
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Mind the Gap: Removing the Discretization Gap
in Differentiable Logic Gate Networks

Anonymous Authors1

Abstract
Modern neural networks exhibit state-of-the-art performance on many benchmarks, but their high computational
requirements and energy usage have researchers exploring more efficient solutions for real-world deployment.
Logic gate networks (LGNs) learns a large network of logic gates for efficient image classification. However,
learning a network that can solve a simple problem like CIFAR-10 can take days to weeks to train. Even then,
almost half of the network remains unused, causing a discretization gap. This discretization gap hinders real-world
deployment of LGNs, as the performance drop between training and inference negatively impacts accuracy. We
inject Gumbel noise with a straight-through estimator during training to significantly speed up training, improve
neuron utilization, and decrease the discretization gap. We theoretically show that this results from implicit
Hessian regularization, which improves the convergence properties of LGNs. We train networks 4.5× faster in
wall-clock time, reduce the discretization gap by 98%, and reduce the number of unused gates by 100%.

1. Introduction
Deep neural networks achieve human-level performance on many tasks, but their high computational cost limits real-world
deployment. This has sparked interest in models that retain accuracy while being more efficient. At their core, all digital
computations reduce to Boolean operations (AND, OR, NOT, etc.). Motivating the question: Can we express and execute
machine learning models directly in the native language of hardware—namely, logic gates? Logic Gate Networks (LGNs)
offer one such approach by replacing arithmetic with compositions of discrete logic operations. While LGNs enable efficient
inference, training them is difficult. Differentiable LGNs address this by introducing continuous relaxations that allow
gradient-based training (Petersen et al., 2022; 2024).

We identify and propose solutions to two major challenges. (1) Discretization gap: The final model must be discretized
after training, often leading to a significant accuracy drop (3%). (2) Slow convergence: Despite efficient inference, training
is slow due to reliance on differentiable relaxations, making convergence slower than in standard neural networks. These
challenges are interrelated.

The gap arises because the final parameters, after training, must be discretized. Small parameter perturbations can
significantly change performance if the loss landscape is sharp. A sharp loss landscape can also cause poor gradient signals,
which impact the convergence speed, causing training to take much longer, while a smooth loss landscape can reduce
the discretization gap and speed up convergence (Foret et al., 2021; Chen & Hsieh, 2021). Our central hypothesis is that
smoother loss landscapes make LGN models more robust to discretization and facilitate faster and more stable training.
Since the loss landscape is smoother, the gradient signal is better, and the networks converge faster. Also, the improved
gradient signal causes more neurons to collapse, thus reducing the impact of discretization.

We propose Gumbel Logic Gate Networks (Gumbel LGNs), which use the Gumbel-Softmax trick to inject noise into gate
selection during training. This encourages exploration, smooths the loss landscape, and reduces the training-inference gap.
Empirically, Gumbel LGNs converge faster and have smaller discretization gaps than standard Differentiable LGNs. To
further reduce this gap, we adopt a discretization-aware training inspired by NAS: applying continuous relaxations only

1Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Removing the Discretization Gap in DLGNs

1

0

1

1

1

1

1

1

0

1

0

0

1

0

1

0

1

1

1

1

0

1

0

0

1

Sn
ow

 L
eo

pa
rd

Ca
t

0

....

+

0

....

0 1 0 1

(a) (b)

(c) (d)

Training Time
(GPU Hours)

Discretization
Gap (%, ×10)

Unused
Neurons (%)

4.5× Faster

98% Reduction

100% ReductionDLGNs
GLGNs (ours)

Figure 1. Overview figure. (a) Differentiable LGNs: Each node weighs and sums outputs of 16 logic gates, creating a brittle loss landscape
that slows training and increases the discretization gap. (b) Gumbel LGNs: Injecting Gumbel noise and selecting the top gate smooths the
loss landscape and aligns training with inference, improving convergence and reducing the gap. (c) Structure of Differentiable LGNs and
Gumbel LGNs. Each neuron takes two inputs; final layer nodes are summed to produce class scores. (d) Gumbel LGNs yield up to 4.5×
faster convergence, 98% lower discretization gap, and elimination of unused neurons.

in the backward pass and using discrete gates in the forward pass. While the straight-through estimator may slightly slow
convergence, it greatly reduces the gap and aligns training with inference without impacting inference speed.

To our knowledge, this is the first work to analyze the discretization gap in LGNs and connect it to loss landscape
smoothness. Our approach scales to parameter spaces comparable to deep networks, exceeding 103,600,000—vastly beyond
NAS benchmarks, which typically reach up to 1018.

Our contributions are as follows:
Empirical validation: We demonstrate that Gumbel LGNs train faster and improve neuron utilization.
Theoretical analysis: We prove that injecting Gumbel noise into Differentiable LGNs smooths their loss landscape by
regularizing the Hessian’s trace, thereby reducing the discretization gap and accelerating convergence.
Practical algorithmic insight: We show that using the straight-through estimator further reduces the discretization gap.

Extended background, related work, and Gumbel LGN details are in Appendices A to C.

2. Background
Logic Gate Networks Logic Gate Networks (LGNs) represent an entire network as a composition of discrete logic
operations. In a learned network, each neuron in a hidden layer takes as input the value of two neurons (with output a and
b) in the previous layer1 and applies a fixed logic gate hi(a, b) to get its output. The final layer neurons are partitioned
into k disjoint groups Gi. Following Petersen et al. (2022), we implement GroupSum, which computes class scores as
si =

1
τGS

∑
j∈Gi

aj , where aj is the binary activation of neuron j and τGS is a GroupSum temperature parameter. The class
with the highest neuron activation count is predicted.

1At initialization, each neuron randomly picks which two neurons in the previous layer it uses for its inputs.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Removing the Discretization Gap in DLGNs

From Combinatorial Search to Differentiable Training Directly searching for the best discrete gate assignments is
infeasible due to the size of the search space, so Differentiable Logic Gate Networks (Differentiable LGNs) (Petersen et al.,
2022; 2024) introduce a continuous relaxation. Each of the 16 possible binary gates hi(a, b) is replaced by a continuous
surrogate (e.g. AND(a, b) 7→ a · b). In addition, each neuron maintains logits z ∈ R16, which are initialized using a
Gaussian, z ∼ N (0, 1)16. After a softmax, these logits define a probability distribution over gates, and the neuron’s output
is a weighted sum of the 16 gates:

f soft
z (a, b) =

16∑
i=1

exp zi∑
j exp zj

· hi(a, b). (1)

Ensuring each logic gate maps from a continuous domain f : [0, 1]
2 → [0, 1]. This “soft” network can be trained end-to-end

with gradient descent.

Discretization After training, Differentiable LGNs are discretized to LGNs by selecting the logic gate with the highest
logit value, i.e., it uses hi, i = argmaxi zi. We denote Differentiable LGNs evaluated in the differentiable setting (using
Equation (1)) as soft and otherwise as discrete.

3. Related Work
Efficient Neural Architectures A significant body of research has focused on neural models that balance high performance
with limited computational budgets, enabling edge deployment (Liu et al., 2021; Mishra & Gupta, 2024; Iqbal et al., 2024).
Techniques include lookup tables (Chatterjee, 2018), binary and quantized networks (Frantar et al., 2022; Yuan & Agaian,
2023), and sparse networks (Hoefler et al., 2021; Frantar & Alistarh, 2023; Cheng et al., 2024).

Differentiable Logic Gate Networks (LGNs) recently achieved state-of-the-art results in image classification (Petersen
et al., 2024). As the convolutional variant’s code is unavailable, we focus on the original LGN (Petersen et al., 2022).
Our improvements target convergence and are orthogonal to architectural innovations, thus likely transferable. We omit
comparisons to other efficient models, already covered by Petersen et al. (2022; 2024).

Differentiable Neural Architecture Search Neural Architecture Search (NAS) automates selecting high-performing
architectures (Zoph & Le, 2017), with efficiency improvements over early costly methods (Dong & Yang, 2019; Xie
et al., 2020). A seminal contribution in this domain is Differentiable Architecture Search (DARTS) by Liu et al. (2019),
which introduces a softmax-based relaxation over discrete architectural choices, allowing end-to-end optimization through
gradient descent. More recently, Chen & Hsieh (2021) reduced the discretization gap of DARTS by introducing Smooth
DARTS, which uses weight perturbations through uniform noise or adversarial optimization. These were shown to bias the
optimization toward solutions with flatter minima and lower Hessian norm.

Sharpness-Aware Minimization A parallel line of research focuses on improving generalization by minimizing the
sharpness of the loss landscape. Motivated by prior theoretical works on generalization and flat minima (Keskar et al., 2017;
Dziugaite & Roy, 2017; Jiang* et al., 2019), Foret et al. (2021) introduced Sharpness-Aware Minimization (SAM). This
technique explicitly seeks flat minima by optimizing the worst-case loss within a parameter perturbation neighborhood.

4. Empirical Evaluations
Our empirical evaluations focus on CIFAR-10, as the MNIST-like datasets (MNIST, FashionMNIST, etc.) have low
discretization gaps (cf. Appendix O). CIFAR-10 and MNIST were also the datasets Petersen et al. (2022; 2024) mostly
focused on. Due to constrained resources, we limit experiments by default to 48 GPU hours. We use the hyperparameters
from (Petersen et al., 2022; 2024) whenever possible rather than tuning the parameters, such as learning rate, ourselves.
Appendix N.1 contains all the default parameters.

Discretization Gap On Figure 2, the test accuracy as a function of training iteration for an LGN of depth 12 and width
256k on CIFAR-10; these are the default parameters unless stated otherwise. To quantify the discretization gap, we take the
absolute difference between the discretized and soft network accuracy as shown on the right in Figure 2. Gumbel LGN
converges much faster than the Differentiable LGN, with virtually no discretization gap. Combined with runtime results

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Removing the Discretization Gap in DLGNs

0 200 400 600 800 1000 1200

Iteration (·103)

0.0

0.2

0.4

0.6

Te
st

A
cc

ur
ac

y

GLGN (ours) (discrete)
GLGN (ours) (soft)
DLGN (discrete)
DLGN (soft)

0 200 400 600 800 1000 1200

Iteration (·103)

0.00

0.05

0.10

D
is

cr
et

iz
at

io
n

G
ap

GLGN: Depth 12
GLGN: Depth 10
GLGN: Depth 8
GLGN: Depth 6

DLGN: Depth 12
DLGN: Depth 10
DLGN: Depth 8
DLGN: Depth 6

Figure 2. Performance of Gumbel LGNs and Differentiable LGNs on CIFAR-10. Left: Test accuracy for the default network with 12
layers and a width of 256k. Right: Discretization gap for various depths. Differentiable LGNs experience larger gaps and slower reduction
as the depth increases. In contrast, Gumbel LGNs have consistently low gaps and fast reduction as the network depth increases.

Differentiable LGN Gumbel LGN

L
os

s

Figure 3. Visualization of loss landscapes. Left: Loss landscape of a Differentiable LGN. We see that the landscape is overall noisy.
Right: Loss landscape of a Gumbel LGN with τ = 1.0. We observe a much smoother loss landscape compared to the Differentiable
LGNs.

from Table 4 in Appendix Q, Gumbel LGN converges2 4.75× faster in iterations, making Gumbel LGNs 4.5× faster in
wall-clock time to train. Note that the Differentiable LGN still improves after 48 hours.

Gap Scaling with Depth On the right of Figure 2, we see the discretization gap for models of various depths for
Differentiable LGNs and Gumbel LGNs. As the model depth increases, the expressive power of the networks theoretically
increases. The Differentiable LGNs experience bigger discretization gaps as the depth increases, while our Gumbel LGNs
are stable across depths.

Curvature Visualization We project the high-dimensional parameter space onto two-dimensional subspaces to assess the
loss of landscape curvature. Following Li et al. (2018), we select random directions and interpolate the loss surface along
these axes, providing insight into the optimization landscape’s geometry around learned solutions. Visualization details are
in Appendix M. Figure 3 shows that Gumbel LGN has a visually smoother loss surface.

5. Conclusion
We introduced Gumbel logic gate networks (Gumbel LGNs), addressing two critical limitations of Differentiable LGNs:
slow convergence during training and a large discretization gap between training and inference. Our theoretical analysis
shows that Gumbel noise during gate selection promotes flatter minima by implicitly minimizing the Hessian trace, reducing
sensitivity to parameter discretization. Experiments on CIFAR-10 demonstrate that Gumbel LGNs converge 4.5× faster in
wall-clock time than Differentiable LGNs while reducing the discretization gap by 98% and achieving 100.0% improvement
in neuron utilization. These advantages become more pronounced with depth, indicating favorable scaling properties. Our
improvements are dataset and architecture-independent, and several promising directions remain for future exploration:
extending Differentiable LGNs to convolutional architectures, validating on more complex datasets like CIFAR-100 and
ImageNet32, exploring hardware-specific optimizations, and investigating adaptive temperature scheduling.

2For this, we match Gumbel LGNs’ discrete accuracy with Differentiable LGNs’ maximum discrete accuracy.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Removing the Discretization Gap in DLGNs

References
Al-Quraan, M., Mohjazi, L., Bariah, L., Centeno, A., Zoha, A., Arshad, K., Assaleh, K., Muhaidat, S., Debbah, M., and

Imran, M. A. Edge-Native Intelligence for 6G Communications Driven by Federated Learning: A Survey of Trends and
Challenges. IEEE Transactions on Emerging Topics in Computational Intelligence, 7(3):957–979, June 2023. ISSN
2471-285X. doi: 10.1109/TETCI.2023.3251404.

Andriushchenko, M. and Flammarion, N. Towards Understanding Sharpness-Aware Minimization, June 2022.

Avron, H. and Toledo, S. Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite
matrix. Journal of the ACM (JACM), 58(2):1–34, 2011.

Bottou, L., Cortes, C., Denker, J., Drucker, H., Guyon, I., Jackel, L., LeCun, Y., Muller, U., Sackinger, E., Simard, P., and
Vapnik, V. Comparison of classifier methods: A case study in handwritten digit recognition. In Proceedings of the 12th
IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5),
volume 2, pp. 77–82 vol.2, October 1994. doi: 10.1109/ICPR.1994.576879.

Chang, J., zhang, x., Guo, Y., MENG, GAOFENG., XIANG, SHIMING., and Pan, C. DATA: Differentiable ArchiTecture
approximation. In Wallach, H., Larochelle, H., Beygelzimer, A., dAlché-Buc, F., Fox, E., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Chatterjee, S. Learning and Memorization. In Proceedings of the 35th International Conference on Machine Learning, pp.
755–763. PMLR, July 2018.

Chen, X. and Hsieh, C.-J. Stabilizing Differentiable Architecture Search via Perturbation-based Regularization, January
2021.

Cheng, H., Zhang, M., and Shi, J. Q. A survey on deep neural network pruning: Taxonomy, comparison, analysis, and
recommendations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Chitty-Venkata, K. T., Emani, M., Vishwanath, V., and Somani, A. K. Neural Architecture Search Benchmarks: Insights and
Survey. IEEE Access, 11:25217–25236, 2023. ISSN 2169-3536. doi: 10.1109/ACCESS.2023.3253818.

Chrabaszcz, P., Loshchilov, I., and Hutter, F. A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets.
CoRR, January 2017.

Chu, X., Zhou, T., Zhang, B., and Li, J. Fair DARTS: Eliminating Unfair Advantages in Differentiable Architecture Search,
July 2020.

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., and Ha, D. Deep Learning for Classical Japanese
Literature, November 2018.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A. EMNIST: An extension of MNIST to handwritten letters, March 2017.

Dong, X. and Yang, Y. Searching for a Robust Neural Architecture in Four GPU Hours. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1761–1770, Long Beach, CA, USA, June 2019. IEEE. ISBN
978-1-7281-3293-8. doi: 10.1109/CVPR.2019.00186.

Du, J., Yan, H., Feng, J., Zhou, J. T., Zhen, L., Goh, R. S. M., and Tan, V. Y. F. Efficient Sharpness-aware Minimization for
Improved Training of Neural Networks, May 2022a.

Du, J., Zhou, D., Feng, J., Tan, V., and Zhou, J. T. Sharpness-aware training for free. In Koyejo, S., Mohamed, S., Agarwal,
A., Belgrave, D., Cho, K., and Oh, A. (eds.), Advances in Neural Information Processing Systems, volume 35, pp.
23439–23451. Curran Associates, Inc., 2022b.

Dziugaite, G. K. and Roy, D. M. Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks
with Many More Parameters than Training Data, October 2017.

Elsken, T., Metzen, J. H., and Hutter, F. Neural architecture search: A survey. Journal of Machine Learning Research, 20
(55):1–21, 2019.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Removing the Discretization Gap in DLGNs

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B. Sharpness-Aware Minimization for Efficiently Improving Generaliza-
tion, April 2021.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language models can be accurately pruned in one-shot. In International
Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq: Accurate post-training quantization for generative pre-trained
transformers. arXiv preprint arXiv:2210.17323, 2022.

Gumbel, E. J. Statistical Theory of Extreme Values and Some Practical Applications. Journal of the Royal Statistical Society.
Series A (General), 118(1):106, 1955. ISSN 00359238. doi: 10.2307/2342529.

He, Y. and Xiao, L. Structured pruning for deep convolutional neural networks: A survey. IEEE transactions on pattern
analysis and machine intelligence, 46(5):2900–2919, 2023.

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and Peste, A. Sparsity in deep learning: Pruning and growth for efficient
inference and training in neural networks. Journal of Machine Learning Research, 22(241):1–124, 2021.

Hutchinson, M. F. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Communica-
tions in Statistics-Simulation and Computation, 18(3):1059–1076, 1989.

Ipsen, I. C. Computing an eigenvector with inverse iteration. SIAM review, 39(2):254–291, 1997.

Iqbal, S., Khan, T. M., Naqvi, S. S., Naveed, A., Usman, M., Khan, H. A., and Razzak, I. LDMRes-Net: A Lightweight
Neural Network for Efficient Medical Image Segmentation on IoT and Edge Devices. IEEE Journal of Biomedical and
Health Informatics, 28(7):3860–3871, July 2024. ISSN 2168-2208. doi: 10.1109/JBHI.2023.3331278.

Jang, E., Gu, S., and Poole, B. Categorical Reparameterization with Gumbel-Softmax. In International Conference on
Learning Representations, February 2017.

Jiang*, Y., Neyshabur*, B., Mobahi, H., Krishnan, D., and Bengio, S. Fantastic Generalization Measures and Where to Find
Them. In International Conference on Learning Representations, September 2019.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima. In International Conference on Learning Representations, February 2017.

Krizhevsky, A. and Hinton, G. Learning multiple layers of features from tiny images, 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of
the IEEE, 86(11):2278–2324, November 1998. ISSN 1558-2256. doi: 10.1109/5.726791.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. Visualizing the Loss Landscape of Neural Nets. In Advances in
Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

Li, T., Zhou, P., He, Z., Cheng, X., and Huang, X. Friendly Sharpness-Aware Minimization. In 2024 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 5631–5640, Seattle, WA, USA, June 2024. IEEE. ISBN
979-8-3503-5300-6. doi: 10.1109/CVPR52733.2024.00538.

Li, Y., Pintea, S.-L., and Gemert, J. C. V. Equal Bits: Enforcing Equally Distributed Binary Network Weights. Proceedings
of the AAAI Conference on Artificial Intelligence, 36(2):1491–1499, June 2022. ISSN 2374-3468, 2159-5399. doi:
10.1609/aaai.v36i2.20039.

Liu, H., Simonyan, K., and Yang, Y. DARTS: Differentiable Architecture Search, April 2019.

Liu, S., Ha, D. S., Shen, F., and Yi, Y. Efficient neural networks for edge devices. Computers & Electrical Engineering, 92:
107121, June 2021. ISSN 0045-7906. doi: 10.1016/j.compeleceng.2021.107121.

Liu, Y., Mai, S., Chen, X., Hsieh, C.-J., and You, Y. Towards Efficient and Scalable Sharpness-Aware Minimization. In
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12350–12360, New Orleans, LA,
USA, June 2022a. IEEE. ISBN 978-1-6654-6946-3. doi: 10.1109/CVPR52688.2022.01204.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Removing the Discretization Gap in DLGNs

Liu, Y., Mai, S., Cheng, M., Chen, X., Hsieh, C.-J., and You, Y. Random sharpness-aware minimization. In Koyejo, S.,
Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.), Advances in Neural Information Processing Systems,
volume 35, pp. 24543–24556. Curran Associates, Inc., 2022b.

Maddison, C. J., Tarlow, D., and Minka, T. A* Sampling. In Advances in Neural Information Processing Systems, volume 27.
Curran Associates, Inc., 2014.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete distribution: A continuous relaxation of discrete random variables.
In International Conference on Learning Representations (ICLR), 2017.

McAllester, D. A. PAC-Bayesian model averaging. In Proceedings of the Twelfth Annual Conference on Computational
Learning Theory, pp. 164–170, Santa Cruz California USA, July 1999. ACM. ISBN 978-1-58113-167-3. doi: 10.1145/
307400.307435.

Mi, P., Shen, L., Ren, T., Zhou, Y., Sun, X., Ji, R., and Tao, D. Make sharpness-aware minimization stronger: A sparsified
perturbation approach. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 30950–30962. Curran Associates, Inc., 2022.

Miotti, P., Niklasson, E., Randazzo, E., and Mordvintsev, A. Differentiable Logic CA: From Game of Life to Pattern
Generation. https://google-research.github.io/self-organising-systems/difflogic-ca/, March 2025.

Mises, R. V. and Pollaczek-Geiringer, H. Praktische Verfahren der Gleichungsauflösung Section 1-4. ZAMM - Journal of
Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 9(1):58–77, 1929. ISSN
1521-4001. doi: 10.1002/zamm.19290090105.

Mishra, R. and Gupta, H. P. Designing and Training of Lightweight Neural Networks on Edge Devices Using Early Halting
in Knowledge Distillation. IEEE Transactions on Mobile Computing, 23(5):4665–4677, May 2024. ISSN 1558-0660.
doi: 10.1109/TMC.2023.3297026.

Mueller, M., Vlaar, T., Rolnick, D., and Hein, M. Normalization Layers Are All That Sharpness-Aware Minimization Needs,
November 2023.

Park, D., Kim, S., An, Y., and Jung, J.-Y. LiReD: A Light-Weight Real-Time Fault Detection System for Edge Computing
Using LSTM Recurrent Neural Networks. Sensors, 18(7):2110, June 2018. ISSN 1424-8220. doi: 10.3390/s18072110.

Pearlmutter, B. A. Fast exact multiplication by the hessian. Neural Computation, 6(1):147–160, 1994.

Petersen, F., Borgelt, C., Kuehne, H., and Deussen, O. Deep Differentiable Logic Gate Networks. In Advances in Neural
Information Processing Systems, October 2022.

Petersen, F., Kuehne, H., Borgelt, C., Welzel, J., and Ermon, S. Convolutional differentiable logic gate networks. In
Globerson, A., Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak, J., and Zhang, C. (eds.), Advances in Neural
Information Processing Systems, volume 37, pp. 121185–121203. Curran Associates, Inc., 2024.

Ren, P., Xiao, Y., Chang, X., Huang, P.-y., Li, Z., Chen, X., and Wang, X. A Comprehensive Survey of Neural Architecture
Search: Challenges and Solutions. ACM Comput. Surv., 54(4):76:1–76:34, May 2021. ISSN 0360-0300. doi: 10.1145/
3447582.

Sagun, L., Bottou, L., and LeCun, Y. Eigenvalues of the hessian in deep learning: Singularity and beyond. arXiv preprint
arXiv:1611.07476, 2016.

Sagun, L., Evci, U., Guney, V. U., Dauphin, Y., and Bottou, L. Empirical analysis of the hessian of over-parametrized neural
networks. arXiv preprint arXiv:1706.04454, 2017.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and effective pruning approach for large language models. arXiv
preprint arXiv:2306.11695, 2023.

Tian, Y., Liu, C., Xie, L., jiao, J., and Ye, Q. Discretization-aware architecture search. Pattern Recognition, 120:108186,
December 2021. ISSN 0031-3203. doi: 10.1016/j.patcog.2021.108186.

Trefethen, L. N. and Bau, D. Numerical Linear Algebra. SIAM, 2022.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Removing the Discretization Gap in DLGNs

Tu, R., Roberts, N., Khodak, M., Shen, J., Sala, F., and Talwalkar, A. NAS-Bench-360: Benchmarking Neural Architecture
Search on Diverse Tasks. Advances in Neural Information Processing Systems, 35:12380–12394, December 2022.

Wang, P., Zhang, Z., Lei, Z., and Zhang, L. Sharpness-Aware Gradient Matching for Domain Generalization. In 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3769–3778, Vancouver, BC, Canada,
June 2023. IEEE. ISBN 979-8-3503-0129-8. doi: 10.1109/CVPR52729.2023.00367.

Wei, M. and Schwab, D. J. How noise affects the hessian spectrum in overparameterized neural networks. arXiv preprint
arXiv:1910.00195, 2019.

Wen, K., Ma, T., and Li, Z. How Does Sharpness-Aware Minimization Minimize Sharpness?, January 2023.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning
Algorithms, September 2017.

Xie, S., Zheng, H., Liu, C., and Lin, L. SNAS: Stochastic Neural Architecture Search, April 2020.

Yadav, C. and Bottou, L. Cold Case: The Lost MNIST Digits, November 2019.

Yuan, C. and Agaian, S. S. A comprehensive review of Binary Neural Network. Artificial Intelligence Review, 56(11):
12949–13013, November 2023. ISSN 0269-2821, 1573-7462. doi: 10.1007/s10462-023-10464-w.

Zela, A., Siems, J., and Hutter, F. NAS-Bench-1Shot1: Benchmarking and Dissecting One-shot Neural Architecture Search.
In International Conference on Learning Representations, September 2019.

Zhang, Y., Pan, J., Liu, X., Chen, H., Chen, D., and Zhang, Z. FracBNN: Accurate and FPGA-Efficient Binary Neural
Networks with Fractional Activations. In The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA ’21, pp. 171–182, New York, NY, USA, February 2021. Association for Computing Machinery. ISBN
978-1-4503-8218-2. doi: 10.1145/3431920.3439296.

Zhang, Y., Qin, Y., Zhang, Y., Zhou, X., Jian, S., Tan, Y., and Li, K. OnceNAS: Discovering efficient on-device
inference neural networks for edge devices. Information Sciences, 669:120567, May 2024. ISSN 00200255. doi:
10.1016/j.ins.2024.120567.

Zoph, B. and Le, Q. Neural Architecture Search with Reinforcement Learning. In International Conference on Learning
Representations, February 2017.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Removing the Discretization Gap in DLGNs

A. Background
Logic Gate Networks Logic Gate Networks (LGNs) represent an entire network as a composition of discrete logic
operations. In a learned network, each neuron in a hidden layer takes as input the value of two neurons (with output a and
b) in the previous layer3 and applies a fixed logic gate hi(a, b) to get its output. The final layer neurons are partitioned
into k disjoint groups Gi. Following Petersen et al. (2022), we implement GroupSum, which computes class scores as
si =

1
τGS

∑
j∈Gi

aj , where aj is the binary activation of neuron j and τGS is a GroupSum temperature parameter. The class
with the highest neuron activation count is predicted.

From Combinatorial Search to Differentiable Training Directly searching for the best discrete gate assignments is
infeasible due to the size of the search space, so Differentiable Logic Gate Networks (Differentiable LGNs) (Petersen et al.,
2022; 2024) introduce a continuous relaxation. Each of the 16 possible binary gates hi(a, b) is replaced by a continuous
surrogate (e.g. AND(a, b) 7→ a · b). In addition, each neuron maintains logits z ∈ R16, which are initialized using a
Gaussian, z ∼ N (0, 1)16. After a softmax, these logits define a probability distribution over gates, and the neuron’s output
is a weighted sum of the 16 gates:

f soft
z (a, b) =

16∑
i=1

exp zi∑
j exp zj

· hi(a, b). (2)

Ensuring each logic gate maps from a continuous domain f : [0, 1]
2 → [0, 1]. This “soft” network can be trained end-to-end

with gradient descent.

Discretization After training, Differentiable LGNs are discretized to LGNs by selecting the logic gate with the highest
logit value, i.e., it uses hi, i = argmaxi zi. We denote Differentiable LGNs evaluated in the differentiable setting (using
Equation (2)) as soft and otherwise as discrete.

Gumbel-Softmax The Gumbel-Softmax trick offers an efficient and effective way to draw samples from a categorical
distribution with class probabilities π ∈ ∆k (Gumbel, 1955; Maddison et al., 2014; Jang et al., 2017; Maddison et al., 2017).
Let g ∼ Gumbel(0, 1) distribution if u ∼ U(0, 1) and g = − log(− log u). We can then draw a sample z from π as the
value for index i given by Equation (3).

i = argmax
j

(gj + log πj), gj ∼ Gumbel(0, 1). (3)

We can make the argmax operation continuous and differentiable with respect to the class probabilities πi, and generate
k-dimensional sample vectors y ∈ Rk using a softmax with temperature τ as below:

πGumbel
i =

exp((log πi + gi)/τ)∑
j exp((log πj + gj)/τ)

, πi =

k∑
i=1

exp zi∑
j exp zj

, zi ∈ R. (4)

B. Related Work
Efficient Neural Architectures A significant body of research has focused on designing neural models that maintain high
performance while operating within limited computational budgets, e.g., for deployment on edge devices (Park et al., 2018;
Liu et al., 2021; Al-Quraan et al., 2023; Mishra & Gupta, 2024; Zhang et al., 2024; Iqbal et al., 2024). These light models
use various methods such as lookup tables (Chatterjee, 2018), binary and quantized neural networks (Zhang et al., 2021; Li
et al., 2022; Frantar et al., 2022; Yuan & Agaian, 2023), and sparse neural networks (Hoefler et al., 2021; Sun et al., 2023;
He & Xiao, 2023; Frantar & Alistarh, 2023; Cheng et al., 2024).

Of particular interest in this context are Differentiable Logic Gate Networks (LGNs), which have recently demonstrated
state-of-the-art performance in image classification tasks (Petersen et al., 2022; 2024), as well as in rule extraction from
observed cellular automata dynamics (Miotti et al., 2025). The convolutional variant’s code is not public; we therefore focus
on the original LGN Petersen et al. (2022). Our proposed improvements target convergence behavior and are orthogonal to
the architectural innovations of the convolutional LGN variant; hence, we expect them to be transferable without loss of
generality. We refrain from comparisons to other efficient neural models, as such benchmarks were already comprehensively
addressed in the works mentioned above by Petersen et al. (2022; 2024).

3At initialization, each neuron randomly picks which two neurons in the previous layer it uses for its inputs.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Removing the Discretization Gap in DLGNs

Differentiable Neural Architecture Search Neural Architecture Search (NAS) aims to automate the selection of high-
performing model architectures from a large design space (Zoph & Le, 2017; Elsken et al., 2019; Ren et al., 2021).
While early approaches were computationally expensive, subsequent efforts have focused on improving efficiency (Dong
& Yang, 2019; Xie et al., 2020). Several works have addressed the issue of train–test performance discrepancies by
proposing sampling-based training (Chang et al., 2019) or regularization techniques that bias architecture selection toward
configurations with better generalization (Chu et al., 2020).

A seminal contribution in this domain is Differentiable Architecture Search (DARTS) by Liu et al. (2019), which introduces
a softmax-based relaxation over discrete architectural choices, allowing end-to-end optimization through gradient descent.
This principle strongly resonates with the soft gate selection mechanism employed in LGNs.

More recently, Chen & Hsieh (2021) reduced the discretization gap of DARTS by introducing Smooth DARTS, which uses
weight perturbations through uniform noise or adversarial optimization. These were shown to bias the optimization toward so-
lutions with flatter minima and lower Hessian norm. This technique—often referred to as curvature regularization—reduces
sensitivity to sharp local optima and enhances generalization.

Differentiable LGNs as DARTS The works on LGNs by Petersen et al. (2022; 2024) do not explicitly draw connections
to NAS, but the conceptual similarity is high. Both LGNs and DARTS use softmax-based weighting to choose between
multiple candidate functions in a differentiable manner. A key distinction lies in the scale of the search space. Conventional
NAS approaches typically explore search space sizes up to 1018 (Zela et al., 2019; Tu et al., 2022; Chitty-Venkata et al.,
2023),while LGNs operate over exponentially larger spaces—166·64,000 ≈ 10462,382 for MNIST and ≈ 103,699,056 for
CIFAR-10. This scale is enabled by the simplicity of logic operations, which have no learnable parameters. Thus, LGNs
demonstrate the viability of differentiable NAS at previously unexplored scales.

Conventional NAS frameworks often permit a retraining phase after discretizing the architecture, thereby reducing the
discretization gap. LGNs, in contrast, lack such flexibility, as their neurons contain no parameterized operations, and thus
the gap persists.

Moreover, in DARTS and related approaches, this training approach favors operations, such as residual connections (Tian
et al., 2021). Typically, we aim to avoid these residual connections, as they do not increase the models’ expressive power
(Chu et al., 2020). In relation, Petersen et al. (2024) finds that their convolutional method with residual initialization mainly
converges to residual connections.

Sharpness-Aware Minimization A parallel line of research focuses on improving generalization by minimizing the
sharpness of the loss landscape. Motivated by prior theoretical works on generalization and flat minima (Keskar et al.,
2017; Dziugaite & Roy, 2017; Jiang* et al., 2019), Foret et al. (2021) introduced Sharpness-Aware Minimization (SAM)
in Equation (5). This technique explicitly seeks flat minima by optimizing the worst-case loss within a perturbation
neighborhood.

min
w

LSAM
S (w) + λ∥w∥22 where LSAM

S (w) ≜ max
∥ϵ|p≤ρ

LS(w + ϵ), (5)

where LS(w) is a loss function over a training set S of training samples evaluated for model parameters w. p ∈ [1,∞[is
the p-norm used (usually p = 2) and ρ > 0 is a hyperparameter (Foret et al., 2021). Since its introduction, SAM has inspired
numerous follow-up studies focused on improving computational efficiency (Liu et al., 2022a; Du et al., 2022a;b; Mi et al.,
2022; Liu et al., 2022b; Mueller et al., 2023) as well as providing theoretical insights into its efficacy (Andriushchenko &
Flammarion, 2022; Wang et al., 2023; Wen et al., 2023; Li et al., 2024). We refer to Appendix J for a detailed description of
SAM.

C. Gumbel Logic Gate Networks
We introduce Gumbel Logic Gate Networks (Gumbel LGNs), which employ discrete sampling of logic gates via the
Gumbel-Softmax trick with a straight-through (ST) estimator (Jang et al., 2017; Maddison et al., 2017). While conventional
Differentiable LGNs maintain a convex combination of gates throughout training and prune to hard selections at inference
time, Gumbel LGNs resemble inference-time behavior directly during training by stochastically selecting individual gates per
forward pass. We perturb the gate logits with Gumbel noise and select the most probable gate, following the argmax operation
(cf. Equation (3)). During backpropagation, the non-differentiable argmax is approximated using the Gumbel-Softmax
(Equation (4)), enabling end-to-end training.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Removing the Discretization Gap in DLGNs

This approach is motivated by two key observations: (1) Implicit smoothening via noise: Injecting Gumbel noise during
the forward pass introduces a form of stochastic smoothing, effectively averaging over local perturbations of the loss
surface. As we show, this process approximates a curvature-penalizing loss that favors flatter minima and smaller Hessian
norm. In addition, this is known to correlate with improved generalization (Foret et al., 2021; Chen & Hsieh, 2021). (2)
Inference-time alignment: In Differentiable LGNs, the training objective is misaligned with inference behavior, as training
relies on weighted combinations of gates that are ultimately discarded. This discrepancy harms generalization. In contrast,
Gumbel LGNs train under the same discrete selection mechanism, which is used at inference.

Training Gumbel LGNs As with Differentiable LGNs, we model each neuron as a distribution over binary, relaxed logic
gates S = {h1, h2, . . . , h16}, where each gate hi : [0, 1]

2 → [0, 1] operates on relaxed Boolean inputs. We associate each
gate i with logit zi, and the gate has weight πGumbel

i from Equation (4). The output of the neuron with inputs (a, b) is then:

f soft
z (a, b) =

16∑
i=1

exp((log πi + gi)/τ)∑
j exp((log πj + gj)/τ)

· hi(a, b) =

16∑
i=1

πGumbel
i · hi(a, b), (6)

τ > 0 is a temperature parameter controlling the sharpness of the distribution. As τ → 0, the distribution increasingly peaks
around the maximum-logit index (Jang et al., 2017). This relaxation enables end-to-end differentiability while encouraging
the network to commit to discrete logic gates during training.

We employ a straight-through (ST) estimator to bridge the discretization gap between the continuous relaxation used during
training and the hard decisions required during inference. In this formulation, each neuron selects a single logic gate in the
forward pass via a hard (non-differentiable) choice, while gradients are estimated through a soft relaxation in the backward
pass. See Appendix K for pseudo-code implementation of the training process.

Concretely, during the forward pass, we sample Gumbel noise g ∼ Gumbel(0, 1)16 and compute:

fdiscrete
z (a, b) = hk(a, b) (7)

using the gate hk with maximum perturbed logit. During the backward pass, we use the soft Gumbel-Softmax relaxation
(Equation (6)) to compute gradients, effectively treating the hard output as if it were differentiable:

∂fdiscrete
z

∂zi
:=

∂f soft
z

∂zi
.

This ST estimator mechanism encourages the network to make discrete decisions and allows end-to-end optimization via
backpropagation. See Figure 1 or Figure 8 in Appendix H for visualizations.

Implicit Gap Reduction via Gumbel Smoothing. We present a theoretical result that supports the use of Gumbel
perturbations during training. Consider a loss function L, logits z ∈ R16, and g with i.i.d entries gi ∼ Gumbel(0, 1).
Adding Gumbel noise with τ ∈ R to the logits can be seen as Monte-Carlo sample of the objective J(z);

J(z) = E [L(softmax((z+ g)/τ)] .

This can be interpreted as a form of stochastic smoothing. This gives us the following lemma:

Lemma C.1 (Gumbel-Smoothing). Let L : R16 → R be twice continuously differentiable (with Lipschitz Hessian), and let
z ∈ R16,g ∼ Gumbel(0, 1)16. Consider J(z)

J(z) = E [L(softmax((z+ g)/τ)]

and set a = z/τ and f(a) = L(softmax(a)), then

J(z) = L(softmax(z/τ)) +
π2

12τ2
tr(Hf (z/τ)) +O(τ−3).

Proof. See Appendix D.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Removing the Discretization Gap in DLGNs

Intuitively, by injecting Gumbel noise during training, we encourage the optimizer to find parameters that are robust to small
perturbations. This results in flatter loss landscapes and reduces the sensitivity to parameter discretization when switching to
inference mode. The expected loss scales as

π2

12τ2
tr(Hf (z/τ)).

So as the temperature τ increases, the coefficient 1/τ2 decreases, reducing the degree of implicit smoothing. We illustrate
this with two representative choices:

• Small τ (e.g. 0.1) =⇒ 1/τ2 is large =⇒ large smoothing, flat minima.

• Large τ (e.g. 2.0) =⇒ 1/τ2 is small =⇒ almost no smoothing.

As a result, adjusting the temperature τ offers a mechanism to control the strength of this curvature-aware regularization, the
convergence of the model, and to reduce the discretization gap implicitly.

D. Gumbel Smoothing
The proof of Lemma C.1 depends on the translation invariance of the softmax.

Lemma D.1 (Translation-Invariance of Softmax). Consider logits z ∈ Rd, then adding any constant c ∈ R to z, z+ c, does
not change the output of the softmax. Concretely, for any logit zi we have

softmax(zi + c) = softmax(zi)

Proof. Denote z′i := zi + c, then writing the output of our softmax yields

softmax(z′i) =
ez

′
i∑

j e
z′
i

=
ezi+c∑
j e

zi+c

=
ez

′
i∑

j e
z′
i

=
ec · ezi∑
j e

c · ezi

=
ec · ezi

ec ·∑j ·ezi

=
ezi∑
j e

zi
= softmax(zi)

Restating lemma Lemma C.1, we write:

Lemma D.2 (Gumbel-Smoothing). Let L : R16 → R be twice continuously differentiable (with Lipschitz Hessian), and let
z ∈ R16,g ∼ Gumbel(0, 1)16. Consider J(z)

J(z) = E [L(softmax((z+ g)/τ)]

and set a = z/τ and f(a) = L(softmax(a)), then

J(z) = L(softmax(z/τ)) +
π2

12τ2
tr(Hf (a)) +O(τ−3).

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Removing the Discretization Gap in DLGNs

0 200 400 600 800 1000 1200

Iteration (·103)

0.0

0.2

0.4

0.6
Te

st
A

cc
ur

ac
y

Gumbel + ST (discrete)
Gumbel + ST (soft)
Gumbel Soft (discrete)
Gumbel Soft (soft)

0 200 400 600 800 1000 1200

Iteration (·103)

0.00

0.05

0.10

0.15

0.20

D
is

cr
et

iz
at

io
n

G
ap Gumbel + ST

Gumbel Soft

Figure 4. Straight-through (ST) estimator ablation. The Gumbel LGNs uses hard gate choices in the forward pass as shown in (3) called
the ST estimator. On the left, we show the test accuracy over training iterations; on the right, we show the discretization gap. Gumbel
LGNs with ST estimator converge slightly slower in test accuracy, but the discretization gap is smaller.

Proof. Rewriting J(z) in terms of f gives us

J(z) = E
[
f
(
a+

g

τ

)]
Consider a second-order Taylor expansion of f around a

f
(
a+

g

τ

)
= f(a) +∇f(a)⊤

(g
τ

)
+

1

2

(g
τ

)⊤
Hf (a)

(g
τ

)
+O(∥g∥3/τ3)

Taking expectations, and recalling that E [gi] = γ, Var(gi) = π2/6, where γ ≈ 0.57721 is the Euler-Mascheroni constant.
we get

J(z) = f(a) +
(γ
τ

)
∇f(a)⊤1+

1

2τ2

[
γ21⊤Hf (a)1+

π2

6
tr(Hf (a))

]
+O(τ−3)

which follows from E[g2i] = Var(gi) + E[gi]2 = π2/6 + γ2, E [gigj] = γ2 for i ̸= j.

E[gg⊤] = γ211⊤ +
π2

6
I

and the following trace-lemma

E
[
g⊤Hf (a)g

]
= tr(Hf (a)E[gg⊤]) = γ21⊤Hf (a)1+

π2

6
tr(Hf (a))

Since the softmax is translation-invariant in its input a, we have ∇f(a)⊤1 = 0 and Hf (a)1 = 0, so all terms depending on
γ drop, finally giving us

J(z) = L(softmax(z/τ)) +
π2

12τ2
tr(Hf (z/τ)) +O(τ−3).

Hence, minimizing our stochastic loss implicitly smoothens the curvature by minimizing the trace of the Hessian.

E. Ablations
E.1. Straight Through Estimator

To better understand the source of gap reduction achieved by the Gumbel-Softmax trick, we perform an ablation to isolate
the contribution of the ST estimator. As discussed previously, Gumbel-Softmax combines (i) ST estimation as seen in

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Removing the Discretization Gap in DLGNs

0 200 400 600 800 1000

Iteration (·103)

−20

−10

0
tr

(H
)

0 250 500 750 1000 1250

Iteration (·103)

0.0

0.2

0.4

0.6

Te
st

A
cc

ur
ac

y

1200 1300

0.550
0.575

τ = 0.01
τ = 0.05
τ = 0.1
τ = 0.15
τ = 0.2
τ = 0.25
τ = 0.5
τ = 1.0
τ = 2.0

Figure 5. Ablation over the temperature τ for Gumbel LGNs. Left: Estimated Hessian trace using Hutchinson’s method. The trace
shrinks as τ decreases, indicating fewer large positive eigenvalues, thus suggesting a flatter loss surface, which may reduce the risk of loss
increases when discretizing parameters. Right: Test accuracy for the τ -values. We see a goldilocks zone for the temperature, as if τ is
large (> 1) or small (< 0.1), then the network converges much slower. In the zoomed-in view, we plot the non-discretized view as dashed
lines and see that these are similar to the discretized values, i.e., the discretization gap is low for all. Except for τ = 0.01 and τ = 2, there
is only a small variation in the final accuracy, as seen in Table 1.

Table 1. Maximum and final test accuracy for the tested τ values. The iterations column indicates the number of training iterations (·103)
required to be within 1% of the maximum accuracy. We see that with a medium value of τ ≈ 0.25 the network converges much faster
than for high values > 1.

τ 0.01 0.05 0.10 0.15 0.20 0.25 0.50 1.00 2.00

Max accuracy 0.547 0.566 0.574 0.574 0.566 0.573 0.573 0.578 0.490
Final accuracy 0.546 0.564 0.570 0.571 0.563 0.568 0.572 0.575 0.480
Iterations (·103) 972 602 632 518 472 440 530 918 1342

(3) and (ii) implicit smoothing via Gumbel noise. By disabling the ST path, we aim to identify whether gap reduction
primarily stems from the discrete gradient approximation or the added stochasticity. The setup without ST corresponds to
Differentiable LGNs with noisy logits and is denoted as Soft Gumbel.

In Figure 4, we see that imputing Gumbel noise alone impacts both convergence and discretization compared to Differentiable
LGNs. However, we observe that including the ST estimator delays convergence for a fixed τ , but further reduces the
discretization gap.

E.2. τ -parameter

We evaluate how varying the temperature τ affects optimization dynamics. Recall that higher τ reduces the degree of implicit
smoothing, potentially leading to sharper minima and slower convergence. In our experiment, we test τ ∈ [0.01, 2.0]. We
show the results in Table 1 and Figure 5 where we observe a goldilocks zone for the temperature; if τ is large (> 1) or small
(< 0.1), then the network converges much slower. However, higher temperatures such as 1 seem to converge to slightly
better solutions. Although the difference is minor, < 0.5% when τ = 0.25 goes to τ = 1.

F. Curvature and entropy results
F.1. Hessian Trace Approximations

The Hessian scales quadratically with model size, so direct computations are infeasible for our networks with millions
of parameters. Still, we can use iterative methods to approximate the trace, etc. (Mises & Pollaczek-Geiringer, 1929;
Ipsen, 1997; Hutchinson, 1989; Trefethen & Bau, 2022). We approximate the trace using Hutchinson’s method with 200
Rademacher random vectors, where each coordinate is independently sampled from {−1,+1} with equal probability
(Hutchinson, 1989). Full experimental details are provided in Appendix L.

As shown in Figure 5, decreasing the τ -parameter reduces the estimated Hessian trace. This aligns with the theoretical
insights from Appendix C; lower τ values place greater weight on trace reduction. The trace is negative, this is expected:

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Removing the Discretization Gap in DLGNs

0 1 2
Entropy

10−3

10−2

10−1

100

101

102

D
en

si
ty

Differentiable LGN

0 1 2
Entropy

Gumbel LGN
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12
Expected Entropy

Figure 6. Entropy distribution for neurons in each layer for trained Differentiable LGNs and Gumbel LGNs models. The dashed black
line indicates the expected entropy (cf. Appendix P) of neurons before training, and the shaded region is the 95% interval computed by
sampling. We see that almost all the neurons in Gumbel LGNs have converged, while neurons in early layers of Differentiable LGNs still
have high entropy.

stochastic gradient noise in overparameterized networks tends to systematically lower the expected Hessian trace, biasing
solutions toward flatter regions of the loss landscape that may have negative trace values (Sagun et al., 2016; 2017; Wei &
Schwab, 2019). Large negative eigenvalues often vanish, the trace remains influenced by many small eigenvalues, resulting
in a negative overall trace.

F.2. Entropy over Logic Gates

Petersen et al. (2022) noted that neurons collapse to single gates, but they did not investigate the extent of the collapse. We
examine this through neuron entropy by sampling 100k newly initialized neurons and computing the 95% interval. We
also estimate expected entropy theoretically (see Appendix P), giving us a baseline distribution for neurons that have not
learned. As neurons collapse, their entropy converges to 0. Figure 6 shows that many early Differentiable LGN layers do not
collapse, while Gumbel LGN neurons converge with entropies near 0. Defining unused gates as those with entropy above
the 2.5%-percentile threshold, Gumbel LGNs have 0.00% and Differentiable LGNs have 49.81% unused gates, representing
a 100.00% reduction by Gumbel.

G. Limitations
While Gumbel LGNs demonstrate significant improvements for deeper networks, limitations do remain. Our evaluation
focuses primarily on CIFAR-10, with limited exploration of more complex datasets or problems with many output classes.
We plan to thoroughly evaluate the methods on datasets like CIFAR-100 and ImageNet32 (Krizhevsky & Hinton, 2009;
Chrabaszcz et al., 2017).

The temperature parameter τ requires tuning to balance convergence speed and accuracy. Finally, our theoretical analysis
connects Gumbel noise to Hessian trace minimization under simplifications, but a comprehensive theoretical treatment of
the discretization gap remains an open challenge.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Removing the Discretization Gap in DLGNs

H. Logic Gate Network Visualizations

1

0

1

1

1

1

1

1

0

1

0

0

1

0

1

0

1

1

1

1

0

1

0

0

1

Sn
ow

 L
eo

pa
rd

Ca
t

1

Figure 7. A diagram showing a standard logic gate network (LGN). Each logic gate receives two inputs from the previous layer. The
image is first binarized before being passed into the network, and the output neurons are grouped, and each neuron in a group votes
whether the image belongs to the group/class.

1

0

1

1

1

1

1

1

0

1

0

0

1

0

1

0

1

1

1

1

0

1

0

0

1
Sn

ow
 L

eo
pa

rd
Ca

t

0

....

0 1

Figure 8. Forward pass through a Gumbel LGN. The top panel shows neurons producing class scores. Bottom-left: categorical distribution
Cat(p) over relaxed logic gates, parameterized by learnable weights z ∈ R16. Bottom-right (zoom-in): internal view of one neuron.
The signal passes through a single selected relaxed logic gate (colors indicate which gate is chosen).

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Removing the Discretization Gap in DLGNs

I. Distribution over Logic Gates
Gate Distribution by Layer We look in Figure 9 at the distribution of the logic gates in the final network. Our first
observation is that the distributions are far more uniform for Gumbel LGNs in layers 1 to 11 than for Differentiable LGNs.
At the same time, we see a sharp transition for Differentiable LGNs after layer 8. This could match the results in Figure 6,
indicating that neurons in Differentiable LGNs struggle to converge in all but the final layers.

The “1” gate can be seen as a bias towards specific classes. Notably, Gumbel LGN primarily uses this gate type in the last
layer, so we analyze this further.

0

A
∧B

¬(
A
⇒

B
) A

¬(
A
⇐

B
) B

A
⊗

B

A
∨B

¬(
A
∨B

)

¬(
A
⊗

B
)

¬B
A
←

B ¬A
A
⇒

B

¬(
A
∧B

) 1

0

2

4

6

8

10

L
ay

er
In

de
x

Differentiable LGN

0

A
∧B

¬(
A
⇒

B
) A

¬(
A
⇐

B
) B

A
⊗

B

A
∨B

¬(
A
∨B

)

¬(
A
⊗

B
)

¬B
A
←

B ¬A
A
⇒

B

¬(
A
∧B

) 1

Gumbel LGN

0.05

0.10

0.15

0.20

Figure 9. Gate distribution for the gates split by layer for a Differentiable LGN and a Gumbel LGN. Interestingly, the distribution is far
more uniform for the Gumbel LGN in layers 1 to 11 than for the Differentiable LGN. In addition, the Gumbel LGN primarily has “1”
gates in the final layer, which can be seen as a constant bias towards certain classes. We analyze this further in Appendix I.

Gate Distribution by Class We see in Figure 10 the gate distribution for each of the 10 classes in the last layer.
Interestingly, the distributions between Softmax and Gumbel are quite different, but the classes are nearly identical. Since
almost all classes have several “1” gates, pruning these would be possible as softmax is translation invariant.

J. Extended Sharpness-Aware Minimization
A parallel line of research focuses on improving generalization by minimizing the sharpness of the loss landscape. Motivated
by prior theoretical works on generalization and flat minima (Keskar et al., 2017; Dziugaite & Roy, 2017; Jiang* et al.,
2019), Foret et al. (2021) introduced Sharpness-Aware Minimization (SAM). This technique explicitly seeks flat minima by
optimizing the worst-case loss within a perturbation neighborhood. Let LS(w) be a loss function over a training set S of
samples from a distribution D evaluated for model parameters w.

min
w

LSAM
S (w) + λ∥w∥22 where LSAM

S (w) ≜ max
∥ϵ|p≤ρ

LS(w + ϵ), (8)

where p ∈ [1,∞[is the p-norm used (usually p = 2) and ρ > 0 is a hyperparameter (Foret et al., 2021). This optimization
objective arises from the PAC-Bayesian generalization bound shown in Equation (9) (McAllester, 1999), and Foret et al.
(2021) use it to show Equation (10). Below, n = |S|, k is the number of model parameters, P and Q are the prior and

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Removing the Discretization Gap in DLGNs

0

A
∧

B

¬(
A
⇒

B
) A

¬(
A
⇐

B
) B

A
⊗

B

A
∨

B

¬(
A
∨

B
)

¬(
A
⊗

B
)

¬B
A
←

B ¬A
A
⇒

B

¬(
A
∧

B
) 1

0

1

2

3

4

5

6

7

8

9

C
la

ss
In

de
x

Differentiable LGN

0

A
∧

B

¬(
A
⇒

B
) A

¬(
A
⇐

B
) B

A
⊗

B

A
∨

B

¬(
A
∨

B
)

¬(
A
⊗

B
)

¬B
A
←

B ¬A
A
⇒

B

¬(
A
∧

B
) 1

Gumbel LGN

0.05

0.10

0.15

0.20

Figure 10. Gate distribution for each class in the CIFAR-10 classifiers. The gates are from the last layer before the groupsum is applied.

posterior distributions of the model parameters, respectively. Lastly, the equations hold with probability 1− δ.

Ew∼Q[LD(w)] ≤Ew∼Q[LS(w)] +

√
KL(Q||P) + log n

δ

2(n− 1)
, (9)

LD(w) ≤ max
∥ϵ∥2≤ρ

LS(w + ϵ)+

√√√√√√k log

(
1 +

∥w∥2
2

ρ2

(
1 +

√
log(n)

k

)2
)

+ 4 log n
δ + Õ(1)

n− 1
. (10)

Since its introduction, SAM has inspired numerous follow-up studies focused on improving computational efficiency (Liu
et al., 2022a; Du et al., 2022a;b; Mi et al., 2022; Liu et al., 2022b; Mueller et al., 2023) as well as providing theoretical
insights into its efficacy (Andriushchenko & Flammarion, 2022; Wang et al., 2023; Wen et al., 2023; Li et al., 2024).

K. Training GLGNs

Algorithm 1 Training STE-GLGNs
while not converged do

Sample Gumbel noise g ∼ Gumbel(0, 1)
Compute soft sample a′ = softmax((logα+ g)/τ)
Compute hard sample â = one_hot(argmax a′)
Forward pass through logic gate network using â (with stop_grad(â− a′) + a′)
Compute loss L
Backpropagate and update α and other parameters

end while

L. Estimating Hessian of Loss
Computing the full Hessian of the loss function is not computationally feasible due to the quadratic scaling with the number
of parameters. Instead, we use scalable stochastic methods to estimate the trace of the Hessian, which provides useful
curvature information. Specifically, we focus on the trace as our Lemma C.1 directly minimizes the trace of the Hessian.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Removing the Discretization Gap in DLGNs

Hessian-Vector Products In order to estimate the trace, we will be using Hessian-vector products on the form Hv, where
H = ∇2L(θ) is the Hessian of the loss L with respect to model parameters θ, and v ∈ Rd is an arbitrary vector. While
explicitly forming H would require O(d2) memory and computation, such products can be computed efficiently using
reverse-mode automatic differentiation (also known as Pearlmutter’s trick) in O(d) time and memory (Pearlmutter, 1994).

Given a scalar-valued function L(θ), the Hessian-vector product Hv is defined as:

Hv = ∇2L(θ) v =
d

dϵ
∇L(θ + ϵv)

∣∣∣∣
ϵ=0

.

This formulation allows for efficient computation using automatic differentiation frameworks, without explicitly constructing
the Hessian matrix.

Trace Estimation via Hutchinson’s Method To estimate the trace of the Hessian, we employ Hutchinson’s stochastic
trace estimator (Hutchinson, 1989), which approximates the trace of a matrix H as

tr(H) ≈ 1

m

m∑
i=1

z⊤i Hzi,

where each zi ∈ Rd is a random vector with zero-mean, unit-variance, i.i.d. entries. The choice of distribution for zi’s
affects the variance of our estimator. While both Gaussian and Rademacher distributions satisfy this, Rademacher vectors
(each entry sampled from {−1,+1} with equal probability) lead to a lower-variance estimator. This is formally shown
in (Avron & Toledo, 2011). This makes it especially well-suited for estimating curvature efficiently in high-dimensional
models.

We use m = 200 Rademacher vectors to produce a stable estimate. Each Hessian-vector product Hzi is computed efficiently
using reverse-mode automatic differentiation without explicitly forming the Hessian matrix.

Choice of Evaluation Points Since both trace and eigenvalue estimators are noisy and computationally expensive, we
evaluate them only at selected points during training. Specifically, we choose points that correspond to monotonically
increasing accuracy on the test set.

M. Loss Surface Visualization
Visualizing the geometry of the loss landscape provides insights into the optimization dynamics during training and the
discretization gap. We follow the same procedure as in Li. et al 2018 (Li et al., 2018), which constructs a two-dimensional
slice of the high-dimensional loss surface by perturbing model weights in random directions.

Methodology Let θ ∈ Rd be a parameter vector of a trained model. The goal is to evaluate the loss L(θ′) over a grid of
points

θ′(α, β) = θ + αd1 + βd2

where d1 and d1 are orthogonal directions with α, β ∈ R. We choose α, β such that we probe the model in a unit circle, i.e.
(−1, 1).

Direction Sampling The direction vectors d1 and d2 are generated as follows: Each direction is drawn using a Gaussian
distribution di ∼ N (0, 1)d. We then normalize di = di/∥di∥, such that each perturbation has the same overall scale.

Orthogonalization To ensure that d1, d2 span a meaningful plane, we apply Gram-Schmidt orthogonalization:

d1 ← d2 −
⟨d1, d2⟩
⟨d1, d1⟩

d1

This ensures that we span independent, meaningful axes for visualization. This allwos us to visualize the curvature in
three-dimensions.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Removing the Discretization Gap in DLGNs

N. Experimental Configuration
N.1. Hyperparameters

Gap Scaling with Depth we use the same hyperparameters for this experiment for Differentiable LGNs and Gumbel
LGNs. Specifically, we fix the width of the network to 256K neurons and train the network over the depths {6, 8, 10, 12}.
We optimize the network using Adam with a learning rate of 0.01. Furthermore, the batch size is set to 128 and the final
parameter in the GroupSum is set to 1/0.01. This mirrors the original experimental setup of Petersen et al. (2022) for
CIFAR-10. Finally, we fix the τ = 1 parameter for the Gumbel noise in the Gumbel LGNs.

A. Default CIFAR-10 Training

Optimizer Adam
Learning rate 0.01
Batch size 128
Depth 12 (unless varied)
Width 256 k neurons
GroupSum scale 1/0.01

B. Gap-Scaling (Depth Ablation)

Depths tested {6, 8, 10, 12}
Width 256k
Other settings same as (A)

C. Ablation Studies

Straight-Through vs Soft depth=12, width=256k, tau=1.0
Temperature sweep tau in {0.01,0.05,0.1,0.15,0.2,0.25,0.5,1,2}

D. Hessian Estimation

Trace estimator Hutchinson, m=200 Rademacher vectors
Top-eigenvalue estimator Power iteration, 200 iterations
Evaluation points checkpoints at monotonic test accuracy

Table 2. All hyperparameter settings, grouped by experiment.

Ablation Studies For both the straight-through and τ -parameter ablations, we use the deepest model from the gap scaling
experiment (depth 12, width 256K) to evaluate each effect in a stress-tested regime. This allows us to isolate the effect of
either variant.

N.2. Implementation

Our code extends the official PyTorch Difflogic library by Felix Petersen, i.e., the reference imple-
mentation provided alongside the Differentiable LGN paper (Petersen et al., 2022). During the for-
ward pass we replace the standard torch.nn.functional.softmax with a hard Gumbel-Softmax,
torch.nn.functional.gumbel_softmax , thereby enabling discrete sampling while maintaining end-to-end
differentiability.

O. Softmax DiffLogic Performance on MNIST-like Baselines
For all datasets, we use the same model and experiment configs.4 The models have six layers and a width of 64k. See
Table 3 for the results.

Besides the classic MNIST (Bottou et al., 1994; LeCun et al., 1998), CIFAR-10, and CIFAR-100 datasets (Krizhevsky &
Hinton, 2009), we also evaluate EMNIST (balanced and letters) (Cohen et al., 2017), FashionMNIST (Xiao et al., 2017),
KMNIST (Clanuwat et al., 2018), and QMNIST (Yadav & Bottou, 2019). These are black and white images, as in MNIST,
but with other or more classes. We refer the reader to the original papers for details and examples.

4Thus, the CIFAR numbers are not representative of the optimal performance.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Removing the Discretization Gap in DLGNs

Table 3. The table shows the performance of Differentiable LGNs on many datasets. The key takeaway is that the discretization gap for
MNIST-like datasets is minimal. The discretization gap is the difference between the discrete and soft performance. The numbers are
averaged over five runs.

Train Test
Accuracy Accuracy

Dataset Soft Discrete Disc. gap Soft Discrete Disc. gap

CIFAR-10 (Krizhevsky & Hinton, 2009) 100.0 % 100.0 % 0.0 % 52.04 % 50.72 % 1.31 %
CIFAR-100 (Krizhevsky & Hinton, 2009) 83.44 % 80.39 % 3.05 % 23.86 % 23.1 % 0.76 %
EMNIST balanced (Cohen et al., 2017) 95.52 % 94.87 % 0.65 % 84.57 % 84.28 % 0.29 %
EMNIST letters (Cohen et al., 2017) 98.69 % 98.3 % 0.38 % 91.43 % 91.04 % 0.38 %
FashionMNIST (Xiao et al., 2017) 99.02 % 98.17 % 0.85 % 90.37 % 90.0 % 0.36 %
KMNIST (Clanuwat et al., 2018) 100.0 % 100.0 % 0.0 % 97.14 % 97.0 % 0.14 %
MNIST (Bottou et al., 1994) 100.0 % 100.0 % 0.0 % 98.33 % 98.16 % 0.17 %
QMNIST (Yadav & Bottou, 2019) 100.0 % 100.0 % 0.0 % 98.33 % 98.17 % 0.16 %

P. Expected Entropy
Lemma P.1. The expected entropy of a newly initialized neuron in a Differentiable LGN is ≈ log 16− 1

2 ≈ 2.27.

Proof. A neuron has n = 16 gates that it makes a choice over and gate i has (i.i.d.) logit zi ∼ N(0, 1) and probability
pi =

exp zi
C where C =

∑n
j=1 exp zj . For the rest of the proof, we assume the number of gates n is not fixed, and show that

the expected entropy converges to log n− 1
2 .

The expected entropy of p = (p1, p2, ...) is

E[H(p)] = −E
[

n∑
i=1

exp zi
C

log
exp zi
C

]

= E [logC]− E

[
n∑

i=1

zi exp zi
C

]

= E

log n∑
j=1

exp zj

− E

[
n∑

i=1

zi exp zi∑n
j=1 exp zj

]
.

Here, we have as n→∞:

E

[
n∑

i=1

zi exp zi∑n
j=1 exp zj

]
= E

[
1
n

∑n
i=1 zi exp zi

1
n

∑n
j=1 exp zj

]
=

E[zi exp zi]
E[exp zj]

.

Using E[exp z1] =
√
e and E[z1 exp z1] =

√
e, the above gives us that as n→∞:

E

log n∑
j=1

exp zj

− E

[
n∑

i=1

zi exp zi∑n
j=1 exp zj

]

= log n+ E

log
 1

n

n∑
j=1

exp zj

− E[zi exp zi]
E[exp zj]

= log n+ logE[exp zj]−
E[zi exp zi]
E[exp zj]

= log n+
1

2
− 1 = log n− 1

2
.

We only need to plug in n = 16 to get the last part.

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Removing the Discretization Gap in DLGNs

Table 4. Iterations per hour and the relative change from Differentiable LGNs to Gumbel LGNs.
Iterations per hour

Softmax Gumbel Change

Depth 6 38708 38375 -0.86%
Depth 8 36292 34000 -6.31%
Depth 10 32792 31167 -4.96%
Depth 12 29417 27583 -6.23%

Mean -4.59%

Q. Runtime
In Table 4 the number of iterations per hour Softmax and Gumbel LGNs completed while training models for the results in
Figure 2. We also calculate the relative difference between the two. Gumbel is slightly slower due to the noise sampling;
however, as it converges much faster in terms of iterations, the net effect is that it converges 4.5 times faster in wall-clock
time.

R. Computational Resources
The experiments were done on an internal cluster with RTX 3090s and RTX 2080 Tis. In total, we have logged 1284 GPU
hours for the experiments and testing. A significant part of the compute was spent on exploration.

22

