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Abstract

Autoregressive decoding of large language mod-
els (LLMs) is memory bandwidth bounded, re-
sulting in high latency and significant wastes of
the parallel processing power of modern accel-
erators. Existing methods for accelerating LLM
decoding often require a draft model (e.g., spec-
ulative decoding), which is nontrivial to obtain
and unable to generalize. In this paper, we in-
troduce LOOKAHEAD DECODING, an exact, par-
allel decoding algorithm that accelerates LLM
decoding without needing auxiliary models or
data stores. It allows trading per-step log(FLOPs)
to reduce the number of total decoding steps, is
more parallelizable on single or multiple modern
accelerators, and is compatible with concurrent
memory-efficient attention (e.g., FlashAttention).
Our implementation of LOOKAHEAD DECODING
can speed up autoregressive decoding by up to
1.8x on MT-bench and 4x with strong scaling on
multiple GPUs in code completion tasks. Our
code is avialable at ht tps://github.com
/hao—-ai-lab/LookaheadDecoding

1. Introduction

Large language models (LLMs) are transforming the Al
industry. As they are increasingly integrated into diverse
applications such as search (Team et al., 2023) and chat-
bots (Ouyang et al., 2022), generating long sequences at
low-latency using LLMs is becoming one significant require-
ment. However, current LLMs (Touvron et al., 2023a;b;
Jiang et al., 2023; OpenAl, 2023) generate text based on
autoregressive decoding, which falls short in efficiency, pri-
marily for two reasons. First, autoregressive decoding gener-
ates only one token at a time. Hence, the overall generation
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time is proportional to the number of decoding steps. Sec-
ond, each decoding step largely underutilizes the parallel
processing capabilities of modern accelerators (e.g., GPUs).
Given the pressing need for low latency in various applica-
tions, improving autoregressive decoding remains a central
challenge.

Several approaches have been proposed — one such approach
is speculative decoding (Chen et al., 2023a; Leviathan et al.,
2023) and its variants (He et al., 2023; Stern et al., 2018;
Cai et al., 2024; Li et al., 2024; Liu et al., 2023; Miao
et al., 2024). These methods all follow a guess-and-verify
approach: they use a draft model to speculate several subse-
quent tokens and then use the original (base) LLM to verify
these tokens in parallel. Since the draft model requires much
fewer resources and the cost of verifying multiple tokens in
parallel is similar to the cost of generating a single token,
these methods can achieve considerable speedups. However,
their speedups are bounded by the foken acceptance rate
(§4.1), i.e., the fraction of tokens generated by the draft
model that passes the verification test of the base model.
This is because every token that fails verification needs to
be regenerated by the base model. In the worst case, if most
proposed tokens fail verification, these methods may slow
down the decoding process. Therefore, achieving a high ac-
ceptance rate is essential for these methods. Unfortunately,
training a draft model to achieve a high acceptance rate is
non-trivial, and the trained draft model does not generalize
across base models and datasets.

To address these problems, this paper develops LOOKA-
HEAD DECODING. We build upon a key observation: au-
toregressive decoding can be equivalently formulated as
solving a non-linear system via the fixed point Jacobi itera-
tion method (§2), which has been termed as Jacobi decod-
ing (Santilli et al., 2023). Each Jacobi decoding step can
generate multiple tokens in parallel at different positions.
Although these tokens may appear at incorrect positions, we
can leverage this parallel generation approach to have the
LLM generate several disjoint n-grams in parallel in a sin-
gle step. These n-grams could potentially be integrated into
future parts of the generated sequence, pending verification
by the base model to maintain the output distribution.

LOOKAHEAD DECODING takes advantage of the partic-
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ular characteristics of autoregressive decoding, which is
bounded by the memory bandwidth—as each generated to-
ken depends on all tokens before it-rather than compute, by
using the available cycles to generate and verify n-grams
(subsequent tokens) at virtually no additional cost. In a
nutshell, LOOKAHEAD DECODING consists of a lookahead
branch that generates n-grams and a verification branch that
verifies n-grams, both executing in a single step. To improve
efficiency, we use an n-gram pool to cache the historical
n-grams generated so far. This way, LOOKAHEAD DECOD-
ING can significantly reduce the latency of LLM inference
just by exploiting the compute resources that autoregressive
decoding would leave unused. More importantly, LOOKA-
HEAD DECODING scales with the compute — we show that
it can linearly reduce the number of decoding steps relative
to the log(FLOPs) allocated per step.

We have implemented the algorithm in Python and CUDA,
which is compatible with memory-efficient attention algo-
rithms (e.g., FlashAttention (Dao, 2023)) and supports vari-
ous sampling methods without changing the output distribu-
tion. We also scale it to multiple GPUs, resulting in Looka-
head Parallelism. We evaluate LOOKAHEAD DECODING
on the popular LLaMA-2 (Touvron et al., 2023b) models.
It achieves 1.8x speedup on the challenging multi-turn chat
dataset MT-Bench (Zheng et al., 2024) and up to 4x speedup
in code completion tasks with Lookahead Parallelism on 8
GPUs. LOOKAHEAD DECODING showed significant poten-
tial in lowering the latency for latency-sensitive tasks. Our
contributions are summarized as follows.

* We design LOOKAHEAD DECODING, a new lossless,
parallel decoding algorithm to accelerate LLM infer-
ence without needing any auxiliary component.

* We reveal LOOKAHEAD DECODING’s scaling behav-
ior: it linearly reduces the number of decoding steps
according to per-step log(FLOPs). This enables trade-
offs between the number of decoding steps and per-step
FLOPs, making it future-proof.

* We show it benefits from the latest memory-efficient
attentions and is easily parallelizable by developing its
distributed CUDA implementations.

* We evaluated LOOKAHEAD DECODING and demon-
strate its effectiveness under different settings.

2. Background

In this section, we formulate both autoregressive and Jacobi
decoding from the lens of solving nonlinear systems.

Causal Attention in Decoder Models. Most contemporary
LLMs are composed of two core components: token-wise
modules (including MLP and normalization (Ba et al., 2016;

Zhang & Sennrich, 2019)) and attention (Vaswani et al.,
2017) modules. Tokens interact with each other in the atten-
tion modules, while in other token-wise modules, they are
processed without exchanging information with each other.

The attention layer encompasses three input elements: query
Q, key K, and value V, with the i-th token in each denoted
as Q;, K;, and V,, respectively. The attention layer exe-
cutes the following operation: O = softmax (QK”) V. A
lower triangular mask applied to QK in causal attentions
(specific to decoder models) ensures that O; is calculated
only from Q; and K;, V; where j < 4. Because all other
layers in the LLM perform token-wise operations, for any
given model input x and output o, o; (¢-th token in o) is
exclusively influenced by x; (j-th token in x) where j < i.

Autoregressive Decoding in LLMs. LLM takes tokens as
input, which are represented in discrete integers and mapped
to continuous tensors by an embedding layer. We notate
x = (z1,Z2,...,x5) € N of length s as the input of the
model, and x!.,, = (71,2, ..., T,,) to denote a slice of x
of length m at step ¢, following the representations from
previous work (Santilli et al., 2023)). LLMs’ output char-
acterizes the probability distribution of the next token. The
probability for the s-th token (i.e., the output of the s — 1-th
token) is decided by all previous input tokens, represented as
Pys(xs|x1.5—1). Then, the next token input x4 is obtained
by sampling from Pps(2|x1.5—1) using different methods
(e.g., greedy, top-K, and top-P (Kool et al., 2020; Holtzman
et al., 2019)). When using greedy sampling, the next token
is selected by applying an argmax function on Pyy.

We define xV as the prompt tokens given by the user. The
LLM needs to generate an output sequence (of length m)
from x°. Denote y; as the token generated at step 7. The
autoregressive decoding process of m tokens with greedy
sampling can be seen as solving the following m problems
one by one. The following equations come from previous
work (Santilli et al., 2023):

y1 = argmax Py (y1|x°)
yo = argmax Pys(y2|y1,x°)

ey

Ym = argmax PM(ym|y1:m—1a XO)

Guess-And-Verify Paradigm. The Guess-And-Verify de-
coding paradigm speculates multiple potential future tokens
and subsequently confirms the correctness of these spec-
ulations within a single decoding step. Take speculative
decoding with greedy sampling as an example: at step ¢,
with the prompt x° and tokens y1.,_; generated so far, we
can use a draft model to autoregressively generate a draft
sequence yy.¢+n,—1 of length n. Because y.44,,—1 is known
a priori, we then use the LLM to solve Eqs 2 in parallel,
obtaining y?.; . ,,. Then, we verify if y,,; is equal to y;
for each ¢ from ¢ = 0 to ¢ = n — 1. If there is a match, we
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accept this token and proceed; otherwise, we stop checking
and drop subsequent tokens. Finally, we update y with all
accepted tokens.

y, = argmax Py (y¢|y1:4-1,%x°)
y£+1 = argmax Ppr(Ye41]y1:0s XO) )

/ _ 0
Yirpn = argmax Prs(Yiyn|Yii4n—1,%")

As stated in §1, these approaches depend on a good draft
model, which is hard to obtain and cannot generalize.

Jacobi Decoding. By notating f(v;,y1.i-1,X°) = 4; —
argmax Py (yi|y1.i-1,%°), we can transform Eqgs 1 into
the following non-linear system of equations (adapted from
previous work (Song et al., 2021; Santilli et al., 2023)):

f(ylvxo) j 0
f(y23y17x ):0 (3)

f(ym7y1:m717x0) =0

We can solve this non-linear system using Jacobi iteration
by iteratively updating all 3/; from a random initial guess y°,
along the trajectory y*,...,y’, ..., until converging to the
fixed point solution y™. We detail this algorithm, termed as
Jacobi decoding by previous work (Santilli et al., 2023), in
Appendix Algorithm 2. This process guarantees to return
the solution of all m variables y; in at most m iterations,
as the very first token of each Jacobi update matches au-
toregressive decoding. Sometimes, more than one token
might be correctly generated in a single iteration, potentially
reducing the number of decoding steps. It is worth noting
that, as y' is generated based on the past value y*~! on the
trajectory, any two adjacent tokens from y‘~! and y? can
form a meaningful 2-gram.

Limitations of Jacobi Decoding. Empirically, it has been
observed from previous research (Santilli et al., 2023) and
in our evaluations (Appendix F) that Jacobi decoding can
hardly reduce decoding steps, even if it can generate mul-
tiple tokens per step. This is because the generated tokens
are often put in the wrong positions of the sequence, and
correctly placed tokens are frequently replaced by subse-
quent Jacobi iterations. These prevent it from achieving
wall-clock speedup.

3. LOOKAHEAD DECODING

LOOKAHEAD DECODING leverages Jacobi decoding’s abil-
ity to generate many tokens in one step but addresses its
limitation. Fig. 1 illustrates its workflow, and Algorithm |
shows its detail. The key design in LOOKAHEAD DECOD-
ING is to keep track of the trajectory of Jacobi decoding
and generate n-grams from this trajectory. This is achieved
by maintaining a fixed-sized 2D window, with the two di-
mensions corresponding to the sequence and the time axis,

Figure 1: Workflow of LOOKAHEAD DECODING with
W =5 N =3,and G = 2. W, N, and G are parame-
ters controlling LOOKAHEAD DECODING’s performance,
defined in §3.1 and §3.2. For each decoding step, we do the
following. (1) Generate one token at each position in the
lookahead branch;, (2) Verify and accept 3-grams (searched
from the 3-gram pool) with the verification branch; (3) Col-
lect and cache newly generated 3-grams in the pool from
lookahead branch trajectories. (4) Update the lookahead
branch to maintain a fixed window size.
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respectively, to generate multiple disjoint n-grams from the
Jacobi iteration trajectory in parallel. We call this process
the lookahead branch. The fixed-sized 2D window corre-
sponds to the variable w in Algorithm 1, with a superscript
indicating time axis and a subscript indicating sequence
axis. In addition, LOOKAHEAD DECODING introduces an
n-gram pool (i.e., C in Algorithm 1) to cache these n-grams
generated along the trajectory. Promising n-gram candi-
dates are verified later by a designed verification branch to
preserve the LLM’s output distribution; if passing verifica-
tion, those disjoint n-grams are integrated into the sequence.
We introduce the lookahead branch and verification branch
in detail in the following sections.

3.1. Lookahead Branch

LOOKAHEAD DECODING uses a fixed-sized 2D window
for efficient n-gram generation. In contrast to the origi-
nal Jacobi decoding, which only uses the history tokens
from the last step (or equivalently, it generates 2-grams),
LOOKAHEAD DECODING generates many n-grams, with
n > 2, in parallel by using the n — 1 past steps’ history
tokens, effectively leveraging more information from the
trajectory. The fixed-sized 2D window in the lookahead
branch is characterized by two parameters: (1) W defines
the lookahead size into future token positions to conduct
parallel decoding; (2) N defines the lookback steps into the
past Jacobi trajectory to retrieve n-grams. The 2D window
is shaped (N — 1) x W as the w in Algorithm 1.

An example of the lookahead branch with W = 5 and
N = 4isin Fig. 2 (b), in which we look back N —1 =3
steps and look ahead 5 tokens for each step. The blue to-
ken with the digit O is the current step’s (¢) input, and the
orange, green, and red tokens were generated in previous
lookahead branches at steps t — 3, — 2, and ¢ — 1, respec-
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Algorithm 1 Lookahead decoding

1: Input: prompt x° = (z1,22,...7,), model Py, n-
gram size N, window size W, max #speculations G,
max steps m.

2: Initialize n-gram pool C < 0)
3: Initialize 0 < 0
4: Randomly initialize 2D window w?_wfy 0
5: Set oy < x,, {Initial Size of 0 is 1}
6: fori =1tomdo
7. if size(o) >=1i+ 1 then
8: Randomly set wi ;-
9: continue
10:  end if
11:  {Lookahead Branch}
122 forj =1to W do
13: w’ ¢ argmax PM(wé\W§+27N:i71, w;*jl*N,
14: 01:4,x°) {wil' "V is empty if j = 1}
15:  end for
16: Wiy = (wh,wh, ..., wh)
17:  {Verification Branch}
18: g« 0
19: forj=1toG do
20: g’ < n-gram from C starting with 0; _;
21:  end for
22:  {Verification Algorithm in Algo. 3 and Algo. 4.}
23:  o.append(VERIFICATION((z°, 01.;), Par, g))
24:  {Update n-gram pool}
25: forj=1toW do
26: add n-gram w;.“_N:i to C
27:  end for
28:  {Update Lookahead Branch}
29:  Remove wi:¢(©) N
30: end for

31: Output: 01.,, = (Y1, Y2, s Ym)

tively. The digit on each token shows its relative position
to the current input (i.e., the blue one labeled as 0). In the
present stage, we perform a modified Jacobi iteration to
generate new tokens for all W = 5 positions, following the
trajectory formed by the preceding 3 steps. Note that these
newly generated tokens have not yet been merged into the
generation sequence. For example, based on Fig. 2 (b), we
will generate the next token from the path "blue 0 — orange
1 — green 2 — red 3” and so on. The generation process
corresponds to L12-15 in Algorithm 1. Once generated, we
collect and cache them in the n-gram pool (n = 4) — for
instance, a 4-gram consists of the orange token at position
1, the green token at position 2, the red token at position 3,
and a newly generated token (L25-27 in Algorithm 1).

The most outdated tokens in both dimensions (time and se-
quence) will be removed (L29 in Algorithm 1), and newly
generated tokens will be appended to the lookahead branch

to maintain a fixed window size for each step (L16 in Al-
gorithm 1). For example, we will remove all orange and
green tokens with position 1 in Fig. 2. We then form a new
lookahead branch with green tokens with indices 2, 3, 4, 5,
all red tokens, and all newly generated tokens for the next
step.
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(a) Causal Mask (b) Lookahead Decoding Mask

Figure 2: (a) Causal mask for decoder models. (b) Attention
mask for LOOKAHEAD DECODING with W =5, N = 4,
and G = 2. Digits on tokens indicate relative positions.

3.2. Verification Branch

The verification branch verifies n-grams to preserve the
output distribution (L22 in Algorithm 1). We first discuss
how to verify in greedy sampling (Algorithm 3). Recall
in speculative decoding: the verification is performed by
sending the draft tokens to the LLM to get an output for each
draft token, then progressively checking if the last token’s
corresponding output, generated by the target LLM, exactly
matches the draft token itself (§2). The verification branch
in LOOKAHEAD DECODING resembles this process despite
verifying many draft n-gram candidates (g in Algorithm 3)
in parallel. In particular, we first look up from the n-gram
pool (C in Algorithm 1) for “promising” n-grams — by
checking if a n-gram starts with a token that exactly matches
the last token of the current ongoing sequence. We then use
the LLM to verify all these multiple n-grams in parallel,
following a similar fashion as in speculative decoding but
accepting a prefix of n-gram with the largest number of
accepted tokens amongst all n-grams.

We next discuss how to support more advanced sampling.
Previous research (Miao et al., 2024) has developed efficient
tree-based verification for speculative decoding with sam-
pling support, where multiple draft sequences derived from
a token tree can be verified in parallel. However, it does not
apply to LOOKAHEAD DECODING as our verification works
on disjoint n-grams instead of trees. We improve it by pro-
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gressively verifying along the n-gram length and removing
n-grams with mismatched prefixes. Besides, speculative de-
coding style verification requires the probability distribution
where the draft token is sampled to update the probability
distribution when the draft token is rejected. Because we
store all n-grams in a pool instead of discarding them each
step, we would need huge memory to store the probability
distributions (each of vocabulary size) for the entire n-gram
pool. The key to overcoming this is to leverage the mecha-
nism that the verification is indifferent to how draft tokens
were sampled — different sampling methods (e.g., greedy
sampling) only influence the acceptance rate but keep the
output distribution. We can force greedy sampling at the
n-gram generation (lookahead branch), in which the proba-
bility distribution degenerates into a one-hot vector. Hence,
we only need to store which token has been selected. We
elaborate on the approach in Algorithm 4, prove its correct-
ness in Appendix B, and verify its quality and speedups
in §5.3 and Appendix E.

It is expected to have an increasingly large n-gram cache,
hence a growing verification branch as decoding progresses.
We set a cap of G to limit the maximum number of promis-
ing candidates running in parallel in the verification branch
to manage the verification cost. Empirically, we suggest
setting G proportional to W to balance generation and veri-
fication. In practice, we simply set G = W.

3.3. Decode, Predict, and Verify in The Same Step

At execution, the lookahead and verification branches can
be integrated into one decoding step to leverage parallel
processing. This requires a designated attention mask, as
shown in Fig. 2 (b). This attention mask is straightforwardly
derived following the principle that each token is only vis-
ible to the tokens along the generation trajectory with a
larger position index than itself (§2). For example, only the
green token at position 5 and all orange tokens are visible
to the red token 6. The tokens in the lookahead branch are
not visible to the tokens in the verification branch, and vice
versa.

Integration with FlashAttention. FlashAttention (Dao
et al., 2022; Dao, 2023) can vastly accelerate the training
and inference of LLMs by saving memory I/O on the slow
memory hierarchy. It forces a causal mask (e.g., Fig. 2 (a))
to avoid all token interactions outside a lower triangular
scope, which is not suitable for LOOKAHEAD DECODING
as we take a more subtle attention mask (e.g., Fig. 2 (b)) for
different W, N, and GG. To solve this, we hardcode LOOKA-
HEAD DECODING’s attention pattern with adjustable W,
N, and G in FlashAttention. Applying FlashAttention to
LOOKAHEAD DECODING brings about 20% end-to-end
speedup compared to a straightforward implementation on
top of native PyTorch in our experiments (§5.2).

3.4. Lookahead Parallelism

LOOKAHEAD DECODING is easy to parallelize on multiple
GPUs for both lookahead and verification branches. Par-
allelizing the lookahead branch is achieved by noting that
the lookahead computation is composed of several disjoint
branches. For example, the branch with green 1 and red 2
tokens does not have interaction with the branch with the
tokens green 3 and red 4 in Fig. 2 (b). We can put these
disjoint branches onto different GPUs without introducing
communication during the inference computation. Paral-
lelizing the verification branch is done by assigning multiple
n-gram candidates to different devices. Because the verifica-
tion of each candidate, by design, is independent of others,
this will not cause communication.

Fig. 3 shows an example of parallelizing the lookahead
branch and verification branch in Fig. 2 (b) to four GPUs.
This workload allocation will have the orange token 0,1,2,3
and the input token 0 be redundantly placed and computed.
However, it can essentially save communication volume
during the whole forward pass. We only need to synchronize
the generated tokens on each device after the forward pass.
We can further scale the W, N, and G with multiple GPUs’
increased FLOPs to obtain a lower latency according to
LOOKAHEAD DECODING’s scalability (§4).

We name this new paral- gpyo HEHE

. 101 s |
lelism as lookahead paral- =~ ——~-==—=--—-=
GPU1 DEEEE

lelism (LP). Unlike Pipeline
Parallelism (PP) and Ten-
sor Parallelisms (TP) that
shard the model parame-
ters or states across differ-
ent GPUs (Narayanan et al.,
2021; Shoeybi et al., 2019),
LP maintains an entire copy
of the model for each GPU
(thus needing more mem-
ory) and allows distributing
tokens to different GPUs.
Hence, LP is advantageous in faster inference when memory
is not a bottleneck as it introduces near-zero communication
per step, while existing model parallelism methods involve
a large communication overhead on the critical path of each
decoding step. To sum up, PP and TP use multiple GPUs’
memory to hold a larger model, and our proposed LP uses
multiple GPUs” FLOPs to accelerate LLM decoding.

GPU2 HEEEE

GPU3 DEEEEER

Figure 3: Distribute the
workload of the looka-
head branch and verifica-
tion branch in Fig 2 (b) to 4
GPUs with lookahead par-
allelism, which can avoid
communication during the
forward pass.

4. Scaling Law of LOOKAHEAD DECODING

Since LOOKAHEAD DECODING introduces flexible param-
eters W and N associated with the cost of each parallel
decoding step. This section investigates the scaling law
between compute FLOPs and the theoretical speedup, and
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compares it to speculative decoding.

4.1. Estimating Speedup for Speculative Decoding

Speculative decoding uses the draft model to speculate one
token sequence at each step. We represent the probability
of each token in the sequence passing the verification of
the LLM by f (acceptance rate) and notate its expectation
E(B) = a. If we use the draft model to guess -y tokens per
step, the expectation of the number of accepted tokens is
denoted as (Leviathan et al., 2023):
1 — a7t

E(#tokens) = o 4)

Instead of speculating one sequence every time, we would
speculate b sequences. We assume that b sequences, each
of v tokens, are sampled as each token will have the same
acceptance rate of 5. Under this setting, the expectation of
the number of accepted tokens is denoted as follows:

-
E(#tokens) = (y + 1) Z (1—ab) (5)
i=1

See derivations in Appendix C for Eq. 4 and Eq. 5. Note
that when b = 1, Eq. 5 falls back to Eq. 4.

4.2. Estimating Speedup for LOOKAHEAD DECODING

We define the S = step compression ratio as the number
of autoregressive steps divided by the number of LOOKA-
HEAD DECODING steps to generate the same length of the
sequence. As the number of generated tokens equals the
autoregressive steps, it can be denoted as:

B #generated tokens
~ #LOOKAHEAD DECODING steps

(6)

LOOKAHEAD DECODING speculates b sequences every
time as in Eq. 5. In each step, we will search n-grams in the
pool starting with the current input token and have at most
G speculations of length N — 1. As we set G = W (§3.2),
we have G = W = band N — 1 = +y using the notations in
Eq. 5. Lookahead decoding differs from vanilla speculative
decoding in verification. In speculative decoding, there is
only one speculation (given by the draft model) verified
by the LLM. But in lookahead decoding, all n-grams are
searched from an n-gram pool and verified within a total
number of G speculations. This search and selection should
follow another distribution. We assume that, on average,
for every f step, we have one good search/selection with
E(#tokens) tokens accepted, and for the other f — 1 steps,
we fall back to autoregressive decoding due to bad specula-
tions. We use this f to bridge S and E(#tokens) per step
as follows:

S = (f — 1+ E(#tokens))/f. 7

We can plot the curve indicated by our formulation with one
specific setting as in Fig. 4 (b). We find that the trend of our
empirical experiments (LLaMA-2-Chat-7B on MT-Bench
with G = W as in Fig. 4 (a)) aligns well with the formu-
lation to some extent. From this formulation, we conclude
that we can linearly reduce the number of decoding steps
according to per-step log(b) given a large enough ~. In
contrast to speculative decoding, LOOKAHEAD DECODING
will not meet an upper bound indicated in Eq. 4 by simulta-
neously increasing  and b. This reveals the scaling law of
LOOKAHEAD DECODING to linearly reduce decoding steps
according to per-step log(FLOPs) given a large enough N,
since per-step FLOPs is roughly proportional to the number
of input tokens (i.e., (W + G) * (N — 1)). The scaling law
also suggests LOOKAHEAD DECODING’s strong scaling
to multiple GPUs, in which we can obtain an even greater
per-token latency reduction by using more FLOPs, which is
advantageous for latency-sensitive tasks.
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Figure 4: (a) Relation of W, N, G and S for LLaMA-2-
Chat-7B on MT-Bench. (b) When we assume a setting with
a = 0.425 and f = 3.106, the trend of our formulation.

5. Evaluation Results

Model and testbed. We used various versions of the
LLaMA-2 (Touvron et al., 2023b) and CodeLlama (Roziere
et al., 2023) models, including the 7B, 13B, 34B, and 70B
sizes, on two GPU setups S/ and S2. S/ is equipped with
NVIDIA A100 GPUs with 80GB of memory. On S/, the 7B,
13B, and 34B models are deployed on a single A100, while
the 70B model utilizes 2 A100s with pipeline parallelism
supported by Accelerate (Gugger et al., 2022). S2 is a DGX
machine with 8§ NVIDIA A100 GPUs with 40GB memory
and NVLink. All models serve with FP16 precision and
batch of 1 if not specified (Cai et al., 2024; He et al., 2023).

Datasets. We benchmarked LOOKAHEAD DECODING’s
performance across a broad spectrum of datasets and tasks.
MT-Bench (Zheng et al., 2024) is a diverse set of multi-turn
questions with many unique tokens. GSM8K (Cobbe et al.,
2021) contains a set of math questions, in which we use the
first 1k questions. HumanEval (Chen et al., 2021) covers
both code completion and infilling tasks. We also test on
MBPP (Austin et al., 2021) dataset for instruction-based
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Figure 5: Throughput of LOOKAHEAD DECODING on various dataset without FlashAttention and distributed serving.

code generation, and on ClassEval (Du et al., 2023) for
class-level code completion. To control generation length in
code generation tasks, we set the maximum sequence length
to 512 and 2,048 on HumanEval and ClassEval, respectively,
aligned with prior setups (Ben Allal et al., 2022; Du et al.,
2023). Tab. 1 lists detailed settings. In addition, we validate
the effectiveness of sampling (§3.2) on XSum (Narayan
et al., 2018) and CNN/Daily Mail (See et al., 2017) datasets.

Baseline Settings. Our primary baseline is HuggingFace’s
implementation of greedy search (Wolf et al., 2020). Addi-
tionally, we employ FlashAttention (Dao et al., 2022; Dao,
2023) as a stronger baseline to assess the performance of
memory-efficient attention empowered LOOKAHEAD DE-
CODING. In distributed settings, we evaluate LP against TP
(supported by deepspeed (Aminabadi et al., 2022)) and PP
(supported by accelerate (Gugger et al., 2022)). We mea-
sure the throughput of single batch inference against these
baseline settings (Cai et al., 2024; He et al., 2023).

Table 1: Experimental settings for §5.1 and §5.2.

SERVER PARALLEL. MODEL MODEL SIZE DATASET
LLAMA-2-CHAT 7B, 13B, 70B MT-BENCH
S1 w/o LP CODELLAMA 7B, 13B, 34B  HUMANEVAL
CODELLAMA-INST 7B, 13B, 34B MBPP, GSM8K
LLAMA-2-CHAT 7B, 13B MT-BENCH
S2 w/LP CODELLAMA 7B, 13B HUMANEVAL
CODELLAMA-PYTHON 7B, 13B CLASSEVAL

5.1. End-to-end Performance

Fig. 5 shows the end-to-end performance of LOOKAHEAD
DECODING when compared with HuggingFace’s implemen-
tation of greedy search on S/. The used tasks and models
are shown in Tab. 1. Across various datasets, LOOKAHEAD
DECODING demonstrates a 1.4x-2.3x speedup. Generally,
our method exhibits better performance in code completion
tasks (e.g., 2.3x), given the higher occurrence of repetitive
tokens during code completions, making predictions easier.
Besides, smaller models also exhibit a higher speedup when
compared to larger models. This is because LOOKAHEAD
DECODING trades per-step FLOPs with a step compression
ratio (§4). A larger model requires more FLOPs and quickly
hits the GPU FLOPs cap compared to a smaller model. So,
it shows a lower ability to compress decoding steps given
the same GPU setting.

5.2. Performance with LP and FlashA ttention

We evaluated the performance of LOOKAHEAD DECODING
with LP and FlashAttention augmentation on S2 with greedy
search. The used tasks and models are shown in Tab. 1. The
results for the 7B and 13B models are in Fig. 6 and Fig. 7,
respectively. FlashAttention speeds up the PyTorch imple-
mentation of LOOKAHEAD DECODING by 20%. Notably,
FlashAttention-integrated LOOKAHEAD DECODING shows
1.8x speedups for the 7B model on MT-Bench compared
with autoregressive decoding with FlashAttention (i.e., 1.9x
vs 1.07x in Fig. 6). We did a strong scaling of the workloads
to multiple GPUs for distributed settings (i.e., increasing
GPUs but not increasing workloads). The multiple GPU
settings of both TP (w/ DeepSpeed) and PP (w/ Accelerate)
bring slowdowns (i.e., less than 0.9x). The results echos
DeepSpeed’s documentation (dee, 2023). However, with
LOOKAHEAD DECODING, we can further utilize the FLOPs
of multiple GPUs to reduce the inference latency (e.g., 4x
on ClassEval).
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Figure 6: Throughput of LOOKAHEAD DECODING with
multiple GPUs and FlashAttention for 7B models.
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Figure 7: Throughput of LOOKAHEAD DECODING with
multiple GPUs and FlashAttention for 13B models.

5.3. Generation Quality of LOOKAHEAD DECODING

We assess the generation quality of LOOKAHEAD DECOD-
ING on LLaMA-2-7B-Chat model with the prompts in Ap-
pendix D on summarization datasets (Chen et al., 2023a;
Leviathan et al., 2023) in Tab. 2. Whether the sampling is
activated, LOOKAHEAD DECODING can reserve the output
distribution quality, which is evaluated in rouge-1, rouge-
2, and rouge-L (Lin, 2004), while achieving 1.46x-1.60x
speedups compared with autoregressive decoding. Using
sampling gives smaller speedups as the acceptance ratio is
lower according to the sampling verification algorithm 4,
which aligns with the results in the previous research (Chen
et al., 2023a; Leviathan et al., 2023). We further verify that
using greedy sampling and advanced integrations will not
change the generation quality in Appendix E.

Table 2: Sampling with LOOKAHEAD DECODING on
CNN/Daily Mail and XSum. A temperature (Temp.) of 0.0
equals greedy search. “AR.” is autoregressive and “LA.” is
LOOKAHEAD DECODING. Rouge scores, speedups against
autoregressive, and compression ratio (S) are reported.

DATASET TEMP. METHOD ROUGE-1 ROUGE-2 ROUGE-L SPEEDUPS S

1.0 AR. 36.55 13.20 22.68 1.00x 1.00x

CNN. LA. 36.53 13.27 22.71 1.46X 1.64X
0.0 AR. 37.79 14.59 23.96 1.00x 1.00x

’ LA. 37.79 14.59 23.96 1.57x  1.72x

1.0 AR. 19.15 4.53 12.84 1.00x 1.00x

XsUM LA. 19.20 4.53 12.87 1.50x  1.67x
0.0 AR. 19.38 4.78 13.05 1.00x 1.00x

’ LA. 19.39 4.79 13.06 1.60x 1.77x

5.4. Ablation Study

In this section, we study the importance of the lookahead
and verification branch in achieving a high speedup. We
experiment on LLaMA-2-7B-Chat and MT-Bench on S/
with various settings. The results are shown in Tab. 3.

We ablate the importance of lookahead branch by com-
paring the performance of using a lookahead branch to
the recent methods of using prompts as reference (Yang
et al., 2023a; Saxena, 2023). This comparison assumes
that LOOKAHEAD DECODING does not use the prompt
to build the n-gram pool. We use the implementation in
transformers v4.37 of prompt lookup as a baseline (®, with
prompt_lookup_num_tokens=10). We also use prompt to
build n-gram pool to augment LOOKAHEAD DECODING
(®@@®®®). The results show that although using a mini-
mal lookahead branch (W = 1) with various IV, G settings
(®@@®®) can obtain a decent speedup on MT-Bench, it is
still not as good as using balanced branches (®). We can
find that prompt lookup can surpass prompt as reference
implementation in LOOKAHEAD DECODING. This is be-
cause our method checks if n-gram starts with one token
that exactly matches the last generated token while prompt
lookup in transformers v4.37 checks several starting tokens
for a better speculation.

We ablate the importance of verification branch by reporting
the speedup of using a tiny verification branch and a large
lookahead branch (@, G = 1) . It shows lower performance
due to lower potential in accepting speculations compared
with a balanced branches (®).

Besides, our evaluation shows that using prompt as reference
can further boost LOOKAHEAD DECODING (® and @). We
have integrated them in our implementation.

Table 3: Compare the effectiveness of both lookahead and
verification branch on MT-Bench on A100. FlashAttention
is activated. We show the speedups against autoregressive
decoding and the compression ratio (S).

TAG SETTING (N, W, G) Prompt as Ref. SPEEDUPS S

®  AUTOREGRESSIVE X 1.00x 1.00
@ PROMPT LOOKUP v 1.44x 1.55
® (10,1, 3) v 1.36x 1.45
@ (5,1,10) v 1.36x 1.51
® (5,1,30) X 1.04x 1.12
® (5,1,30) v 1.46x 1.59
@ (5,30, 1) X 1.61x 1.79
(5,15, 15) X 1.78x 1.96
® (5,15, 15) v 1.88x 2.05

5.5. Discussion and Limitation

The main limitation of LOOKAHEAD DECODING is that
it requires extra computations. Our experimental results
show that on A100, the configuration in Tab. 4 works near
optimally in most cases for single batch serving. Because
the per-step FLOPs are roughly proportional to the number
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Table 4: Good Config. of LOOKAHEAD DECODING on
A100 GPUs with G = W.

MODEL WINDOW SIZE (W) N-GRAM SI1ZE (V)
7B 15 5
13B 10 5
34B 7 5

of per-step input tokens, which is (W + G) * (N — 1).
If we ignore the attention cost’s increase with sequence
length, the 7B, 13B, and 34B models require 120x, 80x,
and 56x extra FLOPs per step, respectively. Since the LLM
decoding is memory bandwidth-bound rather than compute-
bound, these extra FLOPs only turn into a limited wall-clock
slowdown for each step.

Given this, LOOKAHEAD DECODING needs large surplus
FLOPs to obtain high speedups. Running in compute-bound
environments (e.g., serving with a large batch size) may
cause slowdowns. Another example is shown in Fig. 8,
where lower speedup is observed when the GPU’s cap
FLOPs is smaller (e.g., on RTX 3090 GPUs).

Based on §4, we need to exponentially increase the per-step
FLOPs to obtain a linear reduction in decoding steps. Hence,
the setting in Tab. 4 faces a diminishing return. However,
when FLOPs are not rich, we see that a gentle speedup (e.g.,
30% on RTX 3090 and > 50% on A100) on MT-Bench
easily achievable, as in Fig. 8, which is a free lunch that
requires no extra model, training, or changing the output
distribution.
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~e— Speedups - RTX3090
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Figure 8: Compression ratio(S) and speedups of LOOKA-
HEAD DECODING on RTX 3090 and A100 with N = 5,
all with FlashAttention. The blue and orange curves of S

overlap as the device does not affect the ratio.

—e— Speedups - A100
W=G=15 W=G=30

6. Related Work

Lookahead Methods. A few previous works have proposed
“lookahead” methods in various areas. In speech recognition,
researchers have proposed two efficient look-ahead prun-
ing algorithms to speed up speech recognition (Ortmanns
& Ney, 2000). In natural language generation, researchers
have used lookahead method to enhance generation quality
by anticipating future outputs (Lu et al., 2022; Wan et al.,
2023; Ribeiro et al., 2023; Cui & Sachan, 2023; Qi et al.,
2020). Lookahead has been proposed in optimizing deep
learning (Zhang et al., 2019), sequential Monte Carlo (Lin
et al., 2013), and Bayesian optimization (Wu & Frazier,

2019). Our proposed lookahead decoding differs from these
methods in that our method is designed for accelerating
LLM decoding, and we do not change the output distribu-
tion.

Speculative Decoding. Speculative decoding (Stern et al.,
2018; Leviathan et al., 2023; Chen et al., 2023a) is an ef-
fective method to tackle the slow speed of LLMs’ autore-
gressive decoding, as summarized in recent surveys (Xia
et al., 2024; Miao et al., 2023). Unlike non-autoregressive
generation methods (Xiao et al., 2023; Guo et al., 2020; Su
et al., 2021; Wang et al., 2022; Li et al., 2022), specula-
tive decoding is mainly for augmenting pre-trained LLMs
for faster generation speed without changing their output
distribution. Recent researchers have proposed different
methods to draft speculations efficiently for further verifi-
cation. Applying finetuning (Xia et al., 2023; Kim et al.,
2024; Miao et al., 2024; Zhou et al., 2023; Liu et al., 2023),
ready-made generators (Leviathan et al., 2023; Spector &
Re, 2023; Chen et al., 2023b; Sun et al., 2024; He et al.,
2023), or trained feedforward layers (Stern et al., 2018; Cai
et al., 2024; Li et al., 2024) all show significant potential in
generating high-quality drafts. Other methods (Yang et al.,
2023b; Zhang et al., 2023; Hooper et al., 2023) depend on
layer-skipping or early-exiting to speed up. Parallel Jacobi
decoding (Santilli et al., 2023) and lookahead decoding use
the original LLM to generate and verify the draft by adapting
attention masks. However, lookahead decoding will cache
the drafts and verify them flexibly with multiple branches,
showing more considerable speedups in LLM generations.
Speclnfer (Miao et al., 2024), Medusa (Cai et al., 2024), and
Eagle (Li et al., 2024) use tree verification to do multiple
branch verification. However, lookahead decoding verifies
disjoint n-grams in parallel, more adapting to the n-gram
generation by its lookahead branch.

7. Conclusion

In this paper, we present LOOKAHEAD DECODING to paral-
lelize the autoregressive decoding of LLMs without chang-
ing the output distribution. It shows notable speedup without
a draft model and can linearly decrease the decoding steps
with exponential investment in per-step FLOPs.
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Impact Statement

The rapid advancement of Large Language Models (LLMs)
underscores the necessity for low latency. The inefficiency
of autoregressive decoding in LLMs is in its underutiliza-
tion of GPU FLOPs and the large number of decoding steps.
LOOKAHEAD DECODING addresses this issue by linearly
reducing decoding steps with per-step log(FLOPs), signif-
icantly decreasing the decoding steps and effectively har-
nessing the parallel processing capabilities of GPUs. Impor-
tantly, LOOKAHEAD DECODING does not require a finely-
tuned draft model; it preserves the output distribution and
exhibits broad generalizability across diverse models and
datasets.

The efficiency of LLMs, as enhanced by LOOKAHEAD DE-
CODING, is anticipated to have profound ethical impacts
and societal implications. By speeding up LLM decoding,
LOOKAHEAD DECODING could potentially democratize
access to these powerful tools, thereby fostering innovation
across various domains. Thus, the development of LOOKA-
HEAD DECODING highlights the need for robust ethical
guidelines and regulatory oversight in the deployment of
efficient LLMs.
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A. Algorithms

Algorithm 2 Jacobi decoding with greedy sampling (adapted from previous work (Santilli et al., 2023))

1: Input: prompt x°, model Py, generation length m
2: Initialize y° = (v9,49,...,9%)
3: Initialize 0 < ()

4: fori =1tomdo
5:  if size(0)>i then
6: yz — yi—l

7 continue

8 end if

9 ¥, argmax(Par (¥, [y i, x")
10: 0.append(AcceptedTokens(yi, vy 1, 0)
11: end for

12: Output: 0 = (y1,Y2, -, Ym)
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Algorithm 3 Greedy Verification with LOOKAHEAD DECODING

1: input prefill x°, model Py, n-grams g’ with i € [1, G|
2: output o {accepted tokens of length 1 to N}
3: function Greedy Verification(x?, Py, g)

4 V,D,o+—0,0,0
5. fori=1toGdo
6: V.append(gh.) {each is a n-1 gram}
T D.append(Py (gg:v Xnet |83 X"))
8 {obtain last token of x° and all g.’s outputs — totally N probability distributions}
9: end for
10: fori=1to N —1do
11: j+<1
12: 1s_accept < 0
13: P + DI[1]; {D[1] is a series of N probability distributions;all D[j]; should be the same as different distributions
are removed; size(D)> 0 is guaranteed }
14: while j < size(V) do
15: S5 < V[J]z
16: if s; = argmax P then
17: {accepted, update all potential speculations and probabilities }
18: o.append(s;)
19: 15_accept +— 1
20: Vnewa Doew + ®7 0
21: for k = j to size(V) do
22: if SJZV[IC]@ then
23: V hew-append(V[k])
24: D, e -append(DIk])
25: end if
26: end for
27: V,D < V,ew, Dnew
28: break
29: else
30: {rejected, go to next speculation }
31: j—i+1
32: end if
33: end while
34: if is_accept then
35: continue
36: else
37: {guarantee one step movement}
38: o.append(argmax P)
39: break
40: end if
41:  end for
42:  if is_accept then
43: o.append(argmax D[1] y)
44:  endif

45: return o
46: end function
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Algorithm 4 Sample Verification with LOOKAHEAD DECODING

1: input prefill x°, model Py, n-grams g’ with i € [1, G|
2: output o {accepted tokens of length 1 to N}
3: function SampleVerification(x®, Py, g)

4 V,D,o+0,0,0
5. fori=1toGdo
6: V.append(g}.){each is a n-1 gram}
T D.append(Py (gg;v Xnet |83 X"))
8 {obtain last token of x° and all g.’s outputs — totally N probability distributions}
9: end for

10: fori=1to N —1do

11: j+<1

12: 1s_accept < 0

13: P; < DI[jl; {DIlj] is a series of N probability distributions;all D[j]; should be the same; size(D)> 0 is

guaranteed }

14: while j < size(V) do

15: S5 V[J]z

16: sample r ~ U(0,1)

17: if r <Pj(s;) then

18: {accepted, update all potential speculations and probabilities }
19: o.append(s;)

20: 1s_accept < 1

21: Vnequnew <~ ®7®

22: for k = j to size(V) do

23: if S]=V[k‘]l then

24: V pew-append(V[k])

25: D, -append(DIk])

26: end if

27: end for

28: V.,D < V,ew, Dnew

29: break

30: else

31: {rejected, go to next speculation }

32: Pj (Sj) =0

33: Pj4+1 = norm(P;)

34: j—i+1

35: end if

36: end while

37: if is_accept then

38: continue

39: else

40: {guarantee one step movement}

41: sample Xpezt ~ Pj

42: o.append(X,ezt)

43: break

44: end if

45:  end for

46:  if is_accept then

47: o.append(sample X,,c.: ~ D[1]x)

48:  end if

49: return o
50: end function
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B. Proof: Output distribution preserved disjoint n-gram verification

The sampling verification in LOOKAHEAD DECODING is adapted from the algorithm in Specinfer but with all speculations
generated by the greedy sample. It does not change the output distribution from a fundamental point that how the draft
model generates speculations is unimportant.

Theorem A For a given LLM, prompt and previously generated tokens x = (x1, x2, ..., x;), and G speculations s =
(s1, 82, ..., Sg) of next token x;11. Each speculation token is sampled by a greedy sample (i.e., probability of 1). We
use P(v|x) to represent the probability of ;11 = v sampled by the LLM and use Q(v|x) to represent the probability of
x;+1 = v sampled by our proposed algorithm 4. We use P(v) and Q(v) for short. We need to prove P(v) = Q(v) for any
G, and any v and s; from the full vocabulary V.

Proof. The proof of this part corresponds to line 14 to line 44 in algorithm 4. Given speculations s, we use a; (v) to represent
the probability that the token v is accepted by the j-th speculation (line 18-line 30), and r;(s;) is the probability that the
token s; is rejected by the j-th speculation (line 30-line 35). Moreover, ag, ,, (v) is the probability of being accepted by the
sampling at line 41. For simplicity, we use a; to represent a;(v), a’; to represent a;(v), and use r; to represent ;(s;). We
use P; to represent the probability distribution obtained in line 13 and P; to present the updated probability before the j-th
speculation. We have P (v) = P(v) as P;(v) is never updated. We define Q¢ (v) is the probability of ;1 = v sampled
by algorithm 4 when we have G speculations. Then we should have:

G—1

Qc(v) = ar +7r1ag +rireaz + ... +ag [ i +agyy H Tk
k=1

We define the j-th speculation’s token as s;. We use induction to prove Q¢ (v) = P(v) for any G > 1, any v € V, and any
s; € Vwithl <j <G:

1) When G = 1, we have Q¢ (v) = a1 + r1a). The initial guess s; can be either the same at v or be different from v.

(1) When s; = v, a; equals P;(v) at line 17, which is the same as P(v) as it is never updated. Upon this, we have
r1=1—a; =1—"P(v) =1— P(v). And, a}, is the updated probability Py (v) at line 42. Since P(v) is set to
zero once rejected at line 32, a5 = 0. In this case, Q¢ (v) = P(v) + (1 — P(v)) * 0 = P(v).

(2) When s; # v, aq should be 0 even if s; is accepted. Moreover, we have r; = 1 — P;(s1). Then P(v) is updated to

13;(1(’5) j at lines 32 and 33. Then aj = P5(v). In this case, Q(v) = 0+ 71 * P(”) = P(v).

g—1 g
2) When G = g holds, which means Q4(v) = a1 + m1a2 + ... + a4 kli[l Tk + agiq kli[l ry = P(v) for any s;,v € V,

I<j<g
g g g+1
We prove Qg+1(v) = Qqg(v) — agyq [[ mu +aga [] r +ajis [ i = P(v) for the same sj,v € V,1 < j < g,
k=1 k=1 k=1

and any sg41 € V.

(1) When s, # v, we have a;, = 0. If P,(v) = 0, we have all a ., = 0, ag41 = 0 and aj,, = 0. It ensures that
Qg+1(v) = Qg(v) =0+ 0+0 = Qy(v) = P(v).
If Py(v) #0, Pgt1(v) = Polv) 79;7(1;) since s4 # v by observation.

Tg

IT
k=1
g g+1 Pr(v)
Then we have Qg11(v) = Qg(v) = Pyy1(v) [T 7% + ag41(v) H (O H Tk = Qq(v) — 1%7 [1 i+
k=1 rr k=1
k=1
g+1 g+1
Qg1 H Th+ Ay o H e = Qg(v) — P(v) + ag41(v) H Th+ag o H . Here we have another two cases:

k= =1

—) 2
DIf sg11 = v, Ggy1 H = Dalvi=v) [[ 7« = P(v) and aj .5 = Pgy2(v) = 0. We have Qg41(v) =

k=1 Il e k=1
k=1

Qq(v) = P(v) + P(v) + 0 = Qq(v) = P(v).
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g+1
Q@ If sg41 # v, agy1 = 0. ag+2 kH Tk = Pgi2(v) H Tk = %1(U 1:[ T = P(v). So Qg+1(v) = Qg(v) —
k=1
Pv) + 0+ P(v) = Qq(v) = P(v)
(2) When s, = v, Py11(v) is set to zero at line 32 after this step. In this case, we have ay; = Pyi1(v) = 0,
ag+1 = Pgy1(v) = 0and aj, , = 0. It makes that Qg 11(v) = Qy(v) —0+0+0 = Qy(v) = P(v)

O

This part of the proof guarantees that from line 14 to line 44 in Algorithm 4, any new token appended to o can follow the
original distribution of the LLM. Line 21 to line 28 guarantees that sequences in V share the same prefix of length 7 — 1 in
every iteration. This further guarantees that P from D[j]; is the same for all j, follows the wanted distribution. Thus, the
correctness of the whole sampling algorithm is proved.

C. Derivation of Expectation of The Number of Accepted Tokens

We first start with single-candidate speculation. We need to obtain the probability of accepting ¢ tokens as
P(#accepted tokens = i) for all possible i. Since the speculation’s length is -y, the probability of accepting i to-
kens with ¢ > v + 2 is 0. P(#accepted tokens = 1) is the probability of the first token being rejected, which is
1 — a. The probability P(#accepted tokens = i) = P(#accepted tokens = i — 1) x «, for all i < . The probability
P(#accepted tokens = v + 1) is accepting all tokens, which is «”. Thus we have the following, which is Eq. 4:

y+1
E(#tokens) = Z i x P(#accepted tokens = i)
i=1
= 1lx(1l-a)+2+x(1—-a)xa+..+(y+1)xa”
= (I1-a)+(2a—20%) +Ba?=3a®) +..+ (v + 1)
= 1+ (—a+2a)+ (—2a% +302) + (=3a® + 40®) + ... + (y + Da”
= l+a+a®+a+..+a
1—aft

= - ®)

11—«

We then investigate the case of speculations with a batch size of b. We need to obtain the probability of accepting ¢ tokens as
P(#accepted tokens = 1). Since all speculations’ length is ~y, the probability of accepting a tokens with a > v + 2 is 0.
We use p; to denote (1 — a)®, which is the probability that at most 7 tokens are accepted in all b speculations. For all i < -,
we should have P(#accepted tokens = i) = p; — p;—1. And, the probability P(#accepted tokens =y + 1) should be
(1 — p,). Thus we have the following, which is Eq. 5:

v+1
E(#tokens) = Zz x P(#accepted tokens = i)
i=1
v
= 2 ipi—pi-1) + (v + 1)+ (1= p,)

=1
(1 — po) + (2p2 — 2p1) + (3p3 — 3p2) + ... + (v + 1)(1 — py)
= —po+ (p1 —2p1) + (2p2 — 3p2) + (3p3 — 4p3)... + (v + 1)
= —po—p1—DpP2—...—py+(y+1)
= (y+1) =) (1-a)P ©)

i=1
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D. Prompt for LLLaMA-2-Chat on Summarization Tasks

We use the following as the prompt for summarization task, modified from (Ruan et al., 2023).

» Prompt:

[INST] <<SYS>>

You are an intelligent chatbot. Answer the questions only using the following context:

{Original Text}

Here are some rules you always follow:

- Generate human readable output, avoid creating output with gibberish text.

- Generate only the requested output, don’t include any other language before or after the requested output.
- Never say thank you, that you are happy to help, that you are an Al agent, etc. Just answer directly.
- Generate professional language typically used in business documents in North America.

- Never generate offensive or foul language.

<< /SYS>>

Briefly summarize the given context. [/INST]

Summary:

E. Verification of Generation Quality with LOOKAHEAD DECODING

Evaluation of LOOKAHEAD DECODING’s Generation Quality with Sampling on MT-Bench. We further compared the
performance of LLaMA-2-7b-chat with LOOKAHEAD DECODING and autoregressive decoding on MT-Bench as in Tab. 5
as a supplement to the comparisons in §5.3, using MT-Bench score as a better metric. Sampling is activated, and the default
setting (e.g., temperature) in MT-Bench is used. The MT-Bench score is preserved in an acceptable interval by activating
LOOKAHEAD DECODING.

Table 5: Compare LOOKAHEAD DECODING and autoregressive decoding on MT-Bench.

LOOKAHEAD DECODING AUTOREGRESSIVE DECODING

SCORE 6.51 6.47

Generation Quality with Greedy Search is not changed. Theoretically, LOOKAHEAD DECODING does not change the
output generation of greedy search due to the verification mechanism. However, LOOKAHEAD DECODING’s output does
not perfectly align with the huggingface’s implementation of greedy search in practice. We attribute this discrepancy to
numerical accuracy issues. To substantiate this claim, we compared the output results as follows. We use the LLaMA-2-7b-
Chat model’s single precision (FP32) inference with huggingface’s greedy search on 160 turns on the MT-Bench dataset
as a baseline. With single precision inference, the outputs of LOOKAHEAD DECODING (on 1GPU, 4GPUs, and 8GPUs)
are the same as the output of the baseline. With half-precision (FP16) inference, huggingface’s greedy search has 35 out
of 160 (w/o FlashAttention) and 42 out of 160 (w/ FlashAttention) answers not perfectly aligned with the baseline output.
In contrast, LOOKAHEAD DECODING and its integration with FlashAttention and multi-GPU inference has 35-44 results
different from the baseline output under different settings. We claim this result can show that LOOKAHEAD DECODING
can retain the output distribution using a greedy search within the numerical error range (not worse than huggingface’s
half-precision inference). Besides, Tab. 2 also strengthens the statements for greedy search.

Generation Quality with LP and FlashAttention Augmentation is not changed. We verify that FlashAttention and LP
Support will not change the compression ratio (S) of vanilla LOOKAHEAD DECODING. We compared each 18 generations
of LOOKAHEAD DECODING w/ FlashAttention and w/o FlashAttention (7B and 13B model on MT-Bench, HumanEval, and
ClassEval); the average S w/ FlashAttention is 3.267 while w/o FlashAttention is 3.259, with less than 0.3% differences.
We also compared 6 generations of LOOKAHEAD DECODING on a single GPU and 12 generations with LP (7B model on
MT-Bench, HumanEval, and ClassEval, both with N = 5, W = 15, and G = 15). The average S on a single GPU is 2.558,
while on multiple GPUs, it is 2.557, with less than 0.1% differences. We claim that our advanced support does not change S.
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F. Comparing LOOKAHEAD DECODING with Speculative Decoding and Jacobi Decoding

We evaluated the speedup of LOOKAHEAD DECODING (LD) against autoregressive decoding (AD), speculative decoding
(SD), Medusa, Parallel Jacobi decoding (PJ), Parallel GS-Jacobi decoding (PGJ) on A100 GPU in Tab 6. PJ and PGJ
are Jacobi decoding variants proposed in previous research (Santilli et al., 2023). Speculative decoding needs a carefully
selected or tuned draft model to achieve speedup, and our selection (i.e., Tinyllama 1b (Zhang et al., 2024) and Vicuna
7b (Zheng et al., 2024)) only shows a slowdown. PJ gives slowdowns as it needs a large number of tokens as input per step
(i.e., the per-step cost is very high). PGJ shows gentle speedup (i.e., 1.1x-1.2x) as it differs from PJ in that it only uses b
tokens generated from the last step as input. Medusa shows the largest speedup. We use greedy search in these settings.

Table 6: Compare LOOKAHEAD DECODING with other methods.

MODEL & DATASET AD LD MEDUSA SD (TINYLLAMA 1B) SD (VicuNa 7B) PJ PGIJ-B=5 PGIJ - B=16
VICUNA-7B ON MT-BENCH  1.0X 1.7x  2.3X 0.7X - 0.4X 1.1x 1.1x
VICUNA-7B ON HUMANEVAL 1.0X 2.1X  2.5X 0.8Xx - 0.7X 1.1x 1.1x
VICUNA-13B ON MT-BENCH 1.0Xx 1.6x 2.4X 0.9x 0.7x 0.3x 1.2x 1.2x
VICUNA-13B ON HUMANEVAL 1.0x 2.0Xx 2.6X 1.0x 0.8x 0.6x 1.2x 1.2x
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