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ABSTRACT

Pretrained Large Language Models (LLMs) require post-training methods such
as supervised fine-tuning (SFT) on instruction-response pairs to enable instruc-
tion following. However, this process can potentially harm existing capabilities
learned during pretraining. In this paper, we investigate the loss of context aware-
ness after SFT, defined as the capability to extract and understand information
from the user-provided context and respond accordingly. We are the first to iden-
tify and show that the loss of context-awareness appears on instruction-finetuned
LLMs when the chat template is applied to the input prompts. We identify the per-
formance decline is partially caused by the bias embedded into the chat template to
focus less on the user-provided context. Based on these observations, we propose
two methods to mitigate the loss of context awareness in instruct models: post-
hoc attention steering on user tokens and conditional instruction fine-tuning with
a context-dependency indicator. Empirical experiments on 4 context-dependent
downstream tasks and 3 pretrained LLMs of different sizes show that our meth-
ods effectively mitigates the loss of context awareness without compromising the
general ability to follow instructions. Our findings also strongly advocate the ne-
cessity to carefully benchmark context awareness after instruction fine-tuning.

1 INTRODUCTION

Large Language Models (LLMs) pretrained on large-scale datasets acquire a diverse set of language
modeling capabilities in pretraining. To enhance these models’ ability to follow general instructions,
further fine-tuning is typically required such as supervised instruction fine-tuning (SFT) (Wei et al.,
2021; Ouyang et al., 2022) and reinforcement learning from human feedback (RLHF) (Christiano
et al., 2017) to better understand and respond to human requests. However, the additional fine-tuning
can potentially harm existing capabilities learned in pretraining, as pointed out by several existing
works (Lin et al., 2024; Bai et al., 2022; Fu et al., 2024).

In this paper, we particularly investigate the loss of context-awareness after instruction fine-tuning,
which is the capability to understand and retrieve exact information from the user-provided context
and respond accordingly. Context awareness is crucial for many real-world use cases, including
retrieval augmented generalization (RAG) (Khandelwal et al., 2020; Izacard et al., 2023; Xu et al.,
2023b), in-context learning (Agarwal et al., 2024), and contextual question-answering (QA) (Ra-
jpurkar et al., 2016; Choi et al., 2018; Dua et al., 2019). We first illustrate the loss of context aware-
ness in Figure 2 with the Needle-in-a-Haystack test on four popular instruction-tuned models. We
demonstrate that the performance degradation is consistent on both long-context and relatively short-
context LLMs, which cannot be solely explained by the distribution difference in context lengths
between the instruction dataset and the evaluation benchmarks, as suggested by prior works (Dubey
et al., 2024).

We identify that the bias embedded within the chat template to focus less on the user tokens is a
major cause of context-awareness degradation. Normal instruction fine-tuning dataset contains a
mixture of both model-dependent and context-dependent queries. The former consists of queries
the model can respond to relying mostly on its internal knowledge learned during pretraining. On
the other hand, responding to the second type of query requires exact information retrieval and
processing from the user-provided context in the input prompt, such as in-context learning, long-
form instruction-following, and contextual QA tasks. However, a query accompanied by a context

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

can still be a model-dependent query as the model may have learned the context during pretraining,
and is able to respond without relying on the user given context. Therefore, it is challenging for
the model to differentiate between these two type of queries from the prompt only, and incorrect
identification could lead to hallucination or being over-reliant on user-provided context

We validate the bias embedded in chat templates with the Needle-In-a-Haystack test (NIH) (Kam-
radt, 2023), which requires a model to retrieve a given text “needle” from a long paragraph of
irrelevant text. Our experiments show that the needle retrieval performance drops on instruction-
finetuned models only when the chat template is applied to the input, which is however crucial for
the model to distinguish different roles in conversations. We further show that the performance drop
can be attributed to the drop in attention value allocated to the whole user input section. There-
fore, the context retrieval capability is not lost in the model, but “inhibited” by the chat-formatted
fine-tuning.

Based on these observations, a straightforward approach is to directly steer the attention value during
inference time to emphasize the user inputs on instruction-tuned models. This can be achieved by
manually intervening attention scores of the user context tokens during generation. Experiments
show that while performance on simple retrieval tasks can be significantly boosted by attention
steering, manipulating the attention value in the inference stage can harm other capabilities of the
model, deteriorating performance on more complex tasks.

To further improve upon the undesirable trade-off of post-hoc techniques, we are motivated to steer
the attention allocation in the fine-tuning stage. To achieve this goal, we identify context-dependent
conversations before fine-tuning and add a special token to the prompt as a hint to the model. The
special token can then be added at inference time when more attention is demanded to be allocated
to the user-provided context. Empirical experiments show the effectiveness of our method on several
open-source, pretrained LLMs and instruction fine-tuning datasets.

Our contributions are summarized as follows:

• We identify that supervised instruction fine-tuning causes pretrained language models to
deteriorate in context awareness (even for short context lengths).

• We pinpoint the worsened context awareness is associated with attention allocation bias
embedded within the chat template.

• We propose an inference-time technique to partially recover the context-awareness of gen-
eral instruction-tuned language models by manually intervening attention scores.

• We propose a training-time technique utilizing conditional indicators to mitigate the loss of
context awareness of pretrained language models during instruction-tuning.

2 RELATED WORK

Instruction fine-tuning and chat templates. Large language models only learn language model-
ing on general corpus during pretraining. To enable instruction-following, they usually require su-
pervised fine-tuning on instruction-following datasets (SFT) (Wei et al., 2021; Ouyang et al., 2022),
followed by reinforcement learning with human feedback (RLHF) (Christiano et al., 2017). In this
paper, we mainly focus on the SFT stage. Instruction fine-tuning datasets consist of user instruc-
tion and target model response pairs, which can be collected from modified NLP tasks (Wei et al.,
2021; Longpre et al., 2023), human annotations (Ouyang et al., 2022; Chiang et al., 2023) or synthe-
sized data from existing LLMs (Ding et al., 2023; Xu et al., 2023a). Instruction fine-tuning usually
converts training examples into a dialog format with a chat template, which consists of a user role
indicator (e.g. [INST] in llama-2 models), an assistant role indicator (e.g. [/INST] in llama-2
models) and an optional system role indicator (e.g. <<SYS>> in llama-2 models). Other role indi-
cators are also used in more complicated scenarios such as tool using (Schick et al., 2023). However,
these role indicators and role partition in the conversation are not sufficiently presented and learned
during pretraining, making them prone to bias during fine-tuning.

Evaluation and improvement of context-awareness The capability to retrieve and understand
information from the context and respond accordingly is important for many tasks including in-
context learning (Agarwal et al., 2024; Brown et al., 2020), retrieval augmented generation (Lewis
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et al., 2020) and contextual QA (Dua et al., 2019; Rajpurkar et al., 2016; Choi et al., 2018). These
tasks are commonly included in standard evaluation benchmarks of recent LLMs. To improve the
performances on context-dependent tasks, a common practice is to collect or synthesize context-
dependent data, especially contextual QA data, and mix them into the fine-tuning dataset (An et al.,
2024; Dubey et al., 2024). Apart from adding more data, Hsieh et al. (2024) also explores cali-
brating the attention weights to compensate for the drop of attention weight in the middle of a long
context. However, to date, limited existing works have examined how chat templates affect context-
awareness when fine-tuning language models on conversational instruction-following data. The
most relevant conclusion from existing works is mentioned by Dubey et al. (2024) that long-context
capabilities learned during pretraining drops significantly after SFT. However, they only attribute
this performance decline to a lack of long-context data in SFT stage.

Conditional Supervised Fine-Tuning Conditional Supervised Fine-Tuning (CSFT) involves fine-
tuning a pretrained model on specific tasks while conditioning on additional information or context.
The conditions represent specific attributes or styles of the demonstration response and are concate-
nated to the original input as prefixes. The model is expected to associate the condition prefix with
the style or attribute such that whenever the condition prefix is added, the model generates responses
accordingly. Dong et al. (2023) proposes SteerLM, where they applied CSFT to align models with
human values (e.g. helpfulness, humor, and creativity) by conditioning the model on attribute pre-
fixes. Korbak et al. (2023) adds two control tokens as indicators for good and bad demonstration
responses. As opposed to attribute tags or control tokens, Chain of Hindsight (Liu et al., 2023)
conditions demonstration responses on natural language comments on the quality or styling of the
response.

3 LOSS OF CONTEXT-AWARENESS EMBEDDED IN CHAT TEMPLATES

3.1 LOSS OF CONTEXT-AWARENESS IN NEEDLE-IN-A-HAYSTACK (NIH) TEST

>2SWLRQDO�8VHU�WHPSODWH@�<RX�DUH�D�KHOSIXO�$,�DVVLVWDQW�WKDW�DQVZHUV�D�TXHVWLRQ�XVLQJ�RQO\�
WKH�SURYLGHG�GRFXPHQW�
²-XO\�����:KDW�KDUG�OLTXRU��FLJDUHWWHV��KHURLQ��DQG�FUDFN�KDYH�LQ�FRPPRQ�LV�WKDW�WKH\
UH�

DOO�PRUH�FRQFHQWUDWHG�IRUPV�RI�OHVV�DGGLFWLYH�SUHGHFHVVRUV��7KH�EHVW�WKLQJ�WR�GR�LQ�6DQ�

)UDQFLVFR�LV�HDW�D�VDQGZLFK�DQG�VLW�LQ�'RORUHV�3DUN�RQ�D�VXQQ\�GD\��0RVW�LI�QRW�DOO�WKH�

WKLQJV�ZH�GHVFULEH�DV�DGGLFWLYH�DUH�³

4XHVWLRQ�

:KDW�LV�WKH�EHVW�WKLQJ�WR�GR�LQ�6DQ�)UDQFLVFR"

>2SWLRQDO�$VVLVWDQW�WHPSODWH@�7KH�EHVW�WKLQJ�WR�GR�LQ�6DQ�)UDQFLVFR�LV

,QSXW�SURPSW

HDW�D�VDQGZLFK�DQG�VLW�LQ�'RORUHV�3DUN�RQ�WKH�VXQQ\�GD\
7DUJHW�RXWSXW

Figure 1: An example of the Needle-in-a-haystack (NIH) test used in our work. [Optional User
template] and [Optional Assistant template] are user and assistant role indicators used in instruction
finetuned models. The inserted needle is highlighted in yellow.

In this section, we show the loss of context awareness after instruction fine-tuning with the needle-
in-a-haystack (NIH) test.

Experimental settings. NIH evaluates the performance of language models to extract a given
sentence (the needle) from an irrelevant context. The needle can be inserted at different locations in
contexts with different lengths. We report the recall error:

err =
1

|K|
∑
w∈K

1(w ∈ output)

where K is the set of keywords in the targeted output and output is the output of the LLM. We
average the recall error across 400 NIH tests with different insertion locations and context lengths
within the model’s context window. More details about the NIH tests can be found in Appendix A.2.
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Figure 2: Average recall error (1 - recall) on NIH for different model series. We report the per-
formance of official instruct models (with and without chat templates) and their corresponding pre-
trained models from 5 model families with sizes ranging from 7B to 27B. Recall errors for some
models are too small to be visible from the figure. Detailed numerical values can be found in Ap-
pendix B.1

We evaluate the results on four open-source pretrained language models (not instruction-tuned) and
their corresponding instruction-finetuned versions from Llama and Mistral series. Here we don’t
consider stronger close-source models as their pretrained versions are not available. The context
window lengths of these models range from 4,096 to 32,768. We show a typical NIH prompt used
in our experiments in Figure 1. When the chat template is applied to the prompt, the whole input
prompt is partitioned into the user instruction input and model response, indicated by special role
markers in the chat template (e.g. <|user|> and <|assistant|>). These chat templates are
learned only in the instruction fine-tuning data, to teach the model to perform dialog conversation in
response to the user instructions.

Results. We report the results in Figure 2. As we can see from the figure, the recall error increases
significantly on instruction finetuned models when the chat template is added. When the chat tem-
plate is removed, the recall error on the instruction-tuned model is comparable to or even better than
pretrained models. These results indicate that the context retrieval capabilities are not wiped away
in the model during instruction fine-tuning, but instead impacted by the bias embedded in the chat
templates. However, simply removing the chat templates is not practical as they are necessary for
the model to distinguish different roles in conversations. Therefore, we are motivated to recover
the context-awareness of instruction-finetuned models by mitigating the negative impacts of chat
templates on context-dependent tasks.

Moreover, the aforementioned phenomenon is consistent among models with different context win-
dow lengths, different model families and chat templates, and model sizes. In the remaining sections,
we will focus on the context awareness of relatively short-context LLMs.

3.2 ATTENTION ALLOCATION BIAS FROM CHAT TEMPLATES

Based on the observation that the performance on NIH only drops when the chat template is present,
we hypothesize that the chat templates, which are newly introduced in instruction fine-tuning, may
encode bias to downweight the importance of user inputs when generating responses.

The distribution of the dataset adopted for pretraining and instruction-tuning is fundamentally dif-
ferent. In the pretraining stage, the model is trained on general-domain texts where all tokens are
equally important in the context. However, during instruction fine-tuning, the model learns to distin-
guish between user input and its responses through chat templates. This user and model partition is
not predominantly present in the pretraining corpus, and therefore difficult for the model to benefit
from pretraining to learn a generalizable mapping. As a result, the model may tend to memorize
the global bias to attend less on the user input if the instruction finetuning dataset is dominated by
queries that do not require exact information retrieval.

To validate our hypothesis above, we visualize the attention allocated to each part of the model
input in the NIH test, with and without the chat template. An input to an instruction-finetuned LLM
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Figure 3: We visualize the changes in attention allocation on user tokens and assistant tokens after
applying the chat templates. The attention allocation is calculated when the model is generating the
first answer token in its response. For the case where the chat template is applied, we normalize
the attention value on user tokens, assistant tokens, and the BOS token such that attention scores
allocated to the three sums up to 1. The attention weight is averaged on 400 tests with context
lengths ranging from 200 to 4000 and needle depth from 0% to 100%. Details for absolute attention
scores allocated to each parts can be found in Appendix B.2.

can be divided into four parts: chat template, including role indicators used to separate user inputs
and model response; special tokens, specifically the BOS token denoting the beginning of the text;
user input and model response prefix. We calculate and visualize the changes of attention weight
allocation on 6 models from 5 model families in Figure 3. Specifically, we calculate the attention
weight from the last token before the answer token, which denotes the word “is” in Figure 1, to other
tokens in the input prefix. We calculate the attention weight allocation on the most representative
head for context retrieval, which is the head with the highest attention weight on the user input.
From the figure, we can see a clear trend that the attention weight allocated to user tokens decreases
when the chat template is added and attention allocated to assistant tokens increases.

The decreased attention weight allocated to user input context implies the model is relying more on
its knowledge when generating the next token. For queries that require information retrieval from
the user-provided context, the probability of hallucination also increases.

4 MITIGATING THE LOSS OF CONTEXT-AWARENESS

In the previous sections, we have established that the loss of context awareness to the user input is
apparent when the chat template is applied and is directly reflected in the attention allocated. The
next step is to mitigate this loss. The first straightforward approach is to directly intervene and
increase the attention weight allocated to the user input to compensate for the attention allocation
impacted by the chat template. We call this attention steering in this paper, which can be generally
performed at inference time, regardless of how the model is fine-tuned. However, since the attention
layers encode additional information beyond merely context dependency, manipulating the attention
weights (especially with a larger magnitude) may also introduce unintended artifacts.

Therefore, in the second method, we want to encourage the model to focus more on the user input
during training for context-dependent queries. Recall from Section 1 that both model-dependent
and context-dependent queries can have context provided in the input, the model is unable to reliably
distinguish between these two types of queries from the input prompts only. Therefore, we propose a
metric to identify context-dependent queries with a seed LLM. We then explicitly inform the model
of when to attend more to the user-provided context by appending an indicator token to the selected
subset of context-dependent instructions during fine-tuning.
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4.1 POST-HOC ATTENTION STEERING ON USER INPUT

In this section, we explain in detail how to increase the attention allocation level on the user input
with post hoc modification to the attention weight during model inference.

Specifically, on each transformer layer, we modify the self-attention weight:

Âtt(x,y) =
{

1
Z · Att(x,y) if y ∈ U
1
Z · αAtt(x,y) otherwise,

(1)

where x and y are two tokens in the input sequence, 0 < α < 1, U is the subset of user input tokens
intended to emphasize, and Z is the normalization constant.

We adopt the same implementation of attention steering as Zhang et al. (2024b). They steered the
attention of pretrained language models to emphasize a user-specified portion of the user instruction,
enabling models to follow user instructions without explicit instruction fine-tuning. In our setting,
we up-weight the attention of instruction fine-tuned models on the whole user input prompt which
consequently down-weights other tokens (chat template role tokens, BOS/EOS tokens, and partially
generated model responses).

Although post hoc attention steering to improve context-awareness can be generally applied during
inference time after a language model has been instruction fine-tuned, it negatively impacts other
capabilities of the model that also depend on the attention score. This is a fundamental constraint of
post-hoc model editing techniques, as components within a language model simultaneously provide
multiple different functions. The trade-off of compromising the performance of other functions lim-
its the magnitude of steering, which in turn limits the effectiveness of improving context awareness.

In the next section, we propose a training-stage method to train a model to better respond to context-
dependent queries with an indicator token optionally provided by the user.

4.2 INSTRUCTION FINE-TUNING WITH CONTEXT-DEPENDENCY INDICATORS

Instead of post-hoc attention steering which introduces negative side effects, it is more desirable to
directly control the attention during the fine-tuning process. Our goal is to nudge the model during
training to teach the model to pay more attention to the user input when an indicator is appended to
the user instruction by the user.

Specifically, we process the instruction fine-tuning examples such that responses that demand more
attention on user instruction context are prepended with a special indicator token in its corresponding
user instruction. Thus, after training whenever this indicator token is added and the model generation
is conditioned on this token, the model will attend more to the user-provided context.

4.2.1 IDENTIFYING CONTEXT-DEPENDENT EXAMPLES

We first introduce a metric to identify context-dependent training examples from a general instruc-
tion fine-tuning dataset. A training sample in the instruction fine-tuning dataset is a conversation
between the user and model assistant, which may consist of multiple turns of instruction and re-
sponse pairs. For a sample with n turns of instructions and responses, a maximum of n indicator
tokens can be prepended in front of each of the responses to indicate this particular turn of response
demands significant user instruction as context.

Let us denote user instructions as X , assistant responses as Y , and a conversation of n total turns
as C = [X1, Y1, . . . , Xn, Yn]. We start by preparing a seed instruction-finetuned model M , which
can be the same or a weaker pretrained model fine-tuned with the original instruction fine-tuning
dataset. We then define the context-dependency score for the mth turn response Ym as follows

sM (Ym) =
1

|Ym|
∑

y∈Ym

max
h∈H

(
∑

x∈X1∪...∪Xm

Atth(y,x)), (2)

where H is the set of attention heads in model M . As different heads learn different capabilities,
we keep the max user attention weight across all heads to select the most representative head for
attention allocation on the user input. The final score measures the sum of attention scores allocated
to all user instructions in prior turns X1 ∪ . . . ∪ Xm, averaged over response tokens y ∈ Ym. In
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Datasets Avg. conversation length # conversations # instructions # instructions in Ŝ

ShareGPT 1,567.68 93,645 331,722 38,542
UltraChat-200k 1,437.33 207,865 657,794 108,646
WizardLM-70K 484.00 57,523 57,523 12,938

Table 1: Statistics of instruction fine-tuning datasets in our experiments. # denotes the number of
conversations and individual instructions in the dataset. We report the statistics after performing
preprocessing as detailed in Section 5.1.2. Average length is measured in the number of tokens with
TinyLlama tokenization. Ŝ is the selected subset of context-dependent conversation turns.

practice, we compute the score on a single middle layer for efficiency. We defer the discussion on
layer selection to the Appendix B.3.

4.2.2 INSTRUCTION FINE-TUNING WITH CONTEXT-DEPENDENCY INDICATORS

With the context-dependency scores calculated for each model response in the instruction fine-tuning
dataset, a threshold 0 < β < 1 can then be selected such that each conversation turn (Xm,Ym)

with sM (Ym) > β is considered highly context-dependent and added into the subset Ŝ.

For each conversation turn (Xm,Ym) ∈ Ŝ, we append a special token [IND] to the user instruction
Xm. In our implementation, the special token [IND] is added as an additional special token to the
vocabulary to avoid conflicting with existing ones. The modified subset Ŝ is then reincorporated into
the instruction fine-tuning dataset as the final training data. Our method is more general in terms of
the task and input format compared to related works, which synthesize context-relevant examples
targeted toward specific tasks (e.g. contextual QA). This makes our method more applicable to
different types of user queries that require more attention to the user-provided context.

5 EXPERIMENTS

We compare our method to vanilla instruction-tuning to demonstrate the efficacy of mitigating loss
of context awareness. We instruction-finetuned 3 open-source, pretrained models on 3 different
instruction datasets and evaluated the models on both context-dependency and general instruction-
following tasks.

5.1 EXPERIMENTAL SETTINGS

5.1.1 MODELS

We consider 3 open-source, pretrained large language models in our experiments: TinyLlama-1.1B
(Zhang et al., 2024a), Llama-2-7B (Touvron et al., 2023), and Llama-3-8B (Dubey et al., 2024).
TinyLlama-1.1B is a 1.1B Llama model pretrained on 3 trillion tokens with a context window length
of 2048. Llama-2-7B and Llama-3-8B have a context window of 4096 and 8192 tokens, respectively.
Due to limited computational resources, we only include Llama-2-7B and Llama-3-8B in our exper-
iments and truncate the training examples up to 4096 tokens. We fine-tune Llama-2 and Llama-3
models using QLoRA (Dettmers et al., 2024) on transformer layers. Detailed hyperparameters can
be found in Appendix A.1.1.

5.1.2 INSTRUCTION FINE-TUNING DATASETS

We include 3 open-source instruction fine-tuning datasets: ShareGPT datasets adopted by Vicuna
(Chiang et al., 2023), UltraChat-200k (Ding et al., 2023), and WizardLM-70K (Xu et al., 2023a).
For ShareGPT, we follow the same preprocessing process as Chiang et al. (2023). We also removed
refusal responses in ShareGPT and WizardLM-70K as the fine-tuned models will become oversen-
sitive otherwise.

For all 3 datasets, we removed model responses without user input instructions in incomplete con-
versation chunks. Statistics of the processed datasets are presented in Table 1.
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5.1.3 BENCHMARKS AND METRICS

SFT Dataset Model Name α NIH SQuAD QuAC DROP

ShareGPT (Vicuna)

TinyLlama
1.0 0.9846 0.5918 0.1130 0.2739
0.9 1.0 0.5972 0.1140 0.2781
0.8 0.4661 0.3657 0.0810 0.2539

Llama-2
1.0 0.3378 0.7601 0.1590 0.3390
0.9 0.4018 0.7920 0.1740 0.3309
0.8 0.2686 0.7699 0.1670 0.3353

Llama-3
1.0 0.8957 0.8216 0.1560 0.4215
0.9 0.91 0.8307 0.1650 0.4110
0.8 0.5975 0.5363 0.0650 0.2057

UltraChat-200K

TinyLlama
1.0 1.0 0.7475 0.1570 0.3096
0.9 1.0 0.7408 0.1590 0.3016
0.8 0.8368 0.6243 0.1400 0.2801

Llama-2
1.0 0.9850 0.8272 0.1540 0.3791
0.9 0.9429 0.8529 0.1700 0.3774
0.8 0.3303 0.7739 0.1180 0.2261

Llama-3
1.0 1.0 0.8393 0.1610 0.5099
0.9 1.0 0.8604 0.1720 0.4952
0.8 0.9182 0.7095 0.1450 0.2801

WizardLM-70K

TinyLlama
1.0 0.9250 0.5994 0.0990 0.2753
0.9 1.0 0.5878 0.1040 0.2697
0.8 0.6132 0.4624 0.0510 0.2484

Llama-2
1.0 0.7375 0.8229 0.1550 0.3407
0.9 0.8264 0.8430 0.1820 0.3360
0.8 0.5621 0.8144 0.1850 0.3326

Llama-3
1.0 0.9846 0.8765 0.1560 0.4687
0.9 0.9700 0.8851 0.1650 0.4203
0.8 0.9625 0.7173 0.1050 0.3042

Table 2: NIH and reading comprehension performances with different attention intervention factors.

Benchmarks on context-awareness In addition to NIH, we additionally include 3 closed-book
QA tasks to benchmark context awareness: SQuAD (Rajpurkar et al., 2016), QuAC (Choi et al.,
2018) and DROP (Dua et al., 2019).

SQuAD is a reading comprehension benchmark where the answer to each question can be found in
the context. We only evaluate the answerable subset of questions in SQuAD 1.0. QuAC is similar
to SQuAD but the questions are more open-ended and the answers contain a longer span in the
context. We only evaluate the model on the first conversation round of QuAC, since WizardLM-
70K is a single-round conversational dataset. DROP requires a more comprehensive understanding
and analysis of the given context and the answers require retrieval of multiple information from
the context and discrete operations such as addition, sorting, or counting. As instruction fine-tuned
models are not specifically trained on QA tasks to provide concise answers, the models’ responses
are generally more verbose. Therefore, we report the containing score (whether the model response
contains the ground-truth answer) instead of the F1 score to exclude the impacts of response styles
of different models. Prompt templates for QA tasks are listed in Appendix A.3.

For Needle-in-a-haystack, we report the recall error as defined in Section 3.1. We set the maximum
NIH context length to 1k for models fine-tuned on WizardLM-70K, due to the shorter instructions
in the dataset. For models fine-tuned on ShareGPT and UltraChat-200k, we set the maximum NIH
context length to the maximum context window considered in finetuning, which is 2k for TinyLlama
and 4k for Llama-2 / Llama-3. The prompt template used in NIH is the same as Section 3.1 except
that we remove the response prefix and keeps only the user input prompt.
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Benchmark on general instruction-following We evaluate the general instruction-following per-
formance after instruction fine-tuning on MT-Bench (Zheng et al., 2023). The quality ratings of
the responses are judged by a GPT-4 judge regarding the helpfulness, relevance, accuracy, depth,
creativity, and level of detail of the response. We report the average rating across 80 responses.

5.2 ATTENTION STEERING ON USER INPUT

We report the performance of direct attention steering in Table 2. According to the results, a medium
intervention factor α can boost the performance of NIH and most QA tasks except DROP. DROP is
a more challenging closed-book QA dataset that requires additional operations or calculations based
on information retrieved from the context. The worsening performance on DROP suggests that
intervening attention scores, albeit improving context awareness, might hurt other capabilities of the
model. For general instruction-following tasks that does not require heavy context-dependency, the
user can choose to turn off the attention steering, and keep the same performance on general tasks.

5.3 INSTRUCTION FINE-TUNING WITH CONTEXT-DEPENDENCY INDICATORS

SFT dataset Pretrained Model Method NIH SQuAD QuAC DROP Avg. MT-Bench

ShareGPT (Vicuna)

TinyLlama-1.1B Vanilla 0.9846 0.5918 0.1130 0.2739 0.4908 3.7250
+ Indicator 0.9921 0.6144 0.1290 0.2784 0.5035 3.8250

Llama-2-7b Vanilla 0.3378 0.7601 0.1590 0.3390 0.3990 6.4875
+ Indicator 0.7007 0.7830 0.1600 0.3390 0.4957 5.7375

Llama-3-8b Vanilla 0.8957 0.8216 0.1560 0.4215 0.5737 7.4375
+ Indicator 0.9404 0.8394 0.1660 0.4317 0.5943 7.1875

UltraChat-200K

TinyLlama-1.1B Vanilla 1.0 0.7289 0.1520 0.3096 0.5476 3.9000
+ Indicator 1.0 0.7475 0.1570 0.3096 0.5535 4.0250

Llama-2-7b Vanilla 0.9850 0.8272 0.1540 0.3791 0.5863 5.7125
+ Indicator 0.9725 0.8508 0.1570 0.3758 0.5890 5.8250

Llama-3-8b Vanilla 1.0 0.8393 0.1610 0.5099 0.6276 7.2375
+ Indicator 1.0 0.8510 0.1660 0.5022 0.6298 7.2750

WizardLM-70K

TinyLlama-1.1B Vanilla 0.9250 0.5994 0.0990 0.2753 0.4747 4.2750
+ Indicator 0.9925 0.6279 0.1140 0.2836 0.5045 4.5625

Llama-2-7b Vanilla 0.7375 0.8229 0.1550 0.3407 0.5140 5.7750
+ Indicator 0.9254 0.8260 0.1640 0.3444 0.5650 5.9875

Llama-3-8b Vanilla 0.9846 0.8765 0.1560 0.4687 0.6215 7.1125
+ Indicator 0.9871 0.8792 0.1710 0.4785 0.6290 7.2750

(Internal datasets) Llama-2-7b-chat - 0.8264* 0.8301 0.1330 0.4422 0.5579 6.9375

Llama-3-8b-Instruct - 1.0* 0.8612 0.1850 0.4654 0.6279 8.0750
* Here NIH is evaluated without the response prefix used in Section 3.1 and the maximum context length is set to 4096 for

fair comparison. Therefore, the numbers are different from the numbers in Figure 2.

Table 3: Comparing vanilla instruction finetuning with finetuning with context-relevant indicators (+
indicator). On ‘+ Indicator’ models, [IND] is added for NIH and contextual QA tasks and removed
for MT-Bench. As a reference, we also list the performances evaluated on official Llama-2 and
Llama-3 instruct models, which are finetuned with internal datasets.

Settings and selected subset Ŝ. We adopt a TinyLlama model finetuned on the original ShareGPT
(Vicuna) dataset as the seed model M . We compute the context-dependency score on an arbi-
trary middle layer (15 in all of our main experiments) for faster computation. As we show in Ap-
pendix B.3, subsets selected by scores calculated on different middle layers are highly consistent.
We compute the context-dependency scores on all three instruction fine-tuning datasets and append
[IND] to prompts associated with responses with context-dependency scores above the threshold
sM (Ym) > β. We set β = 0.6 in all our main experiments. Ablation studies on the threshold β can
be found in Appendix B.4. We report the numer of selected instructions of each fine-tuning dataset
in Table 1. More statistics can be found in Appendix B.5.

Evaluation results on context-awareness. We report the performance of NIH and three QA tasks
in Table 3. For the “vanilla” fine-tuning setting, we train and evaluate the model without the in-
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dicator token. For the “+ Indicator” setting, we add the indicator token to the selected subset of
prompts in fine-tuning and all queries for evaluation. According to the table, “+ Indicator” outper-
forms “vanilla” fine-tuning in most cases. Particularly, “+ Indicator” consistently outperforms direct
attention steering on DROP, reinforcing that the training-time solution handles trade-offs between
language model capabilities better than inference-time editing. The results demonstrate that mod-
els can learn to focus more on the user-provided context when the indicator token is present in the
prompt.

Evaluation on general instruction-following benchmarks. We also report the evaluation results
on MT-Bench in Table 3. As samples in MT-Bench are mostly open-ended questions without heavy
context dependency, the context-dependency indicator is not added for the “+ Indicator” models
during evaluation. Models finetuned with our method show comparable or even better performance
on MT-Bench in most cases. Therefore, our methods can effectively mitigate the loss of context
awareness without losing the general ability of instruction following. The context indicator enables
more fine-grained control over language models’ behaviors during inference time.

6 CONCLUSION

This work highlights the detrimental effects of supervised instruction fine-tuning on the context-
awareness of pretrained language models, even in scenarios involving short context lengths. We
have identified that this decline is closely linked to inherent attention allocation biases within chat
templates. To combat these challenges, we propose an inference-time technique that allows for
the manual adjustment of attention scores, facilitating a partial recovery of context awareness in
instruction-tuned models. Furthermore, we introduce a training-time approach that employs condi-
tional indicators to help preserve context awareness during the instruction-tuning process. Together,
these contributions aim to enhance the performance of language models in maintaining contextual
understanding while benefiting from supervised instruction.

Limitation Our technique of associating context-dependent user instructions with the indicator
token may also encode other unintended styles of the selected subset of instructions. The issue
is particularly aggravated if the subset of context-relevant samples is small and significantly dif-
ferent from the remaining dataset. Utilizing the indicator token also requires the users to know
which instructions require paying more attention to the user context during inference time. Tasks
demonstrated in our experiment (e.g. keyword retrieval and closed-book QA) evidently require more
attention to the user context. However, complex tasks may involve multiple language skills which
complicates whether the addition of the indicator token will benefit the performance. A future direc-
tion is to automatically determine whether appending the indicator to a user instruction is necessary.
Besides, we only validate the effectiveness of our proposed methods on relatively small-size models
due to limited computational resources.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

A.1.1 INSTRUCTION FINE-TUNING

We adopted the fine-tuning recipes from the Huggingface alignment-handbook1 for Llama-2 and
Llama-3 QLoRA tuning. For the TinyLlama model, we use the fine-tuning recipe provided by the
author2. We finetune the models for 1 epoch on ShareGPT and UltraChat-200K and 2 epochs on
WizardLM-70K as it has a smaller training set. We use the TinyLlama chat template for all instruct
models finetuned in Table 2 and 3.

A.2 NIH EVALUATION DETAILS

For all NIH evaluations, we average the recall error on 400 tests. Specifically, we evaluate on 20
context lengths uniformly distributed between 200 and the maximum context length, and 20 needle
insertion depths uniformly located within 0% and 100%.

A.3 CONTEXTUAL QA EVALUATION DETAILS

We list the prompts used in contextual QA tasks in Table 4 and Table 5. For contextual QA tasks,
we generate answers up to 100 tokens and truncate them at the end of the first complete sentence.
For NIH tests, we generate the answers up to 50 tokens.

As UltraChat-200K constructs their data with a fixed set of prompt templates similar to our default
ones used in evaluation (The templates used for ShareGPT and WizardLM models in Table 5 and 4),
we evaluate UltraChat-200K finetuned models with a simpler template to exclude the impact from
overfitting on finetuning prompt templates.

Instruct Finetuning Dataset Template for SQuAD and DROP

ShareGPT & WizardLM-70K {context}\nAnswer the question according to the above passage: {question}
UltraChat-200K {context} {question}

Table 4: Prompt templates used for SQuAD and DROP in Table 2 and Table 3 when the model is
finetuned on different instruction finetuning datasets.

Instruct Finetuning Dataset Template for QuAC

ShareGPT & WizardLM-70K {context}\nAnswer the question with pieces from the the above passage: {question}
UltraChat-200K {context} {question}

Table 5: Prompt templates used for QuAC in Table 2 and Table 3 when the model is finetuned on
different instruction finetuning datasets.

B ADDITIONAL EXPERIMENT RESULTS

B.1 FULL NIH RESULTS ON OPEN-SOURCE OFFICIAL MODELS

In Figure 2, we only report the NIH performances when the response prefix is added for fair com-
parison. In Table 6 we show the exact numbers for Figure 2 as well as additional evaluation results
without the response prefix. When the response prefix is removed, the performance drop on NIH is
even more significant compared to without chat templates.

1https://github.com/huggingface/alignment-handbook
2https://github.com/jzhang38/TinyLlama
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Model Name Context window w/o chat template w/ chat template
w/ response prefix w/ response prefix w/o response prefix

Llama-2-7b 4096 98.67% - -
Llama-2-7b-chat 99.75% 97.75% 82.71%

Llama-2-13b 4096 99.35% - -
Llama-2-13b-chat 95.78% 90.79% 92.71%

Llama-3-8b 8192 99.50% - -
Llama-3-8b-instruct 100% 95.25% 95.35%

mistral-v0.2 32768 100% - -
mistral-v0.2-instruct 99.00% 94.14% 93.92%

mistral-v0.3 32768 100% - -
mistral-v0.3-instruct 99.32% 84.71% 72.00%

gemma-2-9b 8196 100% - -
gemma-2-9b-it 98.75% 98.03% 98.25%

gemma-2-27b 8196 100% - -
gemma-2-27b-it 100% 99.64% 99.25%

Table 6: NIH performance with and without chat templates on different models.

B.2 FULL RESULTS FOR FIGURE 2

In Figure 3, we only show the changes of attention allocation with and without chat templates. In
Figure 4 we show the absolute numbers of attention allocation to each part of input prompts. When
the chat template is added, we normalize the attention weight on user tokens, response tokens and
BOS token only, with a sum of attention allocation to be 1.

Llama-2-7B-Chat Llama-2-13B-Chat Llama-3-8B-Instruct Mistral-7B-Instruct-v0.2 Mistral-7B-Instruct-v0.3 gemma-2-9B-it
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Figure 4: We visualize the full attention allocation on user tokens, assistant tokens and BOS token
with and without applying the chat templates. The attention allocation is calculated when the model
is generating the first answer token in its response. For the case where the chat template is applied,
we normalize the attention value on user tokens, assistant tokens, and the BOS token such that
attention scores allocated to the three sums up to 1. The attention weight is averaged on 400 tests
with context lengths ranging from 200 to 4000 and needle depth from 0% to 100%.

B.3 AGREEMENT BETWEEN DIFFERENT LAYERS

In Figure 5, we calculate and visualize the disagreement heatmap in Ŝ selection when the context-
dependency score is calculated on different layers. We use the same TinyLlama model fine-
tuned on the vanilla ShareGPT dataset as the seed model M . Specifically, we first calculate the
context-dependency scores for each conversation turn in 500 randomly sampled examples from the
ShareGPT dataset on different layers. We then select the top 10% conversation turn with the highest
context-dependency scores on the layer as the subset Ŝ. We compute the disagreement between two
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Figure 5: We visualize the disagreement heatmap of Ŝ selection when the context-dependency score
SM (Ym) is calculated on different layers. We select 10% of conversation turns with the highest
context-dependency scores on each layer as Ŝ. The disagreement is measured by the number of
non-overlapped conversation turns in Ŝ selected by any two layers.

layers by calculating the ratio of non-overlapped conversation turns in their selected Ŝ. We can see
from the figure that the disagreement between 9 middle layers are low, indicating that we can safely
choose an arbitrary layer for the context-dependency score calculation.

B.4 ABLATION STUDY FOR DIFFERENT THRESHOLD β

Threshold β SQuAD QuAC DROP MT-Bench

1.0 (Vanilla) 0.5918 0.1130 0.2739 3.725

0.5 0.6207 0.1270 0.2872 4.075
0.6 0.6144 0.1290 0.2784 3.825
0.7 0.6160 0.1290 0.2786 3.675

Table 7: Ablation study with different threshold β, which is used in Section 4.2.

We use β = 0.6 in all our main experiments. To evaluate the sensitivity to the threshold β, we
select Ŝ with different thresholds and prepare the final modified instruction finetuning dataset. We
finetune a TinyLlama-1.1B model on these three datasets and evaluate them on three contextual QA
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Figure 6: Change of instruction lengths between the original and the selected subset from ShareGPT
dataset.
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Figure 7: Change of instruction lengths between the original and the selected subset from UltraChat-
200K dataset.

tasks and MT-Bench. As we can see from Table 7, all three models outperforms vanilla finetuning
on the contextual QA tasks. However, performance on MT-Bench shows a decreasing trend when
the threshold increases from 0.5 to 0.7, potentially due to a more drastic difference between Ŝ and
the unselected subset.

B.5 DISTRIBUTION OF INSTRUCTION LENGTHS

Here we visualize the change of distribution of instruction length between original instruction fine-
tuning dataset and the selected context-dependent subset Ŝ. Although a higher context-dependency
is to some extent correlated with longer instruction length, there are still a large amount of short
instructions showing high context dependency and selected into Ŝ.
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Figure 8: Change of instruction lengths between the original and the selected subset from
WizardLM-70K dataset.
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