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ABSTRACT

Model Extraction attacks exploit the target model’s prediction API to create a sur-
rogate model in order to steal or reconnoiter the functionality of the target model
in the black-box setting. Several recent studies have shown that a data-limited ad-
versary who has no or limited access to the samples from the target model’s train-
ing data distribution can use synthesis or semantically similar samples to conduct
model extraction attacks. As the training process of DNN-based classifiers is done
in several epochs, we can consider this process as a sequence of subclassifiers so
that each subclassifier is created at the end of an epoch. We use the sequence of
subclassifiers to calculate the hardness degree of samples. In this paper, we inves-
tigate the hardness degree of samples and demonstrate that the hardness degree
histogram of a data-limited adversary’s sample sequences is distinguishable from
the hardness degree histogram of benign users’ samples sequences, consisting of
normal samples. Normal samples come from the target classifier’s training data
distribution. We propose Hardness-Oriented Detection Approach (HODA) to de-
tect the sample sequences of model extraction attacks. The results demonstrate
that HODA can detect the sample sequences of model extraction attacks with a
high success rate by only monitoring 100 samples of them.

1 INTRODUCTION

Deep Neural Networks (DNNs) have shown impressive performance in various tasks in recent years
that have encouraged the industry to deploy DNN-based models in a variety of real-world applica-
tions. Since the training process of DNNs and collecting training data is an expensive and tedious
process, models are considered the intellectual property of organizations, and they must be kept
secure. Therefore, models are often securely deployed on cloud servers, and only the creators can
access the model parameters. Users are only allowed to query the model via a prediction API and
receive predictions. Recent studies Tramèr et al. (2016); Papernot et al. (2017); Juuti et al. (2019);
Orekondy et al. (2019); Jagielski et al. (2020) demonstrate that an adversary can exploit the predic-
tion API of a target model to create a surrogate model in order to steal or reconnoiter the functionality
of the target model. Such attacks are called model extraction attacks, and they violate the intellec-
tual property of model owners. Furthermore, the surrogate model can be leveraged to conduct other
attacks on the target model in black-box setting, such as adversarial example attacks Papernot et al.
(2017); Juuti et al. (2019) and membership inference attacks Shokri et al. (2017).

Most of the model extraction attacks use the target model’s prediction API to label an unlabeled
dataset to create the surrogate model’s training set. In most real-world settings, the adversary has no
or limited access to samples from the target model’s training data distribution, which is called nor-
mal or in-distribution samples. Hence, most proposed attacks in the previous studies use some form
of Out-Of-Distribution (OOD) samples, such as synthesis Papernot et al. (2017); Juuti et al. (2019)
or semantically similar samples to the target model’s training set Orekondy et al. (2019); Pal et al.
(2020) to conduct model extraction attacks. We focus on such attacks in this paper. There are two
main approaches to defend against model extraction attacks, manipulating the target model outputs
to prevent adversary from producing high-quality surrogate model Lee et al. (2019); Orekondy et al.
(2020); Kariyappa & Qureshi (2020); Kariyappa et al. (2021b) and detecting the sample sequences
of model extraction attacks Kesarwani et al. (2018); Juuti et al. (2019). Juuti et al. (2019) propose
PRADA to detect samples sequence of model extraction attacks based on the distance among suc-
cessive samples. We propose Hardness-Oriented Detection Approach (HODA), a new approach to
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detect sample sequences of model extraction attacks, which outperforms PRADA by a large margin
and has significantly less computational overhead.

Generally, the training process of DNN-based classifiers is done in several epochs, and the resulted
classifier at the end of the last epoch is considered the final classifier. We can consider the training
process of DNN-based classifiers as a sequence of subclassifiers in which the ith subclassifier is
created at the end of the ith epoch. HODA uses a subset of subclassifiers to compute the hardness
degree of samples. The hardness degree of a sample is equal to the index of the subclassifier that all
subsequent subclassifiers agree with its predicted label for that sample. It is important to note that
we must save subclassifiers in the training phase of a target classifier in order to use their predictions
to calculate the hardness degree of new samples. We demonstrate that the hardness degree histogram
of normal sample sequences is distinguishable from the hardness degree histogram of model extrac-
tion attack sample sequences, and HODA uses this property to detect sample sequences of model
extraction attacks. For each user, HODA calculates the distance between the hardness degree his-
tograms of the user’s samples and normal samples, and if the distance is greater than a threshold,
the user is detected as an adversary. HODA can detect JBDA Papernot et al. (2017), JBRAND Juuti
et al. (2019), and Knockoff Net Orekondy et al. (2019) attacks with a high success rate by only
monitoring 100 samples of attack. We demonstrate that HODA is also highly effective when the
target classifier is trained using transfer learning.

Contributions. (i) We demonstrate that the hardness degree of a sample for a classifier pertains to
the training data distribution of that classifier. (ii) We indicate that the hardness degree histogram of
normal samples is distinct from the hardness degree histograms of model extraction attack samples.
(iii) We propose HODA to detect the sample sequences of model extraction attacks.

2 RELATED WORK

Model Extraction Attacks: Primary model extraction attacks try to extract the exact value of pa-
rameters Lowd & Meek (2005); Tramèr et al. (2016) and hyperparameters Wang & Gong (2018)
of shallow models. In recent years, the proposed attacks mainly aimed to steal or reconnoiter the
functionality of deep neural networks by querying them in the black-box setting. It is often sensibly
assumed in the literature that the adversary has no or limited access to samples from the training
set distribution of target classifier. In order to overcome this issue, attacks generally use some form
of out-of-distribution samples, such as synthesis or semantically similar samples, to create the sur-
rogate classifier’s training set. Knockoff Net Orekondy et al. (2019), ActiveThief Pal et al. (2020),
and Copycat CNN da Silva et al. (2018) use semantically similar datasets to the target model’s train-
ing set to train a surrogate classifier. In another line of studies, Papernot et al. (2017), Juuti et al.
(2019), Yu et al. (2020), Truong et al. (2021), Kariyappa et al. (2021a), and Barbalau et al. (2020)
use synthetic data to create the surrogate classifier’s training set.

Model Extraction Defenses: Existing defense methods against model extraction attacks generally
distribute into two branches: perturbation-based and detection-based. Perturbation-based defenses
Lee et al. (2019); Orekondy et al. (2020); Kariyappa & Qureshi (2020) attempt to prevent adver-
saries from producing high-quality surrogate classifiers by adding perturbation to the target clas-
sifier outputs. Recently, Kariyappa et al. (2021b) proposed a new defense with the same goal as
perturbation-based defenses, which does not perturb the target classifier outputs. Their approach
employs an ensemble of diverse models to produce discontinuous predictions for out-of-distribution
samples. Detection-based defenses attempt to detect the occurrence of model extraction attacks by
observing successive input queries to the target classifier. Kesarwani et al. (2018) present a method
to detect extraction attacks against Decision Tree models. PRADA Juuti et al. (2019) is the first
proposed detection-based defense for DNN models. We propose a new defense detecting the sample
sequences of model extraction attacks via hardness of samples.

Atli et al. (2020) demonstrate that several OOD detection approaches, such as Baseline Hendrycks
& Gimpel (2017) and ODIN Liang et al. (2018), have poor performance in detecting Knockoff Net
attack samples. Hence, they propose a new OOD detection approach that leverages a classifier to
detect OOD samples. However, their approach only rejects OOD samples, and it does not have any
detection mechanism to detect adversaries. Besides, the OOD detector is trained on samples from
the same distribution used by the adversary to conduct Knockoff Net attacks, which is an unrealistic
assumption in practice. Concurrent with our work, Zhang et al. (2021) and Pal et al. (2021) propose
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SEAT and VarDetect to detect sample sequences of model extraction attacks, respectively. SEAT
aims to detect model extraction attacks that use several similar samples to extract a target model,
such as jacobian-based attacks (Papernot et al. (2017); Juuti et al. (2019)). Hence, SEAT is ineffec-
tive when an adversary uses natural samples that are not similar to each other, such as Knockoff Net
attack. VarDetect uses Variational Autoencoders (VAs) and Maximum Mean Discrepancy (MMD) to
detect model extraction attacks. VarDetect has only been evaluated on low-dimensional datasets. Re-
garding that VarDetect uses VAs and MMD, it is unclear how well it performs on high-dimensional
datasets. Besides, it uses the ImageNet dataset to extract target classifiers trained on very struc-
turally different datasets, such as F-MNIST and SVHN. HODA is evaluated on harder attacks using
attack datasets that are structurally similar to the target classifier’s dataset, such as using ImageNet
dataset to extract Caltech256 target classifier. HODA can detect both jacobian-based and Knockoff
Net attacks, and it performs well on high-dimensional datasets, such as Caltech256 and CUB200.
Furthermore, unlike other work Atli et al. (2020); Kariyappa & Qureshi (2020); Kariyappa et al.
(2021b), HODA only needs access to in-distribution samples to detect model extraction attacks.

3 MODEL EXTRACTION ATTACKS

The model extraction attack is one of the most serious threats against machine learning-based clas-
sifiers on remote servers, such as Machine Learning as a Service (MLaaS). The adversary’s goal is
to create a surrogate classifier fs that imitates a target classifier ft on task T . Most model extraction
attacks exploit target model ft to label unlabeled samples to create the surrogate model’s training
set. The adversary sends sample xi to the target model and receives its output ft(xi), and then she
uses pair (xi, ft(xi)) to train surrogate classifier fs. The output type of target model can be label,
label confidence, top-k values in probability vector, or the entire probability vector. We only con-
sider label f̄t(xi) and the entire probability vector ft(xi) as the output type of target classifiers in
our experiments. There are two primary intents for adversaries to conduct model extraction attacks,
stealing and reconnaissance.

Stealing: Producing a high performance classifier is an expensive and time-consuming process and
requires computational resources and experts. Besides, given that DNNs need a large number of
training samples, collecting data and labeling them is a complex and costly procedure for most real-
world applications. Therefore, adversaries are motivated to take advantage of a target classifier to
reduce the cost of creating a new classifier. The adversary’s goal in stealing is to maximize the
accuracy of surrogate model on data distribution DT . Hence, the adversary’s goal is:

Maximize P(x,y)∼DT
f̄s(x) = y (1)

Reconnaissance: The model extraction attacks can be used to conduct other attacks in the black-
box setting, such as adversarial example attacks Papernot et al. (2017); Goodfellow et al. (2015)
and membership inference attacks Shokri et al. (2017). The adversary’s goal in reconnaissance is to
maximize the fidelity among surrogate and target classifiers in order to increase the success rate of
black-box attacks. Similar to Jagielski et al. (2020), we consider label agreement among surrogate
and target classifiers as the fidelity metric on data distribution DT . Hence, the adversary’s goal is:

Maximize P(x,y)∼DT
f̄s(x) = f̄t(x) (2)

Proposed model Extraction attacks create the surrogate classifier training set Xs = {(xi, ft(xi))}Bi=1
by various methods, where B is the attack budget. The attack budget determines the number of
samples that an adversary is allowed to send to the target classifier and receive their associated
predictions. After creating Xs, the adversary trains surrogate classifier fs to minimize empirical
loss on Xs. We suppose that the adversary knows the architecture and hyperparameters of the target
classifier and uses them to train the surrogate classifier. It is noteworthy that our proposed defense
is independent of surrogate classifiers’ training process.

4 OUR PROPOSAL: HARDNESS-ORIENTED DETECTION APPROACH

4.1 HARDNESS DEGREE OF SAMPLES

The training process of a DNN-based classifier can be considered a sequence of subclassifiers called
Fsubclf so that each subclassifier is created at the end of an epoch. Suppose that classifier ft is
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Figure 1: The hardness degree histograms of CIFAR10 and CIFAR100 test samples for
DenseNet121, ResNet18, and MobileNet classifiers.

trained for m epochs. The training process of classifier ft can be represented as the following
sequence of subclassifiers:

Fsubclf =< f0
t , f

1
t , f

2
t , ..., f

m−1
t > (3)

where subclassifier f i
t is created at the end of the ith epoch. We say sample xi is learned in epoch

e when fe
t is the first subclassifier that its predicted label is equal to all subsequent subclassifiers’

predicted labels. Generally, as the number of epochs is increased, the performance of classifier ft
is improved so that easier samples are learned in the early epochs, and harder ones are learned in
the last epochs. Therefore, the hardness degree of sample xi for classifier ft, which is displayed by
ϕft(xi), directly relates to the epoch number that xi is learned by ft. Hardness degree of sample xi

for classifier ft is defined as follows:

ϕft(xi) = e s.t. ∀ j ∈ [e,m− 1], f̄t
e
(xi) = f̄t

j
(xi), f̄t

e
(xi) ̸= f̄t

e−1
(xi). (4)

Table 1: The accuracy of classi-
fiers on CIFAR10 and CIFAR100
test sets.

Acc(%)
ResNet18 DenseNet121 MobileNet

CIFAR10 94.36 94.92 93.59
CIFAR100 76.38 77.57 73.47

The hardness degree domain is dependent on the number of
subclassifiers, and since we have m subclassifiers, the hardness
degree of a sample is in the range [0,m− 1]. Since we want to
calculate the hardness degree of samples in inference time, we
need to save subclassifiers at the end of each or several epochs
in the training phase of target classifiers to use them in the in-
ference time. When a new sample arrives, it is fed to all loaded
subclassifiers, and using their predictions, the hardness degree
of that sample is computed. It is important to note that we do
not use the true label of samples to calculate their hardness de-
gree. As seen in equation (4), the hardness degree of samples is calculated only by the prediction
of subclassifiers. It is noteworthy that we do not compute the hardness degree of the target classi-
fiers’ training samples throughout the paper and only compute the hardness degree of normal (test)
or attack samples. Algorithm 1 in Appendix G describes computing the hardness of samples using
Fsubclf in the inference time.

We train three various types of classifiers, including DenseNet121 Huang et al. (2017), ResNet18
He et al. (2016), and MobileNet Sandler et al. (2018), on CIFAR10 and CIFAR100 training sets for
100 epochs (details of datasets in Appendix A). All classifiers are trained using stochastic gradient
descent with momentum 0.9 and batch size 128. The learning rate is 0.1 and it is scheduled to
be decreased in each epoch by a constant factor 0.955. The accuracy of classifiers is presented in
Table 1. We save all 100 subclassifiers in the training phase of each classifier and use them to cal-
culate the hardness degree of samples. Figure 1 shows the hardness degree histogram of CIFAR10
and CIFAR100 test samples for various classifiers. The figure demonstrates that a large fraction of
CIFAR10 test samples are easy, and many samples are learned in the first few epochs. However,
the learning of CIFAR100 test samples is distributed over various epochs, and the number of hard
samples is more than CIFAR10. Figure 6 in Appendix B demonstrates a strong positive correlation
between the hardness degree of samples and the misclassification rate. As ResNet18 architecture
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achieves strong performance on both datasets at a reasonable computational cost, we use this archi-
tecture for target classifiers in the rest of the paper. We conduct various model extraction attacks on
two CIFAR10 and CIFAR100 target classifiers in the next subsection to depict the hardness degree
histogram of their samples.

4.2 MODEL EXTRACTION ATTACKS SETUP

In line with prior work (Orekondy et al. (2020); Kariyappa & Qureshi (2020); Kariyappa et al.
(2021b)), we select JBDA Papernot et al. (2017), JBRAND Juuti et al. (2019), and Knockoff Net
Orekondy et al. (2019) model extraction attacks to evaluate our defense method. These attacks
broadly represent two main strategies (synthesis or semantically similar samples) to conduct model
extraction attacks. Jacobian-Based Dataset Augmentation (JBDA) Papernot et al. (2017) and its
improvement (JBRAND) Juuti et al. (2019) assume that the adversary has access to a limited number
of samples from the target classifier’s training data distribution called seed samples, and they aim to
augment seed samples using adversarial examples to increase the fidelity of the surrogate classifier
to the target classifier. Orekondy et al. (2019) propose Knockoff Net (K.Net) attack that uses large
public datasets that is semantically similar to the target classifier dataset to increase the accuracy
of the surrogate classifier. We consider two versions of K.Net attack, K.Net CIFARX, and K.Net
TIN. K.Net CIFARX attack uses CIFAR100 training set to extract CIFAR10 target classifier and
vice versa. K.Net TIN employs TinyImageNet training set to extract target classifiers. More details
about attacks and their implementations are presented in Appendix D.

Table 2: The Accuracy (Acc) and the Fidelity (Fid) of sur-
rogate classifiers being created by four various model ex-
traction attacks on two target classifiers CIFAR10 and CI-
FAR100. The output type of target classifiers can be Label
or Probability Vector (Prob. Vec.).

ft Metric Output type JBDA JBRAND K.Net CIFARX K.Net TIN

CIFAR10

ResNet18

(Acc: 94.36%)

Acc(%)
Prob. Vec. 41.00 43.33 79.86 78.86

Label 34.57 34.35 66.88 71.29

Fid(%)
Prob. Vec. 41.16 43.63 81.36 80.18

Label 34.86 34.45 67.98 72.43

CIFAR100

ResNet18

(Acc: 76.38%)

Acc(%)
Prob. Vec. 16.44 18.78 51.09 60.36

Label 8.62 8.07 23.20 32.88

Fid(%)
Prob. Vec. 16.90 19.13 54.59 64.90

Label 8.91 8.29 24.72 34.58

To evaluate the performance of
model extraction attacks, we use two
ResNet18 classifiers being trained
on CIFAR10 and CIFAR100 training
sets as the target classifiers and con-
duct all four attacks on them. The de-
fault value of the attack budget in our
experiments is 50000 (B=50K). Table
2 shows the accuracy and the fidelity
of surrogate classifiers created by var-
ious model extraction attacks on CI-
FAR10 and CIFAR100 test samples.
The results demonstrate that K.Net
attacks have significantly better per-
formance than jacobian-based attacks
(JBDA and JBRAND), and when the
output of target classifiers is probabil-
ity vector, the performance of attacks is considerably increased.

4.3 HARDNESS DEGREE OF MODEL EXTRACTION ATTACK SAMPLES

Figure 2 depicts the hardness degree histogram of 50000 samples generated by various attacks for
CIFAR10 and CIFAR100 target classifiers. In this experiment, the architecture of target classifiers is
ResNet18. We also present the hardness degree histogram of attack samples when the architecture
of target classifiers is Densenet121 in Appendix E. Figure 2 demonstrates that the samples generated
by various attacks have a very small number of easy samples, and most samples have medium and
high hardness degrees. However, Figure 1 indicates that a high number of normal samples that are
from the same distribution as the target classifier’s training set are easy.

To investigate more on the hardness degree of attack and normal samples, Figure 3 displays two-
dimensional visualization of CIFAR10 test samples using t-SNE. Figure 3a uses the logits of the
CIFAR10 classifier to visualize CIFAR10 test samples, and the color of each sample is determined by
its label. This figure has ten sample clusters where most samples of each cluster are from one class.
Figure 3b illustrates the hardness degree of CIFAR10 test samples for CIFAR10 target classifier and
demonstrates that most of the easy samples are in the high-density regions inside clusters, and most
of the hard samples are in the low-density regions at the borders of clusters. Figure 3c is similar
to Figure 3b, but the hardness degree of each sample is calculated via CIFAR100 target classifier.
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Figure 2: The hardness degree histograms of samples of four various model extraction attacks for
CIFAR10 and CIFAR100 target classifiers. The budget of model extraction attacks is 50000.
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Figure 3: (a) Visualization of CIFAR10 test samples. (b) Hardness of CIFAR10 test samples for
CIFAR10 classifier. (c) Hardness of CIFAR10 test samples for CIFAR100 classifier.

This figure demonstrates when the training data distribution of the classifier being used to calculate
the hardness degree of samples becomes different from the distribution of CIFAR10 test samples,
the hardness degree of a high number of samples is changed. Figure 3c shows hard and medium
samples are distributed among clusters, and the number of easy samples is very small. Similar to
Figure 3, we visualize CIFAR100 test samples and their hardness for CIFAR10 and CIFAR100 target
classifiers in Appendix F. Based on our experiments, we consider hardness degree as an estimator of
the empirical distribution of the target classifier’s training data called Pdata. Easy samples are from
the high probability region, and hard samples are from the low probability region of the input space.
For example, if we suppose that Pdata is a Gaussian-like distribution, easy samples are closer to the
center of the distribution, and hard samples are in the tail of the distribution. Figures 3 and 8 show
that easy and hard normal samples lie in the high- and low-density region of the input space. Figures
2 and 4 demonstrate that the number of easy samples among model extraction attack samples (OOD
samples) is very small, which means that attack samples are from the low probability region of the
input space. However, Figures 1 and 4 show a high number of normal samples are easy, which
means that they are from the high probability region of the input space. We use histogram rather
than hardness degree histogram in the rest of the paper for simplicity.

4.4 HARDNESS-ORIENTED DETECTION APPROACH

We propose Hardness-Oriented Detection Approach (HODA) to detect sample sequences of model
extraction attacks. HODA requires normal histogram Hn representing the histogram of normal
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samples. When a new sample xi from user u arrives, HODA calculates its hardness degree ϕft(xi),
and the histogram belongs to that user Hu is updated. After the number of samples sent by user
u reaches a specific number nums, HODA calculates Pearson distance between the histograms of
normal samples Hn and user samples Hu, and if the distance is greater than a threshold δ, the user
u is detected as an adversary. Pearson Distance (PD) between two random variable X and Y is
defined as follows:

PD(X,Y ) = 1− Cov(X,Y )

ρXρY
(5)

where Cov(X,Y ) is the covariance between random variables X and Y , and ρX is the standard
deviation of random variable X . The output of Pearson distance is in the range [0,2]. To calculate
the Pearson distance between two histograms, HODA first transforms histograms into probability
vectors by dividing the value of histogram bins by the total number of samples in the histogram
(Hn/sum(Hn) and Hu/sum(Hu)) and then calculates the Pearson distance between them.

HODA uses normal sample set SHODA to create Hn and calculate δ. It randomly selects numseq

sample sequences with size nums from the sample set SHODA and for each sample sequence,
produces a histogram and adds it to the histogram set HistSet. The normal histogram Hn is the
average of all histograms in HistSet, and δ is the maximum Pearson distance between Hn and all
histograms in HistSet. Since δ is independent of attacks and only relies on normal samples, HODA
is not dependent on any attacks. Notably, HODA does not need to save samples of each user or their
hardness degrees. It only keeps a vector (Hu) that indicates the values of histogram bins for each
user. Algorithm 2 in Appendix G describes HODA in details.

5 SETUP AND EVALUATION

Two normal sample sets SHODA and Su are required to evaluate the performance of HODA. Su is
used to simulate benign users. We randomly select 40% and 60% of test samples of each dataset
for SHODA and Su, respectively. We randomly select numseq = 40000 sequences with size nums

from SHODA to create Hn and calculate δ. To evaluate the performance of HODA against model
extraction attacks, we simulate 10000 benign users and 10000 adversaries for each attack. Each be-
nign user sends a sequence of nums samples randomly selected from Su, and each adversary sends
a sequence of nums samples randomly selected from 50000 samples of attack in the order they were
generated. So far, we have used 100 subclassifiers to calculate the hardness degree of samples. How-
ever, it may not be possible to classify each sample by a high number of subclassifiers in practice. So
in order to reduce the computational cost of HODA, we use a subset of subclassifiers called Fsubclf

to compute the hardness degree of samples. HODA only uses 11 subclassifiers to calculate the hard-
ness degree of each sample, and these subclassifiers are saved in the training phase of target classifier
ft at the end of each 10 epochs Fsubclf =< f0

t , f
9
t , f

19
t , f29

t , f39
t , f49

t , f59
t , f69

t , f79
t , f89

t , f99
t >.

Algorithm 1 in Appendix G describes how hardness degree is computed using Fsubclf in details.
Since the hardness degree domain depends on the number of subclassifiers, the hardness degree of a
sample in HODA is in the range [0,10].

Table 3: The detection rate and False Positive Rate (FPR) of
PRADA and HODA against four various model extraction
attacks on CIFAR10 and CIFAR100 target classifiers.

Detection Rate of Attacks(%)

nums δ FPR(%) JBDA JBRAND K.Net CIFARX K.Net TIN

C
IF

A
R

10

PRADA
100 0.818 0.01 0 0 0 0

500 0.973 0.05 96.7 94.2 4.4 1.6

HODA
50 0.290 0.02 100 100 99.92 99.73

100 0.154 0.02 100 100 100 100

C
IF

A
R

10
0 PRADA

500 0.550 0.01 0 0 0 0

1000 0.953 0.03 67.3 73.5 0 0

HODA
50 0.716 0.02 94.65 100 90.68 89.06

100 0.349 0.02 100 100 100 100

We compare the detection rate and
the false-positive rate of HODA with
PRADA. PRADA Juuti et al. (2019)
declares that the histogram of min-
imum L2 distance between a new
sample and all previous samples of a
benign user follows a Gaussian dis-
tribution. Hence, it uses the Shapiro-
Wilk normality test to determine that
a sample sequence belongs to a be-
nign user or an adversary. Similar
to HODA, PRADA also uses thresh-
old δ to detect sample sequences of
model extraction attacks, and δ is
the only parameter of PRADA. Since
PRADA needs to save each user’s
samples and calculate L2 distance between them, it has a high computational overhead. Table 3
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Figure 4: The left histogram in subfigures a and b shows the hardness degree histogram of CUB200
and Caltech256 test samples, respectively. The right histogram in each subfigure indicates the hard-
ness degree histograms of K.Net ILSVRC12 attack samples on CUB200 (a) and Caltech256 (b)
target classifiers.

indicates the detection rate and False Positive Rate (FPR) of PRADA and HODA against four var-
ious model extraction attacks on CIFAR10 and CIFAR100 target classifiers. We evaluate HODA
when it only monitors 50 and 100 samples of each user (nums = 50 and nums = 100), and since
PRADA needs to monitor more samples to detect attacks, we use larger nums to evaluate PRADA.
PRADA and HODA have very low false-positive rates. False-Positive Rate (FPR) indicates the per-
centage of benign users’ sample sequences wrongly detected as an attack. The results demonstrate
that HODA is very effective against model extraction attacks, and it outperforms PRADA by a large
margin. Since HODA does not rely on the distance between samples, it can detect knockoff Net
attacks that use natural samples. HODA also has better performance on jacobian-based attacks. The
runtime and the number of samples that need to be stored by PRADA depend on the attack. Nev-
ertheless, for nums = 500 and CIFAR10 target classifier, the average runtime of PRADA for each
user is 0.47 seconds (prediction time not included) on Tesla K80 GPU, and 471 samples are stored
for each user on average. For each user, the average runtime of HODA is 0.0012 seconds (prediction
time not included), and it only stores a vector with size 11 representing a hardness degree histogram.
Although HODA requires the predictions of 11 models to calculate the hardness degree of each sam-
ple, there is no sequential relationship between models, and they can predict in parallel, so HODA
does not increase the prediction time of target models. Appendix I indicates the Pearson distance
histogram of benign users and adversaries for all model extraction attacks. Appendix H introduces
HODA-5 that uses five subclassifiers to calculate the hardness degree of samples. Table 6 shows the
performance of HODA-5 against various model extraction attacks. Table 7 in Appendix L reports
the accuracy of the K.Net attacks’ surrogate classifiers for a defended adversary by HODA.

5.1 TRANSFER LEARNING

Table 4: The detection rate and False
Positive Rate (FPR) of HODA against
K.Net ILSVRC12 attack.

Detection Rate(%)
Target Model nums δ FPR(%) K.Net ILSVRC12

CUB200 50 0.973 0.01 97.50
100 0.393 0.02 100

Caltech256 50 0.694 0.01 99.98
100 0.152 0.01 100

Transfer learning is a machine learning technique that
initializes the parameters of the target task classifier us-
ing the parameters of a pre-trained source task classi-
fier. We train two new target classifiers on CUB200
and Caltech256 datasets using transfer learning (details of
datasets in Appendix A). The training process of new tar-
get classifiers is the same as CIFAR10 and CIFAR100 tar-
get classifiers (Section 4.1). We initialize the parameters
of target classifiers from a pre-trained ImageNet Deng
et al. (2009) classifier and train all layers of target clas-
sifiers. Orekondy et al. (2020) indicate that jacobian-based model extraction attacks have very poor
performance on high dimensional datasets. Thereby, we only evaluate the performance of target
classifiers against K.Net ILSVRC12 attack. K.Net ILSVRC12 is the Knockoff Net attack that uses
ILSVRC12 dataset as the surrogate classifier’s training set. The budget of K.Net ILSVRC12 is
50000, and the output of target classifiers is the entire probability vector. The accuracy of CUB200
target classifier and its surrogate classifier is 73.7% and 59.3%, respectively, and the accuracy of
Caltech256 target classifier and its surrogate classifier is 77.2% and 72.2%, respectively.

Figure 4 depicts the hardness degree histogram of CUB200 and Caltech256 test sets on the associ-
ated target classifier and also the hardness degree histogram of K.Net ILSVRC12 samples for both
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Figure 5: The detection rate of HODA for various percentages of normal samples Pn over different
values of nums.

target classifiers. The figure demonstrates that the majority number of K.Net ILSVRC12 attack
samples are hard (hardness degree > 70), and the number of easy samples (hardness degree < 30)
is very small. We replicate the experiment of the previous section to evaluate the performance of
HODA against K.Net ILSVRC12 attack with the same parameters. Table 4 shows the performance
of HODA against K.Net ILSVRC12 attack on both target classifiers. The results demonstrate that
even the starting point of target classifiers’ parameters is not random, HODA is very effective in
detecting K.Net ILSVRC12 attack.

6 DISCUSSION ON ADAPTIVE ADVERSARY

An adaptive adversary who is aware of HODA must send her queries based on the hardness degree
histogram of normal samples to evade HODA. We consider two scenarios for an adaptive adversary
to conduct model extraction attacks. In the first scenario, the adversary has no access to normal
samples, and she only can use synthetic or semantically similar samples to extract the target model.
There are two reasons why such attacks are hard to conduct. First, the adversary needs samples with
various degrees of hardness; however, since the adversary has no access to the target classifier, she
can not determine the hardness degree of her samples for the target classifier. Second, the adversary
has no access to the histogram of normal samples to generate her samples based on it.

In the second scenario, we assume the adversary has access to a limited number of normal samples,
and she can use normal samples to make her hardness degree histogram more similar to the hardness
degree histogram of normal samples. To evaluate HODA in this scenario, we suppose that the
adversary has access to 1000 normal samples from Suser and she sends a sample sequence of which
Pn% is filled by normal samples, and the rest is filled by model extraction attack samples. Notably,
when the number of normal samples in the sequence exceeds 1000, the adversary sends duplicate
normal samples. It is important to note that the cost of attack is increased by a factor of 1

1−(Pn/100)

in this scenario. Figure 5 shows the detection rate of HODA for various Pn over different values
of nums. The false-positive rate of all experiments is less than 0.2%. The figure demonstrates that
increasing nums improves the detection rate of HODA. Except for K.Net attacks on CIFAR10 target
classifier in Pn = 90%, HODA can detect all attacks with a high success rate by increasing nums.
Due to the dataset limitation, we can not evaluate HODA for nums > 4000. However, we think the
detection rate of HODA against K.Net attacks on CIFAR10 target classifier in Pn = 90% will be
improved for nums > 4000. Altogether, we think the main challenge of an adaptive adversary to
evade HODA is to collect easy samples, which are very rare in out-of-distribution samples based on
our experiments.

7 CONCLUSIONS

This paper demonstrates that the hardness degree of samples is important in trustworthy machine
learning. We investigated the hardness degree of samples and demonstrated that the hardness degree
histogram of model extraction attack samples is different from the hardness degree histogram of nor-
mal samples. Using this observation, we proposed Hardness-Oriented Detection Approach (HODA)
to detect sample sequences of model extraction attacks. HODA can detect the sample sequences of
model extraction attacks with a high success rate by only monitoring 100 samples of attacks.
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Figure 6: Blue and red bars show the percentage of test samples in each range of hardness de-
grees, which are correctly or wrongly classified, respectively. For each range of hardness degrees,
Data Percentage indicates the percentage of CIFAR10 and CIFAR100 test samples whose hardness
degrees are in that range.

A DATASETS

CIFAR10 Krizhevsky (2009): CIFAR-10 dataset consists of 60K 32×32 color images in 10 classes,
including airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. It has 6K images
per class, where 5K images is in the training set and 1K images is in the test set.

CIFAR100 Krizhevsky (2009): CIFAR100 dataset consists of 60K 32 × 32 color images in 100
classes. It has 600 images per class, where 500 images is in the training set and 100 images is in the
test set.

TinyImageNet Le & Yang (2015): TinyImageNet is a subset of ILSVRC12 Deng et al. (2009)
dataset, and contains 200 image classes. It has 500 training samples and 50 test samples for each
class. The size of images is 64× 64. We resize all images to 32× 32.

CUB200 Wah et al. (2011): CUB200 dataset contain 200 classes of bird categories. It consists of
about 6K training and about 6K test samples. The size of images is 224× 224.

Caltech256 Griffin et al. (2007): Caltech256 dataset contain 256 classes of common objects cate-
gories. It consists of about 24K training and about 6K test samples. The size of images is 224×224.

ILSVRC12 Deng et al. (2009): ILSVRC12 uses a subset of ImageNet and consists of 1.2 million
training images, 50,000 validation images, and 100,000 test images. The dataset has 1000 classes
and the size of images is 224× 224.

STL10 Coates et al. (2011): STL10 dataset consists of 13K 96 × 96 color images in 10 classes,
including airplanes, cars, birds, cats, deer, dogs, monkeys, horses, ships, and trucks. It has 1.3K
images per class, where 0.5K images is in the training set and 0.8K images is in the test set. We
resize all images to 32× 32.

B RELATIONSHIP BETWEEN THE ACCURACY OF CLASSIFIERS AND
HARDNESS DEGREE OF SAMPLES

To assess the relationship between the hardness degree of samples and the misclassification rate,
we compute the hardness degree of CIFAR10 and CIFAR100 test samples and then partition them
into ten groups based on their hardness degree. It is important to note that the number of samples
in each group is different. Afterward, we calculate what percentage of samples in each group is
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classified incorrectly. Figure 6 demonstrates that the misclassification rate is increased by increasing
the hardness degree of samples. In other words, there is a strong positive correlation between the
hardness degree of samples and the misclassification rate. The figure indicates the percentage of
samples in each hardness degree range by a green curve.

For example, the hardness degree of 40.65% of CIFAR10 test samples (4065 samples) is in the range
[0,9] for MobileNet classifier, from which 99.88% is classified correctly, or the hardness degree of
7.4% of CIFAR10 test samples (740 samples) is in the range [90,99] for MobileNet classifier, from
which 55.27% is classified correctly. More than 99% and 95% of samples being learned in the first
30 epochs (hardness degree < 30) are correctly classified in CIFAR10 and CIFAR100 test samples,
respectively. On the other side, less than 55% and 36% of samples being learned in the last 10
epochs (hardness degree ≥ 90) are correctly classified in CIFAR10 and CIFAR100 test samples,
respectively.

C HARDNESS TRANSFERABILITY

Table 5: Pearson correlation coefficients between
hardness degree of CIFAR10 and CIFAR100 test
samples for various pairs of classifiers.

Pearson Correlation Coefficient
CIFAR10 CIFAR100

ResNet18-ResNet18 0.784 0.687
ResNet18-DenseNet121 0.775 0.685
ResNet18-MobileNet 0.765 0.688
DenseNet121-MobileNet 0.769 0.706

In this section, we indicate that the hardness of
samples is relatively transferable among vari-
ous classifiers. We use three classifiers created
in Section 4.1 and a new ResNet18 classifier
in this experiment. Table 5 displays the Pear-
son correlation coefficients between hardness
degree of CIFAR10 and CIFAR100 test sam-
ples for various pairs of classifiers. The re-
sults demonstrate a positive and strong corre-
lation between the hardness degree of samples
for various pairs of classifiers. Therefore, the
hardness of samples is relatively transferable
between different classifiers. On the other side, it implies that the hardness degree of samples is
relatively independent of the architecture of classifiers.

D DETAILS OF MODEL EXTRACTION ATTACKS

Jacobian-Based Dataset Augmentation (JBDA) Papernot et al. (2017): The goal of JBDA attack
is to increase the fidelity of the surrogate classifier to the target classifier in order to produce ad-
versarial examples for the target classifier in the black-box setting. The authors assume that the
adversary has access to a limited number of normal samples called seed samples. JBDA augment
seed samples using adversarial examples to improve the performance of surrogate model. The aug-
mentation process is conducted in multiple rounds. In the first round, surrogate training set Xs is
initialized by seed samples, and surrogate model fs is trained on Xs. In the next rounds, sample set
S with size κ is randomly selected from Xs, and for each x ∈ S, adversarial example x′ is created
using the following equation:

x′ = x+ λ.sign(Jfs [ft(x)]) (6)

where λ is step size and J is the Jacobian function. Afterward, new adversarial examples are labeled
by the target model, and they are added to Xs. Lastly, surrogate model fs is trained on Xs. The
attack is implemented with λ = 0.1 and κ = 2000. The seed samples are selected from the test set
of datasets. We use 500 (50 for each class) and 1000 (10 for each class) samples of CIFAR10 and
CIFAR100 test sets for seed samples, respectively.

Jacobian-Based Random Target (JBRAND) Juuti et al. (2019): The goal of JBRAND is to im-
prove the performance of JBDA. It perturbs each sample in multiple iterations to generate more
powerful adversarial examples and generates targeted adversarial examples with random targets.
We generate three adversarial examples with random targets for each sample and use the same seed
samples as JBDA. Each sample is perturbed in five iterations with ϵ = 64

225×5 . The attack is imple-
mented with λ = 64

255 and κ = 2000.

Knockoff Net (K.Net) Orekondy et al. (2019): Knockoff Net attack uses large public datasets that
are semantically similar to the target model’s training samples to create the surrogate model’s train-
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Figure 7: The hardness degree histograms of samples of four various model extraction attacks on
CIFAR10 and CIFAR100 target classifiers. The budget of model extraction attacks is 50000. The
architecture of target classifiers is DenseNet121.
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Figure 8: (a) Visualization of CIFAR100 test samples. (b) Hardness of CIFAR100 test samples for
CIFAR100 classifier. (c) Hardness of CIFAR100 test samples for CIFAR10 classifier.

ing set. It has adaptive and random strategies to select the surrogate classifier’s training set, which
both use semantically similar samples. Since the adaptive strategy has very marginal benefits, we
only consider the random strategy to implement this attack. K. Net randomly selects a subset of a
public dataset and labels them using the target classifier to create Xs. Finally, it uses Xs to train
surrogate classifier fs.

E DENSENET121 TARGET CLASSIFIERS

Figure 7 shows the hardness degree histograms of samples of four model extraction attacks on
CIFAR10 and CIFAR100 target classifiers. The architecture of target classifiers is DenseNet121. As
seen in Figure 7, the hardness degree histogram of model extraction attack samples is distinguishable
from the hardness degree of normal samples (Figure 1) for DenseNet121 target classifiers.

F VISUALIZATION OF CIFAR100 SAMPLES AND THEIR HARDNESS

Figure 8 displays a two-dimensional visualization of CIFAR100 test samples using t-SNE. Figure
8a uses the logits of CIFAR100 classifier to visualize CIFAR100 test samples, and the color of each
sample is determined by its label. Figures 8b and 8c show the hardness degree of CIFAR100 test
samples for CIFAR100 and CIFAR10 target classifiers, respectively.
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G HODA ALGORITHM

Algorithm 1 Hardness Degree Computation
Inputs: x is a sample and Fsubclf is a sequence of subclassifiers
Outputs: degree is the hardness degree of sample x

1: function GETHARDNESSDEGREE(x, Fsubclf )
2: label← None
3: for i← 0, len(Fsubclf ) do
4: pred vector ← Fsubclf [i](x) // Fsubclf [i] is the ith subclassifier in sequence Fsubclf

5: pred label← argmax(pred vector)
6: if pred label ̸= label then
7: degree = i
8: label = pred label

9: return degree
10: end function

Algorithm 2 Hardness-Oriented Detection Approach (HODA)
Inputs: SHODA is a set of normal samples, nums is the size of sample sequences, numseq is the number of sample sequences,

Fsubclf is the subclassifier sequence of target model, NewQuery is the newest query being received by the target model, and
UserID is the identifier of owner of NewQuery.

Outputs: Hn is the histogram of normal samples, δ is the attack detection threshold, AttackAlarm declares the occurrence of attack.
1: function PEARSONDIST(Hn, Hu)
2: return PD(Hn/Sum(Hn), Hu/Sum(Hu))
3: end function
4: function HODAINITIALIZATION(SHODA, nums, numseq, Fsubclf )
5: HistSet← ∅
6: for i← 0, numseq do
7: seq ← Randomly select nums samples from SHODA

8: Hist← ∅
9: for s in seq do
10: HD = GetHardnessDegree(s, Fsubclf )
11: Hist[HD] + = 1

12: HistSet← HistSet ∪ Hist
13: Hn ← Avg(HistSet)
14: DistList← ∅
15: for Hist in HistSet do
16: DistList.append( PEARSONDIST(Hn, Hist))

17: δ ←Max(DistList)
18: return Hn, δ
19: end function
20: function HODA(NewQuery, UserID,Hn, δ, nums, Fsubclf )
21: AttackAlarm← False
22: Hu ← GetUserHisogram(UserID)
23: HD ← GetHardnessDegree(NewQuery, Fsubclf )
24: Hu[HD] + = 1
25: if Sum(Hu) == Nums then
26: if PEARSONDIST(Hn, Hu) > δ then
27: AttackAlarm← True
28: SaveUserHistogram(Hu, UserID)
29: return AttackAlarm
30: end function

H HODA-5 (FIVE SUBCLASSIFIERS)

Table 6: The detection rate and False Positive Rate
(FPR) of HODA-5 against four various model ex-
traction attacks on CIFAR10 and CIFAR100 tar-
get classifiers.

Detection Rate of Attacks(%)

nums δ FPR(%) JBDA JBRAND K.Net CIFARX K.Net TIN

C
IF

A
R

10

HODA-5

50 0.120 0.01 100 100 78.87 78.54

100 0.044 0.01 100 100 93.82 93.86

200 0.018 0.02 100 100 99.27 99.15

C
IF

A
R

10
0

HODA-5

50 0.370 0.01 90.37 100 80.0 80.62

100 0.140 0.02 100 100 97.08 97.79

200 0.060 0.01 100 100 99.87 99.85

In Section 5, HODA uses 11 subclassifiers
to calculate the hardness degree of sam-
ples. This section introduces HODA-5,
which uses five subclassifiers (Fsubclf =<
f19
t , f39

t , f59
t , f79

t , f99
t >) to calculate the hard-

ness degree of samples. Hence, the domain of
hardness degree is in the range [0,4]. Table
6 shows the performance of HODA-5 against
model extraction attacks. The table demon-
strates that although HODA-5 needs to monitor
more samples (nums = 200) to reach the per-
formance of HODA (11 subclassifiers) against
K.Net attacks, it is still very effective against
model extraction attacks.
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Figure 9: The histogram of Pearson distance between Hn and 10000 benign users’ hardness degree
histogram and Hn and 10000 adversaries’ hardness degree histogram for various attacks. STL10
users are benign users for CIFAR10 target classifier and are adversaries for CIFAR100 target classi-
fier.

I PEARSON DISTANCE HISTOGRAM

HODA creates a hardness degree histogram for each user, called Hu, and calculates Pearson distance
between Hu and normal hardness degree histogram Hn (PD(Hn, Hu)). In section 5, we simulated
10000 benign users and 10000 adversaries for each attack. Figure 9 indicates the histogram of Pear-
son distance between Hn and benign users’ hardness degree histogram and also Hn and adversaries’
hardness degree histogram for nums = 100. Notably, Pearson distance is in the range [0,2]. For
CIFAR10 target classifier, Pearson distance between Hn and hardness degree histogram of all 10000
benign users is less than 0.2, and as seen in Figure 9, Pearson distance between Hn and hardness
degree histogram of all 10000 adversaries of each attack is more than 0.2. For CIFAR100 target
classifier, Pearson distance between Hn and hardness degree histogram of all 10000 benign users is
less than 0.35, and Pearson distance between Hn and hardness degree histogram of all 10000 ad-
versaries of each attack is more than 0.35. However, the confidence of HODA on CIFAR100 users
is less than CIFAR10 users. We also consider 10000 STL10 users. STL10 users randomly select
their samples from STL10 dataset (details in Appendix A). STL10 dataset has been inspired by the
CIFAR10 dataset, and its images are obtained from the ImageNet dataset. It has the same classes as
the CIFAR10 dataset, except instead of the frog class, it has a monkey class. We remove monkey
images from STL10 dataset. Since classes of modified STL10 dataset are a subset of CIFAR10
classes, STL10 users use in-distribution samples for the CIFAR10 target classifier. However, similar
to K.Net CIFARX attack on CIFAR100 target classifier, STL10 users use out-of-distribution sam-
ples for CIFAR100 target classifier. Since we suppose that only adversaries use out-of-distribution
samples to extract a target model, STL10 users are adversaries for CIFAR100 target classifier and are
benign users for CIFAR10 target classifier. The detection rate of HODA for STL10 users is 100%
for CIFAR100 target classifier and 5.27% for CIFAR10 target classifier in nums = 100. Hence,
the false-positive rate of HODA for STL10 users, which are considered benign users, is 5.27% for
CIFAR10 target classifier. By choosing a larger delta value (e.g., δ = 0.25), the false-positive rate
of HODA for STL10 users can be reduced to almost zero with almost no change in the detection
rate of attacks.

J ADVERSARIAL EXAMPLES (AES)

Adversarial examples (AEs) are maliciously crafted inputs that cause the target classifier to misclas-
sify them. There are numerous methods to generate adversarial examples such as L-BFGS Szegedy
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Figure 10: The hardness degree histograms of samples of four various adversarial example attacks
on CIFAR10 and CIFAR100 target classifiers. Each attack uses 10000 natural samples in the test set
associated with the target classifier dataset to create 10000 adversarial examples.

et al. (2014), FGSM Goodfellow et al. (2015), C&W Carlini & Wagner (2017), PGD Madry et al.
(2018), and AutoAttack (AA) Croce & Hein (2020). To investigate the hardness of adversarial exam-
ples, we use FGSM (ϵ = 0.1), C&W (L2), PGD (ϵ = 8/255, α = 3/255), and AA (L∞, ϵ = 8/255)
attacks to generate adversarial examples on CIFAR10 and CIFAR100 test sets. The adversarial
examples are created in the white-box setting, and they are untargeted. Figure 10 indicates the hard-
ness degree of adversarial examples on CIFAR10 and CIFAR100 target classifiers. Although the
distance between normal samples and adversarial examples is very small, Figure 10 demonstrates
that the hardness degree histograms of adversarial examples are very different from normal samples
(Figure 1). Most adversarial examples generated by FGSM and C&W are harder than adversarial
examples generated by PGD and AA. We think this is because the size of perturbations added by
FGSM and C&W is larger than PGD and AA. An intriguing observation is that almost all adversarial
examples being generated by PGD are not hard (hardness degree < 70). AA has relatively the same
behavior, and the number of its hard adversarial examples is very small.

K PERFORMANCE ANALYSIS OF MODEL EXTRACTION ATTACKS

To give new insight into model extraction attacks, we investigate the performance of model extrac-
tion attacks on normal samples with various levels of hardness. For this purpose, the test sets of
CIFAR10 and CIFAR100 datasets are partitioned into 10 hardness groups based on hardness de-
gree of samples. The hardness group i consists of samples that their hardness degree is in range
[i × 10, (i + 1) × 10]. Hence, the first hardness group consists of the easiest samples, and the last
hardness group consists of the hardest ones. Figure 11 shows the accuracy and the fidelity of attacks
over 10 hardness groups when the output of target classifier is the entire probability vector. The
results demonstrate that the accuracy and the fidelity of all attacks are decreased as the hardness of
samples is increased. We know from Figure 6 that the accuracy of target classifiers is decreased by
increasing the hardness of samples. Figure 11 indicates the surrogate classifiers also have the same
behavior.

The results demonstrate that the distance between the accuracy of target classifiers and surrogate
classifiers (specially K.Net attacks) is increased by increasing the hardness of samples in the first
hardness groups. However, the accuracy of the K.Net surrogate classifiers approaches the accuracy
of target classifiers on the last two hardness groups. To investigate this observation, Figure 11
shows the percentage of samples being classified correctly by both surrogate classifier and target
classifier for all attacks over various hardness groups with dashed lines. The results indicate that all
samples correctly classified by surrogate classifiers are also correctly classified by target classifiers
in the first two hardness groups. However, by increasing the hardness of samples, the surrogate
classifiers correctly classify some samples that are not correctly classified by the target classifier,
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Figure 11: The accuracy and the fidelity of four surrogate classifiers over various hardness groups.
The test set of each dataset is partitioned into 10 hardness groups so that hardness group 1 consists
of the easiest samples and hardness group 10 consists of the hardest samples. The dashed lines
indicate the percentage of samples being correctly classified by both target classifier ft and surrogate
classifier fs.

and the number of such samples is increased by increasing the hardness of samples. Jagielski et al.
(2020) demonstrate that labels from the target classifier are more informative than dataset labels. We
think the information in the labels that come from the target model causes the surrogate classifiers
to correctly classify hard samples that are not correctly classified by the target classifier.

The fidelity of all surrogate classifiers is decreased by increasing the hardness of samples, which
means that the disagreement among surrogate classifiers and target classifiers is raised on harder
samples. An intriguing observation is that the fidelity of surrogate classifiers to the target classifiers
on correctly classified samples by target classifiers is much more than wrongly classified samples.

L THE ACCURACY OF SURROGATE CLASSIFIERS OF DEFENDED
ADVERSARIES

Table 7: The average and standard de-
viation of the accuracy of surrogate
classifiers for defended adversaries by
HODA.

Acc of Surrogate Classifier (%)

ft K.Net CIFARX K.Net TIN

CIFAR10

(Acc: 94.36%)
17.10 ± 2.61 17.77 ± 1.76

CIFAR100

(Acc: 76.38%)
2.71 ± 0.38 3.75 ± 0.52

Table 3 shows that HODA detects all simulated adver-
saries by only monitoring 100 samples (nums = 100) of
each attack. Hence, adversaries can use the prediction of
at most 100 samples to train the surrogate classifier. Ta-
ble 7 reports the accuracy of K.Net surrogate classifiers
on CIFAR10 and CIFAR100 test sets when the adversary
only uses 100 samples of attack to train surrogate classi-
fiers. Since simulated adversaries randomly select their
samples from 50000 samples of each attack, we simulate
ten adversaries for each experiment and report the aver-
age and standard deviation of the accuracy of ten trained
surrogate classifiers for each attack. The training pro-
cess and architecture of surrogate classifiers are similar
to target classifiers, and the output of target classifiers is
a probability vector.

M COMPREHENSIVE RELATED WORK

Some recent studies investigate the dynamic of DNNs training process. Hacohen et al. (2020); Fran-
kle et al. (2020); Mangalam & Prabhu (2019) show that DNNs learn samples that are learnable
by shallow models in early epochs of training before learning harder ones. Hacohen et al. (2020)
demonstrate that DNNs learn samples in both training and test sets in a similar order. Pliushch et al.
(2021) discuss correlation between learning order of samples with image statistics like segment
count, edge strengths, image intensity entropy, and DCT coefficient matrix. Frankle et al. (2020)
indicate that the DNN-based classifiers undergo substantial changes in the first few SGD iterations.
Baldock et al. (2021) demonstrate a negative correlation between their measure of hardness (predic-
tion depth) and learning events during training. They show that samples learned in later epochs have
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higher prediction depth and confirm that neural networks learn easy samples first. In the following,
we briefly review the most prominent model extraction attacks and defenses presented so far.

M.1 MODEL EXTRACTION ATTACKS

For the first time, Lowd & Meek (2005) demonstrate the possibility of stealing simple linear ma-
chine learning models through only interaction with them. Tramèr et al. (2016) show the feasibility
of model extraction attacks on commercial MLaaS. Papernot et al. (2017) and Juuti et al. (2019)
investigate stealing DNN-based classifiers and propose jacobian-based model extraction attacks for
creating a surrogate classifier in order to generate adversarial examples in the black-box setting.
Chandrasekaran et al. (2020) explore the connection between active learning and model extraction
attacks. They implement two query synthesis active learning algorithms to extract machine learn-
ing models, such as decision trees. Jagielski et al. (2020) use semi-supervised learning methods
to improve the performance of model extraction attacks. Knockoff Net Orekondy et al. (2019),
ActiveThief Pal et al. (2020), and Copycat CNN da Silva et al. (2018) use a semantically similar
dataset to the target classifier’s training set to create the surrogate classifier’s training set. They em-
ploy different strategies for selecting samples from attack datasets to extract more information from
the target classifier. Yu et al. (2020) employ active learning, transfer learning, and a new method for
generating adversarial examples to improve model extraction attacks efficiency. A line of studies
Truong et al. (2021); Kariyappa et al. (2021a); Barbalau et al. (2020) use synthetic data to create the
training set of surrogate classifiers. Although their methods do not need to have access to natural
samples, they send a high number of queries to the target classifier, which makes their methods im-
practical. For example, Truong et al. (2021) and Kariyappa et al. (2021a) send millions of queries to
extract a CIFAR10 target classifier. While most model extraction attacks have focused on the vul-
nerabilities of image classifiers, recent studies demonstrate the vulnerability of NLP Krishna et al.
(2020), Graph DNN He et al. (2021), and Reinforcement learning Chen et al. (2021) models against
model extraction attacks. Another type of model extraction attack uses hardware side-channel vul-
nerabilities to extract a target classifier Zhu et al. (2021); Batina et al. (2019); Hong et al. (2018);
Yan et al. (2020). However, these attacks have a very strong threat model and suppose the adversary
has access to the hardware that hosts the target classifier.

M.2 DEFENSES AGAINST MODEL EXTRACTION ATTACKS

Existing defense methods against model extraction attacks generally distribute into two branches:
perturbation-based and detection-based defenses. Perturbation-based defenses Lee et al. (2019);
Orekondy et al. (2020); Kariyappa & Qureshi (2020) attempt to prevent adversaries from pro-
ducing high-quality surrogate classifiers by adding perturbation to the output of target classifier.
These methods generate the perturbation with various strategies to minimize the accuracy of surro-
gate classifiers. Recently, Kariyappa et al. (2021b) proposed a new defense with the same goal as
perturbation-based defenses, which does not perturb the output of target classifiers. Their approach
employs an ensemble of diverse models to produce discontinuous predictions for out-of-distribution
samples. Proposed detection-based defenses Kesarwani et al. (2018); Juuti et al. (2019) attempt
to detect the occurrence of model extraction attacks by observing successive input queries to the
target classifier. Kesarwani et al. (2018) propose a method to measure adversary perceived knowl-
edge from target classifier, but this method only works for Decision Tree models. PRADA Juuti
et al. (2019) is the first proposed detection-based defense for DNN models. PRADA uses the his-
togram of the minimum L2 distance among a new sample and all previous samples to detect model
extraction attacks. Aside from its high computational overhead, it has been shown that PRADA is
unable to detect model extraction attacks when an adversary uses natural samples Pal et al. (2020).
Watermarking neural networks Jia et al. (2021); Zhang et al. (2018); Szyller et al. (2021); Adi et al.
(2018) is another type of defense against model extraction attacks. These methods prove ownership
of a surrogate classifier instead of preventing the occurrence of model extraction attacks.

Atli et al. (2020) demonstrate that several OOD detection approaches, such as Baseline Hendrycks
& Gimpel (2017) and ODIN Liang et al. (2018), have poor performance in detecting Knockoff Net
attack samples. Hence, they propose a new OOD detection approach that leverages a classifier to
detect OOD samples. However, their approach only rejects OOD samples, and it does not have any
detection mechanism to detect adversaries. Besides, the OOD detector is trained on samples from
the same distribution used by the adversary to conduct Knockoff Net attacks, which is an unreal-
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istic assumption in practice. Concurrent with our work, Zhang et al. (2021) and Pal et al. (2021)
propose SEAT and VarDetect to detect sample sequences of model extraction attacks, respectively.
SEAT aims to detect model extraction attacks that use several similar samples to extract a target
model, such as jacobian-based attacks (Papernot et al. (2017); Juuti et al. (2019)). Hence, SEAT is
ineffective when an adversary uses natural samples that are not similar to each other, such as Knock-
off Net attack. VarDetect uses Variational Autoencoders (VAs) and Maximum Mean Discrepancy
(MMD) to detect model extraction attacks. VarDetect has only been evaluated on low-dimensional
datasets. Regarding that VarDetect uses VAs and MMD, it is unclear how well it performs on high-
dimensional datasets. Besides, it uses the ImageNet dataset to extract target classifiers trained on
very structurally different datasets, such as F-MNIST and SVHN.
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