change in the player’s inventory between the current and
closest_blocks (numpy.ndarray): A 3D tensor of shape (len(BlockType), 2, K) representing
#default of 30,30 if less then k seen, ordered by distance (so :,:,0 would be the closest
to get the 12 distance of the agent from the closest diamond for example would be jnp.:
closest_blocks_prev (numpy.ndarray): A 3D array of shape (len(BlockType), 2, K) represen
#default of 30,30 if less then k seen, ordered by distance (so :,:,0 would be the closest
player_intrinsics (jnp.ndarray): An len 4 array representing the player’s health, food, «
player_intrinsics_diff (jnp.ndarray): An len 4 array representing the change in the playe
achievements (jnp.ndarray): A 1D array (22,) of achievements, where each element is an b«
n (int): The target amount to reach in inventory for the main gain item.

Returns:

bool: True if the main gain item in inventory has reached the target amount n, False oth:e
\II\II\II
return TODO

task_reward(inventory_diff, closest_blocks, closest_blocks_prev, player_intrinsics_diff, ach:
\ll\ll\ll

Calculates the reward for Task ‘$db.current.skill_name$‘ based on changes in inventory and o
Do not call external functions or make any assumptions beyond the information given to you.

Args:
inventory_diff (Inventory): The change in the player’s inventory between the current and
closest_blocks (numpy.ndarray): A 3D array of shape (len(BlockType), 2, K) representing -
#default of 30,30 if less then k seen, ordered by distance (so :,:,0 would be the closest
#Since the environment is a 2d gridworld, an object next to the player will have a dista:
closest_blocks_prev (numpy.ndarray): A 3D array of shape (len(BlockType), 2, K) represen
#default of 30,30 if less then k seen, ordered by distance (so :,:,0 would be the closes:
health_penalty (float): The penalty for losing health. Negative when loosing health and]
player_intrinsics_diff (jnp.ndarray): An len 4 array representing the change in the play
achievements_diff (jnp.ndarray): A 1D array (22,) of achievements, where each element is

Returns:
float: Reward for RL agent

Note:
The task reward should be two parts:
1. Sparse reward
2. Dense reward
Make sure to disable (2) if (1) is triggered, e.g. sparse_reward + (sparse_reward == 0.(

\II\II\II
return TODO + health_penalty

task_network_number () :

Returns the network index corresponding to the nodes associated skill
Returns:

int

: Network index

26

1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
171

1172

1173
1174
1175
1176
1177

1178

1179
1180

1181
1182
1183
1184

1185
1186

\ll\ll\ll
return TODO

Given the above documentations, implement the task_is_done, task_reward, and task_network_number

$db.current.skill_with_consumption$
$db. current.reward$

The dense reward to include is:
$db.current.dense_reward_factor$
The current number of skills is:
$db.current.num_skills$
Implementation Guidelines:

For task_is_done:
® Identify the main gain item from the skill’s ‘‘gain’ dictionary (the item with the highest gai:
® Check if the current inventory amount of that main gain item is >= n (the target amount)
® Return True when the target amount is reached, False otherwise
® Use inventory.{item_name} to access inventory amounts (e.g., inventory.wood, inventory.stone)
e If a skill is ephemeral, the inventory does not suffice, so for completion criteria you can us
For task_reward and task_network_number:
® Follow the existing reward structure and network numbering as before

The task network number should be num_skills since we’re creating a new skill and the networks a
Do not change the function signature or the docstrings. Do not make any assumptions beyond the i
The code you write should be able to be jax compiled, no if statements.

No need to retype BlockType, Inventory, and Achievement they will be provided in the environment
No need to add coefficents to rewards, for example, no need for 10 * inventory_diff.*, just use f
Return all three functions in a single code block, don’t seperate it into 3.

No need to return the docstrings.

Your code will be pasted into a file that already has the following imports. Do not add any addif
from craftax.craftax_classic.constants import *

from craftax.craftax_classic.envs.craftax_state import Inventory

import jax

E.2 Knowledge Base / Skill Updates via Pivotal Trajectory Analysis

After each verified success, we run pivotal trajectory analysis to reconcile what the skill actually
needed and produced with what it claimed to need and produce. Concretely, we compare the
inferred preconditions/effects against the successful rollout and (i) update the skill’s requirements,
consumption, and gain, and (ii) propose edits to the knowledge base (KB) where assumptions can be
marked verified, removed, or left unchanged.

Procedure. Leto = (z,...,27) be a successful rollout and let L(z;) be the set of facts at time t.

1. Summarize the trajectory. Convert o to a sequence of fact-sets s = (L(zp), ..., L(zT))
and attach the current skill definition and KB snapshot.

2. LLM pass #1: Update the skill. Using the “update_skill_from_trajectory” prompt (below),
the LLM infers requirement, consumption, and gain functions written as lambda strings in
the form "lambda n: a*n + b", where a captures per-application usage and b captures
fixed setup needs.

3. LLM pass #2: Propose KB edits. Using the “propose_knowledge_base_updates” prompt
(below), the LLM proposes targeted KB changes: change ASSUMPTION — VERIFIED

27

1187
1188

1189
1190
1191

1192

1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236

1237

1238
1239
1240
1241

when supported by the trajectory, remove disproven assumptions, and keep unsupported
assumptions unchanged.

4. Post-processing. We validate JSON structure and key alignment (each require-
ment/consumption key must match an existing skill gain), apply the updates, and recompute
the frontier.

Raw prompt: update_skill_from_trajectory.
You need to update a skill based on its execution trajectory.

Current Skill:

c¢¢

$db.current.skill_with_consumption$
(1

Existing Skills (for requirements validation):
(1

$db.skills$

(31

Trajectory Data:
(1

$db.example_trajectory$

(1

Task
Analyze the trajectory to determine what the skill actually required, consumed, and gained, then
The trajectory shows a specific instance (e.g. n=1), but you need to infer the general pattern.

**IMPORTANT CONSTRAINTS:*x*
- Requirements are a SUPERSET of consumption: requirements include everything needed (both consur
- Each value in requirements/consumption should be written as a Python lambda function string th:
- a = amount of resource consumed PER unit of gain (scales with n)
- b = amount of resource required but NOT consumed (fixed amount regardless of n)
- Ask yourself: "Does this requirement scale with the number of times I apply the skill?"
- If YES (scales with n): use "lambda n: a*n + 0" format
- If NO (fixed amount): use "lambda n: O*n + b" format
- Requirements do not support ’or’
- Each key in requirements/consumption must be a key in the gain of an existing skill.

Update the skill’s requirements and gain as lambda functions based on what the trajectory reveale

Formatting
(((json

{

"skill_name": "", # name of the skill

"updated_requirements": {}, # total amount needed available using "lambda n: a*n + b" format. E:
"updated_consumption": {}, # amount consumed using "lambda n: a*n + b" format. Each key must exa
"updated_gain": {} # a dictionary of what is gained by applying the skill. The gain for the skil

Raw prompt: proposeinowledgeyase, pdates.
You need to propose which parts of the knowledge base should be updated based on trajectory :

Knowledge Base:
(1

28

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284

$db.knowledge_base$

(1

Trajectory Data:

[

$db.example_trajectory$

[

Current Skill:

cc¢

$db.current.skill_with_consumption$
(1

Task

Look at the knowledge base structure and propose which specific entries/fields should be updated
The knowledge base contains requirement lists with items marked as "ASSUMPTION" or "VERIFIED". B:
ASSUMPTIONS that were confirmed by the trajectory become "VERIFIED: condition"

. ASSUMPTIONS that were proven FALSE by the trajectory should be REMOVED

ASSUMPTIONS that cannot be verified from this trajectory MUST remain "ASSUMPTION: condition"
New requirements discovered from the trajectory are added as "VERIFIED: condition"

D> wWwN -

*%CRITICAL**: Only make changes when you have clear evidence from the trajectory:
- Change ASSUMPTION to VERIFIED if trajectory confirms it’s true

- REMOVE assumptions if trajectory proves they’re false

- KEEP assumptions unchanged if trajectory provides no evidence either way

Requirements should be in the format: "VERIFIED: condition" or "ASSUMPTION: condition"

Formatting

(((json

{

"proposed_updates": [

"path": ["keyl", "subkey", "field"], # Path to the field in the knowledge base
"updated_requirements": [], # Complete updated list of requirements (verified + remainin;
"reason_for_update": "" # What the trajectory showed that confirms, disproves, or leaves

~ o

29

	Introduction
	Related Work
	Preliminaries
	SCALAR: Self-Supervised Composition and Learning of Skills
	Experiments
	Focused Rewards Enable Survival Learning
	Dense vs. Sparse Reward Trade-offs
	Ablations

	Conclusion and Future Work
	Implementation Details
	Reinforcement Learning Configuration
	Skill Composition and Frontier Implementation
	LLM Integration and Prompt Engineering
	Training Protocol and Evaluation
	System Architecture
	Environment Integration

	Craftax-100M Ablation
	Conditional Distribution on Success
	Algorithm Definitions
	Prompt Details
	Skill Proposal and Instantiation (Prompts & Procedure)
	Knowledge Base / Skill Updates via Pivotal Trajectory Analysis

