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Abstract

A core challenge in reinforcement learning (RL) is effective exploration, particu-1

larly for long-horizon tasks. Recent approaches have explored the utility of large2

language models (LLMs), combining capabilities to 1) decompose objectives into3

skills and 2) generate code such as rewards and verifiers. However, ad hoc prompt4

and program designs, as well as their reliance on single proxy rewards, can lead to5

reward hacking and hallucinations. Furthermore, synthesizing the correct functions6

remains challenging without actual environment interactions. To address these7

challenges, we propose Self-Supervised Composition and Learning of Skills8

(SCALAR), an iterative, bi-directional framework that couples an LLM planner9

and low-level RL controllers through a skill library. The skill library is a set of10

skills that, when composed, define a set of furthest reachable states by the current11

agent. In SCALAR, the library is iteratively expanded by a high-level LLM planner12

in conjunction with low-level RL agents. In one direction, an LLM planner uses in-13

formation in the skill library to propose new skills with (1) preconditions reachable14

through existing skill compositions and (2) termination conditions unachievable by15

current skills. Reusing existing skill compositions narrows the task of the RL agent16

to exploring (2) rather than returning to known states (1). In the other direction, the17

LLM planner refines its world knowledge concurrently with RL training by ana-18

lyzing successful RL trajectories. We call this process Pivotal Trajectory Analysis.19

We evaluate SCALAR on the Crafter benchmark, a challenging long-horizon task,20

in which SCALAR achieves 86.3% diamond-collection success, surpassing the21

previous state-of-the-art methods in overall performance and convergence speed.22

These results show that frontier-guided skill composition, together with verifier-23

based learning and bi-directional refinement, yields substantially more reliable24

long-horizon control under sparse rewards.25

1 Introduction26

Recent progress in large language models (LLMs) [1, 2, 3, 4, 5, 6, 7] and inference-time scaling [8, 9]27

has led to rapid advancements in LLM-based AI agents [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].28

However, large language models suffer from extended inference times that may not be suitable for29

real-time control. By contrast, Reinforcement Learning (RL) can produce strong low-level control30

policies given sufficient trials and supervision [21, 22, 23, 24, 25], but RL agents lack the extensive31

prior knowledge and explicit reasoning capabilities available to LLMs.32

Integrating LLMs and RL promises to combine complementary strengths: the structured reasoning33

and common-sense knowledge of language models with the sample-efficient low-level control of RL.34

Early work has demonstrated promising results by using LLMs for reward shaping [26, 27, 28, 29, 30]35

and policy guidance [17, 30]. In particular, LLMs are effective at generating reward functions and36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



0 200 400 600 800 1000
Frames (M)

0

20

40

60

80

Di
am

on
d 

Co
lle

ct
ed

 (%
)

Diamond Collected (%)

SCALAR-Dense (Our Method)
SCALAR-Sparse (Our Method)
PPO-RNN

PPO-FC
E3B

ICM
PPO-RND

Figure 1: Left: SCALAR maintains 1) a frontier skill library, which is used to inform RL of next
task outside of the exploration frontier, and 2) a knowledge base, which stores current knowledge and
assumptions the LLM has about the environment. Right: SCALAR has 2x higher success rate for
collecting diamond, the hardest achievement in the Crafter benchmark.

assisting with task decomposition due to their coding and problem-solving capabilities—features37

we seek to leverage for RL integration. However, real-world tasks often involve domain-specific38

knowledge and long-horizon planning requirements, which increase compositional complexity and39

make reasoning more challenging for LLMs [16, 31].40

In this work, we propose Self-Supervised Composition and Learning of Skills (SCALAR), an iterative,41

bi-directional framework designed to address these challenges by tightly coupling symbolic high-level42

LLM planning with low-level RL. The core of SCALAR is a skill library, a set of skills that, when43

composed, define the set of furthest reachable states by the current agent. This definition formally44

connects the dots between RL exploration [32] with few-shot LLM planning [12]. Under SCALAR,45

the LLM planner proposes new candidate skills with symbolic preconditions and gains, along with46

reward/verifier templates; candidates are admitted only if they are both feasible from and novel with47

respect to the current frontier of reachable symbols. During RL training, SCALAR exploits the48

feasibility by composing existing skills from the skill library to effectively return to the starting states49

of new skills before initiating RL training. This design focuses RL training on novel scenarios and50

reduces the burden of long horizon explorations [32].51

Under SCALAR, the LLM planner and RL controller could be viewed as a single agent tasked to52

expand the set of reachable symbols/states defined by the skill library. Therefore, trajectories from53

low-level RL controllers should not only benefit RL training, but also improve the LLM planner.54

Motivated by [33] we take the first few successful RL trajectories (pivotal trajectories) and feed55

them back to the planner via Pivotal Trajectory Analysis. The LLM planner reasons with the pivotal56

trajectories, (i) refines the proposed skill’s preconditions and gains to match the environment’s57

affordances, and (ii) expands the symbolic knowledge used for future proposals. This iterative58

feedback loop improves the planner’s priors, enabling progressively richer and more compositional59

behaviors.60

We evaluate SCALAR on the Crafter benchmark [34], a long-horizon, sparse-reward survival and61

crafting environment where purely scalar rewards and standard exploration techniques struggle.62

Across environments, SCALAR consistently expands the frontier of reachable states and converts63

symbolic proposals into executable skills with high success rates. Empirically, this produces sub-64

stantially higher diamond-collection rates and shorter training episodes compared to SOTA baselines65

(Fig. 1), demonstrating that combining skill composition with verifier-based training enables agents66

to solve tasks that are otherwise difficult to reach using scalar rewards alone. Our contributions are as67

follows:68

• Combining LLM-guided planning and RL-based skill grounding within bi-directional loop69

• Formalization of frontier skill discovery, connecting RL exploration [32] and LLM planning [12]70

• Pivotal Trajectory Analysis for concurrently refining skill specifications using successful rollouts71

• Substantial performance and efficiency improvements on the Crafter vs PPO baselines72

2 Related Work73

Reward Shaping with LLMs Reinforcement learning for long-horizon tasks faces significant74

challenges in defining precise reward functions that effectively guide learning without introducing75
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unintended behaviors [35, 36, 37]. To address these limitations, intrinsic motivation and reward76

shaping techniques have been developed to provide additional unsupervised learning signals [38].77

Recent work has investigated leveraging the code generation and reasoning capabilities of language78

models to automatically construct reward functions from task descriptions. Early explorations of79

LLMs for reward shaping [26, 27, 28] began with applications where the LLM generates a reward80

function for the whole task without direct involvement in agent interactions. [39] extends this81

by allowing LLMs to provide dynamic reward adjustments based on agent interactions, assigning82

positive feedback to beneficial actions and negative feedback to detrimental ones. [40] integrates83

LLM-generated subgoal hints into model rollouts, providing intrinsic rewards for goal completion84

and guiding agents toward meaningful exploration in challenging tasks.85

Skill Decomposition and Learning An alternative approach to handling long-horizon tasks in-86

volves learning a collection of skills rather than a single monolithic policy. Traditional skill discovery87

methods [41, 32] focus on identifying useful behavioral primitives through exploration and graph-88

based representations. [42] develops multi-level skill hierarchies for navigation in maze-like domains,89

while a large body of work frames skill emergence as maximizing dependence between states and90

skill labels via mutual information (MI) [43, 44, 45, 46, 47, 48]. However, discriminator-based MI91

objectives can saturate once a classifier perfectly separates skills, often yielding behaviors that differ92

only in subtle, non-salient ways [44]. To promote more behaviorally distinct skills, recent methods93

replace MI with Wasserstein dependency measures [49, 50, 51, 52, 53], pairing the objective with a94

task-relevant metric (e.g., Euclidean distance in state space [51] or controllability-aware distances that95

favor rare transitions [52]). The advent of LLMs has further enabled skill decomposition by turning96

high-level goals into skill definitions with dense rewards and termination conditions [54, 55, 56], or by97

generating subgoal sequences before training [57]; yet these typically follow a one-shot, feedforward98

plan that is not refined from interaction.99

Learning from Environment Interactions A critical limitation of current LLM-based skill de-100

composition methods is their reliance on static, one-shot planning that cannot adapt when the initial101

context provided to the LLM is insufficient for the task at hand. Learning about the environment102

from interactions becomes essential when the LLM’s initial understanding is incomplete or incorrect.103

LLM self-improvement through environment feedback has shown success in coding [58, 59] and104

planning agents [17, 60], with structured prompting techniques enabling generate-evaluate-reflect105

cycles. [60] demonstrates that LLMs can gather and store information about environment dynamics106

from low-level interactions, though prior work primarily considers LLM-as-agent settings. Our107

approach, SCALAR, addresses the gap in existing LLM-based skill decomposition methods by108

introducing bi-directional learning from environmental interactions. Unlike previous approaches that109

generate static skill decompositions, SCALAR continuously refines its understanding of both skill110

specifications and environment dynamics through Pivotal Trajectory Analysis, enabling adaptive skill111

learning that improves with experience.112

3 Preliminaries113

Our goal is to learn a library of temporally extended skills that can be composed to solve long-horizon,114

partially observable tasks. The agent interacts with an environment while an external proposer (e.g.,115

an LLM) suggests candidate skills and reward specifications; the algorithm must decide when a116

skill may start, when it ends, and what it achieves. To support these decisions, we introduce a117

symbolic abstraction of observations into Boolean fluents and define options over this symbolic state.118

This lets us compute which fluents are currently reachable with the available skills and identify the119

boundary—the exploration frontier—where learning the next skill is most useful. The definitions120

below establish this formal footing used by our method in later sections.121

Tasks as POMDPs. We model tasks as POMDPs (S,A, T,R,Ω, O, γ), where S are states, A122

actions, T the transition kernel, R : S ×A→R rewards, Ω observations, O the observation kernel,123

and γ ∈ [0, 1) the discount.124

Symbolic abstraction. We encode observation histories with Φ : Ω → Z so that zt = Φ(o0:t),125

mapping into symbolic states in alphabet Z . Let F be the universe of atomic symbols (“fluents”); a126
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Figure 2: Method: frontier-guided RL with skill generation and verifier-decoupled rewards. The
LLM proposes candidate skills with preconditions and outputs; rewards for each skill are generated
and verified. Skills are dynamically composed to reach the exploration frontier, and the agent performs
RL using these rewards, yielding success/failure trajectories. Successful (pivotal) trajectories update
the knowledge base and extend the frontier.

labeling map L : Z → 2F returns the fluents true in z, i.e., L(z) ⊆ F . These fluents specify skill127

initiation, termination, and achievements.128

Skills. A skill σ is an option σ = (Iσ, πσ, βσ) [61] with initiation set Iσ ⊆ S, policy πσ, and129

termination βσ : S → [0, 1]; equivalently it terminates in Bσ = { s : βσ(s) = 1 }.130

Skills over symbols. We lift initiation and termination to the symbolic layer via fluent predicates131

ισ, τσ : 2F → {0, 1}. The symbolic initiation and symbolic termination regions are132

IZσ = { z ∈ Z : ισ(L(z)) = 1 }, BZ
σ = { z ∈ Z : τσ(L(z)) = 1 }.

Execution of σ may start at any z ∈ IZσ and terminates upon first entry into BZ
σ .133

Reachability and the frontier. Let Σ be the skill library. For each σ ∈ Σ, fix a conservative134

achievement set Aσ ⊆ F of fluents that hold upon termination, and given known fluents P ⊆ F ,135

define the one-step fluent closure:136

Aσ ⊆
⋂

z∈BZ
σ

L(z), CloseΣ(P ) = P ∪
⋃

σ∈Σ: ισ(P )=1

Aσ.

Starting from base fluents P0 = L(z) of the current symbolic state, the reachable fluents form the137

least fixed point138

F∗Σ(P0) = lim
k→∞

Close
(k)
Σ (P0).

We call F∗Σ(P0) the frontier. The induced set of frontier symbolic states139

Z∗Σ(P0) = { z ∈ Z : L(z) ⊆ F∗Σ(P0) }

identifies starting points for learning new skills that extend reach beyond the current frontier.140

4 SCALAR: Self-Supervised Composition and Learning of Skills141

This section introduces SCALAR, an iterative procedure that augments the skill library Σ with142

frontier-expanding skills: the initiation region is reachable from P0 = L(z), and the termination143

region contributes new fluents beyond F∗Σ(P0). Concretely, a proposed skill σnew comes with144

initiation and termination predicates over fluents (ισnew , τσnew). SCALAR forms a closed loop for145
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LLM-guided skill discovery: an agent explores a game-like world while an LLM analyzes trajectories,146

hypothesizes new skills with reward functions, verifies those rewards from execution data, and stores147

confirmed facts in a growing knowledge base K. The LLM then dynamically composes verified148

skills to push the agent farther to the exploration frontier, creating bi-directional feedback between149

symbolic planning and RL execution. An overview is given in Algorithm 2 and Figure 2.150

Knowledge base and initialization. We initialize K from plain-text specs of the agent’s world: a151

list of state symbols (e.g., block names, inventory item names and counts) and the discrete actions the152

agent can take. From these definitions we instantiate a small predicate set over Z and mechanically153

compose actions with state predicates to generate hypothesized initiation/termination pairs154 (
ισ, τσ

)
: 2F→{0, 1},

All such predicates/sets are explicitly marked as hypotheses. For example, the knowledge base might155

initially contain “Iron Pickaxe requires 3 Irons (to be confirmed)” based on general world knowledge,156

even though the actual requirement in this environment may differ.157

Proposing new skills with LLM priors. Guided by K, a language model proposes a new skill158

σnew = (ισnew
, τσnew

, rZ , κZ) by specifying symbolic initiation and termination along with learning159

signals, where rZ : Z × A × Z → R is a proposed shaping/reward and κZ : Z → {0, 1} is a160

completion indicator consistent with termination, typically κZ(z) = τσnew
(L(z)). The knowledge161

base induces priors (ισnew
, τσnew

) ∼ Πpred(· | prompt,K) and (rZ , κZ) ∼ Πrl(· | prompt,K). For162

instance, the LLM might propose “craft iron pickaxe” with initiation requiring 2 wood, 3 iron, and a163

crafting table (based on Minecraft priors) and termination achieving +1 iron pickaxe.164

Pre-policy verification. Before any learning, we test the proposed skill against the current frontier165

F∗Σ(P0):166

(Novelty) ∃P ⊆ F s.t. τσnew
(P ) = 1 and P ̸⊆ F∗Σ(P0), (Feasibility) ισnew

(
F∗Σ(P0)

)
= 1.

The first check rules out skills whose termination condition does not imply any fluent beyond what is167

already reachable by composing existing skills; the second ensures the proposed initiation condition168

can be satisfied with the current skill library. For instance, if crafting an iron pickaxe is already the169

gain of another skill, the novelty check would reject the proposal, while if we lack skills to collect170

wood or iron, the feasibility check would fail.171

Training Only proposals passing the above criteria proceed to learning. Let the admissible start set172

for σnew be173

Sstart(σnew) =
{
z ∈ Z : ισnew

(
L(z)

)
= 1 and L(z) ⊆ F∗Σ(P0)

}
.

We sample a start state z⋆ uniformly from Sstart(σnew) and first return to that state using only existing174

capabilities: if the environment supports resets we initialize at an observation o0 with Φ(o0) = z⋆;175

otherwise we execute a feasible composition of skills from Σ until the encoded state satisfies176

Φ(ot) = z⋆. Once z⋆ is reached, we then explore by collecting experience to learn πσnew
under the177

proposed reward rZ (or members of the ensemble R), while success is determined exclusively by178

the termination predicate τσnew

(
L(zt)

)
= 1 (equivalently, κZ(zt) = 1). Episodes terminate when179

τσnew(L(zt)) = 1 or after a fixed horizon H . For the iron pickaxe example, we would first navigate180

to a state with 2 wood, 3 irons, and a crafting table, then explore actions to learn the crafting behavior.181

This first-return-then-explore regimen isolates exploration in neighborhoods where the initiation182

condition holds and stabilizes credit assignment by isolating the new behavior from the roll-in. An183

instantiation with PPO is given in Algorithm 1.184

Pivotal Trajectory Analysis From successful rollouts σk = (z
(k)
0 , . . . , z

(k)
Tk

) we form fluent185

trajectories s(k) = (L(z
(k)
0 ), . . . , L(z

(k)
Tk

)). An LLM analyzes these trajectories to refine the symbolic186

specification of the skill by tightening its initiation and termination predicates and updating the187

knowledge base. Concretely, we obtain188 (
ι̂σnew , τ̂σnew , K′) = ULLM

(
K; {s(k)}k

)
,

where ι̂σnew , τ̂σnew : 2F→{0, 1} are revised predicates consistent with observed starts and termi-189

nations. For instance, successful iron pickaxe trajectories might reveal that only 1 iron (not 3) is190

actually consumed, leading to updated knowledge base entries and revised initiation conditions. We191

add the refined skill to Σ with (ι̂σnew
, τ̂σnew

), update K←K′, and recompute the frontier F∗Σ(P0).192
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Method Setup (%) Pickaxes (%) Goal (%) Survival Episodes

Method Table Furnace Wood Stone Iron Diamond Energy Food Drink Ep. Len.

Baselines
PPO-RNN 100.0 99.9 100.0 99.7 97.8 40.8 7.4 9.1 10.5 284.1
PPO-FC 100.0 99.8 99.9 99.1 93.2 35.4 12.8 16.0 18.4 515.9
PPO-RND 99.9 99.7 99.9 98.8 96.7 38.1 14.5 18.4 20.9 591.7
ICM 0.0 0.0 0.0 0.0 0.0 0.0 8.6 8.9 9.2 306.7
E3B 4.0 0.0 0.2 0.0 0.0 0.0 2.8 4.3 5.3 140.2
Our Method (Ablations)

No Trajectory Analysis 99.6 94.2 99.6 99.3 93.7 74.1 13.5 17.1 19.5 558.2
Shared Networks 99.9 98.9 99.9 99.8 98.5 57.4 6.8 8.0 9.6 258.8

Our Method
SCALAR-Dense 99.9 98.1 99.9 99.7 97.8 81.8 14.5 18.7 21.2 610.3
SCALAR-Sparse 99.9 98.1 99.9 99.7 97.8 86.3 13.5 17.2 20.1 564.1

Table 1: Final performance comparison on Craftax-Classic diamond collection task. Achievement
rates reported as percentages; survival metrics (Energy/Food/Drink) show mean intrinsic recovery
per episode; episode lengths as raw values.

Mitigating reward hacking. Instead of committing to a single predicted shaping reward for a193

candidate skill, we sample an ensemble194

R = {r(j)Z }
M
j=1 ∼ Πrl(· | prompt,K)

and train a policy π(j) under each r
(j)
Z . Treating κZ purely as a task-level verifier, we esti-195

mate the verified success rate ŝ(j) = Pr[κZ(zT ) = 1 |π(j)] from rollouts. We then select196

j⋆ ∈ argmaxj∈{1,...,M} ŝ
(j) (optionally restricting to j with ŝ(j) ≥ η) and use π(j⋆) as the learned197

controller for the skill. For example, one reward function might incentivize approaching crafting198

tables, while another rewards inventory changes; however, regardless of reward, only the policy199

that actually produces an iron pickaxe receives high verified success. By decoupling learning from200

evaluation, policies that exploit proxy rewards without accomplishing the task receive low verified201

success and are not selected.202

5 Experiments203

We evaluate SCALAR on Craftax-Classic [34, 62] against strong model-free baselines and targeted204

ablations, using a JAX implementation of PPO for policy learning and GPT-4.1 as the LLM prior.205

Across the suite, SCALAR matches or exceeds strong model-free baselines on achievements that206

standard policies already master (e.g., Table, Furnace, Wood/Stone/Iron pickaxes); see Table 1.207

Consequently, we focus our analysis on the hardest benchmark, Diamond, where sparse progress208

signals and long survival horizons are essential. On this task, SCALAR attains substantially higher209

success than PPO variants while maintaining competitive upstream achievements (Table 1; learning210

curves in Fig. 3, left). We report achievement success, survival behaviors (sleep/drink/eat), and211

episode length.212

Defining a Symbolic Encoder The observation space of Craftax-Classic is symbolic: an egocentric213

7×9 local map (blocks/mobs), nearest-block offsets, inventory, and vitals. We take this parsed state214

as our encoder and treat the current observation as sufficient for the symbol, so that zt = Φ(ot) and215

L(zt) ⊆ F .216

Skills In SCALAR, each skill σ consists of reward, completion, requirements, consumption, and217

gain functions, written as σ =
(
rZ , κZ , req(σ), cons(σ), gain(σ)

)
. These are consistent with the218

formal predicates from Sec. 4: the requirement set encodes initiation, while gains/consumption219

summarize the effects at termination:220

ισ(L(z)) = 1 ⇐⇒ req(σ) ⊆ L(z), κZ(z) = τσ(L(z)) = 1.
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Figure 3: Diamond collection success rate and episode length during SCALAR training. Left:
percentage of episodes collecting diamond (higher is better). Right: mean episode length during
training. Bold curves show moving window averaged performance; shaded regions/faint traces
show raw per epoch performance. Methods: SCALAR-Dense (blue), SCALAR-Sparse (green), No
Trajectory Analysis (orange dashed), Shared Networks (red dotted).

Intuitively, gain(σ) ⊆ F collects fluents that (typically) hold upon termination, and cons(σ) ⊆221

F captures fluents that are consumed or no longer hold after termination (e.g., spent resources).222

For instance, craft iron pickaxe might have req(σ) = {2 wood, 1 iron,NEAR(CRAFTINGTABLE)},223

cons(σ) = {2 wood, 1 iron}, and gain(σ) = {1 iron pickaxe}. For count-valued fluents (inventory224

quantities), we parameterize required/consumed/gained amounts with simple linear forms f(n) =225

an+ b in the number of executions n. The induced sets are226

IZσ = { z : req(σ) ⊆ L(z) }, BZ
σ = { z : τσ(L(z)) = 1 }.

Ephemeral skills. We mark a skill σ as ephemeral when its gains are not persistent across time or227

position (e.g., NEAR(CRAFTINGTABLE) after walking away). The LLM decides ephemerality from228

symbolic rollouts. During planning, if an ephemeral skill appears as a prerequisite, we substitute it229

by its requirements: if PLACECRAFTINGTABLE requires 4 wood, then CRAFTPICKAXE requires230

{6 wood, 1 iron} instead of {2 wood, 1 iron,NEAR(CRAFTINGTABLE)}. This ensures the frontier231

reflects persistent capabilities rather than transient intermediates.232

Skill Composition and Frontier Approximation Given a library Σ, we compose skills to reach233

frontier states that satisfy a proposed skill’s requirements. Computing the full frontier F∗Σ(P0)234

online is not compatible with JAX compilation, so we approximate it by tracing backwards from the235

proposed skill’s requirements through the dependency graph induced by enumerating each skill’s236

requirements, consumption, and gains. A level-order (BFS) traversal of this graph yields an execution237

order in which all prerequisites of any skill appear in earlier layers; thus, when the proposed skill is238

reached, its requirements are met. This produces a tractable subset of reachable fluents sufficient for239

feasibility/novelty checks and, in practice, matches the states visited by the executed plan.240

Training and Evaluation Protocol We train policies with PPO. Episodes initialize the environment241

state randomly, as in standard RL, but execution follows the layer order from the dependency graph so242

that, by the time the trajectory reaches the proposed skill, the encountered state distribution satisfies243

its preconditions. We consider a skill successfully trained when its success rate matches at least some244

α which in practice we set to 0.8. For a Goal Task, such as collecting diamond, we set α = 0.99 and245

use all remaining budgeted frames once collect diamond skill is reached.246

Baselines include PPO-FC/RND/RNN and intrinsic-motivation methods. Ablations remove trajectory247

analysis, replace sparse rewards with dense shaping, or replace per-skill heads with a single shared248

network while keeping the same execution order. We report Diamond success, survival proxies, and249

episode length; early sample efficiency is summarized at 100M frames and final performance at the250

training horizon, with matched budgets for fairness (cf. Fig.3, Fig.4, Table 1).251
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Knowledge Base / Skill Updates via Pivotal Trajectory Analysis After each skill returns a252

successful trajectory we run pivotal trajectory analysis that compares the skills inferred prerequisites253

to what was actually required for the successful trajectory. This information is used to update the254

prerequisites of the skill and update the knowledge base. For example, if our iron pickaxe skill255

was initially learned with requirements {2 wood, 3 iron,NEAR(CRAFTINGTABLE)} but successful256

trajectories show it only consumes 1 iron, the analysis updates the knowledge base to “Iron Pickaxe257

requires 1 Iron (confirmed)” and revises future skill proposals accordingly. Prompts for this process258

are detailed in Appendix E.259

5.1 Focused Rewards Enable Survival Learning260
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Figure 4: Fraction of training time spent on di-
amond collection vs. prerequisite skills. Y-axis
shows percent of total training frames allocated
to the target diamond skill after reaching the
iron-pickaxe frontier state. Higher values indi-
cate more efficient utilization of training budget.

A notable qualitative difference is that SCALAR261

learns to "live forever” in the sense of sustaining262

long episodes before and during diamond search.263

Because the environment’s native reward does not264

directly incentivize sleeping, eating, or drinking,265

early learning is dominated by other reward sig-266

nals. Once the Diamond objective is introduced,267

its sparsity makes the per-timestep health penalty268

comparatively larger; the agent is thereby driven to269

master survival subskills so that exploration for di-270

amond can proceed without premature termination.271

Empirically, mean episode length grows markedly272

during training (Fig. 3, right), coinciding with the273

onset of reliable diamond collection.274

This advantage becomes evident when examin-275

ing survival behaviors conditional on episode276

outcomes. In failed episodes, SCALAR agents277

achieve dramatically better survival metrics—20.9278

energy, 26.8 food, and 30.2 drink recovery com-279

pared to the best baseline (PPO-RND) at only 13.9, 17.6, and 20.1 respectively (Table 5). This280

difference stems from reward focus: SCALAR’s diamond skill receives reward only for diamond281

collection, making the health penalty relatively significant and driving survival behavior learning.282

Baseline policies receive rewards for every achievement, diluting the importance of the health penalty283

and preventing effective survival learning.284

5.2 Dense vs. Sparse Reward Trade-offs285

We compare training with LLM proposed dense shaping signals against strictly sparse objectives.286

Dense rewards provide clear advantages for sample efficiency—SCALAR-Dense reaches 5.3%287

diamond collection by 100M frames compared to only 0.3% for SCALAR-Sparse (Table 4), with the288

learning-curve advantage evident in Fig.3. However, this early advantage comes at a cost: beyond289

∼300M frames, the sparse-only variant learns survival behaviors more aggressively, achieving higher290

intrinsic recovery (17.2 energy, 20.1 food, 20.1 drink vs. 14.5, 18.7, 21.2 for dense), and ultimately291

surpassing dense shaping in final diamond performance (86.3% vs. 81.8%; Table 1).292

This trade-off reveals a fundamental tension: dense shaping accelerates initial skill acquisition by293

providing intermediate feedback signals, but can inadvertently compete with the sparse health penalty294

that drives long-horizon survival learning. Once diamond collection becomes the primary objective,295

its sparsity amplifies the relative importance of health maintenance, driving agents to master sleeping,296

eating, and drinking. Dense rewards may dilute this crucial signal, leading to shorter episodes and297

reduced final performance despite faster initial progress.298

Computational Cost. A key advantage of SCALAR’s architecture is that the LLM is not invoked299

in the RL training loop. LLM calls are only made between training runs for high-level planning:300

proposing new skills, generating reward/verifier code, and performing pivotal trajectory analysis. This301

amortizes the cost of LLM inference over millions of environment steps. For all experiments reported,302

including all baselines and ablations, the total cost of LLM queries was $2.83, corresponding to303

1.429M input tokens and 125k output tokens.304
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5.3 Ablations305

Resource No Traj Traj

Wood 19 9
Stone 11 5
Coal 1 1
Iron 3 1
Diamond 1 1
Wood pickaxe 1 1
Stone pickaxe 1 1
Iron pickaxe 1 1

Table 2: Resources collected before collecting
Diamond with and without trajectory analysis.

Pivotal Trajectory Analysis. We ablate the306

trajectory analysis step that updates domain307

knowledge from successful rollouts. Without308

analysis, the LLM prior overestimates mate-309

rial requirements (e.g., predicting that additional310

wood/stone/iron are needed before each pick-311

axe), leading to systematic over-collection be-312

fore attempting diamond. This effect is visible313

in the resources accumulated before success (Ta-314

ble 2)—without trajectory analysis, agents collect315

19 wood vs. 9 wood, 11 stone vs. 5 stone, and 3316

iron vs. 1 iron before achieving diamond—and317

manifests as worse frontier training efficiency,318

where the agent spends more time reaching the319

iron-pickaxe frontier and accrues fewer training frames on the target skill (Fig.4). Quantitatively,320

at 100M frames the no-analysis variant collects diamonds only 0.8% of the time versus 5.3% for321

full SCALAR-Dense (Table 4). Over the full budget, final diamond success is also lower (74.1% vs.322

81.8% for SCALAR-Dense; Table 1).323

Shared networks vs. per-skill networks. Finally, we replace SCALAR’s per-skill networks with324

a single shared network trained on the same curriculum (execution order) discovered by SCALAR.325

While this removes modularity and thus the ability to reorder skills at test time, it also degrades326

learning. The shared model exhibits worse frontier efficiency than even the no-analysis ablation327

(Fig.4), substantially shorter episodes (258.8 average steps), and fails to acquire key survival behaviors328

(e.g., only 6.8 energy, 8.0 food, and 9.6 drink recovery per episode compared to 14.5, 18.7, and 21.2 for329

SCALAR-Dense), all while achieving a lower final diamond rate (57.4%; Table 1). These trends are330

consistent with interference and credit-assignment challenges in the shared representation: coupling331

all skills into one network entangles execution order with control, hindering both sample efficiency332

and the emergence of long-horizon survival. Nevertheless, even this non-modular variant outperforms333

hand-engineered reward baselines on Diamond (cf. Table 1), indicating that the SCALAR-derived334

curriculum provides a stronger learning signal than human-designed shaping alone.335

6 Conclusion and Future Work336

With SCALAR, we propose a novel formal perspective of understanding the synergy between LLM337

planners and RL agents. SCALAR advances long-horizon control by learning a library of composable338

skills that can be recombined to meet user-specified goals. Empirically, it (1) achieves state-of-the-art339

performance on the most challenging Craftax-Classic task, Diamond, while matching strong baselines340

on easier achievements; (2) induces survival behaviors as a prerequisite to sparse diamond reward,341

resulting in substantially longer episodes; (3) yields controllable policies—skill compositions execute342

desired goals with fewer unrelated actions; and (4) achieves these results by performing pivotal343

trajectory analysis that writes back experience to the knowledge base, sharpening the learned world344

model beyond the default LLM prior; coupled with per-skill modularization for composability, this345

yields superior sample efficiency, robust survival behavior, and higher final performance.346

Limitations and future work. SCALAR has several limitations that point toward future research347

directions. First, our experiments assume LLM priors with meaningful domain knowledge. Future348

work should stress-test SCALAR in systematically incorrect prior settings: long-horizon, procedurally349

generated worlds that violate common-sense rules, augmenting trajectory analysis with counterfactual350

querying and active knowledge refinement. Second, SCALAR requires high-quality symbolic351

encoders, whose construction affects proposal filtering and verifier accuracy. Third, per-skill networks352

improve modularity but increase memory/compute costs; future work should develop composability353

with shared backbones (e.g., goal-conditioned policies with skill heads) to retain explicit contracts354

while reducing compute. Additional directions include improving data efficiency in low-sample355

regimes (<1M frames), scaling to full Craftax with richer hazards, and applying SCALAR to broader356

domains where symbolic structure is less obvious (e.g., robotics, UI automation).357
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A Implementation Details539

This section provides implementation details for SCALAR (Self-Supervised Composition and Learn-540

ing of Skills), covering reinforcement learning hyperparameters, skill composition mechanisms, LLM541

integration, and system architecture decisions.542

A.1 Reinforcement Learning Configuration543

PPO Hyperparameters We use Proximal Policy Optimization (PPO) as the base RL algorithm544

with the hyperparameters specified in Table 3.545
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Hyperparameter Value

Learning rate 2× 10−4 (with linear annealing)
Discount factor (γ) 0.99
GAE lambda (λ) 0.8
Clip coefficient 0.2
Entropy coefficient 0.01
Value function coefficient 0.5
Maximum gradient norm 1.0
Update epochs per iteration 4
Number of minibatches 8
Steps per environment rollout 64
Parallel environments 1024
Total training timesteps 109

Network layer size 512
Activation function Tanh
Table 3: PPO hyperparameters used in SCALAR training.

Mixture-of-Experts Architecture SCALAR employs a mixture-of-experts (MoE) approach where546

each skill maintains separate actor and critic networks rather than sharing parameters. The implemen-547

tation creates dedicated network instances for each task, with the active network selected based on the548

current player state through a mapping function map_player_state_to_skill. This architecture549

enables independent learning of different skills without interference, as each expert can specialize550

in its assigned task without catastrophic forgetting from other skills. The modular design further551

facilitates compositional reuse of learned behaviors, allowing trained skills to be invoked as building552

blocks for more complex tasks. Additionally, this separation provides task-specific credit assignment,553

ensuring that learning signals for each skill are not diluted by conflicting objectives from other tasks.554

A.2 Skill Composition and Frontier Implementation555

Dependency Graph Construction Skill composition is implemented through a dependency res-556

olution system that constructs a directed acyclic graph (DAG) where nodes represent skills and557

edges represent prerequisite relationships. The system first preprocesses skills to inline ephemeral558

requirements—those that do not persist across time or location—directly into their dependent skills.559

The graph construction process recursively builds dependency chains while tracking visited nodes to560

prevent cycles. Once constructed, the system prunes unnecessary tool productions by identifying and561

removing redundant intermediate steps, such as avoiding multiple crafting table placements when562

one suffices. A level-order traversal determines the execution sequence for just-in-time resource563

collection while respecting dependency constraints.564

Frontier Approximation Computing the exact frontier F∗Σ(P0) is computationally expensive and565

incompatible with JAX compilation due to dynamic graph operations. Instead, we approximate the566

reachable fluent set by tracing backwards from proposed skill requirements through the dependency567

graph using breadth-first search to identify achievable fluent combinations. The system employs568

caching mechanisms to store computation results and avoid redundant graph traversals when evaluat-569

ing multiple candidate skills. During skill admission, the approximated frontier enables validation of570

both feasibility constraints—ensuring that proposed skill preconditions can be satisfied with current571

capabilities—and novelty constraints—verifying that the skill’s termination conditions extend the572

agent’s reachable state space.573

Inventory Constraints The system enforces Craftax’s inventory limits (maximum 9 items per type)574

through a resource management strategy that tracks current inventory levels throughout skill execution.575

When a collection skill would exceed the capacity limit, the system splits the task into smaller chunks576

that respect the constraint while maintaining task completion. The algorithm schedules intermediate577

consumption of excess resources by identifying skills that consume specific items and inserting578

them at appropriate points in the execution sequence. The system also adjusts the execution order to579

minimize inventory pressure by deferring collections until items are needed and inserting deferred580

collection nodes when capacity becomes available after consumption events.581
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A.3 LLM Integration and Prompt Engineering582

Model Configuration We use GPT-4.1 as the planning LLM with a maximum generation limit of583

4096 tokens per query. The model operates with default temperature settings that vary by prompt584

type to balance creativity and consistency depending on the reasoning task. Each query context585

includes environment specifications (BlockType, Action, and Achievement enumerations), the current586

knowledge base state, and descriptions of existing skills. The system employs structured output587

formats using JSON schemas for skill specifications to ensure consistent parsing and integration with588

the RL training pipeline. Multi-step reasoning is facilitated through chain-of-thought prompting that589

guides the LLM through problem decomposition and solution construction.590

Prompt Structure Our prompting system employs specialized templates for different phases of the591

skill discovery process. The Skill Proposal template provides context including environment con-592

stants (BlockType, Action, Achievement enumerations), the current knowledge base with confirmed593

and hypothetical facts, and specifications of existing skills to inform the LLM’s decision-making594

process. The Code Generation template focuses on producing syntactically correct reward and595

completion functions with proper JAX compatibility, including necessary imports and function596

signatures that integrate with the training pipeline. Trajectory Analysis prompts guide the LLM597

through examination of successful rollouts to identify discrepancies between predicted and actual598

skill requirements, enabling refinement of skill specifications. Knowledge Base Update templates599

facilitate the incorporation of verified facts and the removal of outdated hypotheses based on empirical600

evidence from RL execution.601

Code Validation Generated code undergoes multiple validation steps to ensure correctness and602

compatibility. The system first performs syntax verification using Python AST parsing to catch basic603

syntactic errors before execution. JAX compatibility checking follows, testing the generated functions604

under JIT compilation to identify any operations incompatible with JAX’s functional programming605

constraints. Function signature validation ensures that generated reward and completion functions606

conform to expected interfaces, including proper parameter names and return types required by the607

training pipeline. The system also conducts logical consistency checks by executing the functions608

with sample environment states to verify that they produce reasonable outputs and handle edge cases609

appropriately, with failed validations triggering code regeneration.610

A.4 Training Protocol and Evaluation611

Skill Training Process Each skill follows a standardized training protocol that begins with pre-612

training validation to check feasibility and novelty constraints before committing computational613

resources. The system then performs frontier navigation by executing the dependency chain to reach614

the skill’s preconditions, ensuring that the agent starts training from appropriate initial states. Policy615

learning follows, training the skill-specific policy head using the proposed reward functions while616

maintaining separation from other skills through the MoE architecture. Success evaluation measures617

performance using verifier functions that assess task completion independent of the reward signal618

used for training. Finally, trajectory analysis examines successful rollouts to identify discrepancies619

between predicted and actual requirements, enabling refinement of skill specifications and knowledge620

base updates.621

Success Thresholds We use different success criteria for different skill types based on their role in622

the overall task hierarchy. Intermediate skills require an 80% success rate threshold to be considered623

adequately learned, providing a balance between training efficiency and reliability when these skills624

are composed into longer chains. Goal tasks such as diamond collection are set to a higher 99%625

success rate threshold to consume the remaining training budget. Survival skills emerge through health626

penalty optimization rather than explicit thresholds, as the agent naturally learns these behaviors when627

the health penalty becomes significant relative to sparse task rewards during long-horizon episodes.628

Reward Ensemble Strategy To mitigate reward hacking, we employ an ensemble approach that629

generates multiple reward functions for each proposed skill, capturing different aspects of the desired630

behavior or alternative formulations of the same objective. The system trains separate policies under631

each reward variant, allowing different learning dynamics and exploration strategies to emerge from632

the various reward signals. All trained policies are then evaluated using task-specific verifiers that633
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measure actual task completion independent of the reward functions used during training. Finally, we634

select the policy with the highest verified success rate, ensuring that the chosen behavior achieves the635

intended objective rather than exploiting weaknesses in any individual reward formulation.636

A.5 System Architecture637

Modular Design The codebase is organized into several key modules that separate concerns and638

enable maintainable development. The flowrl.ppo_flow module contains the extended PPO639

implementation with MoE support, handling the core reinforcement learning training loop and skill-640

specific policy management. flowrl.llm.flow serves as the main orchestration class that manages641

the interaction between the LLM planning system and RL training components, coordinating skill642

proposal, validation, and learning cycles. The flowrl.skill_dependency_resolver module643

implements graph-based skill composition, handling dependency resolution, execution ordering, and644

inventory constraint management. Finally, flowrl.llm.craftax_classic contains environment-645

specific prompts and code generation utilities tailored to the Craftax domain.646

Checkpointing System SCALAR includes a checkpointing mechanism that saves skill library647

state after each successful skill acquisition, preserving both the learned policies and their symbolic648

specifications. The system stores the refined knowledge base with confirmed facts and updated649

hypotheses, enabling the LLM to build upon verified domain knowledge in future iterations. This650

design enables resumption from arbitrary training stages without loss of accumulated learning,651

supporting long-running experiments that may span multiple days or weeks. The implementation652

maintains backward compatibility with previous checkpoint formats to ensure robustness against653

system updates and facilitate reproducibility of earlier experiments.654

JAX Optimization Performance optimizations leverage JAX’s compilation and parallelization655

capabilities to achieve efficient large-scale training. JIT compilation is applied to all training loops656

and environment steps, eliminating Python interpreter overhead and enabling optimized execution on657

both CPU and GPU hardware. Persistent compilation caching reduces startup overhead by storing658

compiled functions across runs, particularly beneficial for iterative experiments that restart frequently659

during skill discovery. Vectorized environment execution operates across 1024 parallel instances,660

maximizing throughput and sample collection efficiency. The system employs optimized memory661

layouts for large-scale trajectory storage, minimizing memory allocation overhead and enabling662

efficient batch processing of experience data.663

A.6 Environment Integration664

Craftax-Classic Interface We interface with Craftax-Classic through several key mechanisms665

that enable SCALAR’s skill-based approach. Symbolic observation encoding directly maps the666

environment’s structured observations to fluent sets, providing the symbolic representations required667

for LLM reasoning and frontier computation. Custom reward function injection allows skill-specific668

training by dynamically replacing the environment’s default reward with LLM-generated reward669

functions tailored to individual skills. Episode termination control enables skill completion detection670

by monitoring verifier functions and terminating episodes when skills are successfully completed671

or predetermined time limits are reached. Achievement tracking provides progress monitoring by672

maintaining records of completed tasks and environmental milestones that inform both the LLM’s673

planning decisions and the evaluation of skill success rates.674

State Encoding The symbolic encoder maps Craftax observations to fluent sets through a structured675

transformation process. Inventory quantities are extracted as count-valued fluents, representing the676

number of each item type currently possessed by the agent and forming the basis for skill prerequisite677

checking. Spatial information including nearby blocks and distances are encoded as positional678

fluents that capture the agent’s local environment and proximity to relevant resources or structures.679

Achievements are represented as binary fluents that track completed milestones and unlock access to680

new skills or capabilities. Player vitals such as health, food, drink, and energy levels are maintained681

as continuous fluents that influence survival behavior and long-term planning considerations.682
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Method Setup (%) Pickaxes (%) Goal (%)

Table Furnace Wood Stone Iron Diamond

Baselines
PPO-RNN 100.0 99.0 99.5 95.2 54.5 0.9
PPO-FC 100.0 97.7 100.0 93.0 49.1 1.2
E3B 5.1 0.0 0.0 0.0 0.0 0.0
ICM 0.0 0.0 0.0 0.0 0.0 0.0
PPO-RND 100.0 98.4 99.7 90.6 21.8 0.3

Our Method
SCALAR-Dense 99.8 84.6 99.8 97.6 76.8 5.3
SCALAR-Sparse 99.8 85.2 99.8 97.8 76.1 0.3

Ablations
No Trajectory Analysis 99.1 73.4 99.1 96.7 69.4 0.8
Shared Networks 99.9 79.5 99.4 96.6 53.8 2.0

Table 4: Baselines (top); Our Method (mid); and ablations (bottom), all evaluated at 100M frames.
Baselines are aggregated using the same timesteps as the reference ablation run (within the 100M
cutoff) to ensure an equal training horizon. Values are means over 1000 trajectories; achievements
reported as percentages.

Method Success Episodes Failure Episodes

Method Energy Food Drink Length Energy Food Drink Length

Baselines
PPO-RNN 7.4 9.1 10.4 285.0 7.4 9.1 10.5 283.4
PPO-FC 13.1 16.3 18.6 526.1 12.7 15.9 18.3 510.3
PPO-RND 15.4 19.6 22.1 632.8 13.9 17.6 20.1 566.4
ICM — — — — 8.6 8.9 9.2 306.7
E3B — — — — 2.8 4.3 5.3 140.2

Our Methods
SCALAR-Dense (Our Method) 13.0 16.9 19.2 543.6 20.9 26.8 30.2 909.4
SCALAR-Sparse (Our Method) 12.4 15.9 18.6 513.7 20.4 25.7 29.7 881.7
No Trajectory Analysis 13.2 16.9 19.3 542.9 14.4 17.7 20.2 601.9
Shared Networks 5.3 6.2 7.6 185.4 8.9 10.4 12.4 357.8

Table 5: Conditional survival metrics from local experiments. Values show mean metrics for episodes
that succeeded (collected diamond) vs failed.
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B Craftax-100M Ablation683

C Conditional Distribution on Success684

D Algorithm Definitions685

Algorithm 1: TrainSkill (on-policy PPO; first-return then explore)
Input: Skill predicates (ισ, τσ), reward rZ , encoder Φ, labeler L, library Σ, frontier

F=F∗Σ(P0), horizon H , total step budget B, PPO hyperparameters
(γ, λ, ϵ,K,M, cvf, cent), policy πθ, value Vψ

Output: Trained πθ, success rate ŝ
1 Sstart ← { z ∈ Z | ισ(L(z))=1 ∧ L(z) ⊆ F };
2 if Sstart = ∅ then
3 return (πθ, 0)

4 S ← 0, E ← 0, J ← 0;
5 while J < B do
6 Sample z⋆ ∼ Unif(Sstart);

// First return to z⋆ using only existing skills
7 if env can reset to z⋆ then
8 reset to o0 with Φ(o0) = z⋆

9 else
10 compose skills in Σ until current z = z⋆

11 D ← ∅;;
12 z ← z⋆;;
13 t← 0;;
14 done← false;

// On-policy rollout (no replay reuse)
15 while t < H and ¬done and J < B do
16 sample a ∼ πθ(· | z); execute a; observe o′; z′ ← Φ(o′);
17 r ← rZ(z, a, z

′);;
18 done← [ τσ(L(z

′))=1 ];;
19 store (z, a, r, z′, done, log πθ(a|z)) in D;
20 z ← z′;;
21 t← t+1;;
22 J ← J+1;
23 E ← E+1;;
24 if done then
25 S ← S+1

// PPO advantage/return computation (GAE)
26 compute V̂i ← Vψ(zi) for all (zi, ·) ∈ D;;
27 δi ← ri + γ(1−donei)V̂i+1 − V̂i;;
28 Âi ←

∑
j≥i(γλ)

j−i δj ;;
29 R̂i ← Âi + V̂i;

// PPO updates with clipping
30 for k = 1 to K do
31 split D into minibatches of size M ;
32 foreach minibatch B ⊂ D do
33 compute ρi ← exp(log πθ(ai|zi)− log πold

θ (ai|zi)) for i ∈ B;
34 Lclip ← 1

|B|
∑
i∈B min

(
ρiÂi, clip(ρi, 1−ϵ, 1+ϵ)Âi

)
;

35 Lvf ← 1
|B|

∑
i∈B(R̂i − Vψ(zi))2, Lent ← 1

|B|
∑
i∈BH

(
πθ(·|zi)

)
;

36 maximize Lclip + centL
ent − cvfL

vf w.r.t. (θ, ψ);

37 set log πold
θ (·|·)← log πθ(·|·) ; // refresh on-policy baseline

38 ŝ← S/max(1, E);;
39 return (πθ, ŝ);

686
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Algorithm 2: SCALAR
Input: K (KB), Σ (skills), P0, priors (πreq, πgain,Πrl), verifier κZ , rewardsR, threshold η

1 repeat
2 Propose: Sample (req, gain) and (rZ , κZ) from priors.
3 Verify: Reject if not novel (??) or not feasible (??).
4 Start state: Pick z⋆ where req holds within F∗

Σ(P0).
5 First return: Reset/compose with Σ until ϕ(o) = z⋆.
6 Train & prune: For each r∈R learn π, estimate verified success ŝ with κZ ; keep {r : ŝ≥η} and

select r⋆.
7 Analyze: From successful traces infer (r̂eq, ĝain,K′).
8 Update: Add (r⋆, κZ , r̂eq, ĝain) to Σ; set K←K′ ∪ {r̂eq⇒ ĝain}; recompute F∗

Σ(P0).
9 until budget exhausted or converged

687

E Prompt Details688

E.1 Skill Proposal and Instantiation (Prompts & Procedure)689

We use a four-stage, LLM-guided pipeline to propose and instantiate new skills that expand the690

reachable frontier while staying compatible with existing skills and the knowledge base.691

Overview. Given the current knowledge base (KB) and library of learned skills, we (i) select692

a new next skill whose prerequisites are already satisfiable by existing skills, (ii) formalize its693

requirements/consumption/gain using lambda forms in terms of existing skill gains, (iii) design694

anti-gaming (sparse) and shaped (dense) reward signals, and (iv) generate executable code for success695

checking and rewards. Each stage is driven by a dedicated prompt; we include all raw prompts below.696

Procedure.697

1. Choose the next skill (next_task). Review the KB and existing skills; list candidate698

objectives and select one that is new (not in the library) and feasible with current abilities.699

Output a compact JSON summary (name, one-line description, target gain).700

2. Specify requirements/consumption/gain (next_subtask). Express requirements and701

consumption as Python lambda strings of the form "lambda n: a*n + b" keyed strictly702

by names that appear as gains of existing skills; mark whether the skill is ephemeral.703

3. Design rewards with hacking analysis (create_skill_densify_reward_reasoning).704

Analyze per-timestep factors, rule out reward-cycling exploits, and produce a minimal sparse705

reward plus (optional) dense terms with small coefficients that cannot dominate the sparse706

signal.707

4. Emit code stubs (create_skill_coding). Generate JAX-compilable implementations of708

task_is_done, task_reward, and task_network_number that follow the environment709

contracts and avoid stateful assumptions.710

Raw prompt: next_task.711

712

Environment Details:713

@struct.dataclass714

class Inventory:715

wood: int = 0716

stone: int = 0717

coal: int = 0718

iron: int = 0719

diamond: int = 0720

sapling: int = 0721

wood_pickaxe: int = 0722

stone_pickaxe: int = 0723

iron_pickaxe: int = 0724
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wood_sword: int = 0725

stone_sword: int = 0726

iron_sword: int = 0727

#max inventory size is 9 for each item728

729

# ENUMS730

class BlockType(Enum):731

INVALID = 0732

OUT_OF_BOUNDS = 1733

GRASS = 2734

WATER = 3735

STONE = 4736

TREE = 5737

WOOD = 6738

PATH = 7739

COAL = 8740

IRON = 9741

DIAMOND = 10742

CRAFTING_TABLE = 11743

FURNACE = 12744

SAND = 13745

LAVA = 14746

PLANT = 15747

RIPE_PLANT = 16748

749

class Action(Enum):750

NOOP = 0 #751

LEFT = 1 # a752

RIGHT = 2 # d753

UP = 3 # w754

DOWN = 4 # s755

DO = 5 # space756

SLEEP = 6 # tab757

PLACE_STONE = 7 # r758

PLACE_TABLE = 8 # t759

PLACE_FURNACE = 9 # f760

PLACE_PLANT = 10 # p761

MAKE_WOOD_PICKAXE = 11 # 1762

MAKE_STONE_PICKAXE = 12 # 2763

MAKE_IRON_PICKAXE = 13 # 3764

MAKE_WOOD_SWORD = 14 # 4765

MAKE_STONE_SWORD = 15 # 5766

MAKE_IRON_SWORD = 16 # 6767

768

class Achievement(Enum):769

COLLECT_WOOD = 0770

PLACE_TABLE = 1771

EAT_COW = 2772

COLLECT_SAPLING = 3773

COLLECT_DRINK = 4774

MAKE_WOOD_PICKAXE = 5775

MAKE_WOOD_SWORD = 6776

PLACE_PLANT = 7777

DEFEAT_ZOMBIE = 8778

COLLECT_STONE = 9779

PLACE_STONE = 10780

EAT_PLANT = 11781

DEFEAT_SKELETON = 12782

MAKE_STONE_PICKAXE = 13783
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MAKE_STONE_SWORD = 14784

WAKE_UP = 15785

PLACE_FURNACE = 16786

COLLECT_COAL = 17787

COLLECT_IRON = 18788

COLLECT_DIAMOND = 19789

MAKE_IRON_PICKAXE = 20790

MAKE_IRON_SWORD = 21791

792

Knowledgebase:793

794

$db.knowledge_base$795

796

Existing Skills:797

798

$db.skills_without_code$799

800

# Instruction801

Consider the knowledgebase, and existing skills. Identify the next skill that should be learned. Pay special attention to the task requirements and action prerequisites from the knowledgebase.802

Fill out the following sections explicitly before arriving at the final formatted output.803

804

## Review Existing Skills805

In a few sentences, review existing skills.806

807

## Future Objectives808

List up to 3 potential future objectives that the player could work toward next. For each objective, briefly discuss the necessity, benefits, requirements. Do not propose any skill which has already been learned.809

810

## Immediate Objective811

Identify the next skill the player should learn based on your analysis. CRITICAL: Do NOT propose any skill that already exists in the existing skills list. You should only propose NEW skills whose requirements can be fulfilled by preexisting skills.812

813

814

# Formatting815

Finally, complete the following Json dictionary as your output.816

‘‘‘json817

{818

"skill_name": # name of the objective819

"description": # (string) 1-line description of the objective820

"gain": # (str) what the player will gain after applying the skill.821

}822

823

Raw prompt: nextsubtask.824

Consider the Knowledgebase and existing skills.825

826

Knowledgebase:827

828

$db.knowledge_base$829

830

Existing Skills831

832

$db.skills$833

834

Skill to Learn835

836

$db.current.skill$837

838

Instruction839

840
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Analyze Knowledgebase841

842

Identify and draw connections between the skill to learn and any relevant existing knowledge.843

844

Task Analysis845

846

Explicitly analyze the current skill:847

• What is the core objective?848

• What are the specific requirements?849

• What resources are consumed when applying the skill.850

851

Previous Skill Analysis852

853

In a bulleted list, write what each skill gains. The requirements and consumption dictionaries for the current skill must be written solely in terms of the gains of existing skills.854

855

Ephemeral Analysis856

857

Determine if this skill is ephemeral. A skill is ephemeral if the gain itself is not observable in the inventory.858

859

Note860

• Distance/adjaceny CANNOT be directly verified or quantified, but you can use the closest blocks as a proxy.861

• Skills should be explicit and complete on their own, and should convey a clear quantifiable goal. The purpose of requirements/consumption is to later parse what other skills need to be performed before applying the skill.862

• Requirements are a SUPERSET of consumption: requirements include everything needed (both consumed and non-consumed resources), while consumption only includes what gets used up.863

• Each value in requirements/consumption should be written as a Python lambda function string that takes n and returns the amount needed, in the form: “lambda n: a*n + b”, where:864

• a = amount of resource consumed PER unit of gain (scales with n)865

• b = amount of resource required but NOT consumed (fixed amount regardless of n)866

• Ask yourself: “Does this requirement scale with the number of times I apply the skill?”867

• If YES (scales with n): use “lambda n: a*n + 0” format868

• If NO (fixed amount): use “lambda n: 0*n + b” format869

• Requirements do not support ‘or’870

• Each key in requirements/consumption must be a key in the gain of an existing skill.871

872

Formatting873

874

Finally, complete the following Json dictionary as your output.875

876

{877

"skill_name": , # name of the current skill878

"requirements": , # (dict) total amount needed available using "lambda n: a*n + b" format. Each key must exactly match the key of a gain of a previous skill.879

"consumption": , # (dict) amount consumed using "lambda n: a*n + b" format. Each key must exactly match the key of a gain of a previous skill.880

"gain": , # (dict) a dictionary of what is gained by applying the skill. The gain for the skill goal should be n.881

"ephemeral": , # (bool) true if the gain itself is not observable in the inventory, false if the gain appears directly in the inventory882

}883

884

Raw prompt: createskilldensifyrewardreasoning.885

886

All factors887

888

Environment definitions:889

890

class BlockType(Enum):891

INVALID = 0892

OUT_OF_BOUNDS = 1893

GRASS = 2894

WATER = 3895

STONE = 4896

TREE = 5897

22



WOOD = 6898

PATH = 7899

COAL = 8900

IRON = 9901

DIAMOND = 10902

CRAFTING_TABLE = 11903

FURNACE = 12904

SAND = 13905

LAVA = 14906

PLANT = 15907

RIPE_PLANT = 16908

# Max inventory value is 9, max player intrinsics values are also 9909

@struct.dataclass910

class Inventory:911

wood: int = 0912

stone: int = 0913

coal: int = 0914

iron: int = 0915

diamond: int = 0916

sapling: int = 0917

wood_pickaxe: int = 0918

stone_pickaxe: int = 0919

iron_pickaxe: int = 0920

wood_sword: int = 0921

stone_sword: int = 0922

iron_sword: int = 0923

924

class Achievement(Enum):925

COLLECT_WOOD = 0926

PLACE_TABLE = 1927

EAT_COW = 2928

COLLECT_SAPLING = 3929

COLLECT_DRINK = 4930

MAKE_WOOD_PICKAXE = 5931

MAKE_WOOD_SWORD = 6932

PLACE_PLANT = 7933

DEFEAT_ZOMBIE = 8934

COLLECT_STONE = 9935

PLACE_STONE = 10936

EAT_PLANT = 11937

DEFEAT_SKELETON = 12938

MAKE_STONE_PICKAXE = 13939

MAKE_STONE_SWORD = 14940

WAKE_UP = 15941

PLACE_FURNACE = 16942

COLLECT_COAL = 17943

COLLECT_IRON = 18944

COLLECT_DIAMOND = 19945

MAKE_IRON_PICKAXE = 20946

MAKE_IRON_SWORD = 21947

948

The reward function is calculated independently at each timestep using these available factors:949

• inventory_diff (Inventory): The change in the player’s inventory between the current and previous timesteps (-1 for each item used and +1 for each item gained).950

• closest_bocks_changes (numpy.ndarray): The changes in distance to closest blocks of each type from the last timestep to the current timestep. Decreases in distance are positive. If an item has moves from being unseen to seen, the default will be 30-current_distance. E.g. if a table is placed in front of the player, the distance diff will be 29.951

• player_intrinsics (jnp.ndarray): The intrinsic values952

• player_intrinsics_diff (jnp.ndarray): The changes in current intrinsic values from the last timestep to the current timestep.953

954

Other Information955

• This reward function is called independently at each timestep956
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• Each timestep’s reward is calculated using only information from the current and previous timestep957

• The reward at timestep t cannot access information from timestep t-2 or earlier958

• The completion criteria is a separate function; do not worry about implementing it959

• No state can be stored between timesteps - each reward calculation must be independent960

961

Skill962

963

Given the following skill, design the reward function for the Skill $db.current.skill_name$964

965

$db.current.skill_with_consumption$966

967

Steps968

969

Explicitly complete the following steps before arriving at your final formatted output970

0. Analyze Skill Gains and identify appropriate reward factors:971

• What is the core objective of this subtask?972

• What specific behaviors or outcomes need to be rewarded?973

• For each available factor, determine if it can provide meaningful feedback for the required behaviors974

• Remove any factors that are irrelevant to the subtask objectives or should not be used.975

• Assume all requirements for the skill has been met before the skill is applied.976

List the remaining factors that will be analyzed in subsequent steps.977

978

1. Analyze each factor’s per-timestep behavior, responding to each question explicitly:979

• How does the raw factor behave at each individual timestep?980

• What does a positive vs negative value mean at a single timestep?981

• What is measured when we use this raw factor as a direct reward?982

• Write out a sequence of timestep values for a potential reward hacking attempt. Sum these values.983

• Based on the sequence sum: Does the reward cycling result in positive net reward? If so, state reward hacking is possible since the agent can repeat this cycle indefinitely for unbounded reward. If the cycle results in zero or negative net reward, state the raw factor naturally prevents reward hacking since repeating the cycle cannot generate unbounded reward.984

• Write the exact transformation: If we concluded the raw factor naturally prevents reward hacking, write the factor name exactly as it appears in the available factors (e.g., “Transform = inventory_diff”). Otherwise, write the minimal equation required and explain why it’s necessary based on the sequence analysis.985

2. Filter out factors with no obvious non-hackable reward functions or those that are not relevant to the task.986

3. Classify the remaining factors in to dense and sparse rewards. The chosen sparse reward should be a single factor that best represents the main objective of the subtask. Justify your choice.987

4. Design a minimalistic sparse reward formula:988

• Use the raw factor directly if it was shown to naturally prevent reward hacking989

• Include only the minimum operations needed for the reward signal990

• Verify the formula matches your timestep sequence analysis from step 1991

5. Design a dense reward formula:992

• For each factor proven safe in step 1, include it directly993

• If multiple factors are valid, combine them through simple addition994

• No additional transformations beyond what was proven necessary in step 1995

• For each factor included, include a coefficient between 0.0 and 1.0 such that the the magnitude of sparse reward over-powers dense reward and output in the requested format.996

• The sum of the sparse reward across timesteps should be greater then the sum of the dense rewards. For example, if considering distance, if the max distance is 30,30, then sqrt(30^2+30^2) = 42, so for the sum of the dense distance reward to be less then a sparse reward of 1, the coefficent would need to be less then 1/24 = 0.02 or lets say 0.01 or less.997

• Write “NA” if no dense reward is needed998

6. Write both rewards into mathematical formula, and double-check for redundancy999

1000

Note1001

• The optimization stops when completion critiera is met, so no more rewards will be provided after completion.1002

1003

If no dense reward function is possible or needed for this task, simply state NA.1004

1005

{1006

"sparse_reward_only_function": # (str) Minimal reward pseudocode1007

"dense_reward_function": # (str) Dense reward pseudocode, "NA" if not available1008

}1009

1010

Raw prompt: createskillcoding.1011

1012

class BlockType(Enum):1013
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INVALID = 01014

OUT_OF_BOUNDS = 11015

GRASS = 21016

WATER = 31017

STONE = 41018

TREE = 51019

WOOD = 61020

PATH = 71021

COAL = 81022

IRON = 91023

DIAMOND = 101024

CRAFTING_TABLE = 111025

FURNACE = 121026

SAND = 131027

LAVA = 141028

PLANT = 151029

RIPE_PLANT = 161030

# Max inventory value is 9, max player intrinsics values are also 91031

@struct.dataclass1032

class Inventory:1033

wood: int = 01034

stone: int = 01035

coal: int = 01036

iron: int = 01037

diamond: int = 01038

sapling: int = 01039

wood_pickaxe: int = 01040

stone_pickaxe: int = 01041

iron_pickaxe: int = 01042

wood_sword: int = 01043

stone_sword: int = 01044

iron_sword: int = 01045

1046

class Achievement(Enum):1047

COLLECT_WOOD = 01048

PLACE_TABLE = 11049

EAT_COW = 21050

COLLECT_SAPLING = 31051

COLLECT_DRINK = 41052

MAKE_WOOD_PICKAXE = 51053

MAKE_WOOD_SWORD = 61054

PLACE_PLANT = 71055

DEFEAT_ZOMBIE = 81056

COLLECT_STONE = 91057

PLACE_STONE = 101058

EAT_PLANT = 111059

DEFEAT_SKELETON = 121060

MAKE_STONE_PICKAXE = 131061

MAKE_STONE_SWORD = 141062

WAKE_UP = 151063

PLACE_FURNACE = 161064

COLLECT_COAL = 171065

COLLECT_IRON = 181066

COLLECT_DIAMOND = 191067

MAKE_IRON_PICKAXE = 201068

MAKE_IRON_SWORD = 211069

1070

#when indexing an enum make sure to use .value1071

1072
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#Here are example docstrings:1073

1074

def task_is_done(inventory, inventory_diff, closest_blocks, closest_blocks_prev, player_intrinsics, player_intrinsics_diff, achievements, n):1075

\"\"\"1076

Determines whether Task ‘$db.current.skill_name$‘ is complete.1077

Do not call external functions or make any assumptions beyond the information given to you.1078

1079

Args:1080

inventory (Inventory): The player’s current inventory, defined in the above struct1081

inventory_diff (Inventory): The change in the player’s inventory between the current and previous timesteps, same struct as above.1082

closest_blocks (numpy.ndarray): A 3D tensor of shape (len(BlockType), 2, K) representing the K closest blocks of each type. Default values are (30, 30) for unseen blocks.1083

#default of 30,30 if less then k seen, ordered by distance (so :,:,0 would be the closest of each block type.1084

# to get the l2 distance of the agent from the closest diamond for example would be jnp.linalg.norm(closest_blocks[BlockType.DIAMOND.value, :, 0]), closest_bocks_changes = l2dist(closest_blocks_prev) - l2dist(closest_blocks)1085

closest_blocks_prev (numpy.ndarray): A 3D array of shape (len(BlockType), 2, K) representing the K closest blocks of each type in the previous timestep. Default values are (30, 30) for unseen blocks.1086

#default of 30,30 if less then k seen, ordered by distance (so :,:,0 would be the closest of each block type1087

player_intrinsics (jnp.ndarray): An len 4 array representing the player’s health, food, drink, and energy levels1088

player_intrinsics_diff (jnp.ndarray): An len 4 array representing the change in the player’s health, food, drink, and energy levels1089

achievements (jnp.ndarray): A 1D array (22,) of achievements, where each element is an boolean indicating the corresponding achievement has been completed.1090

n (int): The target amount to reach in inventory for the main gain item.1091

1092

Returns:1093

bool: True if the main gain item in inventory has reached the target amount n, False otherwise.1094

\"\"\"1095

return TODO1096

1097

1098

def task_reward(inventory_diff, closest_blocks, closest_blocks_prev, player_intrinsics_diff, achievements_diff, health_penalty):1099

\"\"\"1100

Calculates the reward for Task ‘$db.current.skill_name$‘ based on changes in inventory and other factors.1101

Do not call external functions or make any assumptions beyond the information given to you.1102

1103

Args:1104

inventory_diff (Inventory): The change in the player’s inventory between the current and previous timesteps, same struct as above.1105

closest_blocks (numpy.ndarray): A 3D array of shape (len(BlockType), 2, K) representing the K closest blocks of each type,1106

#default of 30,30 if less then k seen, ordered by distance (so :,:,0 would be the closest of each block type.1107

#Since the environment is a 2d gridworld, an object next to the player will have a distance of 1.1108

closest_blocks_prev (numpy.ndarray): A 3D array of shape (len(BlockType), 2, K) representing the K closest blocks of each type in the previous timestep. Default values are (30, 30) for unseen blocks.1109

#default of 30,30 if less then k seen, ordered by distance (so :,:,0 would be the closest of each block type1110

health_penalty (float): The penalty for losing health. Negative when loosing health and positive when regaining health.1111

player_intrinsics_diff (jnp.ndarray): An len 4 array representing the change in the player’s health, food, drink, and energy levels1112

achievements_diff (jnp.ndarray): A 1D array (22,) of achievements, where each element is an boolean indicating whether the achievement was completed in the last timestep. If the achievement was already completed previously, it will not indicate the achievement was completed again.1113

1114

Returns:1115

float: Reward for RL agent1116

1117

Note:1118

The task reward should be two parts:1119

1. Sparse reward1120

2. Dense reward1121

Make sure to disable (2) if (1) is triggered, e.g. sparse_reward + (sparse_reward == 0.0) * dense_reward1122

1123

\"\"\"1124

return TODO + health_penalty1125

1126

def task_network_number():1127

"""1128

Returns the network index corresponding to the nodes associated skill1129

Returns:1130

int: Network index1131
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1132

\"\"\"1133

return TODO1134

1135

Given the above documentations, implement the task_is_done, task_reward, and task_network_number function for the subtask $db.current.skill_name$ with the following details:1136

1137

$db.current.skill_with_consumption$1138

$db.current.reward$1139

1140

The dense reward to include is:1141

1142

$db.current.dense_reward_factor$1143

1144

The current number of skills is:1145

1146

$db.current.num_skills$1147

1148

Implementation Guidelines:1149

1150

For task_is_done:1151

• Identify the main gain item from the skill’s “gain” dictionary (the item with the highest gain value)1152

• Check if the current inventory amount of that main gain item is >= n (the target amount)1153

• Return True when the target amount is reached, False otherwise1154

• Use inventory.{item_name} to access inventory amounts (e.g., inventory.wood, inventory.stone)1155

• If a skill is ephemeral, the inventory does not suffice, so for completion criteria you can use closest_blocks or if that doesn’t work achievements.1156

1157

For task_reward and task_network_number:1158

• Follow the existing reward structure and network numbering as before1159

1160

The task network number should be num_skills since we’re creating a new skill and the networks are zero indexed.1161

Do not change the function signature or the docstrings. Do not make any assumptions beyond the information given to you.1162

The code you write should be able to be jax compiled, no if statements.1163

No need to retype BlockType, Inventory, and Achievement they will be provided in the environment.1164

No need to add coefficents to rewards, for example, no need for 10 * inventory_diff.*, just use the raw values.1165

Return all three functions in a single code block, don’t seperate it into 3.1166

No need to return the docstrings.1167

Your code will be pasted into a file that already has the following imports. Do not add any additional imports.1168

from craftax.craftax_classic.constants import *1169

from craftax.craftax_classic.envs.craftax_state import Inventory1170

import jax1171

E.2 Knowledge Base / Skill Updates via Pivotal Trajectory Analysis1172

After each verified success, we run pivotal trajectory analysis to reconcile what the skill actually1173

needed and produced with what it claimed to need and produce. Concretely, we compare the1174

inferred preconditions/effects against the successful rollout and (i) update the skill’s requirements,1175

consumption, and gain, and (ii) propose edits to the knowledge base (KB) where assumptions can be1176

marked verified, removed, or left unchanged.1177

Procedure. Let σ = (z0, . . . , zT ) be a successful rollout and let L(zt) be the set of facts at time t.1178

1. Summarize the trajectory. Convert σ to a sequence of fact-sets s = (L(z0), . . . , L(zT ))1179

and attach the current skill definition and KB snapshot.1180

2. LLM pass #1: Update the skill. Using the “update_skill_from_trajectory” prompt (below),1181

the LLM infers requirement, consumption, and gain functions written as lambda strings in1182

the form "lambda n: a*n + b", where a captures per-application usage and b captures1183

fixed setup needs.1184

3. LLM pass #2: Propose KB edits. Using the “propose_knowledge_base_updates” prompt1185

(below), the LLM proposes targeted KB changes: change ASSUMPTION → VERIFIED1186
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when supported by the trajectory, remove disproven assumptions, and keep unsupported1187

assumptions unchanged.1188

4. Post-processing. We validate JSON structure and key alignment (each require-1189

ment/consumption key must match an existing skill gain), apply the updates, and recompute1190

the frontier.1191

Raw prompt: update_skill_from_trajectory.1192

You need to update a skill based on its execution trajectory.1193

1194

Current Skill:1195

‘‘‘1196

$db.current.skill_with_consumption$1197

‘‘‘1198

1199

Existing Skills (for requirements validation):1200

‘‘‘1201

$db.skills$1202

‘‘‘1203

1204

Trajectory Data:1205

‘‘‘1206

$db.example_trajectory$1207

‘‘‘1208

1209

## Task1210

1211

Analyze the trajectory to determine what the skill actually required, consumed, and gained, then express this in terms of ‘n‘ (the number of times the skill is applied).1212

1213

The trajectory shows a specific instance (e.g. n=1), but you need to infer the general pattern.1214

1215

**IMPORTANT CONSTRAINTS:**1216

- Requirements are a SUPERSET of consumption: requirements include everything needed (both consumed and non-consumed resources), while consumption only includes what gets used up.1217

- Each value in requirements/consumption should be written as a Python lambda function string that takes n and returns the amount needed, in the form: "lambda n: a*n + b", where:1218

- a = amount of resource consumed PER unit of gain (scales with n)1219

- b = amount of resource required but NOT consumed (fixed amount regardless of n)1220

- Ask yourself: "Does this requirement scale with the number of times I apply the skill?"1221

- If YES (scales with n): use "lambda n: a*n + 0" format1222

- If NO (fixed amount): use "lambda n: 0*n + b" format1223

- Requirements do not support ’or’1224

- Each key in requirements/consumption must be a key in the gain of an existing skill.1225

1226

Update the skill’s requirements and gain as lambda functions based on what the trajectory revealed.1227

1228

# Formatting1229

‘‘‘json1230

{1231

"skill_name": "", # name of the skill1232

"updated_requirements": {}, # total amount needed available using "lambda n: a*n + b" format. Each key must exactly match the key of a gain of a previous skill.1233

"updated_consumption": {}, # amount consumed using "lambda n: a*n + b" format. Each key must exactly match the key of a gain of a previous skill.1234

"updated_gain": {} # a dictionary of what is gained by applying the skill. The gain for the skill goal should be n.1235

}1236

Raw prompt: proposeknowledgebaseupdates.1237

You need to propose which parts of the knowledge base should be updated based on trajectory analysis.1238

1239

Knowledge Base:1240

‘‘‘1241
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$db.knowledge_base$1242

‘‘‘1243

1244

Trajectory Data:1245

‘‘‘1246

$db.example_trajectory$1247

‘‘‘1248

1249

Current Skill:1250

‘‘‘1251

$db.current.skill_with_consumption$1252

‘‘‘1253

1254

## Task1255

1256

Look at the knowledge base structure and propose which specific entries/fields should be updated based on what was VERIFIED from the trajectory execution.1257

1258

The knowledge base contains requirement lists with items marked as "ASSUMPTION" or "VERIFIED". Based on the trajectory, propose updates where:1259

1260

1. ASSUMPTIONS that were confirmed by the trajectory become "VERIFIED: condition"1261

2. ASSUMPTIONS that were proven FALSE by the trajectory should be REMOVED1262

3. ASSUMPTIONS that cannot be verified from this trajectory MUST remain "ASSUMPTION: condition"1263

4. New requirements discovered from the trajectory are added as "VERIFIED: condition"1264

1265

**CRITICAL**: Only make changes when you have clear evidence from the trajectory:1266

- Change ASSUMPTION to VERIFIED if trajectory confirms it’s true1267

- REMOVE assumptions if trajectory proves they’re false1268

- KEEP assumptions unchanged if trajectory provides no evidence either way1269

1270

Requirements should be in the format: "VERIFIED: condition" or "ASSUMPTION: condition"1271

1272

# Formatting1273

‘‘‘json1274

{1275

"proposed_updates": [1276

{1277

"path": ["key1", "subkey", "field"], # Path to the field in the knowledge base1278

"updated_requirements": [], # Complete updated list of requirements (verified + remaining assumptions)1279

"reason_for_update": "" # What the trajectory showed that confirms, disproves, or leaves unchanged1280

}1281

]1282

}1283

‘‘‘1284
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