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Abstract

Importance sampling (IS) allows one to approximate leave one out (LOO) cross-validation
for a Bayesian model, without refitting, by inverting the Bayesian update equation to sub-
tract a given data point from a model posterior. For each data point, one computes ex-
pectations under the corresponding LOO posterior by weighted averaging over the full data
posterior. This task sometimes requires weight stabilization in the form of adapting the
posterior distribution via transformation. So long as one is successful in finding a suitable
transformation, one avoids refitting. To this end, we motivate the use of bijective perturba-
tive transformations of the form T (ω) = ω+hQ(ω), for 0 < h → 1, and introduce two classes
of such transformations: 1) partial moment matching and 2) gradient flow evolution. The
former extends prior literature on moment-matching under the recognition that adaptation
for LOO is a small perturbation on the full data posterior. The latter class of methods de-
fine transformations based on relaxing various statistical objectives: in our case the variance
of the IS estimator and the KL divergence between the transformed distribution and the
statistics of the LOO fold. Being model-specific, the gradient flow transformations require
evaluating Jacobian determinants. While these quantities are generally readily available
through auto-di!erentiation, we derive closed-form expressions in the case of logistic regres-
sion and shallow ReLU activated neural networks. We tested the methodology on an n → p

dataset that is known to produce unstable LOO IS weights.

1 Introduction

In Bayesian workflows, multiple models are often fitted to a given dataset, and a selection procedure is
applied to decide which model will be the most consistent with future observations. Prediction accuracy
is most naturally estimated using cross-validation (CV) of which many variants exist. Commonly, a model
trained using a given partition of the available data and evaluated using the remaining unused data. However,
estimates of out-of-sample model metrics using train-test splitting are statistically noisy (Dietterich, 1998;
Kohavi, 1995) unless computationally expensive k-fold cross-validation (i.e., fitting the model multiple times
on cross-over the entire dataset) is employed (Rodriguez et al., 2010; Wong & Yeh, 2020).

Although N -fold – also known as leave one out (LOO) – CV is the most expensive of k-fold estimators,
there exist computationally e"cient LOO techniques that completely avoid refitting. For example, the
Akaike Information criteria (AIC) and Bayesian variants (Stone, 1977; Watanabe, 2010; Gelman et al., 2014;
Watanabe, 2013) are asymptotic approximations of LOO CV. For Bayesian models, a more precise way to
compute LOO CV is to use importance sampling (Vehtari et al., 2017; Piironen & Vehtari, 2017a), which
works by using the full data posterior measure as a proposal distribution for each data point’s LOO pos-
terior measure. However, in cases where the LOO measure and full measure are very di!erent, importance
sampling can fail (Piironen & Vehtari, 2017a). To ameliorate this possibility, we introduce an adaptive
importance sampling methods for LOO CV based on using transformations that bring the proposal distri-
bution closer to LOO posteriors under the principle that the transformation should be a small perturbation.
We derive these transformations by defining gradient flows that minimize given statistical objective. While
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Figure 1: Relationships between proba-

bility densities. One wants to sample from
ω(ω|D(→i)), the LOO distribution for observa-
tion i, by sampling from the full-data posterior
ω(ω|D). The transformation Ti on the full-data
posterior brings the sampling distribution closer
to the target LOO distribution.

the transformations are model-dependent, the method is made completely general when using autograd for
computing model gradients – for computational e"ciency we derive the transformations exactly for a large
class of classification models.

2 Preliminaries

2.1 Notation

We denote vectors (assumed to be column vectors unless otherwise stated) using bold-faced lowercase sym-
bols, and matrices using bold-faced uppercase symbols. Given a matrix W = (wij), the i-th row is denoted
wi, and j-th column is denoted w,j .

We refer to the entire set of observed training data as D = {di}n
i=1 = {(xi, yi)}n

i=1. As shorthand, we denote
the set of training data where the i-th observation is left out as D(→i) = D \ {di}. Expectations with respect
to the posterior distribution of ω are denoted Eω|D, and with respect to the posterior distribution of ω if
observation i is left out are denoted Eω|D(→i) .

For a transformation T : ! ↑ !, where ! ↓ Rp, we denote its Jacobian matrix JT = ↔T =
(
εωT

ε
)

ω,ε

and the determinant of the Jacobian matrix JT = |JT |. The gradient operator ↔ operating on a function
µ : Rp ↑ R is assumed to yield a column vector, the Hessian matrix for a function µ is denoted ↔↔µ, and
the Laplacian of µ is denoted ↔2

µ

The operator | · | refers to determinants when the argument is a matrix, the 2-norm when the argument is a
vector, and the absolute value when the argument is a scalar.

2.2 Importance sampling-based approximate leave one out cross validation (IS-LOO)

Suppose that one has pre-trained a Bayesian model such that one is able to sample its posterior parameters
ωs

iid↗ ω(ω|D). Our objective is to use knowledge of this full-data posterior distribution to estimate how the
model would behave if any single point is left out at training. One can relate the full-data model to the
model with observation i left out using the Bayesian update equation

ω(ω|D) = ϑ(ω|di)ω(ω|D(→i))∫
ϑ(ω|di)ω(ω|D(→i))dω

, (1)

which is a Fredholm integral equation of the second-kind with respect to ω(ω|D(→i)). This integral equation
is in-practice di"cult to solve due to the typically-high dimensionality of ω. Note that Eq. 1 is equivalent to
Bayes’ rule

ω(ω|D) ↘ ω(ω)
n∏

i=1
ϑ(ω|di). (2)

Rather than directly inverting Eq. 1 to obtain ω(ω|D(→i)), our starting point is the observation that Eq. 1
implies

ω(ω|D(→i))
ω(ω|D) =

Eω|D(→i) [ϑ(ω|di)]
ϑ(ω|di)

≃ ϖi(ω), (3)
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providing the ratio of densities functions between a distribution we know (the full-data posterior ω(ω|D)) and
a distribution whose statistics we would like to compute (the point-wise LOO posterior ω(ω|D(→i))). To use
the former to compute the latter we turn to Monte Carlo (Barbu & Zhu, 2020; Robert & Casella, 2013) – the
use of statistical sampling to compute a desired quantity (typically an integral). Importance Sampling (IS)
is a Monte Carlo method where one computes expectations with respect to a target distribution by taking
a weighted average of samples with respect to a given proposal distribution. For an integrable function f ,

Eω|D(→i) [f(ω)] =
∫

f(ω)ω(ω|D(→i))dω =
∫

f(ω)ω(ω|D(→i))
ω(ω|D) ω(ω|D)dω = Eω|D [f(ω)ϖi(ω)] . (4)

We approximate Eq. 4 by sampling over ωk
iid↗ ω(ω|D), and computing the Monte Carlo integral

Eω|D(→i) [f(ω)] ⇐
s∑

k=1
ϖikf(ωk) (5)

where the coe"cients ϖik are known as the self-normalized importance sampling weights

ϖik = ϖi(ωk)∑s
j=1 ϖi(ωj)

= (ϑ(ωk|di))→1
∑s

k=1(ϑ(ωk|di))→1 , (6)

so that the undetermined constant Eω|D(→i) [ϑ(ω|di)] cancels out. Eqs. 5, 6 define a well-known (Gelfand
et al., 1992) Monte Carlo estimator for LOO.

2.3 LOO cross validation based metrics

The Bayesian LOO information criterion (LOO-IC), of which the Aikaike Information Criterion (AIC) is an
asymptotic approximation, can be computed via:

LOO-IC = ⇒2
n∑

i=1
logEω|D(→i) [ϑ(ω|di)] ⇐ ⇒2

n∑

i=1
log

s∑

k=1
ϖikϑ(ωk|di). (7)

For classification problems, the out-of-sample area under the receiver operator curve or the precision-recall
curve is often required. This can similarly be computed by propagating LOO estimates of the outcome
probabilities

p̂loo,i = Eω|D(→i) [pi(ω)] ⇐
s∑

k=1
ϖikp(ωk, xi). (8)

2.4 Weight stabilization

Often it is the case that using the computed posterior ω(ω|D) as the proposal distribution for importance
sampling has slow convergence properties – the 1/ϑ importance weights, being fat tailed, are known to have
large or unbounded variance (Peruggia, 1997), making the importance sampler estimate for LOO expectations
(Eq. 6) noisy.

Two practical model agnostic methods for controlling the tail of importance weights are weight trunca-
tion (Ionides, 2008) and Pareto smoothing (Vehtari et al., 2024; 2017). Pareto smoothing replaces the
largest M weights with their corresponding rank-values from a fitted generalized Pareto-distribution (Zhang
& Stephens, 2009). Pareto smoothed importance sample (PSIS)-based LOO implementations are widely
available in software packages such as Stan and ArviZ. However, PSIS-LOO fails when the tail distribu-
tion of importance weights is not well-fit by the Pareto distribution; a general rule of thumb is that the
parameter k̂ exceeds 0.7. In these cases, performing an additional model-specific controlled transformation
on the proposal distribution will induce more e"cient computations. Later on, as in Paananen et al. (2021),
we will use the estimated Pareto shape parameter k̂ on post-transformation IS weights in order to evaluate
the success of di!erent transformations. E!ective transformation should be able to reduce the Pareto shape
parameter to below the given threshold.
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2.5 Adaptive importance sampling

We apply the concept of adaptive importance sampling (Bugallo et al., 2017; Cornuet et al., 2011; Elvira &
Martino, 2022) to transform the posterior distribution to be closer to the LOO distribution ω(ω|D(→i)) (the
relationships between the di!erent distributions are depicted in Fig. 1).

Consider the bijection Ti : Rp ↑ Rp, defined for observation i, and let ε ≃ Ti(ω). By change of variables,
ωε(ε| . . .) = ω

(
T

→1
i (ε)| . . .

)
J →1

i (ϱ), where we denote JT = ↔T , J →1
Ti

(ε) =
∣∣J→1

Ti
(ε)

∣∣ , and JTi(ω) =
|JTi(ω)| = 1/J →1

Ti
(ε), The expectation in Eq. 4 in terms of an integral over ωε is

Eω|D(→i) [f(ω)] =
∫

f(ω)ϖi(ω)ω(ω|D)dω =
∫

f(ω)ϖi(ω) ω(ω|D)
ωε(ω|D)ωε(ω|D)dω

=
∫

f(ω)ϖi(ω)ω(ω|D)JTi(T →1
i (ω))

ω(T →1
i (ω)|D)

ωε(ω|D)dω. (9)

Define a Monte Carlo approximation of Eq. 9 using importance sampling, by sampling ωk
iid↗ ω(ω|D) so that

εk = Ti(ωk) iid↗ ωε(ε|D) :

Eω|D(→i) [f(ω)] ⇐
s∑

k=1

ςik∑s
j=1 ςij

f(εk) ςik = JTi(ωk)
ϑ(εk|di)

ω(εk|D)
ω(ωk|D) . (10)

By Bayes rule (Eq. 2), the posterior likelihood ratio in Eqs. 9–10 has the exact expression

ω(ε|D)
ω(ω|D) = ω(ε)

ω(ω)
∏

i

ϑ(ε|di)
ϑ(ω|di)

. (11)

Computing this expression requires iterating over the entire dataset. There are various methods to avoid
this expensive computation, for instance also using Monte Carlo approximation by sampling data points.
For large datasets, one can turn to variational approximations.

2.6 Correcting variational posteriors

For computational expediency, variational methods are often used in place of MCMC for Bayesian inference,
obtaining a variational approximation ω̂(ω|D) to the true posterior, where ω̂ lies within a given family of
probability distributions. In problems where one expects a substantial discrepancy between the true posterior
and ω̂, one may correct for this discrepancy by noting that

Eω|D(→i) [f(ω)] =
∫

f(ω)ϖi(ω)ω(ω|D)dω =
∫

f(ω)ϖi(ω) ω(ω|D)
ω̂ε(ω|D) ω̂ε(ω|D)dω

=
∫

f(ω)ϖi(ω)ω(ω|D)JTi(T →1
i (ω))

ω̂(T →1
i (ω)|D)

ω̂ε(ω|D)dω (12)

and using the self-normalized importance sampler

Eω|D(→i) [f(ω)] ⇐
s∑

k=1

φik∑s
j=1 φij

f(εk) φik = Ji(ωk)
ω̂(ωk|D)ω(εk)

∏

j ↑=i

ϑ(εk|dj), (13)

where ω(εk) is the prior density at εk, canceling out the two unknown constants corresponding to ω(εk|D)
and ϖi.

3 Methods

Eq. 10 is valid for an arbitrary bijection Ti : supp(ω(ω)) ↑ supp(ω(ω)). The objective of using transformations
is to shift the proposal distribution closer to the targeted LOO distribution for each observation – to invert
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the update version of Bayes’ rule. Returning to Eq. 1, in conjunction with Eq. 2, it is clear that the relative
di!erence between the full posterior and the LOO posterior (for a given data point) is small – on the order
of 1/N . This fact motivates transformations of the form

Ti(ω) = ω + hQi(ω), (14)

for a perturbation parameter h > 0 and function Qi.

3.1 Partial moment-match stepping

The first two transformation methods presented in (Paananen et al., 2021) match the first moment and the
first two moments respectively of the proposal distribution and the target distribution, independently for
each scalar component of each model parameter. We generalize those transformations subject to a tunable
scalar constant h̄,

TPMM1(ω) = ω + h̄(ω̄w ⇒ ω̄) TPMM2(ω) = ω + h̄

(
v

1/2
w ⇑ v

→1/2 ⇑ (ω ⇒ ω̄) + ω̄w ⇒ ω
)

ω̄ = 1
s

s∑

k=1
ωk v = 1

s

s∑

k=1
(ωk ⇒ ω̄) ⇑ (ωk ⇒ ω̄)

ω̄w =
∑s

k=1 ϖkωk∑
k ϖk

vw =
∑s

k=1 ϖk(ωk ⇒ ω̄) ⇑ (ωk ⇒ ω̄)∑s
k=1 ϖk

(15)

where setting h̄ = 1 recovers the original transformations MM1/MM2 respectively.

3.2 Gradient flow transformations

3.2.1 KL divergence descent

We consider choosing Ti to minimize the KL divergence DKL
(
ω(ω|D(→i))⇓ωε(ω|D)

)
, which is equivalent to

minimizing the cross-entropy with respect to the mapping Ti,

H

(
ω(ω|D(→i)), ωε(ω|D)

)
= ⇒

∫
ϖi(ε)ω(ε|D) log ω(T →1

i (ε)|D)
JTi(T →1

i (ε))
dε. (16)

The Euler-Lagrange equation for minimizing Eq. 16 (derived in Supplemental Materials S.1.1), is implicit
in Ti. While it admits no closed form solution, one may note that Ti is a t ↑ ⇔ stable fixed point of the
KL-descending gradient flow

εTi(ω, t)
εt

= ⇒
↼H

(
ω(ω|D(→i)), ωε(ω|D)

)

↼Ti
(17)

where ↼/↼Ti denotes the functional derivative of H with respect to the transformation Ti, and use this fact
to refine, using the method of lines, an initial guess of Ti(ω) = ω with forward Euler discretization of step
size h[Eω|D(→i) [ϑ(ω, xi, yi)]]→1, for 0 < h → 1, to arrive at the transformation

T
KL
i (ω) = ω ⇒ h

Eω|D(→i) [ϑ(ω|di)]
↼H

(
ω(ω|D(→i)), ωε(ω|D)

)

↼Ti

∣∣∣∣∣
T (ω)=ω

= ω + h ω(ω|D)↔
(

1
ϑ(ω|di)

)

︸ ︷ 
QKL

i

(18)

3.2.2 Variance descent

In importance sampling, the variance of the estimator is conditional on the target function for expectation.
Since we are interested in computing the LOO predictive probability for each observation i, it is natural to
consider minimizing the variance of the transformed importance sampler for the function pi(ω) = p(ω, xi).
However, this objective yields a transformation that is only useful for observations where yi = 0 (see Supple-
mental MaterialsS.1.2). Instead, we seek to minimize the variance with respect to estimating the complement
probability pi(ω)1→yi(1 ⇒ pi(ω))yi .
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Starting from the associated variational problem (Appendix S.1.2), and applying the same rationale that
went into developing the KL-descending transformation, one arrives at the single-step variance-reducing
transformation,

T
Var
i (ω) = ω + hQ

Var
i (ω) Q

Var
i (ω) = ω(ω|D) f(ω)

ϑ(ω|di)
↔

(
f(ω)

ϑ(ω|di)

)
(19)

3.3 Resolving the posterior density

Both the KL (Eq. 18) and variance (Eq. 19) descent transformations take steps proportional to the posterior
density ω(ω|D). If a variational approximation for ω(ω|D) is available, using it in Eqs. 18 and 19 as a stand-in
for the posterior density helps simplify the computation of the transformations and their Jacobians, particu-
larly when using mean-field or low-order Automatic Di!erentiation Variational Inference (ADVI) (Kucukelbir
et al., 2017; Blei et al., 2017).

In the absence of variational approximation, one may evaluate the posterior densities exactly using the Bayes
rule, absorbing the unknown normalization constant Z into the step size h. The obvious downside of using
these exact transformations is the need to iterate over the entire dataset in order to evaluate the posterior
density, which must be done for each parameter sample, for each data point.

For evaluating the Jacobian determinants, one appeals to Bayes rule to find that

↔ log[Zω(ω|D)] = ↔ log ω(ω) +
∑

i

↔ log ϑ(ω|di), (20)

where Z is is absorbed into h.

3.4 Step size selection

The KL-divergence and variance descent transformations correspond to a forward Euler solver on the re-
spective gradient flow equations. According to linear stability analysis, Euler’s method has the conditional
stability criteria h < 2/maxk |Re(↽k)| where ↽k are the eigenvalues of the Jacobian of the system (Jacobians
of the functions Qi). In each case the structure of the Jacobian admits inexpensive approximations of ↽k.
However, for nonlinear systems, this criterion is not su"cient for achieving stability.

Instead, we use a modified rule to determine the step size. For all parameter samples at each individual
observation i, we use

hi = h̄ min
s,ω

∣∣∣∣∣


”ω,ω

Qi(ωs)ω

∣∣∣∣∣


(21)

where h̄ > 0 and


”ω,ω is the marginal posterior standard deviation of the ⇀-th component of ω. This rule
ensures that the transformation takes a step of at most h̄ posterior standard deviations in any parameter
component. The objective of adaptation is to find any transformation that results in importance weights
where the Pareto tail shape is sub-threshold. To this end, one can compute the transformations for a range
of h̄ values in parallel using vectorized computations, saving computation at the cost of memory utilization.

3.5 Jacobian determinant approximation

For either single-step transformations, one may approximate |JTi | by noting that

JTi(ω) = |1 + h↔ · Qi(ω)| + O(h2) (22)

and truncating to O(h), sidestepping the computation of Hessian matrices and their spectra. Note that any
higher order terms in this expansion require characterization of the spectra of ↔Qi, for each observation i,
and for each sampled parameter ωk. For large problems, computing the Jacobian matrix and its spectra
many times can become computationally problematic.

6
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3.6 Overview

We have presented four transformations, each aimed at stabilizing a LOO importance sampler by bringing
the proposal distribution closer to the LOO target in a di!erent sense. The PMM1/PMM2 transformations
shift the moment of the posterior samples closer to that of the target distribution. The KL/Var descent
transformations take one step along their corresponding gradient flow equations. While the latter two trans-
formations use gradient information, their Jacobians are simple to approximate, requiring no computation
of full Hessian matrices.

Generally, one will find that many observations are amenable to direct importance sampling with 1/ϑ weights
(Eq. 4) in combination with Pareto smoothing (tail weight distribution shape parameter k̂ < 0.7). One needs
only transform the sampling distribution when the estimated shape parameter exceeds this threshold. For a
given posterior sample of model parameters ω1, . . . , ωs

iid↗ ω(ω|D), one undergoes for each observation i the
following algorithm:

procedure AdaptiveIS(observation i)
Compute weights ϖik (Eq. 6) and their tail shape k̂

if k̂ ↖ 0.7 then Done

for Ti in transformations do

Apply Ti to each ωk

Compute weights ςik (Eq. 10)
Compute k̂

if k̂ ↖ 0.7 then Done

It is important to reiterate that if any transformation takes k̂ for a given observation under the threshold
then adaptation is successful – one avoids refitting the entire model.

4 Examples

Our focus is on classification models where a vector of covariates x ↙ Rp is used to estimate the probability
of an outcome labeled by y ↙ {0, 1} with likelihood function ϑ:

yi|ω, xi ↗ Bernoulli (pi(ω)) ϑ(ω|yi, xi) = pi(ω)yi(1 ⇒ pi(ω))1→yi , (23)

and where pi(ω) ≃ p(ω, xi) is the predicted outcome probability for observation i. In this manuscript, we
pay special attention to the broad widely-used class of models that have a sigmoidal parameterization.

pi(ω) = p(ω, xi) = ⇁(µi(ω)) (24)

where ⇁(µ) = 1/(1 + e
→µ) is the sigmoid function and we denote µi(ω) ≃ µ(ω, xi) for some mean function µ.

For these models, the transformations take the form

Q
KL
i (ω) = (⇒1)yiω(ω|D)eµi(ω)(1→2yi)↔µi Q

Var
i (ω) = (⇒1)yiω(ω|D)e2µi(ω)(1→2yi)↔µi, (25)

and their Jacobians take the form

J
T KL/Var

i
(ω) = I +


h(⇒1)yiω(ω|D)e(1+1Var)µi(ω)(1→2yi)

∝


↔↔µi + [↔ log ω(ω|D) + (1 + 1Var)(1 ⇒ 2yi)↔µi] (↔µi)↭


(26)

where

↔ log ω(ω|D) = ↔ log ω(ω) +
∑

j

(yj(1 ⇒ ⇁(µj)) ⇒ (1 ⇒ yj)⇁(µj)) ↔µj(ω), (27)

and ω(ω) is the prior. Here we will consider two popular subfamilies of sigmoidal models.
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4.1 Logistic Regression (LR)

LR is a sigmoidal model where µi(ω) = x
↭
i ϑ, So, ↔ϑµi = xi, and ↔↔µ = 0. Because the Hessian of µ

vanishes, the Jacobian of the function Qi for each of the functions is a rank-one matrix and has only a single
non-zero eigenvalue. LR admits exact Jacobian determinants for each of the transformations:

J
T KL/Var

i
(ω) =

∣∣∣1 + h(⇒1)yiω(ω|D)e(1+1Var)µi(ω)(1→2yi)
x
↭
i [↔ log ω(ω|D) + (1 + 1Var)(1 ⇒ 2yi)xi]

∣∣∣. (28)

4.2 Bayesian (ReLU) Neural Networks

Bayesian ReLU-nets (Lee, 2000; Ghosh & Doshi-Velez, 2017; Choi et al., 2018; Kristiadi et al., 2020; Bhadra
et al., 2019) are piecewise linear (Sudjianto et al., 2021; Wang, 2022; Montúfar et al., 2014; Sudjianto et al.,
2020) extensions to regression models. Being locally linear, these models have block-sparse Hessians and are
also amenable to some limited degree of interpretability (Sudjianto et al., 2020; Chang et al., 2023). One
may write an L-layer ReLU Bayesian neural network recursively

yi|µi ↗ Bernoulli(⇁(µi))

µi|WL, bL, z
(i)
L→1 = µ(xi) = WLa(z(i)

L→1) + bL

zk|z(i)
k→1, bk, Wk = Wka(z(i)

k→1) + bk

z
(i)
1 |W1, xi = W1xi, (29)

where a is the ReLU activation function. The derivative of this function is the unit step function. We assume
that the output function is sigmoid, noting that the softmax function also transforms into a sigmoid under
a change of variables. Within the parameterization of Eq. 29 we absorbed the initial first-layer bias into the
transformation W1, by assuming that x has a unit constant component, as is the convention in regression.

The Hessian matrix of µ, while non-zero, is sparse because all of the following identities hold: ↔bk ↔bj µ =
0 ′j, k, ↔Wk ↔Wk µ = 0 ′k, ↔Wk ↔bj µ = 0 ′j ∞ k. For this reason, the Jacobian determinant
approximation of Eq. 22 can ignore the model Hessian entirely. However, in the case of one hidden layer we
exploit the Hessian’s structure to provide explicit exact expressions for J(·).

Example 4.1 (One hidden layer). These models are governed by the equations µ = W2a(z1) + b2 and
z1 = W1x, where W2 ↙ R1↓d

, b2 ↙ R, W1 ↙ Rd↓p
, b1 ↙ Rd

. This model has the first-order derivatives
ε(W2)1i

µ = a(z1)i, ε(W1)ij
µ = (W2)1ia

↔((z1)i)xj , εb2µ = 1. The only non-zero components of the Hessian
matrix for µ are the mixed partial derivatives

ε
2
µ

ε(W1)jkε(W2)1j
= a

↔((z1)j)xk. (30)

The Hessian matrix of µ has a particular block structure that can be exploited (see Supplemental Materials
S.2.1.1 for derivations) in order to find explicit expressions for its 2d non-zero eigenvalues, for k ↙ {1, 2 . . . , d},

↽
±
k = ±




∑

j

a
↔((z1)k)x2

j




1/2

, (31)

and associated eigenvectors

v
±
k =

(
ũk/


2|uk|2 ±ek/

∈
2 0

)↭
, where ũk =

(
(k→1)p zeros ︸ ︷
0 . . . 0 u

↭
k

(d→k)p zeros ︸ ︷
0 . . . 0

)↭
, (32)

and uk = a
↔((z1)k)x. To compute the overall transformation Jacobians, one can then apply rank-one updates

to ↔↔µ – a process that is aided by projecting the model gradients into the eigenspace of the model Hessian
(see S.2.1 for derivations).
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5 Experiments

Jupyter notebooks for producing the results in the text are included in the Supplemental Results. As
baselines for comparison, we evaluated the original MM1/MM2 a"ne transformation methods of Paananen
et al. (2021), and the log-likelihood (LL) gradient descent method of Elvira et al. (2022) (derivations of this
transformation for sigmoidal models are available in S.1). Note that in Paananen et al. (2021) they used
a split-sampling scheme noting that all adaptations failed if it were omitted. In order to provide the most-
direct comparison between the di!erent transformations, we incorporated the MM1/MM2 transformations
in the absence of split sampling.

5.1 Dataset and model

For demonstration, we used a public domain ovarian cancer micro-array dataset Hernández-Lobato et al.
(2010); Schummer et al. (1999), consisting of n = 54 observations of p = 1056 + 1 predictors. As an
example of a p ∋ n problem, model-agnostic 1/ϑ importance sampling is insu"cient for computing LOO
expectations. Paananen et al. (2021) used this dataset to test their moment-matching adaptive importance
sampler (in conjunction with split sampling) where they successfully decreased the number of observations
where k̂ > 0.7 from approximately 35 to approximately 20 using s = 1000 posterior samples. We reproduced
their logistic regression model, using the same regularized-horseshoe (Piironen & Vehtari, 2017b;c; Carvalho
et al., 2009) prior, and the same statistical inference scheme within Stan, which we interfaced to Python
using the package cmdstanpy. We ran four parallel Markov Chains, with twelve thousand burn-in iterations,
retaining 2000 samples per chain (more details available in S.3.1). We then evaluated the transformation
methods on resamplings of the retained MCMC samples.

5.2 Adaptation

PMM1 PMM2 KL Var LL MM1 MM2 LR ovarian ReLUnet ovarian
- - - - - - - 34.9 ± 2.8 16.8 ± 3.7

- - - - - - 5.3 ± 1.7 0.8 ± 0.9
- - - - - - 5.3 ± 2.1 0.1 ± 0.3
- - - - - - 17.9 ± 2.8 12.2 ± 2.3
- - - - - - 18.4 ± 1.8 16 ± 3.4
- - - - - - 22.2 ± 3.2 12.0 ± 3.0
- - - - - - 34.8 ± 2.8 9.8 ± 2.9
- - - - - - 34.9 ± 2.8 16.6 ± 3.7

- - - 0.4 ± 0.5 0.0 ± 0.0
0.3 ± 0.4 0.0 ± 0.0

This work Comparisons

Table 1: Counts of unsuccessful adaptations (mean ± standard deviation) when using at least one of
the given combination of transformations across the step sizes h̄ ↙ {4→r : r ↙ {0, 1, . . . , 10}}, as seen in one
hundred simulations of parameter sample size s = 1000. Lower is better.

We scanned di!erent values of h̄ = 4→r, for r ↙ {0, 1, 2, . . . , 10}, evaluating all transformations
(KL/Var/PMM1/PMM2), and the comparison methods (LL/MM1/MM2) for a given value of h̄. We per-
formed this procedure 100 times, using samples of size s = 1000. Recall that adaptation is successful if any

of the considered transformations can reduce k̂ to below 0.7.

Table 1 presents statistics (mean ± standard deviation) for the number of observations where adaptation
fails when using the given combination of methods. When using all methods in unison, one is generally
able to successfully prevent the need to refit either the logistic regression or the neural network models for
the task of obtaining LOO statistics. In particular the PMM1/PMM2 methods were highly e!ective for the
RELUnet model.

For a representative instance of the simulation procedure in the context of logistic regression, Fig. 2 depicts
the minimum value of k̂ obtained for each transformation, organized by the index of each relevant observation

9
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Figure 2: Scatterplot of estimated

Pareto tail shape diagnostic k̂ ver-
sus observation, for transformed ovarian
cancer logistic regression model param-
eters, for observations where the un-
transformed samples have tail shape di-
agnostic k̂ > 0.7 (black dots •). Values
of minimum k̂ for each transformation
plotted: green for KL, blue for Var, red
for PMM1, orange for PMM2, purple
for MM1, tan for MM2, and brown for
LL – the minimum observed value for
each transformation labeled. Adapta-
tion for an observation is successful if
k̂ < 0.7 for any transformation. If the
minimum value for a given transforma-
tion and observation falls outside of this
displayed range then the corresponding
point is omitted from this plot.
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(a) LOO ROC curves for logistic regression ovarian cancer classification models

contrasting the model fitted using MCMC and the model fitted using mean-field ADVI.
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(b) LOO ROC curves for neural network ovarian cancer classification models con-
trasting the model fitted using MCMC and the model fitted using mean-field ADVI.

Figure 3: LOO ROC curves for ovarian cancer classification models fitted using MCMC and ADVI.

within the dataset. For each observation, the symbol • marks the pre-transformation value of k̂. Generally,
as seen in Fig. 2, PMM1/PMM2 had the most success. Hwoever, there are particular instances such as
observations 23 and 46 where PMM1/PMM2 fail and the gradient flow transformations succeed in adaption.
There are also many cases where multiple transformations each successfully adapt the posterior.

Fig. 3 shows the corresponding LOO- receiver operator characteristic (ROC) and precision recall curve (PRC)
obtained by using the transformation that resulted in the best k̂ value for each observation, predicting the
LOO estimate of predictive probability, and feeding those probabilities into the relevant formulae for com-
puting ROC and PRC. We contrast these curves for both MCMC and mean field ADVI -inferred variants of
the model. The models inferred using MCMC have better generalization performance than their correspond-
ing mean field approximations, which is not surprising due to the expected high degree of multicolinearity
in this p ∋ n problem. This finding also held for the neural network model where it is notable that the
MCMC-fitted neural network does not su!er as much from overfitting as does the mean field ADVI fitted
neural network.

6 Discussion

In this manuscript, we introduced an adaptive importance sampler for using pre-trained full-data posteriors
to approximate leave one out cross validation (LOO CV) in Bayesian classification models. The objective
of importance-sampling LOO (IS LOO) is to compute LOO CV without incurring the computational cost
of refitting a given model. The objective of adaptation to bring the sampling distribution (the full data
posterior) closer to the target LOO posterior distributions for each data point so that IS LOO produces
reliable estimates.

Our methodology is based on taking samples from the posterior and transforming them by adding a small step
either towards the target expectation or according to the gradient flow corresponding to the minimization
of a given objective. We introduce four such transformations: our PMM1/PMM2 generalizations of the
MM1/MM2 transformations in Paananen et al. (2021) and the KL/Var gradient flow step transformations.
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We presented explicit formulae for these transformations for logistic regression and ReLU-activated artificial
neural networks. We described how one can easily approximate the Jacobian of the transformations for more-
complicated models, including for ReLU neural networks of any size. The adaptive importance sampler is
ultimately used to estimate the expected LOO prediction for each given datapoint – quantities that can be
used to compute downstream model generalization metrics such as ROC/PRC curves and the area under
these curves. Doing so without the need to refit a model saves considerable compute time and energy
resources.

6.1 Contrasting and synergizing methods

Examining Table 1, taken individually, the KL and Var gradient flow-based transformations perform com-
parably to the original MM1/MM2 transformations (in unison with split sampling) evaluated in Paananen
et al. (2021). Of note, as in Paananen et al. (2021), MM1/MM2 used in the absence of splitting was unable
to successfully adapt any observation in our evaluations. However, the generalized PMM1/PMM2 transfor-
mations have by-far the best performance in shifting k̂. Yet these two PMM methods, used either alone or
together, usually do not completely get the job done. Each unsuccessful adaptation means that the model
must be refit one additional time at high computational cost. Fortunately, using all the evaluated methods
in-unison resulted in successful adaptation for all data points most of the time. The general strategy is
then to loop through observations and try successive transformations for each observation until adaptation
is successful.

6.2 Limitations

The main tradeo! of this method versus the model-agnostic PSIS-LOO method is that this method is model-
dependent. In order to use this methodology for a given model, one needs to be able to evaluate gradients of
the model with respect to parameters – and also the gradients of the corresponding prior distribution. Both
the KL descent and variance descent transformations require computing the the posterior density – when a
variational approximation of the posterior is not available or trustworthy this computation is costly for large
datasets.

6.3 Extensions

In this manuscript, we focused on classification problems but the methodology for adapting the importance
sampler is much broader. In the Supplemental Materials one may find more-general formulae for the KL and
variance descending transformations. In medical and industrial contexts, one is often interested in whether
an individual or unit will experience an outcome within a certain time interval. For instance, policymakers
are interested in hospital readmission within 30 days post discharge (Xia et al., 2023; Chang et al., 2023)
because these readmissions are possibly preventable. In these problems, one may apply survival modeling
to characterize the lifetime distribution, and additionally evaluate a model according to its classification
performance at a given cut-o! time T . Our methodology can easily be used for assessing such models.

Another extension to this methodology is to take more steps along the gradient flow for a given objective.
It may be feasible to learn such a transformation using neural or other expressive representations.
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