Harnessing Neural Unit Dynamics for Effective and Scalable
Class-Incremental Learning

Depeng Li! Tianqi Wang' Junwei Chen' WeiDai? Zhigang Zeng'

Abstract

Class-incremental learning (CIL) aims to train a
model to learn new classes from non-stationary
data streams without forgetting old ones. In this
paper, we propose a new kind of connectionist
model by tailoring neural unit dynamics that adapt
the behavior of neural networks for CIL. In each
training session, it introduces a supervisory mech-
anism to guide network expansion whose growth
size is compactly commensurate with the intrinsic
complexity of a newly arriving task. This con-
structs a near-minimal network while allowing
the model to expand its capacity when cannot
sufficiently hold new classes. At inference time,
it automatically reactivates the required neural
units to retrieve knowledge and leaves the remain-
ing inactivated to prevent interference. We name
our model AutoActivator, which is effective and
scalable. To gain insights into the neural unit dy-
namics, we theoretically analyze the model’s con-
vergence property via a universal approximation
theorem on learning sequential mappings, which
is under-explored in the CIL community. Ex-
periments show that our method achieves strong
CIL performance in rehearsal-free and minimal-
expansion settings with different backbones.

1. Introduction

Contrary to typical machine learning methods that work
on independent and identically distributed data, class-
incremental learning (CIL) tackles the problem of training
a single model on non-stationary data distributions. In this
scenario, tasks typically consist of subsets of disjoint classes
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that are presented sequentially, without providing task iden-
tities at inference time (Wang et al., 2023). However, with
data of the current task accessible but none (at least the bulk)
of the past, CIL is challenged by a sharp performance de-
cline on the previously learned tasks, known as catastrophic
forgetting problem (McCloskey & Cohen, 1989).

Recently, CIL of neural networks has seen explosive growth
in striving for less forgetting (Bonicelli et al., 2022; Tong
et al., 2023; Qiao et al., 2024; Li et al., 2024a). Prior
works fall into three main categories (Masana et al., 2023).
Rehearsal-based approaches maintain a small portion of
past samples and mix them with that of a new task at ei-
ther input layer (pixel level) (Lopez-Paz & Ranzato, 2017;
Bang et al., 2021) or hidden layer (internal representa-
tions) (Van de Ven et al., 2020; Hayes et al., 2020). However,
this line of work suffers from substantial performance degra-
dation with a smaller buffer that carries inadequate task-
specific knowledge and becomes infeasible when a rehearsal
buffer is not allowed due to memory constraints or privacy
issues. Regularization-based approaches aim to minimize
the impact of learning new tasks on the weights (Kirkpatrick
et al., 2017; Wolczyk et al., 2022) or feature representa-
tions (Schwarz et al., 2018; Li et al., 2024b) that are im-
portant for previous tasks. Although avoiding data stor-
age, the involved penalty terms make a fixed-size model
rather inflexible to find the optimal solutions as it retains the
memory of previous classes entirely in the parameter space.
Architecture-based approaches dynamically adapt network
components by expansion (Verma et al., 2021; Yang et al.,
2023) or mask (Serra et al., 2018; Ke et al., 2021) operation
to absorb knowledge for novel classes. Nevertheless, net-
work expansion usually renders the model size grow quickly
as each session proceeds, which should be counted into the
memory budget for a fair comparison (Zhou et al., 2023).

Yet, in the brain—which clearly has implemented an effi-
cient and scalable function for incremental learning—the
reactivation of neuronal activity patterns that represent pre-
vious experiences is believed to be important for stabilizing
new memories (Rasch & Born, 2007; Joseph et al., 2010).
Motivated by the principle of learning and memory in cog-
nitive neuroscience, this paper proposes a new kind of con-
nectionist model that automatically reactivates the involved
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Figure 1. Overview of AutoActivator. It first generates several batches of random nodes, denoted by different shapes; Then, together with
existing ones for knowledge transfer, it parsimoniously recruits new nodes meeting the supervisory mechanism (e.g., in red circles) to a
scalable neural unit, where those joined ones are positively influenced by each other as marked by black arrows. In AutoActivator, the
former layers are built under the guidance of supervisory mechanism (Section 4.1) while the final classifier layer is step-wise updated by
close-formed solutions (Section 4.2). The activation thresholds render a neural unit partially/entirely active or inactivated for prediction.

collections of nodes (dubbed neural units)' as activators to
retrieve knowledge while leaving the remainder as deacti-
vators to avoid crosstalk, hence the name AutoActivator.
This is achieved by harnessing neural unit dynamics that
adapt the behavior of neural networks for CIL. As shown in
Figure 1, AutoActivator pioneers a novel CIL paradigm that
runs through the training and test phase:

As opposed to the over-parameterized or expanding-and-
pruning implementations, one can start with modeling the
neural unit from scratch and dynamically grow the network
as actually needed by a given task. Specifically, in each
training session, we first randomly allocate several batches
of random nodes together with the counterparts from earlier
sessions and introduce a supervisory mechanism to remove
the redundant nodes for the current session. Those meeting
the supervisory mechanism are temporarily on standby in
the candidate pool. Then, only one batch that contributes
to causing a maximum reduction in training errors is added
to the corresponding neural unit, i.e., the recruited nodes
are positively influenced by the existing ones such that each
plays an irreplaceable role. This way constructs a minimal-
ist network for sequential tasks and thus suffices to train
more incoming tasks. Meanwhile, we parameterize each
neural unit with an activation threshold measured by the pre-
dicted probability during training, which guards the decision
boundary of learned classes against distortion. At inference
time, given batches of test instances from a certain task or
class trained, the reactivation of neural units is performed
partially or entirely without knowing the task identities.

Our main contributions are threefold:

* We design neural unit dynamics that govern the behav-

"Herein the node means a neuron and incoming weights and
bias associated with it and neural unit is collection of such nodes.

ior of neural networks, including the rules of node gen-
eration/connection, activation threshold, and update, as
well as interactions responding to non-stationary data
streams. The model’s convergence property on learn-
ing sequential mappings is theoretically guaranteed.

¢ AutoActivator is an efficient and scalable CIL method,
characterized by parsimoniously constructing a CIL
model whose complexity is commensurate with the in-
trinsic complexity of each learning task. The method is
inherently immune to catastrophic forgetting as neural
units reactivated partially or entirely do not infringe
upon others, and has strong task-order robustness.

» Experiments on multiple benchmark datasets consis-
tently demonstrate that our method provides compet-
itive CIL performance, with absolute superiority of
rehearsal-free and minimal-expansion desiderata.

2. Related Work

Class-Incremental Learning. We discuss a selection of
representative CIL approaches and how they relate to our
work. Rehearsal-based approaches explicitly preserve data
from previously learned tasks to retrain with the current task.
Aided with rehearsal buffers, IL2M (Belouadah & Popescu,
2019) rectifies the network predictions, RM (Bang et al.,
2021) focuses on the classification uncertainty to select hard
samples, and i-CTRL (Tong et al., 2023) is founded on struc-
tured representations for rehearsal. Our method does not
buffer past data for the whole CIL process and thus elimi-
nates shortcomings such as scalability and privacy issues.
Regularization-based approaches involve penalty terms to
vary the plasticity of parameters. EWC (Kirkpatrick et al.,
2017) is the pioneer of this branch, followed by SI (Zenke
et al., 2017), and MAS (Aljundi et al., 2018). Their net-
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work parameter is associated with the weight importance
computed by different strategies. Nevertheless, the chal-
lenge is to correctly assign credit to the network weights
when the number of tasks is large. Our method keeps the
neural unit weights intact during sequential training, i.e.,
the newly recruited nodes without infringing upon others.
Architecture-based approaches isolate existing model pa-
rameters or attach additional parameters as each session
proceeds. Methods such as DER (Yan et al., 2021), FOS-
TER (Wang et al., 2022a), and DNE (Hu et al., 2023) ac-
quire sufficient learning capacity by adding a sub-network
per task. However, the increased capacity for future tasks
must be meticulously balanced with the number of parame-
ters added, particularly considering that the number of tasks
the model needs to learn is often unknown in advance. Our
method differs in that (i) the expansion quota is commen-
surate with the intrinsic complexity of each task; (ii) it’s
more effective to start with a small/compact branch instead
of scaling arbitrarily and pruning; and (iii) empirically, our
final memory budget is comparable or even superior to the
non-growing networks in regularization-based methods.

Neural Network Dynamics. The learning dynamics of a
connectionist model, such as an artificial neural network
(ANN), refers to how the network’s internal state evolves
over time in response to inputs (Vahedian et al., 2021;
Marton et al., 2022). This can involve different levels, in-
cluding the connections of the neurons, the activation pat-
terns, the flow of information through the network’s layers,
and the overall convergence and learning behavior (Vyas
et al., 2020). For example, training a feed-forward neural
network with random hidden nodes has been explored in
the single-task learning (Pao & Takefuji, 1992; Li & Wang,
2017). The general idea is to randomly generate hidden
nodes (weights and biases), and only output weights need
to be tuned in either a deterministic or nondeterministic
manner. Such a randomized learning dynamic has demon-
strated great potential in developing fast learner models and
easy-implementation learning algorithms, such as convo-
lutional/graph randomized networks (Zhang & Suganthan,
2016; Huang et al., 2023). By bridging this intriguing learn-
ing dynamic to the architectural update paradigm, our work
attempts to build an efficient and scalable network for CIL.

3. Class-Incremental Learning Setup

Notations. Denote I' = {g1, g2, ...} as a set of bounded
nonconstant piecewise continuous functions, span(I’) as a
function space spanned by I', and Ly (D;) as the space of
all Lebesgue measurable functions f = [f1, fa,..., fc,] :
RMt 5 RC defined on D;. Hence, Ly norm is defined as

1

C 1
— 2
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and f is further formulated as
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We now define CIL formally. A model sequentially learns
from the supervised learning datasets D; = {(X¢, Y2)|X: €
RNexMe 'y, ¢ RNexCeY of task ¢ (t = 1,2,...,T), where
X, is the data, Y} is the label, V; is the number of samples,
M; and C; are the dimensions, respectively. The model
M(X—1;6;,_1) (t > 2) trained on previous task(s) is pa-
rameterized by its connection weights 6;_1. The objective
is to train an updated model M (X; ;) that accommodates
the newly emerging C} classes, during which the data of
previous tasks is inaccessible. When fed test instances from
any of tasks 1 to T', the model M (Xr; fr) can make pre-
dictions without task descriptors/identifiers.

Fair Comparisons. Since different CIL methods have very
different requirements in data, networks, and computation,
it is intractable to compare all under the same experimen-
tal conditions. Following the suggestion in (Zhou et al.,
2023), we holistically evaluate different methods by con-
sidering both accuracy and memory cost for a fair compari-
son. We align the memory cost of model size and exemplar
buffer (if any) by switching them to a 32-bit floating number
which we refer to as memory budget. Also, with the increas-
ing prominence of foundation models, pre-trained models
equipped with informative representations have become
available for various downstream requirements (McDonnell
et al., 2023; Mehta et al., 2023). Following the settings in
prior work (Cha et al., 2021; Rios et al., 2022; Bonicelli
et al., 2022; Tang et al., 2023), we optionally inject Au-
toActivator into some advanced pre-trained backbones such
as ResNet (used in PCL (Hu et al., 2021), OWM (Zeng
et al., 2019), etc.) and ViT (used in DualPrompt (Wang
et al., 2022c), CODA-Prompt (Smith et al., 2023), etc.).
Such a setting accommodates real-world scenarios where
pre-training is usually involved as a base session (Boni-
celli et al., 2022). We conduct experiments across multiple
datasets with or without starting with the same pre-training.

4. Methodology

Our AutoActivator is a new kind of connectionist model (see
Figure 1), with tailored rules of node generation/connection,
activation threshold, and update, as well as interactions
responding to sequential tasks. To obtain a good grasp
of the CIL model, we first provide the theoretical guide
to node expansion in Section 4.1. We then perform the
reactivation of involved neural units for learning-without-
forgetting decision-making in Section 4.2.
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4.1. Modeling Neural Units via Supervisory Mechanism

Instead of empirically over-parameterized or expanding-and-
pruning implementations, we seek a brand-new solution
with theoretical support during sequential training. With
this consideration, we start with modeling a neural unit from
scratch and then grow additional nodes as the given problem
requires. In this way, the expansion quota is compactly com-
mensurate with the intrinsic complexity of each task, and
thus constructs near-minimal neural network architectures
for the CIL process. However, two main problems are: (1)
How to generate and connect new nodes to a scalable neural
unit? (2) How to update and then reactivate the neural units
recruited without recourse to task identities?

To answer the first question, we draw inspiration from recent
advances in network randomization (Huang et al., 2023;
Ramanujan et al., 2020; Wang & Li, 2017), a randomized
learning technique for developing fast learner models and
easy-implementation learning algorithms. A common and
basic idea behind this technique is to randomly generate
hidden nodes (weights and biases), and only output weights
need to be tuned (Pao & Takefuji, 1992; Zhang & Suganthan,
2016; Li & Wang, 2017; Zhang et al., 2022). In this way, one
can add new nodes with random weights to different network
layers progressively. Specifically, given a target function
f:RM: 5 RO oftask ¢ (t = 1,2,...) defined on datasets
D, = {(X:,Y:)}, we suppose a neural unit has been added
L — 1 nodes one after another directly connected to its
readout layer. During each training session ¢, the output
function of the existing network is given by fr,_1(X;) =
ST Bi (g (Xew; +by) (L=1,2,..., fo = 0) and the
current residual error for training is denoted as ey, (t) =
f — frL—1, where w; and b; are the hidden parameters, and
B; is the output weights. Then, the following Proposition 4.1
provides a solution to connect the newly generated node gy,
(wr, and by) to the existing network f7_; when Cy = 1.

Proposition 4.1. (Kwok & Yeung, 1997) Let T be a set
of basis functions g. For a fixed g € T (||g]| # 0), the
expression || f — (fr—1 + Brgr)| achieve its minimum iff

Br = {er—1,91)/|g9c|? 3)

Proposition 4.1 lays the groundwork for how to connect
a new node to the existing network but is limited to the
regression problem in single-task learning. Meanwhile, con-
structing such a new node by Eq. (3) is less practical in the
sense that the reduction of residual error per node expan-
sion will be close to zero (Igelnik & Pao, 1995; Wang &
Li, 2017), failing to guarantee preferable learning perfor-
mance with considerable confidence and convergence rate.
The main cause is that fixed random weights, which only
perform the forward pass without the backward pass, are
prone to incur numerous redundant nodes. Therefore, alter-
natively, random node generation should be “supervisory”

by exerting additional conditions in the forward pass. To
this end, we introduce a supervisory mechanism to guide
the node generation in modeling neural units for CIL.

In AutoActivator, the former layers are built under the guid-
ance of supervisory mechanism where each layer is made
up of a certain number of scalable neural units, while the
final classifier layer is step-wise updated by close-formed
solutions. The method randomly allocates a batch of nodes
in each training session. The batch that causes the highest
reduction in training error is added to the neural unit of the
current task. For simplicity, Theorem 4.2 formulates neural
units over a two-layer AutoActivator, which can be stacked
or injected into existing backbones.

Theorem 4.2. (Universal Approximation Theorem for Con-
vergence Property) Suppose that span(T’) is dense in Lo
space and ¥g € T, G is a collection of some g with
nonlinear activation. Given 0 < r(t) < 1 and a non-
negative real number sequence {pr,(t)} w.rt. task t (t =
1,2,...5¢=1,...,C), with limy oo pr,(t) = 0 and
pr(t) < (1 —r(t)). For L* = 1,2,..., and step size
I € N7, denoted by

c
01 ()= 67,c(1): 01 o(t) = (L=r(t)—pr(®))llef_r (1)

“)
If a batch of new nodes Gi(X;W, + B;)? are randomly
generated to satisfy the following inequalities:

<6271,c(t)» Glﬂlyc(t» > 5z,c(t)7 c=12,..., Ci &)

and connected to the existing neural unit through the output
weights in the following least-squares sense:

L
61 (@), -, B1(8)] = argmin||f — > Bilt)g;l - (©)
j=1

Then, we have limy,_, o || f— f7|| = O, where f} = fF_,+
Br(t)Giand Gy = [gL—141, - - -, 9L]-

Proof. See Appendix A. O

Based on Theorem 4.2, we can formulate the indicator
&n(t) = ch;l &1,¢(t) of supervisory mechanisms for guid-
ing node expansion by a designated step size /, among which

€r,c(t) =(ep—1,c(1), GiB1,c(1))
— (L =r(t) = pr(®){er—1,c(t), €L—1(t)) > 0
(7

Intuitively, 0 < r(¢) < 1 matters in the residual error de-
creasing speed of task ¢, which resembles the learning rate

2Without loss of generality, we refer to L = L(t) for simplicity.
3Note that G; = g; in the special case of | = 1.
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of gradient descent but differs in its explicit scope; iz, (t)
can be seen as the balance coefficient for ensuring the con-
vergence of Theorem 4.2, which can be found in its proof.

Remark 4.3. The theoretical analysis redefines Eq. (3) in
the context of classification problem for learning sequential
tasks. Modeling neural units with supervisory mechanisms
can easily add additional capacity. For one thing, it guar-
antees the convergence property of a model on a sequence
of tasks. In particular, we generate several candidate nodes
satisfying supervisory mechanisms in a one-by-one or batch-
by-batch manner simultaneously and only recruit ones that
cause a maximum reduction in residual errors. This is bene-
ficial to accelerate the convergence rate. For another, during
sequential training, the required expansion quota potentially
matches the inherent difficulty of each newly arriving task.
This not only constructs a near-minimal network architec-
ture for CIL but also suffices to train more incoming tasks.

4.2. Reactivating Updated Neural Units

This section addresses the aforementioned second question,
i.e., update the connection weights between neural units and
the readout layer (termed output weights) and then reactivate
the involved neural units as activators for decision-making.
Unlike neural networks with an empirically fixed topol-
ogy that is unitedly trained, the updates of output weights
under node expansion must be repeated every time nodes
are added. Hence, computational efficiency becomes the
main bottleneck when leveraging the commonly used back-
propagation algorithm.

Update. Here we seek an alternative solution under the
premise of supervisory mechanisms, which ensures that the
nodes already existing in each neural unit are indispensable
in learning a given task. That is the pseudoinverse of a parti-
tioned matrix described by some earlier studies (Leonides,
2012; Ben-Israel & Greville, 2003; Chen & Wan, 1999). A
dynamic stepwise updating algorithm is then used to update
the output weights instantly. It applies to the node expansion
process in Theorem 4.2, as illustrated in the following.

Assume that there has been a matrix A;, and we expand it by
adding additional [ (I = 1,2, ...) node(s). Let G| be the re-
sulting matrix. For task ¢, outputs of the neural unit are given
by Vi = AW} (1), where W (1) = [B£(¢), ... B5 (1)) as
presented in Eq. (6). Denote by A4, = [AL, G;], we have

I Wi (t) — DBTY;
Wia(t) £ (Ap)'Ys = [ i )BTYt t ] (8)
where the pseudoinverse of Ay is
A T DBT
(Ap)f = [ (o) ] o
r_[ O ifC#0
v { (DTD+1)~DT(AL)T ifC =0 (10)

where C = G; — ApD and D = (Ap)tG.

This way, updating output weights has three strengths. First,
the update process can be easily finished without complete
retraining, i.e., a new pseudoinverse matrix is obtained
through a simple calculation of the existing ones. Second,
it updates the output weights progressively when adding
nodes to each neural unit. In each step, the output weights
are theoretically the optimal solution in the least-square
sense. Third, only output weights need to be optimized ev-
ery time, as explicitly expressed in close-formed solutions.
Therefore, it avoids the back-propagation of error signals.

Reactivation. In the CIL scenario, task identities are typ-
ically absent at the inference time. Hence, another key
technical point of AutoActivator is to partially or entirely re-
activate the required neural units for task-agnostic decision-
making. Herein an activation threshold is calculated during
training to be used for activating some of the neural units at
the test time. Suppose 1T tasks with Zthl C; classes have
been sequentially trained, yielding 7" neural units. The fol-
lowing explains how our approach automatically performs
the reactivation when fed test instances from tasks 1 to 7.

We first retrospect the training phase to passingly introduce
the activation threshold of each neural unit, averaged by
the highest predicted probability belonging to class ¢ (¢ =
1,2,...,00:

threshold(t) = mean. max.(softmaz(Y;)—a(t)) (11)

where «(t) = 1/C} is the lowest probability triggering
a decision. Hence, a neural unit is finally parameterized
by its supervisory mechanism-based random weights (and
biases), dynamically stepwise updated output weights, and
the activation thresholds. Then, for test instances of any
classes seen so far, the objective is to minimize the distance:

¢ 4 arg rntin |threshold(t) — threshold(t)| (12)

where “4«—” means returning index, c is the predicted class,
and threshold(t) is computed in Eq. (11) but with test
instances. Indeed, Eq. (11) rectifies the inter-class confu-
sion occurring in the similar softmax outputs given test
instances from different tasks; Eq. (12) further brings these
results to a comparable level and returns the predicted class
by tracking the minimal distance in terms of the activa-
tion thresholds. From the perspective of methodology, it
works on test images arriving in batches or instances, among
which feeding batches of test instances from a certain task or
class trained facilitates the reactivation progress. Therefore,
our AutoActivator can selectively reactivate the involved
neural units to retrieve knowledge and leave the remaining
inactivated to prevent interference. We summarize its CIL
procedure in Algorithm 1 in Appendix B.
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Table 1. Comparison results on the split MNIST and FashionMNIST datasets with MLP. We report the average classification accuracy
(ACA), backward transfer (BWT) across five random task-order runs, and the aligned memory budget (MB) = model size (#model, MB) +
exemplar buffer (#exemplar, MB), where 0 means no rehearsal. No pre-training is used for AutoActivator and all the compared methods.

METHOD MEMORY BUDGET MNIST-10/5 FASHIONMNIST-10/5
#MODEL | #EXEMPLAR | ACA(%) 1 BWT 1t ACA(%) T BWT 1t

SGD (LOWER BOUND) 1.82 - ~19.91 - ~19.81 -
MTL (UPER BOUND) 1.82 - ~98.56 - ~96.61 -
MAS 5.47 0 44.61+6.62 —0.06+0.06 34.914+547 —0.61+0.09
OLEWC 5.47 0 57.38+4.04 —0.38+0.06 54.09+4.03 —0.40+0.08
SI 5.47 0 69.444437 —0.04+0.09 52.114+2.22 —0.49+0.06
EFT 16.54 0 82.53+1.15 —0.09+0.07 74.79+1.23 —0.13+0.05
PCL 3.01 0 94.1440.67 —0.03+0.03 83.274+0.81 —0.1240.01
AOP 5.39 0 94.43+0.21 —0.054+0.02 82.97+0.95 —0.1440.04
CRNET 1.81 0 94.4940.32 —0.02+0.02 86.014+0.74 —0.0940.01
FS-DGPM 1.82 5.98 89.12+1.14 —0.08+0.01  80.89+0.74 —0.12+0.02
NISPA 1.82 5.98 91.074+0.86 —0.04+0.00 80.934+0.59 —0.15+0.02
BIC 1.82 5.98 93.93+0.58 —0.044+0.01 82.36+0.72 —0.1140.03
ARI 3.65 5.98 93.60+0.57 —0.04+0.00 82.894+0.83 —0.1040.01
Co’L 1.82 5.98 93.784+0.24 —0.04+0.00 80.934+0.59 —0.15+0.02
RPS-NET 14.60 5.98 94.534+1.92 —0.02+0.01 84.18+1.60 —0.03+0.01
LOGD 1.82 5.98 94.87+0.59 —0.044+0.01 84.39+0.47 —0.0940.03
1IL2M 1.82 5.98 95.51+0.42 —0.04+0.01 82.384+2.04 —0.15+0.03
AUTOACTIVATOR (OURS) 2.04 0 97.3240.03 0.00+0.00 88.4640.06 -0.09+0.08

5. Experiment
5.1. Experiment Setting

Datasets. We experiment on multiple datasets commonly
used for CIL. Small Scale: Both MNIST (LeCun et al.,
1998) and FashionMNIST (Xiao et al., 2017) are respec-
tively split into 5 disjoint tasks with 2 classes per task.
The evaluation starts with the toy examples since AutoAc-
tivator belongs to the theoretical and embryonic approach.
Medium Scale: CIFAR-100 (Krizhevsky et al., 2009) is
divided into 10 (25) tasks with each task containing 10 (4)
disjoint classes. Large Scale: ImageNet-R (Hendrycks
et al., 2021) has 200 classes with 24,000 samples for train-
ing and 6,000 for testing. It is split into 10 tasks with 20
classes in each task. The substantial intra-class variability
renders it more akin to intricate real-world problems. We
provide details of the data splits used in Appendix C.1.

Baselines. We extensively compare our method with (i) rep-
resentative and the latest CIL baselines: IL2M (Belouadah
& Popescu, 2019), BiC (Wu et al., 2019), LOGD (Tang
et al., 2021), FS-DGPM (Deng et al., 2021), Co?L (Cha
et al., 2021), ARI (Wang et al., 2022b), NISPA (Gurbuz &
Dovrolis, 2022), DDGR (Gao & Liu, 2023), SI (Zenke et al.,
2017), MAS (Aljundi et al., 2018), OLEWC (Schwarz
et al., 2018), AOP (Guo et al., 2022), CRNet (Li & Zeng,
2023), RPS-Net (Rajasegaran et al., 2019), EFT (Verma
et al., 2021), DER (Yan et al., 2021), PCL (Hu et al.,
2021), MORE (Kim et al., 2022), CLDNet (Li et al.,
2024b), among which the original FS-DGPM uses a multi-
head incremental setting where each task has a separate

classifier but task identities are not provided in our ex-
periments; (ii) recent prompt-based methods over the pre-
trained ViT: L2P (Wang et al., 2022d), DualPrompt (Wang
et al., 2022c), CODA-Prompt (Smith et al., 2023); and
(iii) non-CIL baselines: stochastic gradient descent for se-
quential training (SGD; approximate lower bound) and joint
multiple-task learning (MTL; approximate upper bound).

Training. We refer to every aforementioned method’s origi-
nal codebases for implementation and hyper-parameter se-
lection to ensure the best performance. We repeat each
experiment five times with randomly shuffled task orderings
to get the mean and the standard deviation estimates. More
implementation details for architectures, hyper-parameters,
and metrics are provided in Appendix C.

5.2. Main Comparison Results

MNIST-10/5 and FashionMNIST-10/5. Table 1 exten-
sively compares different baselines on two standard bench-
mark datasets adapted for CIL. Our AutoActivator provides
strong CIL performance with respect to three measurements.
(1) ACA: it achieves the best average accuracy of 97.32%
and 88.46%, surpassing the second-best competitors by
1.81% and 2.45%, respectively; (ii) BWT: it behaves with al-
most zero forgetting during sequentially learning five 2-class
tasks, like some work in the task-incremental learning (TIL)
scenario where task identities are required to match specific
masks (Kang et al., 2022); and (iii)) Memory budget: our
final #model is slightly (~12%) larger than the rehearsal-
based ones but our method needs no #exemplar buffers.
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Table 2. Comparison results on the split CIFAR-100 dataset with ResNet-18, including MORE that originally uses DeiT-S/16 (Touvron
et al., 2021). Scale ratio approximately gives the % of the final memory budget (MB) and the initial model size (MB), averaged over the
two sequences. All methods allow to start with the same pre-training or learning from scratch and only the winner results are reported.

METHOD SCALE RATIO CIFAR-100/10 CIFAR-100/25
(%) | ACA(%) T BWT 1 ACA(%) T BWT 1t
SGD - 7.75+0.17 - 3.18 +0.23 -
NISPA >200 37.60+0.73 —0.2540.02 29.504+0.66 —0.31+0.01
LOGD 119.26 47.454031 —0.13+0.03 48.714+0.23 —0.16+0.00
RPS-NET >200 58.95+025 —0.184+0.01 57.434+0.35 —0.19+0.01
DDGR >200 59.84+0.57 - 59.15+0.63 -
IL2M 119.26 60.14+0.68 —0.104+0.01 61.334+0.32 —0.0240.02
BiC 155.34 61.03+0.71  —0.094+0.00 60.24+0.59 —0.08+0.04
PCL 146.02 63.58+0.37 —0.1140.01 62.8440.43 —0.12+0.01
Co’L >200 64.31+047 —0.1540.02 63.674+0.28 —0.11+0.01
DER >200 65.29+1.01 —0.1640.01 63.544+0.97 —0.18+0.01
CLDNET 115.82 65.42+0.36 - 64.98+0.42 -
MORE 120.08 67.13+1.03 - 66.95+0.98 -
FS-DGPM 191.71 67.54+036 —0.2340.02 68.45+0.38 —0.2740.04
OURS 114.26 69.65+0.14 —0.01+0.01 70.16+0.20 —0.03+0.01

Table 3. Comparison results on the split ImageNet-R dataset using
pre-trained ViT. Buffer counts the number of exemplars saved
for rehearsal. Forgetting (denoted by F) is negatively correlated
with BWT. All results except ours and CODA-Prompt (Smith
et al., 2023) are extracted from (Wang et al., 2022c). Note that
the original CODA-Prompt uses an easier accuracy-related AIA
metric than others and we have aligned it here.

METHOD BUFFER | ACA(%) T Fl
ER 55.13+£1.29 0.3540.52
BIC 52.14+1.08 0.37+1.05
GDUMB 1000 38.324+0.55 -
DER++ 55.47+£131  0.3541.50
Co’L 53.45+£1.55  0.37+1.81
L2P 61.57+0.66 0.10+0.20
DUALPROMPT 0 68.13+0.49 0.0540.20
CODA-PROMPT 69.01+0.55 0.05+0.20
Ours' 65.45+0.85 0.0340.20
Ours't 70.32+0.55 0.02+0.20
UPPER BOUND - 79.13+0.18 -

These results indicate that AutoActivator well trades off
between model accuracy and memory budget. This makes
sense for real-world applications under privacy-sensitive
and resource-limited CIL scenarios. Meanwhile, the steady
standard deviations show that our method has strong task-
order robustness, with similar results regardless of random
orderings for 5 independent runs.

CIFAR-100/10 and CIFAR-100/25. Table 2 reports two
more challenging task sequences evenly split by the widely-
used visual benchmark CIFAR-100. Based on the empirical
evaluation, our method achieves the best average classifica-
tion accuracy of 69.65% and 70.16%, improving upon the
second-best method by 2.11% on CIFAR-100/10 and 1.71%

on CIFAR-100/25, respectively. Interestingly, although pre-
training implicitly alleviates the effects of catastrophic for-
getting, it is not necessarily translated to CIL performance.
We observe that some well-known methods still suffer from
a large forgetting given the pre-trained backbone compared
with a learning-from-scratch paradigm, similar findings can
be observed in (Wang et al., 2022c). In addition to average
classification accuracy, our method outperforms the selected
state-of-the-art methods on scale ratio, indicating that the
network expansion is compactly commensurate with the in-
trinsic complexity of a task sequence. Again, the proposed
method yields competitive standard deviations indicating
the superiority task-order robustness.

ImageNet-R-200/10. Table 3 records the performance of
compared methods starting from the same ImageNet pre-
trained ViT-B/16 for the split ImageNet-R sequence. This
yields two versions of our system: Ours' refers to only
one pre-trained ViT being used; Ours'T refers to attaching
complementary prompts to two pre-trained ViT, resembling
what DualPrompt learns two sets of disjoint prompt spaces
but are untouched during CIL process. We observe that it
is still particularly challenging for rehearsal-based methods
with a buffer size of 1 000. By contrast, there is an obvious
gain for the recent emerging prompt-based methods, even
though they are rehearsal-free. It is worth mentioning that
Ours't outperforms the strongest competitors DualPrompt
and CODA-Prompt by 2.19% and 1.31%, respectively. This
implies that prompt-based methods have not come close
to exhausting their capacity for accuracy, e.g., combining
with our method for a marginal boost. The proposed con-
nectionist model, which tailors neural unit dynamics with
its convergence property theoretically guaranteed, can thus
serve as a general CIL classifier. Meanwhile, our method
shows competitive performance on the metric Forgetting. In
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Table 4. Parameter analysis of supervisory mechanisms. We report the ACA, the ’
cumulative number of nodes (Nodes), and the whole running time (Time) per task FgRe 5«‘

sequence under different ! and T’z -

&, &y %
MNIST-10/5 FASHIONMNIST-10/5 A o ,
STEP SIZE T4z L L 4 B4
ACA(%)1 NoODES| TIME(S)] ACA(%)T NODES] TIME(S)| @ s
1 96.86 692 12.87 88.22 702 13.13 (d) ) ®
=1 10 97.08 640 18.38 88.32 623 16.26
50 97.30 586 28.28 88.54 574 30.50 Figure 2. t-SNE visualization where each
200 97.31 532 62.45 88.53 512 48.99 color represents a class. (a) Mixed raw sample
1 96.82 700 6.76 88.19 720 6.83 space based on the training data of ten classes
I =10 ;g g;gi 2?8 }825 Sggz 228 ng as a reference. (b)-(f) Well-clustered repre-
200 9791 650 1283 88 52 650 33:40 sentation space based on neural units’ outputs

after learning two classes per session.

Table 5. Influence of expected accuracy in supervisory mecha-
nisms. We report the neural unit size per task (t = 1,2,...,5)
and the average number of parameters per class.

R(t) 1 2 3 4 5 #PARAM (M)
9% 200 200 50 30 200 0.0535
98% 200 200 20 20 100 0.0425
95% 20 70 20 10 20 0.0110

Table 6. Effectiveness of reactivation process, measured by the
ACA(%) under different components.

COMPONENT I X v v
COMPONENT I1I X X v
MNIST-10/5 13.69 97.18 97.21
FASHIONMNIST-10/5 22.05 86.46 88.37
CIFAR-100/10 5.56  69.21 69.27
IMAGENET-R 4.98 63.25 65.83

a nutshell, prompt-based methods exhibit a wise utilization
of pre-trained transformer-based backbones while our Au-
toActivator seeks an effective and scalable implementation.

5.3. Analysis of Modifying Neural Unit Dynamics

We now conduct an extensive empirical investigation to
display the effectiveness of modules in the proposed novel
connectionist model. This also covers the ablation study
and parameter analysis, which pertains to each component
serving for CIL. We first investigate two key components in
supervisory mechanisms through the lens of CIL: (1) step
size [ for recruiting node(s) each time—we referto ! = 1 as
a one-by-one version and [ > 2 as a batch-by-batch version;
and (2) the maximum times of random generation 7, ,,—it
determines the number of attempts for mining candidate
nodes that meet with a supervisory mechanism.

One-by-One v.s. Batch-by-Batch Version. It can be ob-
served from Table 4 that both versions could achieve the
same-level results. However, under the equal 7,,,, setting,
the one-by-one version (I = 1) shows superiority in expand-

ing more compact neural units as adding only one node each
time is potentially more targeted; By contrast, the batch-by-
batch version (I = 10) could significantly reduce the time
requirements. It is worth mentioning that the results of both
versions under proper 1y, 4. (€.8., Tinae = 50 used in our
experiments) are at an acceptable level.

The Maximum Times of Random Generation. Also from
Table 4, we observe that a larger 7,,,,, contributes to shrink-
ing the Nodes while slightly improving the ACA without
sacrificing the Time too much. However, an excessively
high value would make the construction of the candidate
pool time-consuming, while a too little one would give rise
to learning instability for failure in finding nodes that are
useful enough. Hence, T, is related to both opportunity
and efficiency in the process of node generation.

Representation Learning of Neural Units. We also visual-
ize the representation learning of scalable neural units. Fig.
2 depicts the t-SNE visualization (Van der Maaten & Hinton,
2008) of the raw sample space and the output representa-
tions of neural units. We observe that the same classes are
well clustered while different classes are properly separated.
Therefore, the representation learning of neural units could
provide useful information for decision-making, i.e., to ad-
just the decision boundary for all classes simultaneously,
and facilitate the dynamic stepwise update of output weights
in the least-square sense.

The Actual Expansion Quota. To indicate the expansion
quota on given problems, we gather the neural unit size
and count the number of parameters (#param). Taking
FashionMNIST-10/5 as an example, we specify the maxi-
mum number of nodes L., (t) = 200 as one of the termi-
nation criteria and vary another termed expected accuracy
R(t) for node expansion. Table 5 shows that the final expan-
sion quota is commensurate with the intrinsic complexity of
every task, e.g., only 30 nodes are recruited for Task 4 un-
der R(t) = 99%. Meanwhile, the node expansion slightly
introduced additional parameters, about 0.0535 M for each
class, which only equals the level of replaying 7 exemplars.
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Ablation Study of Activation Thresholds. We then vali-
date the effectiveness of reactivation for defying the inter-
class confusion in CIL. Note that Component I by Eq. (11)
rectifies inter-class confusion and Component II by Eq. (12)
calibrates the results. Table 6 shows that our model would
suffer serious forgetting without them. By contrast, using
Component I could tackle this issue in most cases, together
with Component II for a marginal boost. In particular, the
latter works well for the case of substantial intra-class vari-
ability, demonstrating that AutoActivator could exactly reac-
tivate the involved neural units without recourse to task iden-
tities. More insights and analysis are given in Appendix D.

6. Conclusion

We propose to harness neural unit dynamics for efficient
and scalable CIL. Unlike most architecture-based methods
whose expansion criterion relies on changes of the loss,
which lacks theoretical guarantees, the supervisory mecha-
nism narrows the gap using a universal approximation the-
orem. The reactivation paradigm pioneered is biologically
plausible, and we believe this has a lot of potential room for
exploration. Sufficient comparison experiments and ablation
analysis display the effectiveness of our model. Other inter-
esting investigations that we leave for future work include
combining our approach with class-imbalance sequences,
which may benefit from an AutoActivator-like algorithm.
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leave further study (e.g., novel class discovery technique)
on this as future work. Besides, we assume the availability
of a pre-trained backbone. While this assumption is widely
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A. Proof of Theorem 4.2

Proof. First, we deduce the intermediate values w.r.t. output weights 3;(¢), the counterpart of Eq. (3) in Proposition 4.1.
L=|f~fl?
=If = fr1 = (9141 Br—111(t) + - + gLBL()|]?
= llez—1(t) = [gL—t141,- - - 9L)Br-141(8), ..., BL®)]"|?
= ||6L !(t) = Giai()])?

= Z er—1,c(t) = GiBre(t), e—i.c(t) — GiBic(t)) (13)
= Z ((ep—t,c(t),en—1,c(t)) — 2(eL—1,c(t), GiBr.c(t)) + (GiBuc(t), GiBr.c(1)))

= [ler—i(®)[” —22 er—1,c(t), Gific(t) +Z GiB1e(t), GiBre(1))

where Gy = [gr 141, -, 9L), Bi(t) = [Br—111(t), ..., Bo(t)]", and er 4 (t) = fr — fr -
Take the derivative of Eq. (13) w.r.t. 3;..(t), we have
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By setting Eq. (14) to zero, we have
Bre(t) = (G G)'Glep—i.c(t) (15)
Then, denote by 5;(t) = [Bi1,---,081,¢c,] and er(t) = e} _,(t) — Gi5;(¢) the intermediate values. Given optimal results
[BF(t),...,B05(t)] by Eq. (6), lete} (t) = f — Zle B (t)g; (ef(t) = f). For the progression ||e} ()||* , we have
lez(®II* < llez(®)]?
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We note that the progression ||e% (¢)||? is monotonically decreasing. Using Eqs. (4-5), we can further obtain
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Therefore, we have [le} (t)[|> < (r(t) + pur(t))|ler_,(t)||>. Note that 0 < r(¢) < 1 and limp_, oo pur(t) = 0, ie.,
limy,, 4 ||€F, (¢)|| = 0. This completes the proof. O
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B. Algorithm description for AutoActivator

To better illustrate our method, the whole procedure of training and testing is provided in Algorithm 1. We now show the
expansion process from the perspective of matrix/vector multiplication. Note that nodes added to each scalable neural unit
are in a fully-connected manner but different neural units on a certain layer are not fully connected to the next layer (see
Figure 1), for example, their weights are stored in a list specific to a certain layer. This is significantly different from a
fully-connected (FC) layer or multi-layer perceptron (MLP) in that our classifier layer is additionally parameterized by the
activation threshold for expansion-based decision-making, i.e., reactivating the required neural units in different lists.

Algorithm 1 ActoActivator Training and Test Algorithm

Input: Datasets { D; }7_,; Termination criteria of expanding hidden unit #: the maximum number of nodes L, (t) and
expected accuracy R(t)

1: # During Sequential Training

2: fort=1,2,...,T do

3:  while None of the termination criteria is satisfied do

4: Recruit randomly generated nodes based on supervisory mechanisms by Eq. (7)
5: Update output weights by Eq. (8)

6: end while

7:  Compute activation thresholds by Eq. (11)

8: end for

9

: # At Inference Time
. Given batches of test instances from a certain task
11: Reactivate the required hidden units by Eq. (12)

Output: Task identity ¢ and the predicted classes ¢

—_
=]

In our algorithm, we compactly expand the network on multiple layers. Among them, the former layers are built under
the guidance of supervisory mechanism (Section 4.1) while the final classifier layer is step-wise updated by close-formed
solutions (Section 4.2). Importantly, when it comes to our expansion process, the final classifier layer together with at least
one (or multiple) former layer(s) is required. This is because the mentioned two different types of layers work together to
complete the inference/forward pass in our algorithm.

Without the loss of generality, we take a two-layer AutoActivator on the split MNIST (five 2-classification tasks) as an
example. For the first task whose input has 784 dimensions, we start with modeling the neural unit from scratch with
step size [ nodes (e.g., [ = 10) that are randomly generated but recruited for expansion under the guidance of supervisory
mechanism. When it meets the termination criteria, it yields input weight matrix W;,, € R™4*%1 (e.g., L1 = 200) from
the former layer and output weight matrix W, € R¥1*2 from the classifier layer. These two matrices are respectively
saved in two lists corresponding to two different types of layers, which are also bound to an activation threshold (denoted by
threshold(1)). For the second task whose input has 784 dimensions, similarly, we start with expanding the former layer by
progressively recruiting additional [ nodes (e.g., [ = 10). When it meets the termination criteria, it yields the newly added
input weight matrix W/ € R™4*L2 (e.g., Ly = 150) for the former layer and output weight matrix W/, € RL2*2 for the
classifier layer. These two matrices are bound to an activation threshold (denoted by threshold(2)). The final weight of the
former layer is kept in a list [W;,,, W/, ] without row/column-wise concatenation, and the same goes for the final weight of
the classifier layer that is kept in a list [W,,,¢, W/ ;] In this case, the final dimension of the weight in that former layer is
composed of separate 784 x Ly and 784 X Lo, instead of (784 + 784) x (L1 + Ls); the final dimension of the weight in that
classifier layer is composed of separate L1 x 2 and Lo x 2, instead of (L 4+ Lg) x (2 + 2). Given the input feature vector
from either of trained tasks has m = 784 dimensions, only the input-output weight matrix pair that achieves its activation
threshold serves for making the decision. Thus the size of output vector is 2 dimensional with remaining deactivated. Note
that since the size of Ly and L» is adaptively decided by the complexity/difficulty of a given task, which are usually different,
the input feature vector (of size m) should be the original input from that task, e.g., m = 784 in the task sequence. This
learning paradigm is dramatically different from a multi-head classifier . Our theoretical contribution guarantees the model’s
convergence property on learning sequential mappings. The above also works for multi-layer AutoActivator. Additionally,
AutoActivator can be extended to convolution modules or injected into some advanced backbones such as ResNet or ViT,
which accommodates the real-world scenario where pre-training is usually involved as an initial step.
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C. Additional implementation details
C.1. Data splits and architectures

We run experiments on extensive datasets adapted for CIL under different widely used backbones, which are implemented
in PyTorch with NVIDIA RTX 3080-Ti GPUs. For fair comparisons, (i) all methods select the same or similar-sized neural
network architectures; (ii) following the settings in (Ke et al., 2021; Hu et al., 2021; Rios et al., 2022; Zeng et al., 2019;
Wau et al., 2022), all methods allow to start from the same pre-training unless otherwise specified; and (iii) the data for
pre-training can not include in that of CIL, e.g., we manually remove the overlapping classes. The resulting data splits and
architectures used in our experiments are shown in Table 7.

Table 7. Details of the data splits and the selected architectures for pre-training and CIL. These are what we exactly used in our experiments
of the main text unless otherwise specified.

DATASET ARCHIRECTURE DATA SPLIT
PRE-TRAINING CIL
MNIST MLP X MNIST-10/5
FASHIONMNIST FASHIONMNIST-10/5
CIFAR-100 RESNET-18 TINY-IMAGENET CIFAR-100/10, CIFAR-100/25
IMAGENET-R VIT-B/16 IMAGENET IMAGENET-R-200/10
C.2. Hyper-parameter

We carefully reproduce the selected baselines and use the hyper-parameter settings by referring to their original source code.
When conducting experiments with different datasets, we keep about 10% of the training data from each task for validation.
With regard to baselines, we use the SGD optimizer with an initial learning rate (0.001 for MNIST, FashionMNIST; 0.01
for the remaining) and do much tuning. For the rehearsal-based approaches, we keep a random exemplar set of 2k per
task sequence or ~200 per class by following the similar setting in (Rajasegaran et al., 2019; Hsu et al., 2018). For
regularization-based approaches, the penalty coefficient is from set {100, 1 000, 10 000, 100 000}. For architecture-based
approaches, we pay attention to their model size after learning all tasks. In our method, the maximum number of nodes
Lna2(t) and expected accuracy R(t) of neural unit ¢ for task ¢ are problem-dependent and not fixed. Instead, we perform
the early termination criteria at the level of node expansion instead of epochs (Serra et al., 2018) or phases (Gurbuz
& Dovrolis, 2022), by tracking the lowest value of the residual error achieved so far on the validation set. This way
is flexible in determining the most appropriate hyper-parameter settings without over-fitting, e.g., for MNIST-10/5 and
FashionMNIST-10/5, we use Ly, q5(t) = 200 and R(t) = 99%; for CIFAR-100, we use Li,q,(t) = 1000 and R(t) = 90%
(CIFAR-100/10), and L4, (t) = 500 and R(t) = 80% (CIFAR-100/25). Similarly, we empirically set the step size [ = 10
for node expansion each time and the maximum times of random generation 7},,,, = 50 (see Table 4 for more details);

r(t) =0.9and ur(t) = 1;1(1” based on Theorem 4.2.

To ensure a fair comparison, when in the absence of pre-training, every comparison method uses a similar-sized neural
network architecture that is fully trainable; when in the presence of pre-training, every comparison method starts from the
same pre-trained backbone as a base session. Then, following the settings in (Hu et al., 2021; Zeng et al., 2019; Hayes et al.,
2020; Ke et al., 2021; Wang et al., 2022c), we keep the pre-trained model untouched for methods such as PCL and ours
or still make it fully trainable for methods that could not learn well with a frozen backbone, as evaluated in (Wang et al.,
2022c). That is, all methods allow to start with the same pre-training or learning from scratch and only the winning results
are reported.

C.3. Metrics

We evaluate all considered baselines based on the following metrics (higher is better): Average Classification Accuracy
(ACA),ie., ACAT, measures the test performance of the final model at hand on all 7" tasks seen so far:

T
1
ACA = ; Rr (18)
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where Rt is the test accuracy for task ¢ after training on task 7'; Average Incremental Accuracy (AIA) involves the
intermediate results as each step/session proceeds, say

T
1
AIA = — ) ACA! 1

Among them, it is typically ACA! > ACA% > ... > ACA? > ... > ACAT. Therefore, ACA is more challenging than
AIA, and our experiments focus more on the former while using the latter for a direct comparison with certain of competitors.
Backward Transfer (BWT) (Lopez-Paz & Ranzato, 2017) indicates a model’s ability in knowledge retention, averaged

over all tasks:
T—1

1
> Rry— Ry (20)
t=1

BWT = ——
T-1

Negative BWT values mean that learning new tasks causes forgetting past tasks while a model with BWT = 0 can be
considered forgetting-free (Kang et al., 2022).

As an additional metric (fewer is better), we report the Memory Budget by aligning the memory cost of network parameters
and old samples, i.e., switching them to a 32-bit floating number. In this way, both the final model size (#model, MB) and
exemplar buffers (#exemplar, MB) are counted into the memory budget (MB), calculated with an approximate summation
of them. For example, the budget for saving a simple 2-layer MLP (with [784-400-400-10] neurons) converts to 478 410
floats x4 bytes/float + (1 024 x 1 024) bytes ~ 1.82 MB; the budget for saving 2k samples (with 28x28 gray-scaled pixels)
converts to 1 568 000 floats x 4 bytes/float < (1 024 x 1 024) bytes ~ 5.98 MB, as reported in Table 1.

D. Additional Comparison Results
D.1. Experiments on Unevenly Split Task Sequence

Unlike the intra-sequence balanced CIL where a dataset with C' classes evenly divided into 7 tasks, e.g., MNIST-10/5 and
CIFAR-100/10, we now preliminarily investigate the intra-sequence imbalanced CIL where a dataset with C' classes are
unevenly split into C; classes—CIFAR-{100(C};)|C; # Cy41}. This yields CIFAR-{100(10), 100(20), 100(30), ... } and
CIFAR-{100(2), 100(4), . .. }, in which the value in parentheses indicates the number of classes for the current task. Figure 3
evaluates different algorithms under such a more realistic CIL where tasks are not evenly split. Compared with Table 2,
almost all the methods experience performance degradation since the intra-sequence imbalanced case has something to do
with the choice of architecture or expansion. This is reflected in the different numbers of both classes and samples within
each task. In the resulting 4-task and 10-task sequences, our method gets the best ACA and shows absolute superiority in
BWT values. These results demonstrate that the proposed method introduces a supervisory mechanism to guide network
expansion, whose growth size fully considers the intrinsic complexity of each task sequentially presented.
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010 | il
-0.20
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Figure 3. Performance comparison on the intra-sequence imbalanced case. Left: CIFAR-{100(10), 100(20), 100(30), 100(40)}; Right:
CIFAR-{100(2), 100(4), 100(6), . . . }.

D.2. Experiments on the Scalability for CIL

To show the scalability of our method, we further display the changes of model sizes during sequential training. All
methods are built upon the same backbone architecture ResNet-18 (~44.6MB). Note that RPS-Net and MORE need extra
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exemplar buffers. We report the actually involved model size (i.e., paths) for RPS-Net. It can be observed from Figure 4
that the proposed method outperforms the competitors. That is, after incrementally learning 10 tasks, it remains the model
size relatively unchanged, without relying on exemplar buffers. We believe this is promising for practical CIL under
resource-limited and privacy-sensitive scenarios.

—+—RPS-Net PCL MORE Ours

Model Size (MB)
EhADMDMDDMIOIO]
RUOIONOOOORLN

\
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Number of Tasks

Figure 4. Growth of the network as the number of tasks increases for CIFAR-100/10.

D.3. Experiments on the Training Time and Computational Costs

As the proposed method uses a supervisory mechanism-based node recruitment step followed by a weight update step (where
matrix inversion is needed), it is natural to think of the training time cost, e.g., comparing it with simpler rehearsal-based
methods. Since different methods have very different requirements in computational burden, Table 8 records their per-epoch
running time, demonstrating our superiority in developing a fast and easy-implementation CIL model under selected
parameters (I = 10, T},q2 = 50). As our work uses a dynamic network architecture, we also provide the computational
costs measured by floating point operations per second (FLOPS). The calculation of FLOPs is affected by the size of the
network and input. For a fair comparison, we follow the exact settings in AANet (Liu et al., 2021), with ResNet-32 for
32 x 32 CIFAR-100 and ResNet-18 for 224 x 224 ImageNet-Subset. The results yielded from ours and AANets are 70.12
M (1.82 G) and 140.00 M (3.64 G) on CIFAR-100 (ImageNet-Subset), respectively. This demonstrates the effectiveness and
efficiency of our method in constructing dynamic network architecture for CIL.

Table 8. Comparison results with rehearsal-based methods on running time per epoch.

MeETHOD GEM LOGD RPS-NET IL2M FS-DGPM  OURS
TIME (S) 48 333 56 50 63 12

D.4. Experiments on Single CIL and Online CIL

In addition to the standard CIL scenario, here we consider another two variants. One is single-class incremental learning
that learns one class at a time. This is the most common case in practice because once a new class is encountered, we want
to learn it immediately rather than wait for a few new classes to occur and learn them together. Following the setting in
PCL (Hu et al., 2021), Table 9 reports the comparison results for the Single CIL. In this scenario, the results except ours
are drawn from that of PCL. It’s worth mentioning that PCL, namely per-class continual learning, particularly excels at
class-incremental learning one-by-one. For the CIFAR-100/100 (100 tasks), PCL yields 63.61% and the proposed method is
superior to it by 1.87%.

Another is Online CIL, in which a model learns new classes continually and data can only be observed once. In this scenario,
the results except ours are taken from their original papers and the four competitors need the exemplar buffer. It is observed
from Table 9 that our method outperforms ASER (Shim et al., 2021), PRC (Lin et al., 2023), OnPro (Wei et al., 2023),
GSA (Guo et al., 2023) on CIFAR-100/10 with fewer memory (buffer) usage. This demonstrates the effectiveness of the
proposed method in the Online CIL scenario.

D.5. Comparison Results When Using More Additional Parameters

In the main text, Table 3 adopts a ViT-B/16 transformer model pre-trained on ImageNet-21K and then incrementally learns
tasks from the well-established 200-class Split Imagenet-R. In this setting, our method outperforms the selected baselines by
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Table 9. Comparison results on the CIFAR-100/100 for Single CIL and CIFAR-100/10 for Online CIL.

SINGLE CIL ONLINE CIL
METHOD ACA(%)1T METHOD ACA(%)7T
EWC 2.93 ASER 14.0
RPS-NET 4.13 PCR 25.6
OWM 63.26 ONPRO 30.4
PCL 63.61 GSA 31.4
OURS 65.48 OURS 32.5

Table 10. Comparison results when more additional parameters are built upon a pre-trained model.

METHOD ACA(%) 1 ADDITIONAL NO. PARAMS (x10°) |
SLAC 77.00 ~123.7

RANPAC 77.90 ~12.5

OURS™ 76.32 ~3.90

OURS™™* 78.91 ~127.5

UPPER BOUND 79.13 -

only incurring 0.6 (x 10%) additional number of parameters (Additional No. Params) except for the pre-trained ViT. Now we
further compare our method with competitors using more Additional No. Params. When more additional parameters are
built upon a pre-trained model, strong baselines like SLCA (Zhang et al., 2023) and RanPAC (McDonnell et al., 2023) show
better performance than that of all methods in Table 3. In Table 10, when our method enlarges its model size (Additional No.
Params is about 3.9x 10°), denoted by Ours*, its ACA is very approaching SLCA and RanPAC. Since our method belongs
to the theoretical and embryonic approach, highlighting a fair comparison by considering both accuracy and memory usage,
the result is still promising. Furthermore, as SLAC can be naturally plug-and-play with other CIL approaches, we make this
combination with Ours*, denoted by Ours**. We can achieve extra performance improvement, and the results surpass SLCA
and RanPAC by 1.91% and 1.01%, surprisingly getting closer to the upper bound.

D.6. Further Comparison on ImageNet-100 and ImageNet-1K Using the Metric AIA

Before concluding our empirical evaluation, Table 11 provides a comparison between the proposed method and some
top-performing methods on ImageNet-100 and ImageNet-1K, measured by AIA. We first test our methods on ImageNet-100.
Following the benchmark protocol used in PODNet (Douillard et al., 2020), AANets (Liu et al., 2021), DER(Yan et al.,
2021), FOSTER (Wang et al., 2022a), and ACIL (Zhuang et al., 2022), we start from a model trained on 50 base classes
(B50), and the remaining 50 classes are divided into splits of 10 steps. Note that we directly take the reported results on
ImageNet-100 B50 from their original papers to report the best performance. It can be observed that our method is superior
to the strongest baseline by 0.52%. Similarly, we test our methods on ImageNet-1K. For our method, we build it upon the
available backbone provided by ACIL where a ResNet-18 was well-trained based on half of the ImageNet-1K datasets.
This ImageNet-1K B500 setting is also used in PODNet, AANets, and ACIL but not in DER and FOSTER. For this, we
mark DER and FOSTER with B0, i.e., training on ImageNet-1K from scratch. Although training from scratch seems more
attractive, they rely on storing 20 000 old task exemplars that our method does not. It can be observed that our method
outperforms the strongest baseline by 0.82%.

Table 11. Comparison results using the metric AIA(%). * denotes additional exemplar buffer is required during CIL.

METHOD IMAGENET-100 IMAGENET-1K

PODNET" 74.33 64.13
AANETS* 75.58 64.85
DER”" 77.73 66.73 (BO)
FOSTER" 77.54 68.34 (BO)
ACIL 74.76 64.84
OURS 78.25 69.16
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