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Abstract001

Eligibility criteria (EC) are critical compo-002
nents of clinical trial design, defining the pa-003
rameters for participant inclusion and exclu-004
sion. However, designing EC remains a com-005
plex, expertise-intensive process. Traditional006
approaches to EC generation often rely on007
user-prompted predefined categories, which008
limit adaptability and may fail to produce009
comprehensive, contextually appropriate crite-010
ria. To address these challenges, we introduce011
EC-RAFT, a method that utilizes Retrieval-012
Augmented Fine-Tuning (RAFT) to generate013
structured and cohesive EC directly from clini-014
cal trial titles and descriptions. EC-RAFT inte-015
grates contextual retrieval, synthesized interme-016
diate reasoning, and fine-tuned language mod-017
els to produce comprehensive EC sets. To en-018
hance clinical alignment evaluation with refer-019
enced criteria, we also propose an LLM-guided020
evaluation pipeline. Our results demonstrate021
that our solution, which uses Llama-3.1-8B-022
Instruct as a base model, achieves a BERTScore023
of 86.23 and an EC-matched LLM-as-a-Judge024
score of 1.66 out of 3, outperforming zero-shot025
Llama-3.1 and Gemini-1.5 by 0.41 and 0.11026
points, respectively. EC-RAFT was trained in027
a low-cost setup and, therefore, can be used as028
a practical solution for EC generation while en-029
suring quality and relevance in clinical trial030
design. We release our code on GitHub at031

.032

1 Introduction033

Eligibility Criteria (EC) are essential components034

of clinical trial design, specifying the parameters035

for participant inclusion and exclusion (Su et al.,036

2023). These criteria ensure trials are scientifically037

valid, ethically sound, and capable of meeting their038

objectives. However, designing EC remains a labor-039

intensive and expertise-driven process (Su et al.,040

2023). Tools that can suggest or generate relevant041

EC have the potential to significantly facilitate re-042

searchers’ work in trial design (Kim et al., 2024).043

Generating these criteria is inherently complex be- 044

cause consistency and clinical validity are needed 045

throughout the criteria set. Despite advances in 046

using large language models (LLMs) for summa- 047

rization or specialized tasks in the biomedical do- 048

main, several barriers remain to creating a fully 049

automated, contextually accurate system that can 050

generate comprehensive sets of EC directly from 051

trial descriptions. Recent developments in instruc- 052

tion fine-tuning for LLMs have shown promise 053

in generating logical reasoning outputs through 054

techniques like chain-of-thought prompting and 055

rationale generation (Wei et al., 2022). Retrieval- 056

augmented generation (RAG) has also emerged 057

as an effective mechanism for grounding model 058

outputs with external domain knowledge, thereby 059

improving factual correctness (Ram et al., 2023). 060

Retrieval-augmented fine-tuning (RAFT) extends 061

RAG by incorporating instruction fine-tuning to 062

improve both domain adaptation and retrieval ro- 063

bustness (Zhang et al., 2024). These developments 064

allow the development of an end-to-end system to 065

generate a complete set of EC while preserving 066

essential clinical context and domain relevance. To 067

address these gaps, we propose EC-RAFT, a novel 068

approach that leverages Retrieval-Augmented Fine- 069

Tuning (RAFT) (Zhang et al., 2024) for automated 070

EC generation. EC-RAFT aims to produce com- 071

plete EC sets directly from trial titles and descrip- 072

tions without requiring user-input EC categories 073

or a recommendation system. Our key features 074

include: 075

1. RAFT (Zhang et al., 2024) incorporates rel- 076

evant external clinical trial information (ex- 077

isting trial details and eligibility criteria) and 078

generates intermediate reasoning steps to fine- 079

tune LLM. 080

2. Generating a complete set of eligibility crite- 081

ria results in a fully structured set of inclusion 082

and exclusion criteria. We demonstrate that 083
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synthesized intermediate reasoning steps pro-084

duced by LLM, enhance the performance of085

the base models during fine-tuning for EC086

generation. Our results show that EC-RAFT087

exceeds zero-shot baseline approaches across088

multiple evaluation metrics, including seman-089

tic similarity and LLM-as-a-judge scoring.090

Our training setup was also optimized for cost ef-091

ficiency using the Parameter-Efficient Fine-Tuning092

technique (PEFT) (Xu et al., 2023; Hu et al., 2021).093

Specifically, training our best model required 380094

GPU hours on NVIDIA A100 costing approxi-095

mately 452.20 USD while achieving superior per-096

formance compared to the baseline.097

2 Related Work098

2.1 Eligibility Criteria Generation and099

Recommendation.100

Over the past decade, various methods have been101

proposed to facilitate EC design. Trial2Vec (Wang102

and Sun, 2022) introduced a trial-level representa-103

tion using contrastive learning to recommend rele-104

vant clinical trials to researchers, providing a foun-105

dation for trial similarity assessment. Based on106

trial representation approaches, CReSE (Kim et al.,107

2024) applied contrastive learning and rephrasing108

strategies to recommend relevant EC for a given109

trial context, focusing on high semantic similarity.110

AutoTrial (Wang et al., 2023) generates EC us-111

ing LLM, offering interpretability through explicit112

reasoning chains. However, it uses predefined cate-113

gories, which can restrict adaptability in complex114

clinical trials and potentially omit key criteria. Au-115

tocriteria (Datta et al., 2024) uses prompting on116

GPT4 to extract granular EC from clinical trial117

documents.118

2.2 LoRA and Supervised Fine-Tuning (SFT).119

Adapting LLMs to specialized tasks such as clin-120

ical trial EC generation often requires fine-tuning121

on domain-specific datasets. Low-rank adaptation122

(LoRA) (XTuner Contributors, 2023; Hu et al.,123

2021) has been applied in similar biomedical tasks124

by efficiently integrating domain knowledge into125

pre-trained models (Liao et al., 2024). Similarly,126

supervised fine-tuning (SFT) has been employed in127

applications such as automated medical report gen-128

eration (Guo et al., 2024). However, while LoRA129

and SFT have demonstrated significant efficacy in130

these specialized tasks, they typically lack retrieval131

strategies and do not generate domain-specific out- 132

puts, such as a complete set of EC. 133

2.3 Retrieval-Augmented Fine-Tuning 134

(RAFT). 135

RAFT (Zhang et al., 2024) techniques have shown 136

promise across various domains, including biomed- 137

ical tasks, by simulating an "open-book" scenario 138

in which a model can consult relevant external doc- 139

uments during both training and inference. Tradi- 140

tionally, RAFT involves providing the model with a 141

mixture of "golden" and "distractor" retrieved texts, 142

enabling it to learn when and how to utilize exter- 143

nal information. However, RAFT methods often 144

focus on short-form QA tasks rather than producing 145

outputs such as fully articulated sets of EC. 146

2.4 Contributions of EC-RAFT. 147

While approaches such as AutoTrial (Wang et al., 148

2023), CReSE (Kim et al., 2024), or RAG-based 149

pipelines have advanced the field, they each ex- 150

hibit drawbacks. AutoTrial’s category-based sys- 151

tem may miss nuanced criteria critical for complex 152

or adaptive trial designs. CReSE’s strong clus- 153

tering and recommendation focus lacks a mecha- 154

nism for generating complete sets of EC. Standard 155

RAFT-based pipelines (Zhang et al., 2024) often 156

emphasize classification or short-form QA tasks, 157

leaving the generation and evaluation of elaborate 158

clinical EC largely unexplored. EC-RAFT inte- 159

grates retrieval-augmented fine-tuning with synthe- 160

sized chain-of-thought reasoning to generate a sin- 161

gle structured set of inclusion and exclusion criteria 162

to address these limitations. EC-RAFT provides a 163

flexible and comprehensive solution for automated 164

EC generation in complex trial contexts by bypass- 165

ing the need for category-dependent generation and 166

leveraging domain-specific retrieval as a backbone. 167

3 Methods 168

In this section, we introduce our approach, which 169

leverages clinical trial data from ClinicalTrials.gov 170

and integrates state-of-the-art techniques in em- 171

bedding, retrieval, and fine-tuning to automate the 172

generation of EC (Figure 1). We then describe the 173

experiments designed to evaluate our system. 174

3.1 ClinicalTrials.gov Dataset 175

We collected 267,347 clinical trials from Clinical- 176

Trials.gov, covering 2000 to 2024. To facilitate 177

analysis, we split these trials into three datasets: 178
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Figure 1: Overview of the EC-RAFT pipeline. A. Retrieve relevant trials and their EC (D) for the trial of interest
(X) using SciNCL embeddings, then combine them with the desired EC (y) to generate intermediate reasoning
steps (R). B. Fine-tune the model to generate a single response that includes both reasoning and final eligibility. C.
Evaluate using two approaches: (1) BERTScore (Zhang et al., 2020) for semantic similarity, and (2) LLM-Guided
Evaluation for clinical relevance of matched EC pairs.

213,877 trials for training, 26,735 trials for valida-179

tion, and 26,735 trials for testing (Table 1). The180

training, validation, and test set contains around181

168.4k, 20.9k, 21.1k interventional and 45.4k, 5.8k,182

5.6k observational trials respectively. The training183

data contain 1.25M interventional trials with an184

average of 4.98 ± 5.11 inclusions and 7.46 ± 7.05185

exclusions per trial and 137k observational trials186

with an average of 3.02 ± 2.85 inclusions and 3.44187

± 3.68 exclusions per trial.188

Our dataset consists of three primary sections:189

title, description, and EC. The description sec-190

tion includes a brief summary, a detailed descrip-191

tion of the trial, and intervention details, includ-192

ing the type, name, description, and alternative193

names of the interventions involved. The EC194

section, which extracts from eligibilityModule195

within the protocolSection, contains key partic-196

ipant criteria, including both structured fields and197

free-text criteria. eligibilityCriteria within198

eligibilityModule section provides key eligibil-199

ity details, including inclusion and exclusion cri-200

teria. While most trials specify age and gender re-201

quirements within the eligibilityCriteria sec-202

tion, some studies omit explicit references to these203

factors. Instead, these details are provided in dedi-204

cated fields within the same module: sex for gen-205

der information, minimumAge and maximumAge for206

age ranges, and healthyVolunteers for whether207

healthy volunteers are accepted. We extracted and208

processed these fields from both structured meta-209

data and free-text EC to ensure that all EC are210

included.211

3.2 Data Embedding and Retrieval 212

The first step involves obtaining comprehensive 213

clinical trial data, including titles, descriptions, and 214

eligibility criteria, from ClinicalTrials.gov (Figure 215

1A). We employ the SciNCL embedding model 216

(Ostendorff et al., 2022) to embed clinical trials, 217

which are subsequently retrieved to generate in- 218

termediate steps (R). The rationale for selecting 219

SciNCL is its ability to embed semantics in domain- 220

specific text. After embedding, we retrieve relevant 221

trials and their EC (D) and Trial Information (X) 222

using Euclidean distance. Importantly, only the 223

training split was embedded. During testing and 224

evaluation, we retrieved trials exclusively from the 225

embedded training split. Our experiments vary the 226

relevant trials (top-N ) from N = 1 to 5 for generat- 227

ing the intermediate step (R) (Section 5.3). 228

3.3 Intermediate Steps Generation 229

In EC-RAFT, the generation of intermediate rea- 230

soning steps (R) plays a pivotal role in creating 231

a structured pathway for training models. This 232

process begins by integrating the retrieved trial in- 233

formation (D) which includes the title, description 234

and ECs, the trial-of-interest information (X), con- 235

sisting of its title and description, and the desired 236

eligibility criteria (y) for the target study (Figure 237

1A). The D is retrieved from the vector database 238

using X’s title and description while filtering out 239

X out of retrieved documents, with different top-N 240

values applied based on the experimental config- 241

uration. The desired eligibility criteria (y) serve 242

as a hint that guides the LLM in breaking down 243
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Statistic Train (N = 213,877) Validation (N = 26,735) Test (N = 26,735)

Interventional Observational Interventional Observational Interventional Observational

Number of Clinical Trials 168,429 45,448 20,928 5,807 21,129 5,606
Total Inclusion Criteria 838,948 137,234 103,910 17,531 103,982 16,990
Total Exclusion Criteria 1,256,242 156,298 154,896 20,470 156,212 19,000
Mean Inclusion Criteria per Trial (± SD) 4.98 ± 5.11 3.02 ± 2.85 4.97 ± 5.04 3.02 ± 2.77 4.92 ± 5.01 3.03 ± 2.99
Mean Exclusion Criteria per Trial (± SD) 7.46 ± 7.05 3.44 ± 3.68 7.40 ± 7.00 3.53 ± 3.64 7.39 ± 7.05 3.39 ± 3.61

Table 1: Statistics of clinical trials and EC. We calculate an average and a standard deviation of the number of EC
of interventional and observational trials as these study types differ in their structure, particularly in the number of
exclusion criteria.

each criterion, connecting them to evidence derived244

from retrieved studies (D) and the study informa-245

tion (X).246

The primary objective is to generate intermediate247

reasoning steps (R) that justify how each eligibility248

criterion (y) is logically constructed and justified249

based on the retrieved trials (D) and the target trial250

information (X). The process can be written as:251

D+X+ [Hint : y] → R (1)252

These intermediate steps will later be used in253

the fine-tuning steps formulated in (2). (see 3.4254

for more details). These intermediate steps allow255

the model to learn how to derive eligibility criteria256

(y) from trial information (X) and retrieved studies257

information (D).258

Including retrieved trials as part of the input pro-259

vides the LLM with domain-specific examples, of-260

fering insights into established clinical practices.261

These examples enable the model to identify pat-262

terns and infer appropriate criteria for the target263

study. However, discrepancies may arise when the264

desired EC conflict with information from the re-265

trieved trials. For instance, a retrieved trial might266

exclude patients with mild hypertension, whereas267

the target study explicitly includes them. In such268

cases, the LLM is tasked with identifying and artic-269

ulating these conflicts, justifying deviations from270

established norms.271

This conflict-resolution mechanism aims to en-272

sure that the generated eligibility criteria (ŷ) are273

likely to be both contextually relevant and aligned274

with the specific goals of the target study, even275

when they may diverge from traditional practices.276

Our experiments explore the use of models includ-277

ing Gemini-1.5-flash-002 (Gemini Team, 2024)278

and Llama-3.1-8b-instruct (Grattafiori et al.,279

2024) to synthesize intermediate steps (R).280

3.4 RAFT for Generating EC 281

RAFT in EC-RAFT enhances the model’s ability 282

to generate eligibility criteria (y) by leveraging rel- 283

evant context retrieved from clinical trial data (D). 284

Unlike traditional RAFT methods (Zhang et al., 285

2024) that classify documents as golden or distrac- 286

tors, EC-RAFT utilizes all retrieved trials holis- 287

tically to account for varying levels of relevance. 288

This ensures that the model is informed by diverse 289

clinical contexts during fine-tuning. In this step, we 290

utilized Llama-3.1-8b-instruct as a base model 291

for supervised fine-tuning. We utilize Low-Rank 292

Adaptation (LoRA) training techniques for cost ef- 293

ficiency. This fine-tuning process is structured as 294

follows: 295

D+X → R+ y (2) 296

This approach aligns the model’s training pro- 297

cess with real-world scenarios, allowing it to learn 298

directly from domain-specific documents in an 299

open-book setting (Zhang et al., 2024). By integrat- 300

ing reasoning steps (R), the model is encouraged 301

to generate both eligibility criteria (y) and output 302

logical intermediate steps generated in the section 303

above. 304

3.5 Generation of Eligibility Criteria 305

During inference, the fine-tuned model inputs the 306

target trial’s title and description (Figure 1B). It 307

retrieves relevant trials from the vector database 308

and uses the combined information to generate a 309

complete set of EC. The output includes how eli- 310

gibility criteria are derived (R̂) and the whole set 311

of predicted eligibility criteria (ŷ). Similar to the 312

fine-tuning process, we can write this as: 313

D+X → R̂+ ŷ (3) 314

We generate both the reasoning path and the 315

predicted criteria. This allows the model to produce 316

a reasoning process before predicting EC, which 317
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may improve results compared to direct inference318

(Wu et al., 2024).319

To evaluate the effectiveness of our approach, we320

compare the performance of EC-RAFT with zero-321

shot inference from Llama-3.1-8b-instruct and322

Gemini-1.5-flash. We also vary the number of323

top-N during the generation of R̂ to evaluate its324

performance across different numbers of retrieved325

documents (D).326

4 Evaluation327

Due to the challenging nature of semi-structured El-328

igibility Criteria, we employ three metrics to com-329

pare our predicted output (ŷ) with the ground truth330

(y) to measure: 1) BERTScore for overall semantic331

similarity, and 2) LLM-Guided evaluation which332

only evaluate the matched pair, Pair-BERTScore,333

identified by LLMs and utilize LLM-as-a-Judge334

to judge capability to assess clinical relevance for335

each matched pair.336

4.1 BERTScore337

We utilize BERTScore (Zhang et al., 2020) with the338

DistilBERT (uncased) (Sanh et al., 2020) model339

to assess the semantic similarity between the de-340

sired and predicted EC. BERTScore evaluates align-341

ment based on token-level matches between the342

reference and predicted criteria, weighting these343

matches by their contextual embeddings to pro-344

duce a similarity score. However, BERTScore may345

overestimate similarity due to the semi-structured346

nature of EC and may fail to distinguish logical in-347

versions between inclusion and exclusion criteria.348

4.2 LLM-Guided Evaluation349

We propose an LLM-guided evaluation pipeline to350

assess how well-generated EC aligns with their cor-351

responding reference criteria. This pipeline com-352

bines (1) Pairing-and-scoring step matching EC353

and calculating Pair-BERTScore (Section 4.2.1)354

and (2) An additional match score using an LLM-355

as-a-Judge (Section 4.2.2). Below, we provide a356

general overview of the pipeline, followed by the357

unique details of each metric.358

1. Initial Evaluation We use359

Gemini-1.5-flash-002 to identify the360

most semantically and clinically relevant361

predicted criterion for each reference criterion.362

The model matches each reference criterion363

with the most pertinent predicted criterion,364

regardless of order, ensuring that all potential365

matches are considered. This process captures 366

nuanced relationships between reference 367

and predicted EC by explicitly accounting 368

for inclusion-exclusion inversions, clinical 369

parameters, and eligibility thresholds. The 370

evaluation is generated in free-text format, 371

prioritizing matching accuracy and judgment 372

without enforcing a structured response, 373

which could hinder accuracy (Tam et al., 374

2024). The evaluation prompt is provided in 375

Figure A. 376

2. Structured Output We use watt-tool-8B’s 377

(watt-ai, 2023) structured response function- 378

ality to convert free-text evaluations into a 379

JSON schema, ensuring consistency for ac- 380

curacy calculations (Figure B). We utilized 381

watt-tool-8B due to its state-of-the-art per- 382

formance in tool-calling despite its size (Yan 383

et al., 2024). 384

4.2.1 Pair-BERTScore 385

After getting the structured pairs of inclusion and 386

exclusion, we calculate semantic similarity using 387

BERTScore (Fig 2). This process enhances evalua- 388

tion accuracy by removing any inflated scores that 389

may arise from structural similarities. Note that 390

Pair-BERTScore only accounts for the paired EC 391

but not the excess generation of predicted criteria. 392

4.2.2 LLM-as-a-Judge 393

While Pair-BERTScore measures semantic similar- 394

ity, it may fail to capture clinically significant dis- 395

tinctions between desired and predicted eligibility 396

criteria (y, ŷ). To address this, we introduce LLM- 397

as-a-Judge, which evaluates the clinical and logical 398

alignment between predicted and reference EC. For 399

each matched EC pair, Gemini-1.5-flash also as- 400

signs a clinical relevance score (0-3) based on the 401

degree of alignment, where higher scores indicate 402

more substantial clinical similarity (Figure A). We 403

calculate the mean of the judge’s score to measure 404

how well the generated EC (ŷ) align with the de- 405

sired EC (y). 406

4.2.3 Precision-Recall 407

Similar to Pair-BERTScore, the judge’s score does 408

not account for the excess EC generated. Thus, 409

we also computed precision and recall to quanti- 410

tatively measure the agreement between predicted 411

and reference EC as follows 412
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Figure 2: LLM-guided Evaluation Metrics. We align only generated EC, with corresponding reference EC and
compute precision, recall, pair-BERTScore, and judge score. Note that in the actual pipeline, we also instruct the
model to reason before evaluating each judge score (Fig. A, B)

Precision =
NM

NP
, Recall =

NM

NR
, (4)413

where NM represents the number of matched414

reference criteria with a positive match score415

(match_score > 0), NR denotes the total number416

of reference criteria, and NP is the total number of417

predicted criteria after de-duplication and filtering.418

De-duplication removes the exact predicted EC or419

a part of the same EC.420

5 Results421

5.1 Comparison with zero-shot baselines422

Using the ClinicalTrials.gov test split, we com-423

pare EC-RAFT performance against two zero-424

shot baselines: Llama-3.1-8B-Instruct and425

Gemini-1.5-flash. As shown in Table 2,426

EC-RAFT achieves a BERTScore of 86.35, 4.93427

higher than base model Llama-3.1-8B-Instruct428

and 4.17 higher than Gemini-1.5-flash which429

is a larger model (Table 2). This indicates im-430

proved overall semantic similarity between the gen-431

erated and reference eligibility criteria. Regarding432

clinical relevance, EC-RAFT with Gemini’s R ob-433

tains the highest precision and mean judge score,434

along with a superior mean Pair-BERTScore. This435

means that EC-RAFT can generate precise EC to436

the referenced EC. Although Gemini-1.5-flash437

registers a slightly higher recall, this advantage438

comes at the expense of precision—likely due439

to its tendency to generate excess criteria. On440

top of that, our model was self-improved by441

using base model Llama-3.1-8B-Instruct to 442

generate R that could match the performance 443

of Gemini-1.5-flash in some areas. Our re- 444

sults underscore the effectiveness of incorporating 445

retrieval-augmented fine-tuning with intermediate 446

reasoning steps, as it enables the model to generate 447

eligibility criteria that are both semantically and 448

clinically relevant. 449

5.2 Effect of Larger model Intermediate steps 450

Here, we want to see if reasoning steps 451

can affect the fine-tuned performance of EC- 452

RAFT. We compare two variations differing 453

in the model used to generate intermediate 454

reasoning steps (R): Llama-3.1-8B-Instruct 455

and Gemini-1.5-flash. As shown in Ta- 456

ble 2, both approaches significantly improve 457

BERTScore over the baselines, with EC-RAFT us- 458

ing Llama-3.1-8B-Instruct achieving a slightly 459

higher BERTScore than the Gemini-based variant. 460

However, EC-RAFT with Gemini-1.5-flash ex- 461

hibits superior overall performance across LLM- 462

guided evaluations, achieving the highest precision, 463

recall, mean Pair-BERTScore, and mean judge 464

score, suggesting that its generated criteria are 465

more clinically aligned. These results highlight the 466

impact of selecting a strong LLM for generating in- 467

termediate reasoning steps, reinforcing that larger 468

models like Gemini-1.5-flash can improve the 469

accuracy and clinical relevance of EC generation. 470

5.3 Effect of LoRA hyper-parameters 471

LoRA (Low-Rank Adaptation) enables efficient 472

fine-tuning by introducing trainable low-rank up- 473
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Model BERTScore ↑ LLM-guided Evaluations

Precision ↑ Recall ↑ Mean Pair-BERTScore ↑ Mean Judge Score ↑

Llama-3.1-8B-Instruct 81.42 77.16 67.63 51.95 1.3097
Gemini-1.5-flash 82.18 72.47 78.34 63.66 1.6004
EC-RAFT (R from Llama-3.1-8B-Instruct) 86.35 72.55 66.92 61.20 1.5932
EC-RAFT (R from Gemini-1.5-flash) 86.23 78.84 75.89 67.76 1.7150

Table 2: Comparison between EC-RAFT and baselines (Zero-shot)

dates. We evaluate the impact of Rank (r) and474

Scaling Factor (α) on Eligibility Criteria genera-475

tion using BERTScore and LLM-guided evalua-476

tions. Results in Table 3 show slightly better in477

BERTScore, precision, and judge score when in-478

creasing r from 64 to 128 and α from 16 to 64,479

while recall remains stable, indicating that increas-480

ing LoRA’s rank does not significantly enhance EC481

generation ŷ.482

5.4 Effect of top-N retrieval483

We evaluate EC-RAFT with different top-N set-484

tings to examine the impact of retrieved documents485

on eligibility criteria generation. We generate R486

using Llama-3.1-8B-Instruct by varying N re-487

trieved documents. Table 4 shows that increasing488

N initially improves performance. BERTScore489

peaks at top-N of 4 before stabilizing, and pre-490

cision follows a similar trend, suggesting excess491

documents may introduce noise. Recall remains492

stable with minor fluctuations, while Mean Pair-493

BERTScore and Mean Judge Score show slight494

variations. Overall, retrieving around four relevant495

documents provides modest benefits, but the over-496

all impact remains limited.497

5.5 Qualitative and Error Analysis498

We sample a clinical trial on stroke and generate EC499

using EC-RAFT and Gemini-1.5-flash (Table 5).500

We found that EC from EC-RAFT are closely501

matches the reference in age and thrombectomy502

eligibility but omits intracranial vertebral artery in-503

volvement. Meanwhile, Gemini-1.5-flash are more504

restrictive, requiring prior endovascular therapy505

and a strict 90-day follow-up. It also excludes506

patients with a history of stroke/TIA and severe507

co-morbidities, further reducing eligibility.508

Overall, EC-RAFT tracks the reference more509

closely, while Gemini-1.5-Flash generates a more510

lengthy EC, having higher recall but lower preci-511

sion. This highlights the trade-off between preci-512

sion and recall in automated EC generation.513

6 Conclusion 514

In this work, we introduced EC-RAFT, a frame- 515

work that leverages retrieval-augmented fine-tuning 516

and synthesized intermediate reasoning to auto- 517

mate the generation of clinical trial eligibility cri- 518

teria. EC-RAFT generates structured, robust, and 519

clinically relevant eligibility criteria directly from 520

trial descriptions. Our experiments on a large- 521

scale ClinicalTrials.gov dataset demonstrate that 522

EC-RAFT outperforms zero-shot baselines despite 523

being much smaller in model size, achieving higher 524

BERTScores and clinical alignment as evidenced 525

by LLM-guided evaluations. Notably, incorporat- 526

ing intermediate reasoning—proves instrumental 527

in enhancing both the precision and overall quality 528

of the output. While challenges remain, EC-RAFT 529

represents a significant step towards automating 530

the complex process of clinical trial design. Future 531

work will refine the intermediate steps generation 532

process and scale up model size and compute for 533

better performance. 534

Limitations 535

While EC-RAFT demonstrates promising results 536

in automated EC generation, several limitations 537

should be acknowledged. First, our approach relies 538

on LLMs, which can produce plausible but inac- 539

curate or inconsistent criteria that require human 540

expert validation. Second, training data comes pri- 541

marily from public clinical trial registries, which 542

may not fully represent the diversity of trial designs 543

or specialized medical domains. Third, our evalu- 544

ation metrics (BERTScore and LLM-as-a-Judge) 545

provide computational approximations of gener- 546

ated EC but may not fully capture clinical rele- 547

vance or practical applicability. Specifically, the 548

latter may suffer from inconsistent responses and 549

bias. The performance may vary between differ- 550

ent medical specialties and trial types, particularly 551

for rare diseases or novel therapeutic approaches 552

where training data are limited. Future work should 553

address these limitations through expanded train- 554
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Model BERTScore ↑ LLM-guided Evaluations

Precision ↑ Recall ↑ Mean Judge Score ↑ Mean Pair-BERTScore ↑

EC-RAFT (r = 64, α = 16) 86.1712 70.69 67.76 1.6039 61.73
EC-RAFT (r = 128, α = 64) 86.2426 71.08 67.70 1.6046 61.76

Table 3: Comparison between different LoRA configuration (Rank r and Alpha α) with top-N = 2

Top-N BERTScore ↑ LLM-guided Evaluations

Precision ↑ Recall ↑ Mean Pair-BERTScore ↑ Mean Judge Score ↑

1 0.861739 70.73 67.70 61.69 1.6003
2 0.861712 70.67 67.76 61.76 1.6039
3 0.863107 72.05 66.82 61.10 1.5897
4 0.863507 72.55 66.92 61.21 1.5932
5 0.863454 72.47 67.12 61.37 1.5981

Table 4: Comparison of different top-N configurations for EC-RAFT

Multicentre ObseRvational Study in Posterior mecHanical thrombEctomy: conscioUs Sedation vs
General aneSthesia: MORPHEUS STROKE REGISTRY (NCT05082896)

Reference Criteria
Inclusion Criteria:
- Subject aged ≥ 18 years
- Evidence of posterior arterial
occlusion
- Patients eligible for mechanical
thrombectomy

Exclusion Criteria:
- Patient’s refusal to participate
- Arterial recanalization prior to
endovascular thrombectomy

Sex: ALL
Ages:
- Minimum Age: 18 Years
- Age Group (Child: birth-17, Adult:
18-64, Older Adult: 65+):
OLDER_ADULT, ADULT
Accepts Healthy Volunteers: No

EC-RAFT
Inclusion Criteria:
- Age ≥ 18 years
- Acute ischemic stroke with occlusion
of the basilar artery
or P1 segment of the posterior cerebral
artery
- Treatment with endovascular therapy
- Treatment initiation within 24 hours
after stroke onset
- Informed consent from patient or le-
gal representative

Exclusion Criteria:
- Pre-existing conditions with signifi-
cant impact on functional outcome
(pre-stroke mRS > 1)
- Intracranial hemorrhage
- Pregnancy
- Participation in other clinical trials

Sex: ALL
Ages:
- Minimum Age: 18 Years
- Age Group: OLDER_ADULT,
ADULT
Accepts Healthy Volunteers: No

Gemini-1.5-flash
Inclusion Criteria:
- Confirmed diagnosis of ischemic
stroke due to posterior circulation
large vessel occlusion (PC LVO)
demonstrated by imaging (CTA or
MRA).
- Underwent endovascular therapy
(EVT) for the PC LVO.
- Received either conscious sedation
OR general anesthesia during EVT.
- Able to complete at least 90 days of
follow-up.
- Provided informed consent to partici-
pate in the study.

Exclusion Criteria:
- Contraindications to endovascular
therapy (EVT).
- Ischemic stroke not due to PC LVO
(e.g., anterior circulation stroke).
- Hemorrhagic stroke.
- Incomplete follow-up data at 90 days
post-EVT.
- History of previous stroke or Tran-
sient Ischemic Attack (TIA).
- Severe co-morbidities that may con-
found outcome assessment.

Sex: ALL
Ages:
- Minimum Age: 18 Years
- Maximum Age: 90 Years
- Age Group: ADULT,
OLDER_ADULT
Accepts Healthy Volunteers: No

Table 5: Comparison of NCT05082896’s Eligibility Criteria: Reference, EC-RAFT, and Gemini-1.5-flash

ing datasets, domain-specific fine-tuning, and more555

rigorous clinical validation processes.556
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The adapted framework categorizes EC similarity666

into four levels:667

• Clinical relevance 3 → Clinically identical668

ECs.669

• Clinical relevance 2 → Strongly relevant due670

to factors like disease progression or epidemi-671

ology.672

• Clinical relevance 1 → Loosely relevant due673

to general treatment plans, disease progres-674

sion, or epidemiological factors.675

• Clinical relevance 0 → Irrelevant from a clini-676

cal perspective.677

The actual prompt can be found in figure A. The678

matched EC pairs and their scores can be found in679

figure B.680

A.2 LLM-guided Evaluation JSON Schema681

After the initial evaluation, we utilize682

watt-tool-8B to convert the free-text evaluation683

into a structured JSON format for quantitative684

analysis in Section 4.2. Since each reference685

criterion can match multiple predicted criteria, the686

predicted values are stored as a list of strings to687

accommodate the one-to-many relationship.688

A.3 Implementation Details & Computational689

Cost690

Our default LoRA configuration includes a Rank691

of 64, α of 16, and dropout of 0.1, except in section692

5.3. We train on four NVIDIA A100 GPUs, requir-693

ing 192 to 470 GPU-hours per model, depending on694

the top-N value, totaling around 2,200 GPU-hours695

across this paper. Our best-performing model is696

trained in 380 hours, costing approximately 452.20697

USD at a market rate of 1.19 USD per GPU-hour.698

LLM-guided Evaluation Prompt

Please evaluate the clinical relevance of the following two
eligibility criteria on a 4-point scale (0–3). Below is an
example of a clinical situation by clinical relevance score
and the corresponding EC pair.
Clinical relevance 3: The two eligibility criteria are es-
sentially identical clinically.
Examples:

• EC1: "[exclusion] serum albumin is 2.4 g/dL or
less"
EC2: "[inclusion] serum albumin is 2.4 g/dL or
more"

• EC1: "Minimum Age : 18 Years"
EC2: "Minimum Age : 18 Years"

Clinical relevance 2: The two eligibility criteria have
strong relevance due to factors such as disease progression
or epidemiology.
Example: ...omitted for brevity...
...omitted for brevity...
Evaluation Process
For each reference criterion, compare it to the relevant
predicted criteria. If no relevant predicted criterion exists,
state this explicitly. The evaluation process is as follows:

1. Recite the reference exact criterion and state explic-
itly if it is from [inclusion] or [exclusion].

2. Search the predicted criteria list to identify the
relevant matches, regardless of order (comma-
separated), and explicitly state which part of the
predicted criteria each match comes from ([inclu-
sion], [exclusion], [age], [sex], [accepts healthy vol-
unteers]).

3. Recite the reference Sex, Ages, and Accepts
Healthy Volunteers one at a time and compare
them with the relevant predicted values.

4. Provide a reason explaining how the criteria match
or differ.

5. Assign a match score (0–3) based on the clinical
relevance of the predicted criterion to the reference
criterion.

6. If no predicted criterion matches the reference, state
that explicitly and assign a score of 0.

At the end of the evaluation, please provide:

• Unmatched Predicted Criteria:

– Unmatched Predicted Inclusion Criteria:
List all predicted inclusion criteria that were
not matched to any reference criteria (rel-
evance score = 0). No explanation is
needed—just list them (comma-separated).

– Unmatched Predicted Exclusion Criteria:
List all predicted exclusion criteria ...Same
as before, omitted for brevity...

Figure A: LLM-guided Evaluation Prompt
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LLM-guided Evaluation JSON Schema

{
"inclusion_criteria": [

{
"reference": "criteria",
"predicted": ["match"],
"reason": "explanation",
"match_score": 3

}
],
"exclusion_criteria": [

{
"reference": "criteria",
"predicted": ["match"],
"reason": "explanation",
"match_score": 2

}
],
"sex": {

"reference": "value",
"predicted": [""],
"reason": "explanation",
"match_score": 0

},
"age": {

"reference": "value",
"predicted": ["match"],
"reason": "explanation",
"match_score": 2

},
"accept_healthy_volunteer": {

"reference": "value",
"predicted": ["match"],
"reason": "explanation",
"match_score": 1

},
"unmatched_predicted_criteria": {

"unmatched_predicted_inclusion
_criteria": ["unmatched"],
"unmatched_predicted_exclusion
_criteria": ["unmatched"]

}
}

Figure B: JSON Schema parsed from free-text judge
response:
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