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ABSTRACT

Traditional e-commerce search systems employ multi-stage cascading architec-
tures (MCA) that progressively filter items through recall, pre-ranking, and rank-
ing stages. While effective at balancing computational efficiency with business
conversion, these systems suffer from fragmented computation and optimization
objective collisions across stages, which ultimately limit their performance ceil-
ing. To address these, we propose OneSearch, the first industrial-deployed end-
to-end generative framework for e-commerce search. This framework introduces
three innovations: (1) a Keyword-enhanced Hierarchical Quantization Encoding
(KHQE) module, to preserve both hierarchical semantics and distinctive item at-
tributes while maintaining strong query-item relevance constraints; (2) a multi-
view user behavior sequence injection strategy that constructs behavior-driven
user IDs and incorporates both explicit short-term and implicit long-term se-
quences to model user preferences comprehensively; and (3) a Preference-Aware
Reward System (PARS) featuring multi-stage supervised fine-tuning and adap-
tive reward-weighted ranking to capture fine-grained user preferences. Exten-
sive offline evaluations on large-scale industry datasets demonstrate OneSearch’s
superior performance for high-quality recall and ranking. The online A/B tests
confirm its ability to enhance relevance in the same exposure position, achiev-
ing statistically significant improvements: +1.67% item CTR, +2.40% buyer, and
+3.22% order volume. Furthermore, OneSearch reduces operational expenditure
by 75.40% and improves Model FLOPs Utilization from 3.26% to 27.32%. The
system has been successfully deployed across multiple search scenarios in TEST,
serving millions of users, generating tens of millions of PVs daily.

1 INTRODUCTION

(a) End-to-end Generative Framework

red shirt o-neck
User Query

Candidates

Generative Model

(b) Multi-stage Cascading Architecture

Recall Pre-rank Rank

Encoder Decoder

~109 ~109 ~104 ~102

Reward System

…

Figure 1: (a) Our proposed End-to-End generative re-
trieval framework, (b) the traditional multi-stage cas-
cading architecture in E-commerce search.

E-commerce search systems aims to identify
items satisfying both semantic and personal-
ized criteria from hundreds of millions of can-
didates within one second. Traditional sys-
tems employ Multi-stage Cascading Architec-
ture (MCA), which progressively filters items
through recall (109 candidates), pre-ranking
(104 candidates), and ranking (102 candidates)
stages, as shown in Figure 1(b).

While MCA effectively balances response time
and accuracy, it suffers from two fundamental
limitations (Dubey et al., 2024a; Deng et al.,
2025; Wei et al., 2025). First, fragmented com-

pute: most serving resources are allocated to communication and storage rather than computation.
Second, objective collision: heterogeneous optimization objectives across stages limit performance
ceiling. Recall and pre-ranking stages prioritize coverage with lightweight models, while ranking
emphasizes user preference reasoning with complex features. This multi-layer filtering risks dis-
carding relevant items early, preventing optimal results regardless of subsequent model accuracy.
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Recent efforts address these issues through either intra-stage optimization (Huang et al., 2020; Wang
et al., 2021; Huang et al., 2013; Zhou et al., 2018; Guo et al., 2017) or cross-stage consistency (Zhang
et al., 2023; 2025; Evnine et al., 2024), yet remain constrained by MCA’s inherent limitations.
The emerging generative retrieval (GR) paradigm offers a promising alternative by transforming
matching-based frameworks into generation-based approaches (Rajput et al., 2023; Zheng et al.,
2024; Pang et al., 2025; Deng et al., 2025; Guo et al., 2025; Zheng et al., 2025; Wei et al., 2025),
eliminating multi-stage filtering through direct item generation.

However, e-commerce search presents unique challenges for GR adoption: (1) Noisy item infor-
mation: sellers add irrelevant terms for exposure, creating lengthy descriptions with weak semantic
order that mislead representation models; (2) Strict relevance constraints: queries typically contain
2-3 keywords where any attribute mismatch causes relevance issues—while semantic IDs provide
hierarchical representations, they inevitably lose core attributes by prioritizing shared information;
(3) Latent intent inference: uncovering user search intent from concise queries requires effec-
tively combining query content with behavior profiles. To address these challenges, we propose
OneSearch, an end-to-end generative framework for e-commerce search, which includes:

1) Keyword-enhanced Hierarchical Quantization Encoding module. KHQE employs keyword-
enhanced semantic collaborative encoding to highlight core item attributes, using RQ-Kmeans for
hierarchical feature encoding and OPQ for unique feature quantization, further reducing noise and
then enhancing query-item relevance.

2) Multi-view User Behavior Sequence (Mu-Seq) injection strategy. This strategy constructs
behavior-driven user IDs with weighted decay sequences, explicitly incorporates short sequences
for recent preferences, and implicitly models long sequences for comprehensive user profiles.

3) Preference Aware Reward System (PARS). We implement multi-stage supervised fine-tuning
(SFT) for semantic alignment and personalization, followed by adaptive reward-weighted ranking
combining hierarchical behavior signals with list-wise preference optimization.

Extensive evaluations demonstrate OneSearch’s superiority. Online A/B tests show statistically
significant improvements: +1.67% item CTR (Click Through Rate), +2.40% buyer volume, and
+3.22% order volume, while reducing operational expenditure by 75.40% and improving Model
FLOPs Utilization from 3.26% to 27.32%. OneSearch is successfully deployed across multiple
TEST search scenarios, serving millions of users with tens of millions of daily Page Views (PVs).

The main contributions of this work are summarized as follows:

• A keyword-enhanced hierarchical quantization encoding balancing context features and collab-
orative signals while strengthening relevance constraints.

• A multi-view behavior sequence injection strategy, integrating user behavior sequences into ID
representations and leveraging explicit/implicit prompts to enhance GRs’ reasoning about user
profiles and preferences.

• A preference aware reward system with multi-stage SFT and adaptive reward modeling for
personalized ranking capability.

• Finally, we present OneSearch, the first industrial-deployed end-to-end generative framework
for e-commerce search, validated through comprehensive offline and online experiments.

2 METHODOLOGY

This section details OneSearch, our end-to-end e-commerce search framework, in four parts.

2.1 KEYWORD-ENHANCED HIERARCHICAL QUANTIZATION ENCODING

Encoding items into Semantic IDs (SIDs) is crucial for generative retrieval models. This process
converts continuous semantic representations into discrete ID sequences using coarse-to-fine quan-
tization, ensuring items with the same SID share same information(Rajput et al., 2023; Deng et al.,
2025; Ju et al., 2025). However, common quantization methods tend to tokenize shared signals us-
ing fixed vocabulary, losing distinctive attributes. We propose KHQE combining domain knowledge
extraction, RQ-Kmeans for hierarchical encoding, and OPQ for unique feature quantization.
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Figure 2: The Framework of OneSearch includes: 1) Keyword-enhanced Hierarchical Quantiza-
tion Encoding, which adopts aligned representation and core keyword to construct a hierarchical
quantization tokenization schema; 2) Multi-view Behavior Sequence Injection, utilizing sequences
to reason the user profiles and preferences; 3) Unified encoder-decoder Architecture that integrates
produced features for generative retrieval; and 4) Preference Aware Reward System, containing a
multi-stage SFT procedure and an adaptive reward system to enhance the ranking capability.

Aligned collaborative and semantic representation. We integrate semantic knowledge with col-
laborative signals by aligning the representations of historically interactive query-item pairs. Firstly,
we select high-quality query2query, item2item, and query2item pairs from real user search logs us-
ing existing retrieval models like ItemCF (Sarwar et al., 2001) and Swing (Yang et al., 2020). Then
we collect the content information like query text, item title, item price, keywords, OCR (image-to-
text), as well as the statistical business characteristics, such as the number of clicks, add-to-cart, and
purchases during a certain time. All these features are processed with a distilled BGE (Xiao et al.,
2023) to generate a content embedding for each query eq and item ei. Finally, we filter pairs with
cosine similarity larger than 0.6 to ensure content relevance.

We design four interrelated tasks to align collaborative and semantic representation: 1) the
query2query and item2item contrastive loss Lq2q, Li2i to align representations of collaboratively
similar pairs, 2) a query2item contrastive loss Lq2i to ensure that BGE can reflect real business char-
acteristics, 3) a query2item margin loss Lrank to further learn the collaborative signal deviation of
query-item pairs with different behavior levels, 4) a hard sample relevance correction loss Lrel. Then
we train the aligned model by the total loss with adjustable parameters λi as:

Lalign = λ1 · Lq2q + λ2 · Li2i + λ3 · Lq2i + λ4 · Lrank + λ5 · Lrel, (1)

Core Keyword Enhancement. Item textual information often contain redundant, irrelevant, or
conflicting attributes. Although boosting exposure, these disordered attributes makes it difficult for
encoders to model key information. Here we propose using core keyword features to enhance textual
representation, obtaining keyword-dominated semantic IDs.

Using NER (detailed shown in Appendix A.3), we extract 18 structured attributes and mine recent
query-item pairs as labeled data. Core keywords are selected from PV-ranked attribute lists. Qwen-
VL (Bai et al., 2023) identifies item keywords, while Aho-Corasick Automaton (Aho & Corasick,
1975) matches query keywords during inference. All these core keywords are feeded into the trained
model to obtain vectors eik consistent with the item representation distribution. The final optimized
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representations for each query eoq and item eoi are given by:

eoq =
1

2
(eq +

1

m

m∑
i=1

eik), eoi =
1

2
(ei +

1

n

n∑
j=1

ejk). (2)

RQ-OPQ Hierarchical Quantization Tokenization. Common SID tokenizers like VQ-VAE
(van den Oord et al., 2018), RQ-VAE (Lee et al., 2022), and RQ-Kmeans (Luo et al., 2024) prior-
itize encoding shared item features at the expense of distinctive characteristics, limiting generative
GR performance. To address this limitation, we introduce a hybrid tokenizer called RQ-OPQ. We
first employ RQ-Kmeans as the foundational tokenizer to capture hierarchical semantic structure.
Then, we uniquely quantize the residual embedding discarded after RQ-Kmeans’ final clustering
step using OPQ. This approach allows RQ-Kmeans to model hierarchical relationships while OPQ
simultaneously captures complementary lateral features. The resulting RQ-OPQ tokenizer provides
a more comprehensive representation of fine-grained item characteristics, significantly strengthen-
ing the relevance constraints for downstream GR models. (Implementation specifics, codebook
architectures, performance metrics, and ablation studies are detailed in the Appendix A.3).

2.2 MULTI-VIEW BEHAVIOR SEQUENCE INJECTION

Behavior Sequence Constructed User IDs. Random Hash IDs in Tiger (Rajput et al., 2023) do not
adequately represent user personalization. Here, we propose a behavior sequence-constructed user
ID for distinctive representation. Formally, the short behavior sequence consists of latest clicked
items, denoted as Seqshort, length is m, and the long behavior sequence contains chronologically
clicked items, denoted as Seqlong, length is n. The user ID uid is computed as the concatenation of
SIDshort and SIDlong:

SIDshort/long =

⌈∑
k∈K

γk · SIDk

⌉
, γk =

e
√
k∑

i∈K e
√
k

(3)

where K = {s1, s2, . . . , sm}/{l1, l2, . . . , ln} denote the short/long behavior sequence. For cold-
start users, we count the most clicked items for each query based on query-item occurrence and sort
them by page views as default sequences.

Explicit Short Behavior Sequence. Short sequences primarily reflect recent preferences while
long sequences represent user profiles. Therefore, for generative retrieval, explicitly inputting short
sequences makes it easier to predict likely click categories. In e-commerce search, the short behavior
sequences include latest queries Seqq and clicked items Seqshort. We input their SIDs into the
prompt, following the constructed user ID and input query.

Implicit Long Behavior Sequence. Long sequences consist of click, order, and relevant search
unit (RSU) sequences(Guo et al., 2023), with lengths of up to 103 ,making direct prompt integration
infeasible. For each item, we map its keyword-enhanced embedding eoi to a corresponding seman-
tic ID, and get RQ clustering centroid representation through lookup. We aggregate centroids by
levels, enabling systematic preference learning while saving resources. Each item in the long-term
historical sequence is replaced by the features of its RQ clustering centroid representative:

Itemsid = RQ(eoi ), Itememb = EmbLookUp(Itemsid) (4)
For long-term sequence, overall behavior embedding is shown as:

Mclick/order/RSU =

{
L1∑
i=1

Item1
emb,

L2∑
i=1

Item2
emb,

L3∑
i=1

Item3
emb

}
,

Q(i) = QFormer(Mclick,Morder,MRSU ),

(5)

where Mclick, Morder, and MRSU are click / order / RSU sequence item embeddings, and share
the same size M ∈ RNM×dmodel (dmodel = 768).

2.3 UNIFIED ENCODER-DECODER ARCHITECTURE

The input of OneSearch contains: 1) Distinctive user ID uid. 2) Entered query q and its SIDq;
3) User short behavior sequence, containing the historical search queries Seqq = {q1, q2, . . . , qn},
the short clicked item sequence Seqshort = {s1, s2, . . . , sn}; 4) Implicit long behavior sequence
Seqemb

long; 5) User profile information U , which is the crowd portrait fitted by the platform. OneSearch
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directly outputs corresponding item lists I. The model adopts either encoder-decoder models (e.g.
BART (Lewis et al., 2019), mT5 (Xue et al., 2020)), or the decoder-only models (e.g. Qwen3 (Yang
et al., 2025)) as the backbone M. The inference flow can be formalized as:

I := M(uid, q, SIDq, Seqq, Seqshort, Seq
emb
long,U). (6)

As illustrated in Figure 2, our model adheres to the transformer-based (Vaswani et al., 2017) archi-
tecture, comprising an encoder that models ⟨user, query, seq⟩ information, and a decoder dedicated
to item generation. We adopt encoder-decoder models for deployment due to architecturally accel-
erated training and inference. For unified training, we insert t[BOS] and t[EOS] at boundaries, with
t[SEP] between adjacent elements. The inference output of M is the SIDs, which can be adjusted by
constrained or unconstrained beam search. While constrained search guides output to valid SIDs, it
increases decoding complexity, and unconstrained explores all sequences without explicit rules.

2.4 PREFERENCE AWARE REWARD SYSTEM

Compared to sequence coherence in recommendations, strong relevance constraints between queries
and items in search pose greater challenges. For GR models, we must achieve semantic alignment
between SIDs and text descriptions while directly generating items meeting relevance constraints
and user preferences. We propose PARS with multi-stage supervised fine-tuning and adaptive reward
system for personalized ranking capability. The overall training framework is depicted in Figure 2(f).

Multi-stage Supervised Fine-tuning. Since basic architectures (e.g., BART, T5) are pretrained on
text corpus while OneSearch uses SID representations, we first achieve semantic alignment then
instruct generation of user-aligned items through three stages:

1. Semantic Content Alignment: Three sub-tasks: (a) Query/Item Text→SID generation, (b)
SID→text reconstruction, (c) Text/item→category prediction. First two tasks align SID and
text content,while the category prediction ensures relevance.

2. Co-occurrence Synchronization: Mutual prediction between query↔item and query
SID↔item SID. Without user characteristics, this stage learns intrinsic semantics and collabo-
rative relationships from interactive corpus.

3. User Personalization Modeling: After the above stages, we introduce user information align-
ing with online inference. We concatenate user ID, query, SIDq , Seqq , Seqshort, and SeqEmb

long
as input with item SID as training label for distinctive personalization.

We apply sliding window data augmentation to short sequences to guide learning of user interest
changes. The sliding window generates new segments with subsequent items as prediction targets
by sliding along Seqshort (Zhou et al., 2024). With maximum window length limitation, we augment
m samples for Seqshort = {s1, s2, . . . , sm}, helping handle new users with limited history.

Adaptive Reward System. Unlike OneRec-V1’s (Zhou et al., 2025a) weighted P-Score with single
reward model and Early Clipped GRPO, we use real online interactions as hierarchical feedback
signals. We adopt adaptive-weighted rewards (Guo et al., 2025) to construct training data and im-
plement user-behavior-guided hybrid ranking for personalized preferences.
Table 1: The preference-aware reward system combines a three-stage fine-tuning process (semantic
alignment, co-occurrence, personalization) and an adaptive ranking mechanism.

Procedure SFT Stage 1 SFT Stage 2 SFT Stage 3 RL Stage

Objective Semantic alignment ⟨q, i⟩ co-occurrence User personalization Preference Alignment

Component

query ↔ SID
item ↔ SID

query/item 7→ category
SID 7→ category

query ↔ item
query SID ↔ item SID


uid& q

SIDq & Seqq
Seqshort

Seqemb
long

 7→ item SID


user & query

seq. feat.
itemwin
itemlose

 7→ Rank Score

Adaptive-weighted Reward Signal. Following OneSug (Guo et al., 2025) we categorize interactive
behaviors into six levels: (1) purchased in search, (2) same-category purchased in recommendation,
(3) clicked, (4) exposed-not-clicked, (5) unshown same-category, (6) random other-category. Base
weights are λ = [2.0, 1.5, 1.0, 0.5, 0.2, 0.0]. Considering items with higher recent CTR/CVR (Con-
Version Rate) are more likely selected, we utilize these two metrics to construct adaptive-weighted
rewards. However, CTR and CVR often suffer from biased estimation. For example, a newly re-
leased item that was exposed only once and then clicked would have CTR at 100%. Conversely,
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genuinely popular items are often exposed by online MCA under various similar but suboptimal
queries, resulting in lower CTR and CVR. Therefore, we calibrate these two metrics as follows:

CntT = log((Cntpos + 10) · (Cntclk + 10) · (Cntorder + 10)).

Ctri =
log(Cntclk + 10)

CntT
, Cvri =

log(Cntorder + 10)

log(Cntclk + 10)
.

(7)

The weighted reward score is then defined as:

r(q, i) = 2λ · Ctri · Cvri
Ctri + Cvri

. (8)

For each positive sample ipos and negative sample ineg , the user preference difference rw∆ is:
rw∆ = 1.0 / [r(q, ipos)− r(q, ineg)], (9)

where smaller rw∆ encourage the model to distinguish nuanced differences in user behaviors.

Reward Model Training. As discussed in OneRec-V2(Zhou et al., 2025b), the reward model in
OneRec-V1 employs restricted sampling from a small subset of users to approximate global behav-
ior, potentially learning specific patterns or biases that do not yield actual improvements. However,
we also diverge from the feedback-driven preference alignment proposed in OneRec-V2, as the
adoption of GRPO and its variants (e.g., ECPO, GBPO) tends to introduce more irrelevant SIDs,
and preference rewards require careful tuning for e-commerce search. Here we design an intuitive
three-tower SIM (Qi et al., 2020)) architecture, with each tower learning CTR, CVR, CTCVR (Ma
et al., 2018) using binary cross-entropy. The preference score is:

Rscore = λ1 · CTR+ λ2 · CV R+ λ3 · CTCV R+ 10 · λ4 · SRel, (10)
where λi represents tuned weights (set to 1 in our experiments). To ensure that results generated by
OneSearch meet relevance constraints, we additionally incorporate an offline-calculated relevance
score SRel with an amplified weight (10 · λ4).

This reward model differs from the click prediction model in the ranking stage of online MCA in two
key aspects: (1) Feature dimensionality: While the ranking model utilizes thousands of features, our
reward model only takes user ID, query, user behavior sequence, and user profile as input, matching
OneSearch’s input space. (2) Sampling strategy: We additionally include items from the same
category clicked in recommendation scenarios as training samples, with labels (1,1,1) for purchased
items and (1,0,0) for clicked items. For computational efficiency, the reward model directly leverage
the online MCA ranking model, as we only distill the ranking order rather than absolute scores.

Hybird Ranking Framework. We employ two-phase alignment. First, we collect real queries and
use reward model to rerank OneSearch outputs, selecting samples with ranking changes for list-wise
DPO training. Clicked or advanced items serve as positives; pushed-back items as negatives. The
optimization objective is:

L = −E

[
log σ

(
log

∑
il∈Il

exp
(
rw∆ max

(
0, r̂θ(xu, iw)− r̂θ(xu, il)− δ

)))
+ α log πθ (iw|xu)

]
,

(11)
where Il denotes the set of negative samples, and r̂θ(xu, iw) and r̂θ(xu, il) represent rewards im-
plicitly defined by the language model πθ and reference model πref:

r̂θ(xu, iw/l) = β log
πθ(iw/l|xu)

πref(iw/l|xu)
. (12)

The term log πθ (iw|xu) represents the log-likelihood (NLL loss) from the SFT stage.

Noted that by combining the list-wise preference alignment with log-likelihood prediction of pre-
ferred samples, we establish a novel hybrid paradigm for generative ranking. Since the reward model
trains on MCA data, it inherently limits OneSearch’s performance. Thus, phase two uses pure user
interactions: positives from top behaviors (purchased, same-category purchased, clicked) and nega-
tives from bottom behaviors (exposed-not-clicked, unshown same-category, random), with the same
loss. In practice, we periodically perform first-phase RL with reward model-generated samples to
ensure online distribution adherence and learn from the MCA ranking model’s thousands of features.
The second phase updates near-streaming with user interaction data to overcome distribution limi-
tations and fully leverage generative inference capabilities. This dual approach enables OneSearch
to benefit from both MCA’s rich feature space and direct user feedback.
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Table 2: Offline performances of our proposed method with onlineMCA on the industry dataset. The
best results are in bold, and sub-optimal results are underlined in each column. The ”w/o ranking”
means ”without ranking”, and the ”\+ keywords ” means ”add keywords optimizations”

Method order (30k) click (30k)
HR@350 MRR@350 HR@350 MRR@350

OnlineMCA 51.74% 19.26% 64.40% 16.89%
w/o ranking 75.75% 4.19% 80.23% 3.00%

OPQ (8/256) 19.43% 9.55% 22.57% 7.42%
(1024-1024-1024) 57.39% 9.12% 63.63% 7.46%
(2048-1024-512) 58.29% 10.79% 65.39% 8.86%
(4096-1024-256) 58.57% 11.21% 64.51% 9.24%
(4096-1024-512) 59.58% 14.29% 62.49% 11.82%
\+ keywords 62.38% 14.30% 66.14% 12.10%
\+ l3 balanced 63.16% 13.59% 68.26% 11.67%
\+ Adaptive RS 64.33% 16.11% 68.94% 13.80%

RQ-OPQ (2/256) 65.05% 15.33% 68.88% 12.90%
\+ Adaptive RS 66.46% 18.38% 71.06% 16.33%

3 EXPERIMENT

In this section, we conduct comprehensive evaluations on practical industry datasets and online A/B
tests to verify the feasibility of OneSearch, followed by ablation studies.

Datasets. We extract the user interactive pairs from TEST’s mall search platform between May
2025 and August 2025 to facilitate the supervised fine-tuning and DPO. It contains about 1 billion
PVs, all the offline and ablation experiments were conducted on the full or part of this data.

Evaluation Metrics. We take into account the recall and ranking performance. We employ HitRate
(HR) and Mean Reciprocal Ranking (MRR) for recall and ranking performance, which are standard
metrics in search and recommendation systems.

Baselines. Unlike simulation approaches, we use the actual production system with multiple re-
call mechanisms and complex ranking with thousands of features and compare against the real on-
lineMCA. Details are in Appendix A.4.

3.1 OFFLINE PERFORMANCE

We evaluated 30,000 click pairs and 30,000 order pairs from user search logs, computing HR@350
and MRR@350. Table 2 shows that pre-ranking prioritizes recall over precision (75.75% HR but
4.19% MRR for orders), while ranking emphasizes intent positioning. This demonstrates MCA’s
optimization objective collision—final ranking is constrained by pre-ranking outputs.

Testing various RQ-Kmeans and KHQE configurations (Table 6), we found higher codebook utiliza-
tion rate (CUR) and independent coding rate (ICR) improve performance. Core keyword enhance-
ment and L3 balanced k-means both provide improvements. Besides, adaptive reward preference
learning significantly enhances ranking (+1.80% HR@350, +3.24% MRR@350 average).

Our final configuration, RQ-OPQ (2/256) with Adaptive RS, combines RQ-Kmeans (4096-1024-
512) for hierarchical encoding with OPQ (256-256) for residual quantization, trained using the full
preference aware reward system. This achieves superior recall (66.46% vs. 51.74% for orders) and
comparable MRR (18.38% vs. 19.26%) to onlineMCA, effectively balancing personalized ranking
with intent-matching. The configuration maintains robust performance across both click and order
metrics, validating our hybrid tokenization approach. This configuration would be called OneSearch
in the following section for brevity. Additional implementation details are in Appendix A.4.

3.2 ABLATION STUDY

Multi-view Behavior Sequences. Table 3 demonstrates each component’s contribution. Sequence-
constructed user IDs outperform hashing IDs (+1.33% HR@350). Short sequences provide the
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Table 3: Ablation study of multi-view behavior sequence injection. Slid. Window means the sliding
window strategy.

Method order (30k) click (30k)
HR@350 MRR@350 HR@350 MRR@350

OneSearch 66.46% 18.38% 71.06% 16.33%

w/o User SIDs -0.94% -0.37% -1.72% -0.36%
w/o Seqshort -3.43% -1.53% -4.15% -1.32%
w/o Seqemb

long -2.26% -1.01% -3.00% -1.05%
w/o Slid.Window -1.95% -0.81% -1.80% -0.70%

largest gains (+3.79% HR@350, +1.43% MRR@350), validating explicit preference modeling.
Long sequences and sliding window augmentation further enhance performance.

Tokenization Stability. E-commerce inventory changes constantly, especially during shopping fes-
tivals, potentially disrupting pre-calculated SID pools. We tested tokenizer stability by constructing
RQ-Kmeans and RQ-OPQ using July 15 items and tracking performance through August 18 promo-
tions. Figure 3 shows minimal degradation: RQ-Kmeans decreased 1.11% in CUR while RQ-OPQ
only 0.43%, validating RQ-OPQ’s superior robustness to inventory changes. Detailed RQ-OPQ
ablations are in Appendix A.5.

(a) ICR (b) SID Ratio

Figure 3: The ICR and SID ratio indicators of tokenizations after regular time intervals.

3.3 ONLINE A/B TESTING

Table 4: Online results for A/B testing. The black fonts indicate that the statistical significance (P-
value) is smaller than 0.05, while the gray ones are larger than 0.05 indicating low confidence.

Method Item CTR PV CTR PV CVR Buyer Order
MCA w/o ranking -9.97% -20.33% -11.55% -28.78% -39.14%

OneSearch1 -1.10% -2.06% +0.39% +1.27% -2.22%
OneSearch1

RM +1.40% +3.05% +1.94% +1.92% +1.59%

OneSearch2 +1.45% +1.40% -0.12% -0.58% -0.69%
OneSearch2

RM +1.67% +3.14% +1.78% +2.40% +3.22%

We conducted rigorous A/B tests on TEST’s mall search platform. Table 4 presents results for
two OneSearch versions: OneSearch1 (RQ-Kmeans without long sequences) and OneSearch2 (full
optimizations), each tested with and without reward model reranking (RM ).

Table 4 demonstrates that the base generative model achieves comparable performance to the com-
plex MCA system. With RQ-OPQ and long behavior sequences, OneSearch2 improves item CTR
by 1.45% and PV CTR by 1.40%. Incorporating reward model selection (OneSearch2RM ) yields
statistically significant gains across all metrics: +1.67% item CTR, +3.14% PV CTR, +1.78% PV
CVR, +2.40% buyer volume, and +3.22% order volume.

For a clearer comparison, we perform additional experiments on the online search system, named
MCA w/o ranking, which only uses the ”recall and pre-ranking” module to predict the items, without
the ranking stage. It significantly reduces all indicators, especially with 28.78% in Buyer, 39.14% in
Order volume. This indirectly verifies that OneSearch has comparable ranking capabilities. These
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outstanding results show that OneSearch outperforms the onlineMCA and indicate it can update the
complicated online system to a more balanced state without generating seesaw effects. Last but not
least, we also observe improvements in manual evaluations, detailed manual evaluation results are
provided in Appendix A.6.

Ultimately, OneSearch has been successfully deployed for the entire traffic on the e-commerce detail
page search engine in TEST, 50% traffic on the mall search, and 20% traffic on the homepage e-
commerce search platform for further investigation, which serves millions of users generating tens
of millions of PVs daily.

3.4 FURTHER ANALYSIS

MFU(%)
3.26%

27.32%

+24.06% in MFU

OPEX(%)
24.60%

100.00%

-75.40%  in OPEX

OneSearch OnlineMCA

Figure 4: The comparisons of MFU and OPEX
for onlineMCA and OneSearch.

Computational Efficiency. We measured
Model FLOPs Utilization (MFU) on flagship
GPUs during serving inference. As shown in
Figure 4, OneSearch achieves 27.32% MFU
compared to onlineMCA’s 3.26%, an 8.4× im-
provement. This significantly outperforms tra-
ditional MCA systems while approaching the
40% MFU typical of LLMs on H100 GPUs
(Dubey et al., 2024b). Furthermore, OneSearch
reduces operational expenditure (OPEX) to

24.60% of the online search pipeline by eliminating communication and memory overhead between
stages. Additional discussion is provided in the Appendix A.7.

4 RELATED WORKS

In recent years, Generative Retrieval (GR) has garnered attention from both academia and industry
due to its remarkable performance. Notable contributions in this area include Tiger (Rajput et al.,
2023), DSI (Tay et al., 2022), and LC-REC (Zheng et al., 2024). Most GR models serve merely
as supplementary recall sources within online systems, thereby overlooking these models’ inherent
rich semantic and powerful reasoning abilities for potential use in (pre-)ranking stages. In the area
of video recommendation, OneRec (Deng et al., 2025) was the first to unify recall, pre-ranking, and
ranking within a single generative model. Most advancements in generative retrieval have been fo-
cused on recommendations. This is because search systems face three major challenges: 1) multiple
and low-density item information, 2) strong relevance constraints between search queries and items,
and 3) inference barriers to users’ potential search intentions. Consequently, the current traditional
e-commerce search systems still adopt a multi-stage cascading architecture. However, some efforts
have been made to optimize current search systems using GR, e.g., GenR-PO (Li et al., 2024),
GRAM (Pang et al., 2025) and OneSug (Guo et al., 2025). These GR methods demonstrate appeal-
ing performance in the realm of search, recommendation, bottom navigation, advertising, and query
suggestion. Inspired by these works, we proposed OneSearch, which is suitable for e-commerce
search, to achieve open-set input to closed-set output. See extended discussion in Appendix A.2.

5 CONCLUSION

In this paper, we present OneSearch, a pioneering end-to-end generative framework for e-commerce
search system that effectively overcomes the limitations of traditional multi-stage cascading archi-
tecture. By employing a unified generative model, introducing the keyword-enhanced hierarchi-
cal quantization encoding, multi-view behavior sequences injection, and preference aware reward
system, OneSearch achieves superior semantic understanding and personalization modeling. The
preference-aware reward strategy further refines the model’s ability to capture user preferences, lead-
ing to improved ranking performance. Extensive offline and online evaluations confirm OneSearch’s
effectiveness in boosting click-through rates and business conversions. Its successful deployment on
multiple TEST search scenes underscores its practical applicability and potential to enhance indus-
try revenue. OneSearch sets a new benchmark for industrial search solutions, paving the way for
future advancements in generative retrieval methods.
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ETHICS STATEMENT

This research uses anonymized user interaction data from an e-commerce platform in compliance
with privacy policies and data protection regulations. The deployment affects millions of users,
and we have implemented monitoring systems to detect potential biases or adverse effects. A/B
testing methodology ensures gradual rollout to minimize user risks. We recognize algorithmic search
systems can influence user behavior and have taken measures to promote relevant, diverse results
across product categories. The research balances commercial objectives with user value, and the
system continues to be monitored for ethical implications.

REPRODUCIBILITY STATEMENT

To support reproducibility and advance future research, we will release the complete OneSearch
codebase, pre-trained model weights, and training scripts upon publication. Comprehensive imple-
mentation details, hyperparameters, and experimental configurations are provided in Appendix A.4.
We will also provide detailed documentation of our data preprocessing pipeline, model architec-
ture specifications, and evaluation protocols to enable researchers to replicate our methodology and
extend our work to new domains and datasets.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

We hereby declare that throughout the innovative conceptualization, code development, data con-
struction, manuscript preparation, and creation of all figures and tables in this research, no artificial
intelligence generation tools were utilized.

A.2 RELATED WORKS

Generative Retrieval and Recommendation. In recent years, Generative Retrieval (GR) has gar-
nered significant attention from both academia and industry due to its remarkable performance. This
emerging retrieval paradigm, which regards large-scale retrieval as sequence-to-sequence generation
tasks, has outperformed traditional ANN-based models such as EBR (Huang et al., 2020) and Rock-
etQA (Qu et al., 2021), spurring increased exploration in the fields of search and recommendation.
Notable contributions in this area include Tiger (Rajput et al., 2023), DSI (Tay et al., 2022), and
LC-REC (Zheng et al., 2024). Tiger (Rajput et al., 2023) pioneered the development of end-to-end
generative retrieval models for sequential recommendation, introducing semantic IDs (SID) derived
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from each item’s content information for efficient item representation. LC-REC (Zheng et al., 2024)
proposed adapting large language models (LLMs) by integrating collaborative semantics for recom-
mendation, utilizing a series of specially designed tuning tasks.

Most GR models serve merely as supplementary recall sources within online systems, thereby over-
looking these models’ inherent rich semantic and powerful reasoning abilities for potential use in
(pre-)ranking stages. In the area of video recommendation, OneRec (Deng et al., 2025) was the
first to unify recall, pre-ranking, and ranking within a single generative model. This was achieved
with the assistance of session-wise generation and iterative preference alignment, resulting in sub-
stantial improvements in practical online metrics. EGA (Zheng et al., 2025) represents a significant
departure from both traditional multi-stage cascading architectures (MCA) and existing generative
retrieval models by introducing a unified framework that holistically models the entire advertising
pipeline. UniROM (Qiu et al., 2025) employs a hybrid feature service to efficiently decouple user
and advertising features, and RecFormer (Li et al., 2023), a variation of Transformer, captures both
intra- and cross-sequence interactions.

Generative Retrieval for Search. These two years, most advancements in generative retrieval have
been focused on recommendations. This is because search systems face three major challenges: 1)
multiple and low-density item information, 2) strong relevance constraints between search queries
and items, and 3) inference barriers to users’ potential search intentions. Consequently, the current
traditional e-commerce search systems still adopt a multi-stage cascading architecture. However,
some efforts have been made to optimize current search systems using generative retrieval (GR).

The first example is GenR-PO (Li et al., 2024), which utilizes multi-span identifiers to represent
raw item titles. This approach transforms the task of generating titles from queries into the task of
generating multi-span identifiers from queries, thereby simplifying the generation process. Subse-
quently, a constrained search method is employed to identify key spans for retrieving the final item,
which has proven beneficial for online recall systems. Another notable example is the Generative
Retrieval and Alignment Model (GRAM) (Pang et al., 2025), which performs joint training on text
information from both queries and products to generate shared text identifier codes. GRAM employs
a co-alignment strategy to optimize these codes for maximizing retrieval efficiency and is deployed
on the JD search engine to enhance both the recall and pre-ranking stages.

The OneSug (Guo et al., 2025) in query suggestion, which incorporates a prefix2query represen-
tation enhancement module to enrich prefixes using semantically and interactively related queries
to bridge content and business characteristics, an encoder-decoder generative model that unifies the
query suggestion process, and a reward-weighted ranking strategy with behavior-level weights to
capture fine-grained user preferences. It is the first end-to-end generative framework for e-commerce
query suggestion, and has been verified to have substantial improvements in user clicks and con-
version. These GR methods demonstrate appealing performance in the realm of search, recom-

Item Item

Prefix Query

Query Item

Item Query

Recommendation

Query Suggestion

Search / Ads

Bottom Bar

Closed Vocab Open Vocab

Figure 5: The input and output differences among Recommend, Search/Ads, Query Sug and Bottom
Bar.
mendation, bottom navigation, advertising, and even query suggestion. They are not suitable for
e-commerce search. As illustrated in Figure 5, the inputs and outputs of recommendation are the
closed-vocabulary items or videos, thus the pure semantic ID tokenization is suitable for its diverse
item generation. The inputs and outputs of query suggestion are the full open-vocabulary textual
descriptions, so that it can directly use the transformer architecture. For the bottom bar and search
engine, either the inputs or the outputs are open-vocabulary, which represents a significant departure
from both OneRec and EGA.
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A.3 KEYWORD-ENHANCED HIERARCHICAL QUANTIZATION ENCODING DETAILS

A.3.1 CORE KEYWORD ENHANCEMENT DETAILS

To enhance the role of core keywords in encoding, the core keyword enhancement scheme introduce
18 structured attributes (shown in Table 5) that improves the codebook utilization rate (CUR) of
RQ-Kmeans at each level and further increases the independent coding rate (ICR). For example,
with a configuration of 4096-1024-512 in Table 6, it results in a 0.10% CUR increment for Level 1,
24.84% for Level 2, and 26.15% for Level 3, as well as the overall ICR increasing by 6.86%.

Table 5: 18 structured attributes using NER in the TEST e-commerce search platform.

Attribute Types

Entity Modifier Brand Material Style Function Location Audience Color
Scene Specifications Price Model Anchor Series Marketing Season Pattern

Table 6: The codebook utilization rate (CUR) and independent coding rate (ICR) for various RQ-
Kmeans configurations. The last + means balanced operation for all levels.

Configurations CURL1 CURL1∗L2 CURTotal ICR

1024-1024-1024 100% 54.27% 1.72% 36.67%
\+keywords 100% 65.40% 2.03% 40.25%

2048-1024-512 100% 46.88% 1.98% 37.80%
\+keywords 100% 57.16% 2.51% 40.76%

4096-1024-256 99.90% 39.21% 2.27% 36.98%
\+keywords 100% 48.95% 2.94% 40.52%
\+l3 balanced 100% 48.95% 10.31% 60.01%

4096-1024-512 99.90% 39.21% 1.30% 40.54%
\+keywords 100% 48.95% 1.64% 43.32%
\+l3 balanced 100% 48.95% 7.03% 68.08%

4096-1024-512+ 99.93% 41.45% 0.51% 33.47%

Table 7: Performance comparisons of three tokenization schemas evaluated on the real click pairs.

Method CURTotal ICR Recall@10 MRR@10

OnlineMCA - - 0.3440 0.1323

RQ-VAE 1.17% 38.83% 0.2171 0.0689
RQ-Kmeans 7.03% 68.08% 0.2844 0.1038
RQ-OPQ - 91.91% 0.3369 0.1194

A.3.2 RQ-OPQ TOKENIZATION DETAILS

Here, we use CUR and ICR as evaluation metrics. The basic codebook size is set to 1024, and
the number of codebook layers is set to 3, which aligns with the number of items in the candidate
pool. However, e-commerce items have more varied categories and attributes, and RQ-Kmeans
tends to prioritize clustering shared prominent features in the former layers. In order to make more
concise tokenization, we maintain the capacity of RQ-Kmeans while increasing the codebook size
of the former layer to ensure more comprehensive learning of prominent features. As depicted in
Table 6, we tested three configurations: (1024,1024,1024), (2048,1024,512), and (4096,1024,256).
The codebook size of 4096 achieves higher CUR and ICR, and the Core Keyword Enhancement
scheme (\+keywords) shows further improvement. Considering that the search system should en-
code the entered query similarly and that merchants often increase the number of listed items during
global shopping festivals (e.g., 11.11 and 6.18), we further expanded the codebook size to (4096-
1024-512). We found that the semantic tokens increased by 11.56% (as 2 · 1.64%/2.94%− 1), and
the independent coding rate increased to 43.42% compared to the (4096-1024-512) (\+keywords).
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To further improve CUR and ICR, OneRec-V1 (Deng et al., 2025) proposed using full layers bal-
anced k-means. However, for complex fine-grained attributes of items, forcing them into the same
cluster in the early stages can lead to hierarchical clustering collapse. As shown in Table 6, the
CURtotal for the balanced k-means operation on full layers (4096-1024-512+) is much lower than
the (\+keywords) configuration. The CUR drastically decreased from 48.95% of CURL1+L2 to
1.64% in CURtotal, indicating that many similar items were assigned the same ID. Therefore, we
propose applying balanced k-means only to the codebook of the third layer to achieve independent
encoding of similar items. As shown in (\+l3 balanced), the CURTotal increased from 1.64% to
7.03%, while the ICR improved by 57.15%.

Although RQ-Kmeans can construct hierarchical, learnable SIDs for items, it inevitably discards the
residual embedding computed after the last clustering. However, this residual embedding contains
the distinctive attributes of each item. Therefore, we further use OPQ for quantizing the unique
features. The RQ method handles hierarchical semantics, while PQ is adopted for lateral charac-
teristics. This combined tokenizer can more comprehensively represent the fine-grained features of
items, thereby enhancing the relevance constraints for GR models. As shown in Table 7, the two
additional SIDs (256-256) generated by OPQ significantly improve the ICR metric and enhance the
recall and ranking capabilities of GRs. More detailed testing is introduced in §A.5.

A.4 IMPLEMENTATION DETAILS

We adopt Bart-B (Lewis et al., 2019) as the base pre-trained model for the testing and online de-
ployment, as it is an efficient model with optimized architectural acceleration, and has been online
applied in many scenarios in TEST. Due to commercial confidentiality, we do not disclose the total
parameters of the online model here, but it is at least 100 times larger than Bart. The beam search
size is set to 512 here to strike a balance between generation quality and latency. The maximum win-
dow length is set to n=5. The batch size for SFT and DPO is set to 512 and 128, respectively, with the
latter being smaller because the list-wise DPO training takes more samples as inputs. For RQ-OPQ,
the number of codebook layers C = 5 (3 layers for RQ-Kmeans, and 2 layers for residual OPQ). The
codebook size W of each layer is (4096,1024,512—256,256). Some of the hyperparameters will be
discussed in the following ablation study. The multi-stage supervised training is conducted every
week, RL with the reward system is conducted daily, and the hybrid preference alignment with user
interaction data is updated as close to the stream as possible. Actually, RL with a reward system
can also be trained every week, as we found it does not bring significant performance gains, except
during the global shopping festivals (e.g., 11.11 and 6.18).

A.5 ABLATION STUDY OF DIFFERENT OPQ TOKENIZATIONS

We examined the impact of different hierarchical quantization encodings on items in Figure 6. As
shown in Table 8, we computed two metrics with the top 10 items for quick validation. RQ-OPQ
(2/256) is the basic configuration, and RQ-OPQ (4/256) means the residual embedding is tokenized
by OPQ (256-256-256-256). RQ-OPQ (4*2/256) means all embeddings (the cluster of three layers
and the residual one) are tokenized with OPQ (2/256), then (4*4/256) indicates further quantization.
We found that the basic RQ-OPQ (2/256) achieved the highest performance. (4/256) perform weakly
with increased sequence length and decoding complexity. The other two configurations were almost
entirely ineffective, which is similar to the balanced k-means operation on full layers in § 2.1, as the
hierarchical features were not distinctly represented, leading to many items being aggregated under
the same SID.

Table 8: Ablation study of different OPQ tokenizations.

Method order (30k) click (30k)
HR@10 MRR@10 HR@10 MRR@10

RQ-OPQ (2/256) 28.42% 14.15% 33.69% 11.94%

*-OPQ (4/256) -2.36% -1.77% -2.52% -1.56%
*-OPQ (4*2/256) -10.20% -5.57% -11.77% -3.84%
*-OPQ (4*4/256) -24.18% -11.83% -27.11% -9.61%
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RL3L2
Original Code

L1

RQ-OPQ (2/256) OPQ 1 OPQ 2

RQ-OPQ (4/256) OPQ 1 OPQ 2 OPQ 3 OPQ 4

RQ-OPQ (4*2/256) OPQ 1 OPQ 2OPQ 1 OPQ 2OPQ 1 OPQ 2OPQ 1 OPQ 2
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Figure 6: The different hierarchical quantization encodings of items.

A.6 MANUAL EVALUATION RESULTS FOR ONLINE EXPERIENCE

Last but not least, to ascertain the actual impacts on the online search experience, we conducted
additional manual evaluations. We randomly selected 200 queries and extracted 3,200 query-item
pairs from identical exposure positions, ensuring all other variables remained constant. We set three
metrics as 1) page good rate - an evaluation indicator for the overall user experience, 2) item quality
- Check whether the displayed products are counterfeit, have mismatched images and text, or have
abnormal prices, and 3) query-item relevance - we engaged experts to rate each pair as ”Good”
(both subject and core keywords match), ”Fair” (only subject matches), or ”Bad” (subjects differ).
The outcomes of these assessments are presented in Table 9. We can see that OneSearch2 achieves
substantial increases in page good rate by 1.03%, item quality by 2.12%, and query item relevance
by 1.87%. The deployment of RQ-OPQ further enhances the relevance of model generation.

Table 9: Manual evaluation results for online experience.

Metric Page Good Rate Item Quality Q-I Relevance

OneSearch1 0.84% 1.69% 1.40%
OneSearch2 1.03% 2.12% 1.87%

A.7 FURTHER STUDIES

What are the main aspects of the online gains for the OneSearch? In our analysis, we focused
on the dimensions of industry and query popularity. As illustrated in Figure 7, we calculated the
CTR relative gains across the top 30 industries. Remarkably, 28 out of 30 industries experienced
increases, with an average gain of 2.49%. These results were statistically significant, with P-values
below 0.05. Although two industries showed negative effects, these were not statistically signif-
icant. Overall, the unified modeling optimization demonstrates substantial potential in addressing
the inconsistent objectives of multi-stage processes in MCA systems, benefiting nearly all industries.

As for the query popularity dimension, we divided all prefixes into three categories: top (PV num-
ber daily larger than 1,000), middle (larger than 100 and less than 1,000), and long-tail (less than
100). The item CTR relative gains for each were listed in Table 10. Queries of all categories are
enhanced with the OneSearch models. These results indicate that the rich semantic and interactive
representations induced by keyword-enhanced hierarchical quantization encoding, multi-view be-
havior sequence, and the preference aware reward system can greatly improve the recognition of
e-commerce search for queries of all popularity.

Table 10: Online CTR gains for three query popularity.

Method Top Middle Long-tail

OneSearch2 +1.25% +2.27% +1.33%

Does OneSearch have stronger reasoning capabilities? In traditional e-commerce search scenar-
ios, ranking models often involve thousands of features, and the combination of them can obscure
some key attributes. Additionally, the structure of common ranking model typically consists of a
simple stack of shallow neural networks, resulting in minimal reasoning capabilities. OneSearch,
on the other hand, leverages users’ long- and short-term sequential information to identify their po-
tential interests and enhances the inference of user search intent through the attention mechanism of
transformer structures. For instance, a female user who previously searched for ”couple sneakers”
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Figure 7: The online CTR relative gains for top 30 industries.

and ”Valentine’s Day gifts” is likely seeking a pair of rings for both her partner and herself when
searching for ”silver ring.” We observed in real logs that only OneSearch presented the relevant
product, which was ultimately purchased by the user.

How does OneSearch perform for cold-start users and items? We conducted tests to evaluate the
model’s performance in cold-start scenarios. Here, we define cold items as those published within
the last seven days with no interaction behavior, and cold users as those who have not used the TEST
app in the past 90 days. The specific comparison results are demonstrated in Table 11. Compared to
the onlineMCA, we found that OneSearch’s performance for cold-start items and users has improved
by 3.31% and 2.50%, respectively. Both of them are greater than the metrics for warm ones. These
results show that OneSearch can handle the cold-start issue well.

Table 11: Online CTR gains for cold-start items and users.

Object Warm Cold Average
Item +2.34% +3.31% +2.52%
User +1.11% +2.50% +2.41%

What potential optimization opportunities will OneSearch explore in the future? The addition
of OPQ-based tokenization can even quickly process new hotwords. We constructed a new key-
word offline and added it to the textual descriptions of some items. Without reconstructing a new
codebook, OneSearch was still able to generate SIDs for these items during inference. This finding
further motivates us to consider online real-time encoding. We will explore in future research, aim-
ing to achieve unified encoding and inference using a single generative model, thereby reducing the
gap between scheduled encoding and streaming training phrase. Additionally, aligning user prefer-
ences through more robust reinforcement learning and incorporating multi-modal features (such as
images and videos) for items can further enhance the reasoning capabilities.
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