

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ONESEARCH: THE UNIFIED END-TO-END GENERATIVE FRAMEWORK FOR E-COMMERCE SEARCH

Anonymous authors

Paper under double-blind review

ABSTRACT

Traditional e-commerce search systems employ multi-stage cascading architectures (MCA) that progressively filter items through recall, pre-ranking, and ranking stages. While effective at balancing computational efficiency with business conversion, these systems suffer from fragmented computation and optimization objective collisions across stages, which ultimately limit their performance ceiling. To address these, we propose **OneSearch**, the first industrial-deployed end-to-end generative framework for e-commerce search. This framework introduces three innovations: (1) a Keyword-enhanced Hierarchical Quantization Encoding (KHQE) module, to preserve both hierarchical semantics and distinctive item attributes while maintaining strong query-item relevance constraints; (2) a multi-view user behavior sequence injection strategy that constructs behavior-driven user IDs and incorporates both explicit short-term and implicit long-term sequences to model user preferences comprehensively; and (3) a Preference-Aware Reward System (PARS) featuring multi-stage supervised fine-tuning and adaptive reward-weighted ranking to capture fine-grained user preferences. Extensive offline evaluations on large-scale industry datasets demonstrate OneSearch’s superior performance for high-quality recall and ranking. The online A/B tests confirm its ability to enhance relevance in the same exposure position, achieving statistically significant improvements: +1.67% item CTR, +2.40% buyer, and +3.22% order volume. Furthermore, OneSearch reduces operational expenditure by 75.40% and improves Model FLOPs Utilization from 3.26% to 27.32%. The system has been successfully deployed across multiple search scenarios in TEST, serving millions of users, generating tens of millions of PVs daily.

1 INTRODUCTION

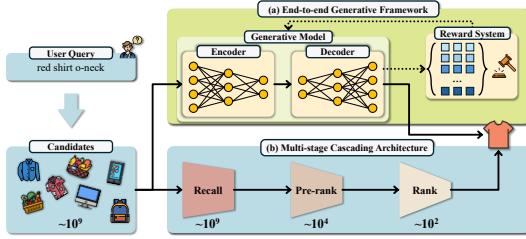


Figure 1: (a) Our proposed End-to-End generative retrieval framework, (b) the traditional multi-stage cascading architecture in E-commerce search.

E-commerce search systems aims to identify items satisfying both semantic and personalized criteria from hundreds of millions of candidates within one second. Traditional systems employ Multi-stage Cascading Architecture (MCA), which progressively filters items through recall (10^9 candidates), pre-ranking (10^4 candidates), and ranking (10^2 candidates) stages, as shown in Figure 1(b).

While MCA effectively balances response time and accuracy, it suffers from two fundamental limitations (Dubey et al., 2024a; Deng et al., 2025; Wei et al., 2025). First, fragmented compute: most serving resources are allocated to communication and storage rather than computation.

Second, objective collision: heterogeneous optimization objectives across stages limit performance ceiling. Recall and pre-ranking stages prioritize coverage with lightweight models, while ranking emphasizes user preference reasoning with complex features. This multi-layer filtering risks discarding relevant items early, preventing optimal results regardless of subsequent model accuracy.

054 Recent efforts address these issues through either intra-stage optimization (Huang et al., 2020; Wang
 055 et al., 2021; Huang et al., 2013; Zhou et al., 2018; Guo et al., 2017) or cross-stage consistency (Zhang
 056 et al., 2023; 2025; Evnine et al., 2024), yet remain constrained by MCA’s inherent limitations.
 057 The emerging generative retrieval (GR) paradigm offers a promising alternative by transforming
 058 matching-based frameworks into generation-based approaches (Rajput et al., 2023; Zheng et al.,
 059 2024; Pang et al., 2025; Deng et al., 2025; Guo et al., 2025; Zheng et al., 2025; Wei et al., 2025),
 060 eliminating multi-stage filtering through direct item generation.

061 However, e-commerce search presents unique challenges for GR adoption: (1) **Noisy item information**:
 062 sellers add irrelevant terms for exposure, creating lengthy descriptions with weak semantic
 063 order that mislead representation models; (2) **Strict relevance constraints**: queries typically contain
 064 2-3 keywords where any attribute mismatch causes relevance issues—while semantic IDs provide
 065 hierarchical representations, they inevitably lose core attributes by prioritizing shared information;
 066 (3) **Latent intent inference**: uncovering user search intent from concise queries requires effec-
 067 tively combining query content with behavior profiles. To address these challenges, we propose
 068 **OneSearch**, an end-to-end generative framework for e-commerce search, which includes:

- 069 1) **Keyword-enhanced Hierarchical Quantization Encoding** module. KHQE employs keyword-
 070 enhanced semantic collaborative encoding to highlight core item attributes, using RQ-Kmeans for
 071 hierarchical feature encoding and OPQ for unique feature quantization, further reducing noise and
 072 then enhancing query-item relevance.
- 073 2) **Multi-view User Behavior Sequence** (Mu-Seq) injection strategy. This strategy constructs
 074 behavior-driven user IDs with weighted decay sequences, explicitly incorporates short sequences
 075 for recent preferences, and implicitly models long sequences for comprehensive user profiles.
- 076 3) **Preference Aware Reward System** (PARS). We implement multi-stage supervised fine-tuning
 077 (SFT) for semantic alignment and personalization, followed by adaptive reward-weighted ranking
 078 combining hierarchical behavior signals with list-wise preference optimization.

080 Extensive evaluations demonstrate OneSearch’s superiority. Online A/B tests show statistically
 081 significant improvements: +1.67% item CTR (Click Through Rate), +2.40% buyer volume, and
 082 +3.22% order volume, while reducing operational expenditure by 75.40% and improving Model
 083 FLOPs Utilization from 3.26% to 27.32%. OneSearch is successfully deployed across multiple
 084 TEST search scenarios, serving millions of users with tens of millions of daily Page Views (PVs).

085 The main contributions of this work are summarized as follows:

- 086 • A keyword-enhanced hierarchical quantization encoding balancing context features and collab-
 087 orative signals while strengthening relevance constraints.
- 088 • A multi-view behavior sequence injection strategy, integrating user behavior sequences into ID
 089 representations and leveraging explicit/implicit prompts to enhance GRs’ reasoning about user
 090 profiles and preferences.
- 091 • A preference aware reward system with multi-stage SFT and adaptive reward modeling for
 092 personalized ranking capability.
- 093 • Finally, we present OneSearch, the first industrial-deployed end-to-end generative framework
 094 for e-commerce search, validated through comprehensive offline and online experiments.

097 2 METHODOLOGY

099 This section details OneSearch, our end-to-end e-commerce search framework, in four parts.

101 2.1 KEYWORD-ENHANCED HIERARCHICAL QUANTIZATION ENCODING

103 Encoding items into Semantic IDs (SIDs) is crucial for generative retrieval models. This process
 104 converts continuous semantic representations into discrete ID sequences using coarse-to-fine quan-
 105 tization, ensuring items with the same SID share same information (Rajput et al., 2023; Deng et al.,
 106 2025; Ju et al., 2025). However, common quantization methods tend to tokenize shared signals us-
 107 ing fixed vocabulary, losing distinctive attributes. We propose KHQE combining domain knowledge
 extraction, RQ-Kmeans for hierarchical encoding, and OPQ for unique feature quantization.

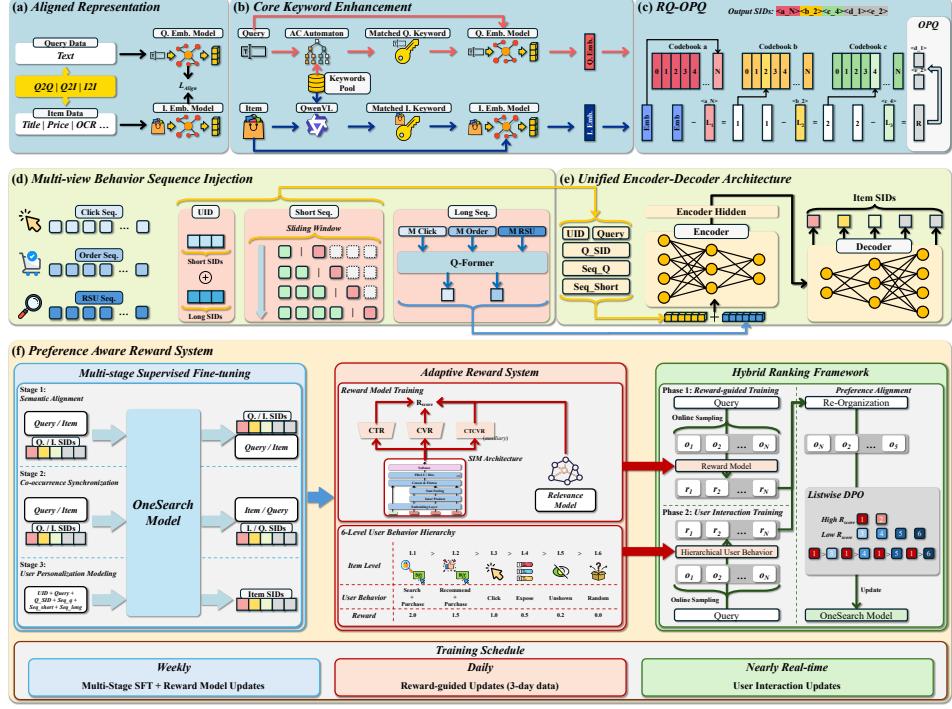


Figure 2: The Framework of OneSearch includes: 1) Keyword-enhanced Hierarchical Quantization Encoding, which adopts aligned representation and core keyword to construct a hierarchical quantization tokenization schema; 2) Multi-view Behavior Sequence Injection, utilizing sequences to reason the user profiles and preferences; 3) Unified encoder-decoder Architecture that integrates produced features for generative retrieval; and 4) Preference Aware Reward System, containing a multi-stage SFT procedure and an adaptive reward system to enhance the ranking capability.

Aligned collaborative and semantic representation. We integrate semantic knowledge with collaborative signals by aligning the representations of historically interactive query-item pairs. Firstly, we select high-quality query2query, item2item, and query2item pairs from real user search logs using existing retrieval models like ItemCF (Sarwar et al., 2001) and Swing (Yang et al., 2020). Then we collect the content information like query text, item title, item price, keywords, OCR (image-to-text), as well as the statistical business characteristics, such as the number of clicks, add-to-cart, and purchases during a certain time. All these features are processed with a distilled BGE (Xiao et al., 2023) to generate a content embedding for each query e_q and item e_i . Finally, we filter pairs with cosine similarity larger than 0.6 to ensure content relevance.

We design four interrelated tasks to align collaborative and semantic representation: 1) the query2query and item2item contrastive loss \mathcal{L}_{q2q} , \mathcal{L}_{i2i} to align representations of collaboratively similar pairs, 2) a query2item contrastive loss \mathcal{L}_{q2i} to ensure that BGE can reflect real business characteristics, 3) a query2item margin loss \mathcal{L}_{rank} to further learn the collaborative signal deviation of query-item pairs with different behavior levels, 4) a hard sample relevance correction loss \mathcal{L}_{rel} . Then we train the aligned model by the total loss with adjustable parameters λ_i as:

$$\mathcal{L}_{align} = \lambda_1 \cdot \mathcal{L}_{q2q} + \lambda_2 \cdot \mathcal{L}_{i2i} + \lambda_3 \cdot \mathcal{L}_{q2i} + \lambda_4 \cdot \mathcal{L}_{rank} + \lambda_5 \cdot \mathcal{L}_{rel}, \quad (1)$$

Core Keyword Enhancement. Item textual information often contain redundant, irrelevant, or conflicting attributes. Although boosting exposure, these disordered attributes makes it difficult for encoders to model key information. Here we propose using core keyword features to enhance textual representation, obtaining keyword-dominated semantic IDs.

Using NER (detailed shown in Appendix A.3), we extract 18 structured attributes and mine recent query-item pairs as labeled data. Core keywords are selected from PV-ranked attribute lists. Qwen-VL (Bai et al., 2023) identifies item keywords, while Aho-Corasick Automaton (Aho & Corasick, 1975) matches query keywords during inference. All these core keywords are feeded into the trained model to obtain vectors e_k^i consistent with the item representation distribution. The final optimized

162 representations for each query e_q^o and item e_i^o are given by:
 163

$$164 \quad e_q^o = \frac{1}{2}(e_q + \frac{1}{m} \sum_{i=1}^m e_k^i), \quad e_i^o = \frac{1}{2}(e_i + \frac{1}{n} \sum_{j=1}^n e_k^j). \quad (2)$$

165

166 **RQ-OPQ Hierarchical Quantization Tokenization.** Common SID tokenizers like VQ-VAE
 167 (van den Oord et al., 2018), RQ-VAE (Lee et al., 2022), and RQ-Kmeans (Luo et al., 2024) prior-
 168 itize encoding shared item features at the expense of distinctive characteristics, limiting generative
 169 GR performance. To address this limitation, we introduce a hybrid tokenizer called RQ-OPQ. We
 170 first employ RQ-Kmeans as the foundational tokenizer to capture hierarchical semantic structure.
 171 Then, we uniquely quantize the residual embedding discarded after RQ-Kmeans' final clustering
 172 step using OPQ. This approach allows RQ-Kmeans to model hierarchical relationships while OPQ
 173 simultaneously captures complementary lateral features. The resulting RQ-OPQ tokenizer provides
 174 a more comprehensive representation of fine-grained item characteristics, significantly strengthen-
 175 ing the relevance constraints for downstream GR models. (Implementation specifics, codebook
 176 architectures, performance metrics, and ablation studies are detailed in the Appendix A.3).

177

178 2.2 MULTI-VIEW BEHAVIOR SEQUENCE INJECTION

179

180 **Behavior Sequence Constructed User IDs.** Random Hash IDs in Tiger (Rajput et al., 2023) do not
 181 adequately represent user personalization. Here, we propose a behavior sequence-constructed user
 182 ID for distinctive representation. Formally, the short behavior sequence consists of latest clicked
 183 items, denoted as Seq_{short} , length is m , and the long behavior sequence contains chronologically
 184 clicked items, denoted as Seq_{long} , length is n . The user ID uid is computed as the concatenation of
 185 SID_{short} and SID_{long} :

$$186 \quad SID_{short/long} = \left[\sum_{k \in \mathcal{K}} \gamma_k \cdot SID_k \right], \quad \gamma_k = \frac{e^{\sqrt{k}}}{\sum_{i \in \mathcal{K}} e^{\sqrt{i}}} \quad (3)$$

187

188 where $\mathcal{K} = \{s_1, s_2, \dots, s_m\} / \{l_1, l_2, \dots, l_n\}$ denote the short/long behavior sequence. For cold-
 189 start users, we count the most clicked items for each query based on query-item occurrence and sort
 190 them by page views as default sequences.

191 **Explicit Short Behavior Sequence.** Short sequences primarily reflect recent preferences while
 192 long sequences represent user profiles. Therefore, for generative retrieval, explicitly inputting short
 193 sequences makes it easier to predict likely click categories. In e-commerce search, the short behavior
 194 sequences include latest queries Seq_q and clicked items Seq_{short} . We input their SIDs into the
 195 prompt, following the constructed user ID and input query.

196 **Implicit Long Behavior Sequence.** Long sequences consist of click, order, and relevant search
 197 unit (RSU) sequences(Guo et al., 2023), with lengths of up to 10^3 , making direct prompt integration
 198 infeasible. For each item, we map its keyword-enhanced embedding e_i^o to a corresponding semantic
 199 ID, and get RQ clustering centroid representation through lookup. We aggregate centroids by
 200 levels, enabling systematic preference learning while saving resources. Each item in the long-term
 201 historical sequence is replaced by the features of its RQ clustering centroid representative:

$$202 \quad \text{Item}_{sid} = \text{RQ}(e_i^o), \quad \text{Item}_{emb} = \text{EmbLookUp}(\text{Item}_{sid}) \quad (4)$$

203

For long-term sequence, overall behavior embedding is shown as:

$$204 \quad \mathbf{M}_{click/order/RSU} = \left\{ \sum_{i=1}^{L1} \text{Item}_{emb}^1, \sum_{i=1}^{L2} \text{Item}_{emb}^2, \sum_{i=1}^{L3} \text{Item}_{emb}^3 \right\}, \quad (5)$$

205

$$206 \quad \mathbf{Q}^{(i)} = \text{QFormer}(\mathbf{M}_{click}, \mathbf{M}_{order}, \mathbf{M}_{RSU}),$$

207

208 where \mathbf{M}_{click} , \mathbf{M}_{order} , and \mathbf{M}_{RSU} are click / order / RSU sequence item embeddings, and share
 209 the same size $\mathbf{M} \in \mathbb{R}^{N_M \times d_{model}}$ ($d_{model} = 768$).

210

211 2.3 UNIFIED ENCODER-DECODER ARCHITECTURE

212

213 The input of OneSearch contains: 1) Distinctive user ID uid . 2) Entered query q and its SID_q ;
 214 3) User short behavior sequence, containing the historical search queries $Seq_q = \{q_1, q_2, \dots, q_n\}$,
 215 the short clicked item sequence $Seq_{short} = \{s_1, s_2, \dots, s_n\}$; 4) Implicit long behavior sequence
 Seq_{long}^{emb} ; 5) User profile information \mathcal{U} , which is the crowd portrait fitted by the platform. OneSearch

216 directly outputs corresponding item lists \mathcal{I} . The model adopts either encoder-decoder models (e.g.
 217 BART (Lewis et al., 2019), mT5 (Xue et al., 2020)), or the decoder-only models (e.g. Qwen3 (Yang
 218 et al., 2025)) as the backbone \mathcal{M} . The inference flow can be formalized as:
 219

$$\mathcal{I} := \mathcal{M}(uid, q, SID_q, Seq_q, Seq_{short}, Seq_{long}^{emb}, \mathcal{U}). \quad (6)$$

220 As illustrated in Figure 2, our model adheres to the transformer-based (Vaswani et al., 2017) architecture,
 221 comprising an encoder that models $\langle user, query, seq \rangle$ information, and a decoder dedicated
 222 to item generation. We adopt encoder-decoder models for deployment due to architecturally accelerated
 223 training and inference. For unified training, we insert $t_{[BOS]}$ and $t_{[EOS]}$ at boundaries, with
 224 $t_{[SEP]}$ between adjacent elements. The inference output of \mathcal{M} is the SIDs, which can be adjusted by
 225 constrained or unconstrained beam search. While constrained search guides output to valid SIDs, it
 226 increases decoding complexity, and unconstrained explores all sequences without explicit rules.
 227

228 2.4 PREFERENCE AWARE REWARD SYSTEM

229 Compared to sequence coherence in recommendations, strong relevance constraints between queries
 230 and items in search pose greater challenges. For GR models, we must achieve semantic alignment
 231 between SIDs and text descriptions while directly generating items meeting relevance constraints
 232 and user preferences. We propose PARS with multi-stage supervised fine-tuning and adaptive reward
 233 system for personalized ranking capability. The overall training framework is depicted in Figure 2(f).
 234

235 **Multi-stage Supervised Fine-tuning.** Since basic architectures (e.g., BART, T5) are pretrained on
 236 text corpus while OneSearch uses SID representations, we first achieve semantic alignment then
 237 instruct generation of user-aligned items through three stages:

- 238 **1. Semantic Content Alignment:** Three sub-tasks: (a) Query/Item Text→SID generation, (b)
 239 SID→text reconstruction, (c) Text/item→category prediction. First two tasks align SID and
 240 text content, while the category prediction ensures relevance.
- 241 **2. Co-occurrence Synchronization:** Mutual prediction between query↔item and query
 242 SID↔item SID. Without user characteristics, this stage learns intrinsic semantics and collabora-
 243 tive relationships from interactive corpus.
- 244 **3. User Personalization Modeling:** After the above stages, we introduce user information align-
 245 ing with online inference. We concatenate user ID, query, SID_q , Seq_q , Seq_{short} , and Seq_{long}^{emb}
 246 as input with item SID as training label for distinctive personalization.

247 We apply sliding window data augmentation to short sequences to guide learning of user interest
 248 changes. The sliding window generates new segments with subsequent items as prediction targets
 249 by sliding along Seq_{short} (Zhou et al., 2024). With maximum window length limitation, we augment
 250 m samples for $Seq_{short} = \{s_1, s_2, \dots, s_m\}$, helping handle new users with limited history.

252 **Adaptive Reward System.** Unlike OneRec-V1’s (Zhou et al., 2025a) weighted P-Score with single
 253 reward model and Early Clipped GRPO, we use real online interactions as hierarchical feedback
 254 signals. We adopt adaptive-weighted rewards (Guo et al., 2025) to construct training data and im-
 255 plement user-behavior-guided hybrid ranking for personalized preferences.

256 Table 1: The preference-aware reward system combines a three-stage fine-tuning process (semantic
 257 alignment, co-occurrence, personalization) and an adaptive ranking mechanism.

Procedure	SFT Stage 1	SFT Stage 2	SFT Stage 3	RL Stage
Objective	Semantic alignment	$\langle q, i \rangle$ co-occurrence	User personalization	Preference Alignment
Component	query ↔ SID item ↔ SID query/item ↔ category SID ↔ category	query ↔ item query.SID ↔ item.SID	$uid \& q$ $SID_q \& Seq_q$ Seq_{short} Seq_{long}^{emb}	$\xrightarrow{\text{item.SID}}$ $\xrightarrow{\text{user \& query}}$ $\xrightarrow{\text{seq. feat.}}$ $\xrightarrow{\text{item_win}}$ $\xrightarrow{\text{item_lose}}$

258 **Adaptive-weighted Reward Signal.** Following OneSug (Guo et al., 2025) we categorize interactive
 259 behaviors into six levels: (1) purchased in search, (2) same-category purchased in recommendation,
 260 (3) clicked, (4) exposed-not-clicked, (5) unshown same-category, (6) random other-category. Base
 261 weights are $\lambda = [2.0, 1.5, 1.0, 0.5, 0.2, 0.0]$. Considering items with higher recent CTR/CVR (Con-
 262 Version Rate) are more likely selected, we utilize these two metrics to construct adaptive-weighted
 263 rewards. However, CTR and CVR often suffer from biased estimation. For example, a newly re-
 264 leased item that was exposed only once and then clicked would have CTR at 100%. Conversely,

270 genuinely popular items are often exposed by online MCA under various similar but suboptimal
 271 queries, resulting in lower CTR and CVR. Therefore, we calibrate these two metrics as follows:
 272

$$273 \quad Cnt_T = \log((Cnt_{pos} + 10) \cdot (Cnt_{clk} + 10) \cdot (Cnt_{order} + 10)). \\ 274 \quad Ctr_i = \frac{\log(Cnt_{clk} + 10)}{Cnt_T}, \quad Cvr_i = \frac{\log(Cnt_{order} + 10)}{\log(Cnt_{clk} + 10)}. \quad (7)$$

277 The weighted reward score is then defined as:

$$278 \quad r(q, i) = 2\lambda \cdot \frac{Ctr_i \cdot Cvr_i}{Ctr_i + Cvr_i}. \quad (8)$$

280 For each positive sample i_{pos} and negative sample i_{neg} , the user preference difference rw_{Δ} is:

$$281 \quad rw_{\Delta} = 1.0 / [r(q, i_{pos}) - r(q, i_{neg})], \quad (9)$$

282 where smaller rw_{Δ} encourage the model to distinguish nuanced differences in user behaviors.

283 **Reward Model Training.** As discussed in OneRec-V2(Zhou et al., 2025b), the reward model in
 284 OneRec-V1 employs restricted sampling from a small subset of users to approximate global behav-
 285 ior, potentially learning specific patterns or biases that do not yield actual improvements. However,
 286 we also diverge from the feedback-driven preference alignment proposed in OneRec-V2, as the
 287 adoption of GRPO and its variants (e.g., ECPO, GBPO) tends to introduce more irrelevant SIDs,
 288 and preference rewards require careful tuning for e-commerce search. Here we design an intuitive
 289 three-tower SIM (Qi et al., 2020)) architecture, with each tower learning CTR, CVR, CTCVR (Ma
 290 et al., 2018) using binary cross-entropy. The preference score is:

$$291 \quad Rscore = \lambda_1 \cdot CTR + \lambda_2 \cdot CVR + \lambda_3 \cdot CTCVR + 10 \cdot \lambda_4 \cdot S_{Rel}, \quad (10)$$

292 where λ_i represents tuned weights (set to 1 in our experiments). To ensure that results generated by
 293 OneSearch meet relevance constraints, we additionally incorporate an offline-calculated relevance
 294 score S_{Rel} with an amplified weight ($10 \cdot \lambda_4$).

295 This reward model differs from the click prediction model in the ranking stage of online MCA in two
 296 key aspects: (1) Feature dimensionality: While the ranking model utilizes thousands of features, our
 297 reward model only takes user ID, query, user behavior sequence, and user profile as input, matching
 298 OneSearch’s input space. (2) Sampling strategy: We additionally include items from the same
 299 category clicked in recommendation scenarios as training samples, with labels (1,1,1) for purchased
 300 items and (1,0,0) for clicked items. For computational efficiency, the reward model directly leverage
 301 the online MCA ranking model, as we only distill the ranking order rather than absolute scores.

302 **Hybird Ranking Framework.** We employ two-phase alignment. First, we collect real queries and
 303 use reward model to rerank OneSearch outputs, selecting samples with ranking changes for list-wise
 304 DPO training. Clicked or advanced items serve as positives; pushed-back items as negatives. The
 305 optimization objective is:

$$306 \quad \mathcal{L} = -\mathbb{E} \left[\log \sigma \left(\log \sum_{i_l \in \mathcal{I}_l} \exp \left(rw_{\Delta} \max (0, \hat{r}_{\theta}(x_u, i_w) - \hat{r}_{\theta}(x_u, i_l) - \delta) \right) \right) + \alpha \log \pi_{\theta}(i_w | x_u) \right], \\ 307 \quad (11)$$

309 where \mathcal{I}_l denotes the set of negative samples, and $\hat{r}_{\theta}(x_u, i_w)$ and $\hat{r}_{\theta}(x_u, i_l)$ represent rewards im-
 310 plicitly defined by the language model π_{θ} and reference model π_{ref} :

$$312 \quad \hat{r}_{\theta}(x_u, i_{w/l}) = \beta \log \frac{\pi_{\theta}(i_{w/l} | x_u)}{\pi_{ref}(i_{w/l} | x_u)}. \quad (12)$$

314 The term $\log \pi_{\theta}(i_w | x_u)$ represents the log-likelihood (NLL loss) from the SFT stage.

315 Noted that by combining the list-wise preference alignment with log-likelihood prediction of pre-
 316 ferred samples, we establish a novel hybrid paradigm for generative ranking. Since the reward model
 317 trains on MCA data, it inherently limits OneSearch’s performance. Thus, phase two uses pure user
 318 interactions: positives from top behaviors (purchased, same-category purchased, clicked) and nega-
 319 tives from bottom behaviors (exposed-not-clicked, unshown same-category, random), with the same
 320 loss. In practice, we periodically perform first-phase RL with reward model-generated samples to
 321 ensure online distribution adherence and learn from the MCA ranking model’s thousands of features.
 322 The second phase updates near-streaming with user interaction data to overcome distribution limi-
 323 tations and fully leverage generative inference capabilities. This dual approach enables OneSearch
 to benefit from both MCA’s rich feature space and direct user feedback.

324 Table 2: Offline performances of our proposed method with onlineMCA on the industry dataset. The
 325 best results are in bold, and sub-optimal results are underlined in each column. The "w/o ranking"
 326 means "without ranking", and the "\+ keywords" means "add keywords optimizations"
 327

Method	order (30k)		click (30k)	
	HR@350	MRR@350	HR@350	MRR@350
OnlineMCA	51.74%	19.26%	64.40%	16.89%
w/o ranking	<u>75.75%</u>	4.19%	<u>80.23%</u>	3.00%
OPQ (8/256)	19.43%	9.55%	22.57%	7.42%
(1024-1024-1024)	<u>57.39%</u>	9.12%	<u>63.63%</u>	7.46%
(2048-1024-512)	58.29%	10.79%	<u>65.39%</u>	8.86%
(4096-1024-256)	58.57%	11.21%	64.51%	9.24%
(4096-1024-512)	59.58%	14.29%	62.49%	11.82%
\+ keywords	62.38%	14.30%	66.14%	12.10%
\+ L3 balanced	63.16%	13.59%	68.26%	11.67%
\+ Adaptive RS	64.33%	<u>16.11%</u>	<u>68.94%</u>	<u>13.80%</u>
RQ-OPQ (2/256)	65.05%	15.33%	68.88%	12.90%
\+ Adaptive RS	66.46%	18.38%	71.06%	16.33%

3 EXPERIMENT

In this section, we conduct comprehensive evaluations on practical industry datasets and online A/B tests to verify the feasibility of OneSearch, followed by ablation studies.

Datasets. We extract the user interactive pairs from TEST’s mall search platform between May 2025 and August 2025 to facilitate the supervised fine-tuning and DPO. It contains about 1 billion PVs, all the offline and ablation experiments were conducted on the full or part of this data.

Evaluation Metrics. We take into account the recall and ranking performance. We employ HitRate (HR) and Mean Reciprocal Ranking (MRR) for recall and ranking performance, which are standard metrics in search and recommendation systems.

Baselines. Unlike simulation approaches, we use the actual production system with multiple recall mechanisms and complex ranking with thousands of features and compare against the real onlineMCA. Details are in Appendix A.4.

3.1 OFFLINE PERFORMANCE

We evaluated 30,000 click pairs and 30,000 order pairs from user search logs, computing HR@350 and MRR@350. Table 2 shows that pre-ranking prioritizes recall over precision (75.75% HR but 4.19% MRR for orders), while ranking emphasizes intent positioning. This demonstrates MCA’s optimization objective collision—final ranking is constrained by pre-ranking outputs.

Testing various RQ-Kmeans and KHQE configurations (Table 6), we found higher codebook utilization rate (CUR) and independent coding rate (ICR) improve performance. Core keyword enhancement and L3 balanced k-means both provide improvements. Besides, adaptive reward preference learning significantly enhances ranking (+1.80% HR@350, +3.24% MRR@350 average).

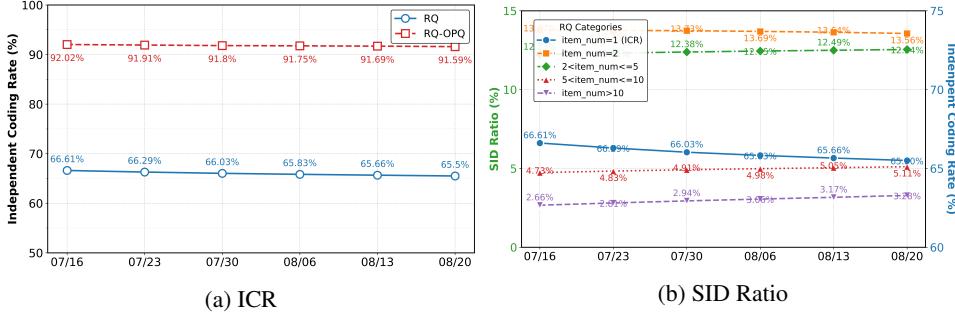
Our final configuration, RQ-OPQ (2/256) with Adaptive RS, combines RQ-Kmeans (4096-1024-512) for hierarchical encoding with OPQ (256-256) for residual quantization, trained using the full preference aware reward system. This achieves superior recall (66.46% vs. 51.74% for orders) and comparable MRR (18.38% vs. 19.26%) to onlineMCA, effectively balancing personalized ranking with intent-matching. The configuration maintains robust performance across both click and order metrics, validating our hybrid tokenization approach. This configuration would be called OneSearch in the following section for brevity. Additional implementation details are in Appendix A.4.

3.2 ABLATION STUDY

Multi-view Behavior Sequences. Table 3 demonstrates each component’s contribution. Sequence-constructed user IDs outperform hashing IDs (+1.33% HR@350). Short sequences provide the

378
379
380
381 Table 3: Ablation study of multi-view behavior sequence injection. Slid. Window means the sliding
382 window strategy.
383
384
385
386
387

Method	order (30k)		click (30k)	
	HR@350	MRR@350	HR@350	MRR@350
OneSearch	66.46%	18.38%	71.06%	16.33%
w/o User SIDs	-0.94%	-0.37%	-1.72%	-0.36%
w/o Seq_{short}	-3.43%	-1.53%	-4.15%	-1.32%
w/o Seq_{long}^{emb}	-2.26%	-1.01%	-3.00%	-1.05%
w/o Slid.Window	-1.95%	-0.81%	-1.80%	-0.70%

388
389 largest gains (+3.79% HR@350, +1.43% MRR@350), validating explicit preference modeling.
390 Long sequences and sliding window augmentation further enhance performance.
391392 **Tokenization Stability.** E-commerce inventory changes constantly, especially during shopping fes-
393 tivals, potentially disrupting pre-calculated SID pools. We tested tokenizer stability by constructing
394 RQ-Kmeans and RQ-OPQ using July 15 items and tracking performance through August 18 prom-
395 otiions. Figure 3 shows minimal degradation: RQ-Kmeans decreased 1.11% in CUR while RQ-OPQ
396 only 0.43%, validating RQ-OPQ’s superior robustness to inventory changes. Detailed RQ-OPQ
397 ablations are in Appendix A.5.
398406
407 Figure 3: The ICR and SID ratio indicators of tokenizations after regular time intervals.
408409
410 3.3 ONLINE A/B TESTING
411412 Table 4: Online results for A/B testing. The black fonts indicate that the statistical significance (P-
413 value) is smaller than 0.05, while the gray ones are larger than 0.05 indicating low confidence.
414

Method	Item CTR	PV CTR	PV CVR	Buyer	Order
MCA w/o ranking	-9.97%	-20.33%	-11.55%	-28.78%	-39.14%
OneSearch ¹	-1.10%	-2.06%	+0.39%	+1.27%	-2.22%
OneSearch ¹ _{RM}	+1.40%	+3.05%	+1.94%	+1.92%	+1.59%
OneSearch ²	+1.45%	+1.40%	-0.12%	-0.58%	-0.69%
OneSearch ² _{RM}	+1.67%	+3.14%	+1.78%	+2.40%	+3.22%

421 We conducted rigorous A/B tests on TEST’s mall search platform. Table 4 presents results for
422 two OneSearch versions: OneSearch¹ (RQ-Kmeans without long sequences) and OneSearch² (full
423 optimizations), each tested with and without reward model reranking (RM).
424425 Table 4 demonstrates that the base generative model achieves comparable performance to the
426 complex MCA system. With RQ-OPQ and long behavior sequences, OneSearch² improves item CTR
427 by 1.45% and PV CTR by 1.40%. Incorporating reward model selection (OneSearch²_{RM}) yields
428 statistically significant gains across all metrics: +1.67% item CTR, +3.14% PV CTR, +1.78% PV
429 CVR, +2.40% buyer volume, and +3.22% order volume.
430431 For a clearer comparison, we perform additional experiments on the online search system, named
432 MCA w/o ranking, which only uses the “recall and pre-ranking” module to predict the items, without
433 the ranking stage. It significantly reduces all indicators, especially with 28.78% in Buyer, 39.14% in
434 Order volume. This indirectly verifies that OneSearch has comparable ranking capabilities. These
435

outstanding results show that OneSearch outperforms the onlineMCA and indicate it can update the complicated online system to a more balanced state without generating seesaw effects. Last but not least, we also observe improvements in manual evaluations, detailed manual evaluation results are provided in Appendix A.6.

Ultimately, OneSearch has been successfully deployed for the entire traffic on the e-commerce detail page search engine in TEST, 50% traffic on the mall search, and 20% traffic on the homepage e-commerce search platform for further investigation, which serves millions of users generating tens of millions of PVs daily.

3.4 FURTHER ANALYSIS

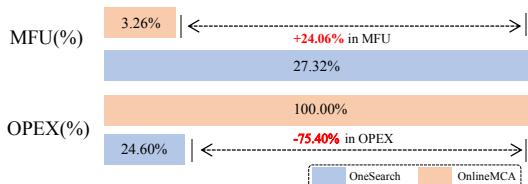


Figure 4: The comparisons of MFU and OPEX for onlineMCA and OneSearch.

Computational Efficiency. We measured Model FLOPs Utilization (MFU) on flagship GPUs during serving inference. As shown in Figure 4, OneSearch achieves 27.32% MFU compared to onlineMCA’s 3.26%, an 8.4x improvement. This significantly outperforms traditional MCA systems while approaching the 40% MFU typical of LLMs on H100 GPUs (Dubey et al., 2024b). Furthermore, OneSearch reduces operational expenditure (OPEX) to

24.60% of the online search pipeline by eliminating communication and memory overhead between stages. Additional discussion is provided in the Appendix A.7.

4 RELATED WORKS

In recent years, Generative Retrieval (GR) has garnered attention from both academia and industry due to its remarkable performance. Notable contributions in this area include Tiger (Rajput et al., 2023), DSI (Tay et al., 2022), and LC-REC (Zheng et al., 2024). Most GR models serve merely as supplementary recall sources within online systems, thereby overlooking these models’ inherent rich semantic and powerful reasoning abilities for potential use in (pre-)ranking stages. In the area of video recommendation, OneRec (Deng et al., 2025) was the first to unify recall, pre-ranking, and ranking within a single generative model. Most advancements in generative retrieval have been focused on recommendations. This is because search systems face three major challenges: 1) multiple and low-density item information, 2) strong relevance constraints between search queries and items, and 3) inference barriers to users’ potential search intentions. Consequently, the current traditional e-commerce search systems still adopt a multi-stage cascading architecture. However, some efforts have been made to optimize current search systems using GR, e.g., GenR-PO (Li et al., 2024), GRAM (Pang et al., 2025) and OneSug (Guo et al., 2025). These GR methods demonstrate appealing performance in the realm of search, recommendation, bottom navigation, advertising, and query suggestion. Inspired by these works, we proposed OneSearch, which is suitable for e-commerce search, to achieve open-set input to closed-set output. See extended discussion in Appendix A.2.

5 CONCLUSION

In this paper, we present OneSearch, a pioneering end-to-end generative framework for e-commerce search system that effectively overcomes the limitations of traditional multi-stage cascading architecture. By employing a unified generative model, introducing the keyword-enhanced hierarchical quantization encoding, multi-view behavior sequences injection, and preference aware reward system, OneSearch achieves superior semantic understanding and personalization modeling. The preference-aware reward strategy further refines the model’s ability to capture user preferences, leading to improved ranking performance. Extensive offline and online evaluations confirm OneSearch’s effectiveness in boosting click-through rates and business conversions. Its successful deployment on multiple TEST search scenes underscores its practical applicability and potential to enhance industry revenue. OneSearch sets a new benchmark for industrial search solutions, paving the way for future advancements in generative retrieval methods.

486 ETHICS STATEMENT
487488 This research uses anonymized user interaction data from an e-commerce platform in compliance
489 with privacy policies and data protection regulations. The deployment affects millions of users,
490 and we have implemented monitoring systems to detect potential biases or adverse effects. A/B
491 testing methodology ensures gradual rollout to minimize user risks. We recognize algorithmic search
492 systems can influence user behavior and have taken measures to promote relevant, diverse results
493 across product categories. The research balances commercial objectives with user value, and the
494 system continues to be monitored for ethical implications.495
496 REPRODUCIBILITY STATEMENT
497498 To support reproducibility and advance future research, we will release the complete OneSearch
499 codebase, pre-trained model weights, and training scripts upon publication. Comprehensive imple-
500 mentation details, hyperparameters, and experimental configurations are provided in Appendix A.4.
501 We will also provide detailed documentation of our data preprocessing pipeline, model architec-
502 ture specifications, and evaluation protocols to enable researchers to replicate our methodology and
503 extend our work to new domains and datasets.504
505 REFERENCES
506507 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an aid to bibliographic search.
508 *Commun. ACM*, 18(6):333–340, June 1975. ISSN 0001-0782. doi: 10.1145/360825.360855.
509 URL <https://doi.org/10.1145/360825.360855>.510 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
511 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
512 *arXiv preprint arXiv:2308.12966*, 2023.513 Jiaxin Deng, Shiyao Wang, Kuo Cai, Lejian Ren, Qigen Hu, Weifeng Ding, Qiang Luo, and Guorui
514 Zhou. Onerec: Unifying retrieve and rank with generative recommender and iterative preference
515 alignment, 2025. URL <https://arxiv.org/abs/2502.18965>.516 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, and et al.
517 The llama 3 herd of models. *CoRR*, abs/2407.21783, 2024a. doi: 10.48550/ARXIV.2407.21783.
518 URL <https://doi.org/10.48550/arXiv.2407.21783>.519 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
520 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
521 *arXiv e-prints*, pp. arXiv–2407, 2024b.522 Ariel Evnine, Stratis Ioannidis, Dimitris Kalimeris, Shankar Kalyanaraman, Weiwei Li, Israel Nir,
523 Wei Sun, and Udi Weinsberg. Achieving a better tradeoff in multi-stage recommender systems
524 through personalization. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge
525 Discovery and Data Mining*, KDD ’24, pp. 4939–4950, New York, NY, USA, 2024. Association
526 for Computing Machinery. ISBN 9798400704901. doi: 10.1145/3637528.3671593. URL
527 <https://doi.org/10.1145/3637528.3671593>.528 Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
529 machine based neural network for ctr prediction. In *Proceedings of the 26th International
530 Joint Conference on Artificial Intelligence*, IJCAI’17, pp. 1725–1731. AAAI Press, 2017. ISBN
531 9780999241103.532 Tong Guo, Xuanping Li, Haitao Yang, Xiao Liang, Yong Yuan, Jingyou Hou, Bingqing Ke, Chao
533 Zhang, Junlin He, Shunyu Zhang, et al. Query-dominant user interest network for large-scale
534 search ranking. In *Proceedings of the 32nd ACM International Conference on Information and
535 Knowledge Management*, pp. 629–638, 2023.536 Xian Guo, Ben Chen, Siyuan Wang, Ying Yang, Chenyi Lei, and et al. Onesug: The unified end-
537 to-end generative framework for e-commerce query suggestion. *CoRR*, abs/2506.06913, 2025.

540 doi: 10.48550/ARXIV.2506.06913. URL <https://doi.org/10.48550/arXiv.2506.06913>.

541

542

543 Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin, Janani Padman-
544 abhan, Giuseppe Ottaviano, and Linjun Yang. Embedding-based retrieval in facebook search.
545 In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining*, KDD '20, pp. 2553–2561. ACM, August 2020. doi: 10.1145/3394486.
546 3403305. URL <http://dx.doi.org/10.1145/3394486.3403305>.

547

548 Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learning
549 deep structured semantic models for web search using clickthrough data. In *Proceedings of the
550 22nd ACM International Conference on Information & Knowledge Management*, CIKM '13,
551 pp. 2333–2338, New York, NY, USA, 2013. Association for Computing Machinery. ISBN
552 9781450322638. doi: 10.1145/2505515.2505665. URL <https://doi.org/10.1145/2505515.2505665>.

553

554 Clark Mingxuan Ju, Liam Collins, Leonardo Neves, Bhuvesh Kumar, Louis Yufeng Wang, Tong
555 Zhao, and Neil Shah. Generative recommendation with semantic ids: A practitioner's handbook,
556 2025. URL <https://arxiv.org/abs/2507.22224>.

557

558 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive im-
559 age generation using residual quantization, 2022. URL <https://arxiv.org/abs/2203.01941>.

560

561 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
562 Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
563 training for natural language generation, translation, and comprehension. *arXiv preprint
arXiv:1910.13461*, 2019.

564

565 Jiacheng Li, Ming Wang, Jin Li, Jimmiao Fu, Xin Shen, Jingbo Shang, and Julian McAuley. Text
566 is all you need: Learning language representations for sequential recommendation. KDD '23,
567 pp. 1258–1267, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
568 9798400701030. doi: 10.1145/3580305.3599519. URL <https://doi.org/10.1145/3580305.3599519>.

569

570

571 Mingming Li, Huimu Wang, Zuxu Chen, Guangtao Nie, Yiming Qiu, Guoyu Tang, Lin Liu, and
572 Jingwei Zhuo. Generative retrieval with preference optimization for e-commerce search, 2024.
573 URL <https://arxiv.org/abs/2407.19829>.

574

575 Xincheng Luo, Jiangxia Cao, Tianyu Sun, Jinkai Yu, Rui Huang, Wei Yuan, Hezheng Lin, Yichen
576 Zheng, Shiyao Wang, Qigen Hu, et al. Qarm: Quantitative alignment multi-modal recom-
577 mendation at kuaishou. *arXiv preprint arXiv:2411.11739*, 2024.

578

579 Xiao Ma, Liqin Zhao, Guan Huang, Zhi Wang, Zelin Hu, Xiaoqiang Zhu, and Kun Gai. Entire space
580 multi-task model: An effective approach for estimating post-click conversion rate, 2018. URL
581 <https://arxiv.org/abs/1804.07931>.

582

583 Ming Pang, Chunyuan Yuan, Xiaoyu He, Zheng Fang, Donghao Xie, and et al. Generative re-
584 trieval and alignment model: A new paradigm for e-commerce retrieval, 2025. URL <https://arxiv.org/abs/2504.01403>.

585

586 Pi Qi, Xiaoqiang Zhu, Guorui Zhou, Yujing Zhang, Zhe Wang, Lejian Ren, Ying Fan, and Kun Gai.
587 Search-based user interest modeling with lifelong sequential behavior data for click-through rate
588 prediction, 2020. URL <https://arxiv.org/abs/2006.05639>.

589

590 Junyan Qiu, Ze Wang, Fan Zhang, Zuowu Zheng, Jile Zhu, and et al. One model to rank them
591 all: Unifying online advertising with end-to-end learning, 2025. URL <https://arxiv.org/abs/2505.19755v1>.

592

593 Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxiang Dong, Hua
594 Wu, and Haifeng Wang. RocketQA: An optimized training approach to dense passage retrieval for
595 open-domain question answering. In *Proceedings of the 2021 Conference of the North American
596 Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp.

594 5835–5847, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/
 595 2021.naacl-main.466. URL <https://aclanthology.org/2021.naacl-main.466/>.
 596

597 Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu,
 598 and et al. Recommender systems with generative retrieval. In A. Oh, T. Nau-
 599 mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural*
 600 *Information Processing Systems*, volume 36, pp. 10299–10315. Curran Associates, Inc.,
 601 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/20dcab0f14046a5c6b02b61da9f13229-Paper-Conference.pdf.
 602

603 Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative filtering
 604 recommendation algorithms. In *Proceedings of the 10th International Conference on World Wide*
 605 *Web*, WWW '01, pp. 285–295, New York, NY, USA, 2001. Association for Computing Machinery.
 606 ISBN 1581133480. doi: 10.1145/371920.372071. URL <https://doi.org/10.1145/371920.372071>.
 607

608 Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, and et al. Transformer
 609 memory as a differentiable search index. In S. Koyejo, S. Mohamed,
 610 A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Infor-*
 611 *mation Processing Systems*, volume 35, pp. 21831–21843. Curran Associates, Inc.,
 612 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/892840a6123b5ec99ebaab8be1530fba-Paper-Conference.pdf.
 613

614 Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
 615 ing, 2018. URL <https://arxiv.org/abs/1711.00937>.
 616

617 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 618 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 619 *tion processing systems*, 30, 2017.

620 Ruoxi Wang, Rakesh Shivanna, Derek Zhiyuan Cheng, Sagar Jain, Dong Lin, Lichan Hong, and
 621 Ed H. Chi. DCN V2: improved deep & cross network and practical lessons for web-scale learning
 622 to rank systems. In *WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia,*
 623 *April 19-23, 2021*, pp. 1785–1797. ACM / IW3C2, 2021. doi: 10.1145/3442381.3450078. URL
 624 <https://doi.org/10.1145/3442381.3450078>.
 625

626 Zhipeng Wei, Kuo Cai, Junda She, Jie Chen, Minghao Chen, and et al. Oneloc: Geo-aware gener-
 627 ative recommender systems for local life service. 2025. URL <https://arxiv.org/abs/2508.14646>.
 628

629 Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
 630 advance general chinese embedding, 2023.
 631

632 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
 633 Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text transformer. *arXiv*
 634 *preprint arXiv:2010.11934*, 2020.

635 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 636 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 637 *arXiv:2505.09388*, 2025.
 638

639 Xiaoyong Yang, Yadong Zhu, Yi Zhang, Xiaobo Wang, and Quan Yuan. Large scale product graph
 640 construction for recommendation in e-commerce, 2020. URL <https://arxiv.org/abs/2010.05525>.
 641

642 Luankang Zhang, Kenan Song, Yi Quan Lee, Wei Guo, Hao Wang, Yawen Li, Hufeng Guo, Yong
 643 Liu, Defu Lian, and Enhong Chen. Killing two birds with one stone: Unifying retrieval and
 644 ranking with a single generative recommendation model. In *Proceedings of the 48th Interna-*
 645 *tional ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR
 646 '25, pp. 2224–2234, New York, NY, USA, 2025. Association for Computing Machinery. ISBN
 647 9798400715921. doi: 10.1145/3726302.3730017. URL <https://doi.org/10.1145/3726302.3730017>.

648 Zhixuan Zhang, Yuheng Huang, Dan Ou, Sen Li, Longbin Li, Qingwen Liu, and Xiaoyi Zeng.
 649 Rethinking the role of pre-ranking in large-scale e-commerce searching system, 2023. URL
 650 <https://arxiv.org/abs/2305.13647>.

651 Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming Chen, and Ji-Rong Wen.
 652 Adapting large language models by integrating collaborative semantics for recommendation. In
 653 *2024 IEEE 40th International Conference on Data Engineering (ICDE)*, pp. 1435–1448, 2024.
 654 doi: 10.1109/ICDE60146.2024.00118.

655 Zuowu Zheng, Ze Wang, Fan Yang, Jiangke Fan, Teng Zhang, Yongkang Wang, and Xingxing
 656 Wang. Ega-v2: An end-to-end generative framework for industrial advertising, 2025. URL
 657 <https://arxiv.org/abs/2505.17549>.

658 Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, and et al. Deep in-
 659 terest network for click-through rate prediction. In *Proceedings of the 24th ACM SIGKDD*
 660 *International Conference on Knowledge Discovery & Data Mining*, KDD '18, pp. 1059–1068,
 661 New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355520. doi:
 662 10.1145/3219819.3219823. URL <https://doi.org/10.1145/3219819.3219823>.

663 Guorui Zhou, Jiaxin Deng, Jinghao Zhang, Kuo Cai, Lejian Ren, and et al. Onerec technical report.
 664 *CoRR*, abs/2506.13695, 2025a. doi: 10.48550/ARXIV.2506.13695. URL <https://doi.org/10.48550/arXiv.2506.13695>.

665 Guorui Zhou, Hengrui Hu, Hongtao Cheng, Huanjie Wang, Jiaxin Deng, Jinghao Zhang, Kuo Cai,
 666 Lejian Ren, Lu Ren, Liao Yu, Pengfei Zheng, Qiang Luo, Qianqian Wang, Qigen Hu, Rui Huang,
 667 Ruiming Tang, Shiyao Wang, Shujie Yang, Tao Wu, Wuchao Li, Xincheng Luo, Xingmei Wang,
 668 Yi Su, Yunfan Wu, Zexuan Cheng, Zhanyu Liu, Zixing Zhang, Bin Zhang, Boxuan Wang, Chaoyi
 669 Ma, Chengru Song, Chenhui Wang, Chenglong Chu, Di Wang, Dongxue Meng, Dunju Zang,
 670 Fan Yang, Fangyu Zhang, Feng Jiang, Fuxing Zhang, Gang Wang, Guowang Zhang, Han Li,
 671 Honghui Bao, Hongyang Cao, Jiaming Huang, Jiapeng Chen, Jiaqiang Liu, Jinghui Jia, Kun
 672 Gai, Lantao Hu, Liang Zeng, Qiang Wang, Qidong Zhou, Rongzhou Zhang, Shengzhe Wang,
 673 Shihui He, Shuang Yang, Siyang Mao, Sui Huang, Tiantian He, Tingting Gao, Wei Yuan, Xiao
 674 Liang, Xiaoxiao Xu, Xugang Liu, Yan Wang, Yang Zhou, Yi Wang, Yiwu Liu, Yue Song, Yufei
 675 Zhang, Yunfeng Zhao, Zhixin Ling, and Ziming Li. Onerec-v2 technical report, 2025b. URL
 676 <https://arxiv.org/abs/2508.20900>.

677 Peilin Zhou, You-Liang Huang, Yueqi Xie, Jingqi Gao, Shoujin Wang, Jae Boum Kim, and Sunghun
 678 Kim. Is contrastive learning necessary? a study of data augmentation vs contrastive learning in
 679 sequential recommendation. In *Proceedings of the ACM Web Conference 2024*, pp. 3854–3863,
 680 2024.

681 A APPENDIX

682 A.1 USE OF LARGE LANGUAGE MODELS

683 We hereby declare that throughout the innovative conceptualization, code development, data con-
 684 struction, manuscript preparation, and creation of all figures and tables in this research, **no artificial**
 685 **intelligence generation tools were utilized**.

686 A.2 RELATED WORKS

687 **Generative Retrieval and Recommendation.** In recent years, Generative Retrieval (GR) has gar-
 688 nered significant attention from both academia and industry due to its remarkable performance. This
 689 emerging retrieval paradigm, which regards large-scale retrieval as sequence-to-sequence generation
 690 tasks, has outperformed traditional ANN-based models such as EBR (Huang et al., 2020) and Rock-
 691 etQA (Qu et al., 2021), spurring increased exploration in the fields of search and recommendation.
 692 Notable contributions in this area include Tiger (Rajput et al., 2023), DSI (Tay et al., 2022), and
 693 LC-REC (Zheng et al., 2024). Tiger (Rajput et al., 2023) pioneered the development of end-to-end
 694 generative retrieval models for sequential recommendation, introducing semantic IDs (SID) derived

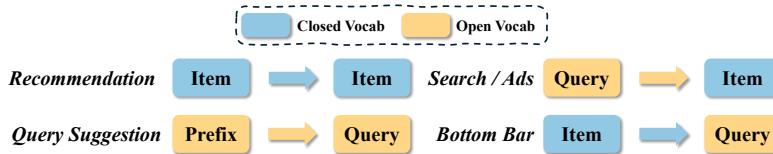
702 from each item’s content information for efficient item representation. LC-REC (Zheng et al., 2024)
 703 proposed adapting large language models (LLMs) by integrating collaborative semantics for recom-
 704 mendation, utilizing a series of specially designed tuning tasks.

705 Most GR models serve merely as supplementary recall sources within online systems, thereby over-
 706 looking these models’ inherent rich semantic and powerful reasoning abilities for potential use in
 707 (pre-)ranking stages. In the area of video recommendation, OneRec (Deng et al., 2025) was the
 708 first to unify recall, pre-ranking, and ranking within a single generative model. This was achieved
 709 with the assistance of session-wise generation and iterative preference alignment, resulting in sub-
 710 stantial improvements in practical online metrics. EGA (Zheng et al., 2025) represents a significant
 711 departure from both traditional multi-stage cascading architectures (MCA) and existing generative
 712 retrieval models by introducing a unified framework that holistically models the entire advertising
 713 pipeline. UniROM (Qiu et al., 2025) employs a hybrid feature service to efficiently decouple user
 714 and advertising features, and RecFormer (Li et al., 2023), a variation of Transformer, captures both
 715 intra- and cross-sequence interactions.

716 **Generative Retrieval for Search.** These two years, most advancements in generative retrieval have
 717 been focused on recommendations. This is because search systems face three major challenges: 1)
 718 multiple and low-density item information, 2) strong relevance constraints between search queries
 719 and items, and 3) inference barriers to users’ potential search intentions. Consequently, the current
 720 traditional e-commerce search systems still adopt a multi-stage cascading architecture. However,
 721 some efforts have been made to optimize current search systems using generative retrieval (GR).

722 The first example is GenR-PO (Li et al., 2024), which utilizes multi-span identifiers to represent
 723 raw item titles. This approach transforms the task of generating titles from queries into the task of
 724 generating multi-span identifiers from queries, thereby simplifying the generation process. Subse-
 725 quently, a constrained search method is employed to identify key spans for retrieving the final item,
 726 which has proven beneficial for online recall systems. Another notable example is the Generative
 727 Retrieval and Alignment Model (GRAM) (Pang et al., 2025), which performs joint training on text
 728 information from both queries and products to generate shared text identifier codes. GRAM employs
 729 a co-alignment strategy to optimize these codes for maximizing retrieval efficiency and is deployed
 730 on the JD search engine to enhance both the recall and pre-ranking stages.

731 The OneSug (Guo et al., 2025) in query suggestion, which incorporates a prefix2query repres-
 732 entation enhancement module to enrich prefixes using semantically and interactively related queries
 733 to bridge content and business characteristics, an encoder-decoder generative model that unifies the
 734 query suggestion process, and a reward-weighted ranking strategy with behavior-level weights to
 735 capture fine-grained user preferences. It is the first end-to-end generative framework for e-commerce
 736 query suggestion, and has been verified to have substantial improvements in user clicks and con-
 737 version. These GR methods demonstrate appealing performance in the realm of search, recom-



743 Figure 5: The input and output differences among Recommend, Search/Ads, Query Sug and Bottom
 744 Bar.

745 mendment, bottom navigation, advertising, and even query suggestion. They are not suitable for
 746 e-commerce search. As illustrated in Figure 5, the inputs and outputs of recommendation are the
 747 closed-vocabulary items or videos, thus the pure semantic ID tokenization is suitable for its diverse
 748 item generation. The inputs and outputs of query suggestion are the full open-vocabulary textual
 749 descriptions, so that it can directly use the transformer architecture. For the bottom bar and search
 750 engine, either the inputs or the outputs are open-vocabulary, which represents a significant departure
 751 from both OneRec and EGA.

756 A.3 KEYWORD-ENHANCED HIERARCHICAL QUANTIZATION ENCODING DETAILS
757758 A.3.1 CORE KEYWORD ENHANCEMENT DETAILS
759760 To enhance the role of core keywords in encoding, the core keyword enhancement scheme introduce
761 18 structured attributes (shown in Table 5) that improves the codebook utilization rate (CUR) of
762 RQ-Kmeans at each level and further increases the independent coding rate (ICR). For example,
763 with a configuration of 4096-1024-512 in Table 6, it results in a 0.10% CUR increment for Level 1,
764 24.84% for Level 2, and 26.15% for Level 3, as well as the overall ICR increasing by 6.86%.765 Table 5: 18 structured attributes using NER in the TEST e-commerce search platform.
766

Attribute Types									
Entity Scene	Modifier Specifications	Brand Price	Material Model	Style Anchor	Function Series	Location Marketing	Audience Season	Color Pattern	

771 Table 6: The codebook utilization rate (CUR) and independent coding rate (ICR) for various RQ-
772 Kmeans configurations. The last ⁺ means balanced operation for all levels.
773

Configurations	CUR_{L1}	$CUR_{L1 \times L2}$	CUR_{Total}	ICR
1024-1024-1024	100%	54.27%	1.72%	36.67%
\+keywords	100%	65.40%	2.03%	40.25%
2048-1024-512	100%	46.88%	1.98%	37.80%
\+keywords	100%	57.16%	2.51%	40.76%
4096-1024-256	99.90%	39.21%	2.27%	36.98%
\+keywords	100%	48.95%	2.94%	40.52%
\+l3 balanced	100%	48.95%	10.31%	60.01%
4096-1024-512	99.90%	39.21%	1.30%	40.54%
\+keywords	100%	48.95%	1.64%	43.32%
\+l3 balanced	100%	48.95%	7.03%	68.08%
4096-1024-512 ⁺	99.93%	41.45%	0.51%	33.47%

774 Table 7: Performance comparisons of three tokenization schemas evaluated on the real click pairs.
775

Method	CUR_{Total}	ICR	$Recall@10$	$MRR@10$
OnlineMCA	-	-	0.3440	0.1323
RQ-VAE	1.17%	38.83%	0.2171	0.0689
RQ-Kmeans	7.03%	68.08%	0.2844	0.1038
RQ-OPQ	-	91.91%	0.3369	0.1194

795 A.3.2 RQ-OPQ TOKENIZATION DETAILS
796797 Here, we use CUR and ICR as evaluation metrics. The basic codebook size is set to 1024, and
798 the number of codebook layers is set to 3, which aligns with the number of items in the candidate
799 pool. However, e-commerce items have more varied categories and attributes, and RQ-Kmeans
800 tends to prioritize clustering shared prominent features in the former layers. In order to make more
801 concise tokenization, we maintain the capacity of RQ-Kmeans while increasing the codebook size
802 of the former layer to ensure more comprehensive learning of prominent features. As depicted in
803 Table 6, we tested three configurations: (1024,1024,1024), (2048,1024,512), and (4096,1024,256).
804 The codebook size of 4096 achieves higher CUR and ICR, and the Core Keyword Enhancement
805 scheme (\+keywords) shows further improvement. Considering that the search system should
806 encode the entered query similarly and that merchants often increase the number of listed items during
807 global shopping festivals (e.g., 11.11 and 6.18), we further expanded the codebook size to (4096-
808 1024-512). We found that the semantic tokens increased by 11.56% (as $2 \cdot 1.64\% / 2.94\% - 1$), and
809 the independent coding rate increased to 43.42% compared to the (4096-1024-512) (\+keywords).

To further improve CUR and ICR, OneRec-V1 (Deng et al., 2025) proposed using full layers balanced k-means. However, for complex fine-grained attributes of items, forcing them into the same cluster in the early stages can lead to hierarchical clustering collapse. As shown in Table 6, the CUR_{total} for the balanced k-means operation on full layers (4096-1024-512⁺) is much lower than the (\+keywords) configuration. The CUR drastically decreased from 48.95% of CUR_{L1+L2} to 1.64% in CUR_{total} , indicating that many similar items were assigned the same ID. Therefore, we propose applying balanced k-means only to the codebook of the third layer to achieve independent encoding of similar items. As shown in (\+l3 balanced), the CUR_{Total} increased from 1.64% to 7.03%, while the ICR improved by 57.15%.

Although RQ-Kmeans can construct hierarchical, learnable SIDs for items, it inevitably discards the residual embedding computed after the last clustering. However, this residual embedding contains the distinctive attributes of each item. Therefore, we further use OPQ for quantizing the unique features. The RQ method handles hierarchical semantics, while PQ is adopted for lateral characteristics. This combined tokenizer can more comprehensively represent the fine-grained features of items, thereby enhancing the relevance constraints for GR models. As shown in Table 7, the two additional SIDs (256-256) generated by OPQ significantly improve the ICR metric and enhance the recall and ranking capabilities of GRs. More detailed testing is introduced in §A.5.

A.4 IMPLEMENTATION DETAILS

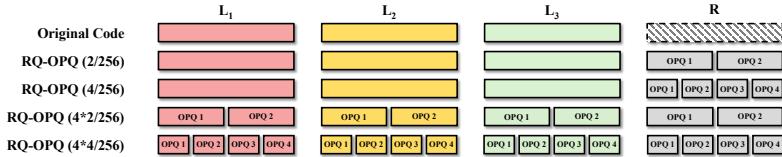
We adopt Bart-B (Lewis et al., 2019) as the base pre-trained model for the testing and online deployment, as it is an efficient model with optimized architectural acceleration, and has been online applied in many scenarios in TEST. Due to commercial confidentiality, we do not disclose the total parameters of the online model here, but it is at least 100 times larger than Bart. The beam search size is set to 512 here to strike a balance between generation quality and latency. The maximum window length is set to n=5. The batch size for SFT and DPO is set to 512 and 128, respectively, with the latter being smaller because the list-wise DPO training takes more samples as inputs. For RQ-OPQ, the number of codebook layers $C = 5$ (3 layers for RQ-Kmeans, and 2 layers for residual OPQ). The codebook size W of each layer is (4096,1024,512—256,256). Some of the hyperparameters will be discussed in the following ablation study. The multi-stage supervised training is conducted every week, RL with the reward system is conducted daily, and the hybrid preference alignment with user interaction data is updated as close to the stream as possible. Actually, RL with a reward system can also be trained every week, as we found it does not bring significant performance gains, except during the global shopping festivals (e.g., 11.11 and 6.18).

A.5 ABLATION STUDY OF DIFFERENT OPQ TOKENIZATIONS

We examined the impact of different hierarchical quantization encodings on items in Figure 6. As shown in Table 8, we computed two metrics with the top 10 items for quick validation. RQ-OPQ (2/256) is the basic configuration, and RQ-OPQ (4/256) means the residual embedding is tokenized by OPQ (256-256-256-256). RQ-OPQ (4*2/256) means all embeddings (the cluster of three layers and the residual one) are tokenized with OPQ (2/256), then (4*4/256) indicates further quantization. We found that the basic RQ-OPQ (2/256) achieved the highest performance. (4/256) perform weakly with increased sequence length and decoding complexity. The other two configurations were almost entirely ineffective, which is similar to the balanced k-means operation on full layers in § 2.1, as the hierarchical features were not distinctly represented, leading to many items being aggregated under the same SID.

Table 8: Ablation study of different OPQ tokenizations.

Method	order (30k)		click (30k)	
	HR@10	MRR@10	HR@10	MRR@10
RQ-OPQ (2/256)	28.42%	14.15%	33.69%	11.94%
*-OPQ (4/256)	-2.36%	-1.77%	-2.52%	-1.56%
*-OPQ (4*2/256)	-10.20%	-5.57%	-11.77%	-3.84%
*-OPQ (4*4/256)	-24.18%	-11.83%	-27.11%	-9.61%

864
865
866
867
868
869870 Figure 6: The different hierarchical quantization encodings of items.
871
872873 A.6 MANUAL EVALUATION RESULTS FOR ONLINE EXPERIENCE
874

875 Last but not least, to ascertain the actual impacts on the online search experience, we conducted
876 additional manual evaluations. We randomly selected 200 queries and extracted 3,200 query-item
877 pairs from identical exposure positions, ensuring all other variables remained constant. We set three
878 metrics as 1) page good rate - an evaluation indicator for the overall user experience, 2) item quality
879 - Check whether the displayed products are counterfeit, have mismatched images and text, or have
880 abnormal prices, and 3) query-item relevance - we engaged experts to rate each pair as "Good"
881 (both subject and core keywords match), "Fair" (only subject matches), or "Bad" (subjects differ).
882 The outcomes of these assessments are presented in Table 9. We can see that OneSearch² achieves
883 substantial increases in page good rate by 1.03%, item quality by 2.12%, and query item relevance
884 by 1.87%. The deployment of RQ-OPQ further enhances the relevance of model generation.

885 Table 9: Manual evaluation results for online experience.
886

Metric	Page Good Rate	Item Quality	Q-I Relevance
OneSearch ¹	0.84%	1.69%	1.40%
OneSearch ²	1.03%	2.12%	1.87%

890 A.7 FURTHER STUDIES
891

892 **What are the main aspects of the online gains for the OneSearch?** In our analysis, we focused
893 on the dimensions of industry and query popularity. As illustrated in Figure 7, we calculated the
894 CTR relative gains across the top 30 industries. Remarkably, 28 out of 30 industries experienced
895 increases, with an average gain of 2.49%. These results were statistically significant, with P-values
896 below 0.05. Although two industries showed negative effects, these were not statistically significant.
897 Overall, the unified modeling optimization demonstrates substantial potential in addressing
898 the inconsistent objectives of multi-stage processes in MCA systems, benefiting nearly all industries.
899

900 As for the query popularity dimension, we divided all prefixes into three categories: top (PV number
901 daily larger than 1,000), middle (larger than 100 and less than 1,000), and long-tail (less than
902 100). The item CTR relative gains for each were listed in Table 10. Queries of all categories are
903 enhanced with the OneSearch models. These results indicate that the rich semantic and interactive
904 representations induced by keyword-enhanced hierarchical quantization encoding, multi-view be-
905 havior sequence, and the preference aware reward system can greatly improve the recognition of
906 e-commerce search for queries of all popularity.

907 Table 10: Online CTR gains for three query popularity.
908

Method	Top	Middle	Long-tail
OneSearch ²	+1.25%	+2.27%	+1.33%

912 **Does OneSearch have stronger reasoning capabilities?** In traditional e-commerce search scenar-
913 ios, ranking models often involve thousands of features, and the combination of them can obscure
914 some key attributes. Additionally, the structure of common ranking model typically consists of a
915 simple stack of shallow neural networks, resulting in minimal reasoning capabilities. OneSearch,
916 on the other hand, leverages users' long- and short-term sequential information to identify their po-
917 tential interests and enhances the inference of user search intent through the attention mechanism of
918 transformer structures. For instance, a female user who previously searched for "couple sneakers"

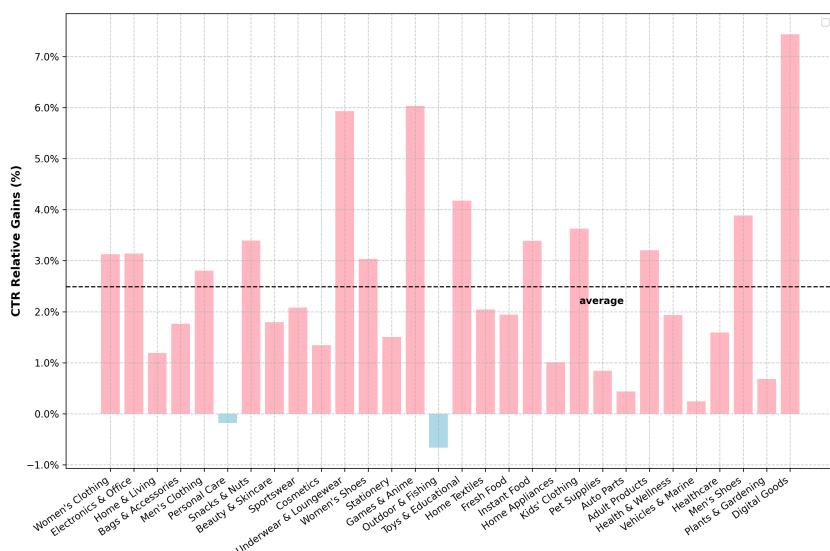


Figure 7: The online CTR relative gains for top 30 industries.

and "Valentine's Day gifts" is likely seeking a pair of rings for both her partner and herself when searching for "silver ring." We observed in real logs that only OneSearch presented the relevant product, which was ultimately purchased by the user.

How does OneSearch perform for cold-start users and items? We conducted tests to evaluate the model's performance in cold-start scenarios. Here, we define cold items as those published within the last seven days with no interaction behavior, and cold users as those who have not used the TEST app in the past 90 days. The specific comparison results are demonstrated in Table 11. Compared to the onlineMCA, we found that OneSearch's performance for cold-start items and users has improved by 3.31% and 2.50%, respectively. Both of them are greater than the metrics for warm ones. These results show that OneSearch can handle the cold-start issue well.

Table 11: Online CTR gains for cold-start items and users.

Object	Warm	Cold	Average
Item	+2.34%	+3.31%	+2.52%
User	+1.11%	+2.50%	+2.41%

What potential optimization opportunities will OneSearch explore in the future? The addition of OPQ-based tokenization can even quickly process new hotwords. We constructed a new keyword offline and added it to the textual descriptions of some items. Without reconstructing a new codebook, OneSearch was still able to generate SIDs for these items during inference. This finding further motivates us to consider online real-time encoding. We will explore in future research, aiming to achieve unified encoding and inference using a single generative model, thereby reducing the gap between scheduled encoding and streaming training phrase. Additionally, aligning user preferences through more robust reinforcement learning and incorporating multi-modal features (such as images and videos) for items can further enhance the reasoning capabilities.