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Abstract
Modern neural networks exhibit state-of-the-art performance on many benchmarks, but their high computational
requirements and energy usage have researchers exploring more efficient solutions for real-world deployment.
Logic gate networks (LGNs) learns a large network of logic gates for efficient image classification. However,
learning a network that can solve a simple problem like CIFAR-10 can take days to weeks to train. Even then,
almost half of the network remains unused, causing a discretization gap. This discretization gap hinders real-world
deployment of LGNs, as the performance drop between training and inference negatively impacts accuracy. We
inject Gumbel noise with a straight-through estimator during training to significantly speed up training, improve
neuron utilization, and decrease the discretization gap. We theoretically show that this results from implicit
Hessian regularization, which improves the convergence properties of LGNs. We train networks 4.5× faster in
wall-clock time, reduce the discretization gap by 98%, and reduce the number of unused gates by 100%.

1. Introduction
Deep neural networks achieve human-level performance on many tasks, but their high computational cost limits real-world
deployment. This has sparked interest in models that retain accuracy while being more efficient. At their core, all digital
computations reduce to Boolean operations (AND, OR, NOT, etc.). Motivating the question: Can we express and execute
machine learning models directly in the native language of hardware—namely, logic gates? Logic Gate Networks (LGNs)
offer one such approach by replacing arithmetic with compositions of discrete logic operations. While LGNs enable efficient
inference, training them is difficult. Differentiable LGNs address this by introducing continuous relaxations that allow
gradient-based training (Petersen et al., 2022; 2024).

We identify and propose solutions to two major challenges. (1) Discretization gap: The final model must be discretized
after training, often leading to a significant accuracy drop ( 3%). (2) Slow convergence: Despite efficient inference, training
is slow due to reliance on differentiable relaxations, making convergence slower than in standard neural networks. These
challenges are interrelated.

The gap arises because the final parameters, after training, must be discretized. Small parameter perturbations can
significantly change performance if the loss landscape is sharp. A sharp loss landscape can also cause poor gradient signals,
which impact the convergence speed, causing training to take much longer, while a smooth loss landscape can reduce
the discretization gap and speed up convergence (Foret et al., 2021; Chen & Hsieh, 2021). Our central hypothesis is that
smoother loss landscapes make LGN models more robust to discretization and facilitate faster and more stable training.
Since the loss landscape is smoother, the gradient signal is better, and the networks converge faster. Also, the improved
gradient signal causes more neurons to collapse, thus reducing the impact of discretization.

We propose Gumbel Logic Gate Networks (Gumbel LGNs), which use the Gumbel-Softmax trick to inject noise into gate
selection during training. This encourages exploration, smooths the loss landscape, and reduces the training-inference gap.
Empirically, Gumbel LGNs converge faster and have smaller discretization gaps than standard Differentiable LGNs. To
further reduce this gap, we adopt a discretization-aware training inspired by NAS: applying continuous relaxations only
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Figure 1. Overview figure. (a) Differentiable LGNs: Each node weighs and sums outputs of 16 logic gates, creating a brittle loss landscape
that slows training and increases the discretization gap. (b) Gumbel LGNs: Injecting Gumbel noise and selecting the top gate smooths the
loss landscape and aligns training with inference, improving convergence and reducing the gap. (c) Structure of Differentiable LGNs and
Gumbel LGNs. Each neuron takes two inputs; final layer nodes are summed to produce class scores. (d) Gumbel LGNs yield up to 4.5×
faster convergence, 98% lower discretization gap, and elimination of unused neurons.

in the backward pass and using discrete gates in the forward pass. While the straight-through estimator may slightly slow
convergence, it greatly reduces the gap and aligns training with inference without impacting inference speed.

To our knowledge, this is the first work to analyze the discretization gap in LGNs and connect it to loss landscape
smoothness. Our approach scales to parameter spaces comparable to deep networks, exceeding 103,600,000—vastly beyond
NAS benchmarks, which typically reach up to 1018.

Our contributions are as follows:
Empirical validation: We demonstrate that Gumbel LGNs train faster and improve neuron utilization.
Theoretical analysis: We prove that injecting Gumbel noise into Differentiable LGNs smooths their loss landscape by
regularizing the Hessian’s trace, thereby reducing the discretization gap and accelerating convergence.
Practical algorithmic insight: We show that using the straight-through estimator further reduces the discretization gap.

Extended background, related work, and Gumbel LGN details are in Appendices A to C.

2. Background
Logic Gate Networks Logic Gate Networks (LGNs) represent an entire network as a composition of discrete logic
operations. In a learned network, each neuron in a hidden layer takes as input the value of two neurons (with output a and
b) in the previous layer1 and applies a fixed logic gate hi(a, b) to get its output. The final layer neurons are partitioned
into k disjoint groups Gi. Following Petersen et al. (2022), we implement GroupSum, which computes class scores as
si =

1
τGS

∑
j∈Gi

aj , where aj is the binary activation of neuron j and τGS is a GroupSum temperature parameter. The class
with the highest neuron activation count is predicted.

1At initialization, each neuron randomly picks which two neurons in the previous layer it uses for its inputs.
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From Combinatorial Search to Differentiable Training Directly searching for the best discrete gate assignments is
infeasible due to the size of the search space, so Differentiable Logic Gate Networks (Differentiable LGNs) (Petersen et al.,
2022; 2024) introduce a continuous relaxation. Each of the 16 possible binary gates hi(a, b) is replaced by a continuous
surrogate (e.g. AND(a, b) 7→ a · b). In addition, each neuron maintains logits z ∈ R16, which are initialized using a
Gaussian, z ∼ N (0, 1)16. After a softmax, these logits define a probability distribution over gates, and the neuron’s output
is a weighted sum of the 16 gates:

f soft
z (a, b) =

16∑
i=1

exp zi∑
j exp zj

· hi(a, b). (1)

Ensuring each logic gate maps from a continuous domain f : [0, 1]
2 → [0, 1]. This “soft” network can be trained end-to-end

with gradient descent.

Discretization After training, Differentiable LGNs are discretized to LGNs by selecting the logic gate with the highest
logit value, i.e., it uses hi, i = argmaxi zi. We denote Differentiable LGNs evaluated in the differentiable setting (using
Equation (1)) as soft and otherwise as discrete.

3. Related Work
Efficient Neural Architectures A significant body of research has focused on neural models that balance high performance
with limited computational budgets, enabling edge deployment (Liu et al., 2021; Mishra & Gupta, 2024; Iqbal et al., 2024).
Techniques include lookup tables (Chatterjee, 2018), binary and quantized networks (Frantar et al., 2022; Yuan & Agaian,
2023), and sparse networks (Hoefler et al., 2021; Frantar & Alistarh, 2023; Cheng et al., 2024).

Differentiable Logic Gate Networks (LGNs) recently achieved state-of-the-art results in image classification (Petersen
et al., 2024). As the convolutional variant’s code is unavailable, we focus on the original LGN (Petersen et al., 2022).
Our improvements target convergence and are orthogonal to architectural innovations, thus likely transferable. We omit
comparisons to other efficient models, already covered by Petersen et al. (2022; 2024).

Differentiable Neural Architecture Search Neural Architecture Search (NAS) automates selecting high-performing
architectures (Zoph & Le, 2017), with efficiency improvements over early costly methods (Dong & Yang, 2019; Xie
et al., 2020). A seminal contribution in this domain is Differentiable Architecture Search (DARTS) by Liu et al. (2019),
which introduces a softmax-based relaxation over discrete architectural choices, allowing end-to-end optimization through
gradient descent. More recently, Chen & Hsieh (2021) reduced the discretization gap of DARTS by introducing Smooth
DARTS, which uses weight perturbations through uniform noise or adversarial optimization. These were shown to bias the
optimization toward solutions with flatter minima and lower Hessian norm.

Sharpness-Aware Minimization A parallel line of research focuses on improving generalization by minimizing the
sharpness of the loss landscape. Motivated by prior theoretical works on generalization and flat minima (Keskar et al., 2017;
Dziugaite & Roy, 2017; Jiang* et al., 2019), Foret et al. (2021) introduced Sharpness-Aware Minimization (SAM). This
technique explicitly seeks flat minima by optimizing the worst-case loss within a parameter perturbation neighborhood.

4. Empirical Evaluations
Our empirical evaluations focus on CIFAR-10, as the MNIST-like datasets (MNIST, FashionMNIST, etc.) have low
discretization gaps (cf. Appendix O). CIFAR-10 and MNIST were also the datasets Petersen et al. (2022; 2024) mostly
focused on. Due to constrained resources, we limit experiments by default to 48 GPU hours. We use the hyperparameters
from (Petersen et al., 2022; 2024) whenever possible rather than tuning the parameters, such as learning rate, ourselves.
Appendix N.1 contains all the default parameters.

Discretization Gap On Figure 2, the test accuracy as a function of training iteration for an LGN of depth 12 and width
256k on CIFAR-10; these are the default parameters unless stated otherwise. To quantify the discretization gap, we take the
absolute difference between the discretized and soft network accuracy as shown on the right in Figure 2. Gumbel LGN
converges much faster than the Differentiable LGN, with virtually no discretization gap. Combined with runtime results
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Figure 2. Performance of Gumbel LGNs and Differentiable LGNs on CIFAR-10. Left: Test accuracy for the default network with 12
layers and a width of 256k. Right: Discretization gap for various depths. Differentiable LGNs experience larger gaps and slower reduction
as the depth increases. In contrast, Gumbel LGNs have consistently low gaps and fast reduction as the network depth increases.
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Figure 3. Visualization of loss landscapes. Left: Loss landscape of a Differentiable LGN. We see that the landscape is overall noisy.
Right: Loss landscape of a Gumbel LGN with τ = 1.0. We observe a much smoother loss landscape compared to the Differentiable
LGNs.

from Table 4 in Appendix Q, Gumbel LGN converges2 4.75× faster in iterations, making Gumbel LGNs 4.5× faster in
wall-clock time to train. Note that the Differentiable LGN still improves after 48 hours.

Gap Scaling with Depth On the right of Figure 2, we see the discretization gap for models of various depths for
Differentiable LGNs and Gumbel LGNs. As the model depth increases, the expressive power of the networks theoretically
increases. The Differentiable LGNs experience bigger discretization gaps as the depth increases, while our Gumbel LGNs
are stable across depths.

Curvature Visualization We project the high-dimensional parameter space onto two-dimensional subspaces to assess the
loss of landscape curvature. Following Li et al. (2018), we select random directions and interpolate the loss surface along
these axes, providing insight into the optimization landscape’s geometry around learned solutions. Visualization details are
in Appendix M. Figure 3 shows that Gumbel LGN has a visually smoother loss surface.

5. Conclusion
We introduced Gumbel logic gate networks (Gumbel LGNs), addressing two critical limitations of Differentiable LGNs:
slow convergence during training and a large discretization gap between training and inference. Our theoretical analysis
shows that Gumbel noise during gate selection promotes flatter minima by implicitly minimizing the Hessian trace, reducing
sensitivity to parameter discretization. Experiments on CIFAR-10 demonstrate that Gumbel LGNs converge 4.5× faster in
wall-clock time than Differentiable LGNs while reducing the discretization gap by 98% and achieving 100.0% improvement
in neuron utilization. These advantages become more pronounced with depth, indicating favorable scaling properties. Our
improvements are dataset and architecture-independent, and several promising directions remain for future exploration:
extending Differentiable LGNs to convolutional architectures, validating on more complex datasets like CIFAR-100 and
ImageNet32, exploring hardware-specific optimizations, and investigating adaptive temperature scheduling.

2For this, we match Gumbel LGNs’ discrete accuracy with Differentiable LGNs’ maximum discrete accuracy.
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Removing the Discretization Gap in DLGNs

A. Background
Logic Gate Networks Logic Gate Networks (LGNs) represent an entire network as a composition of discrete logic
operations. In a learned network, each neuron in a hidden layer takes as input the value of two neurons (with output a and
b) in the previous layer3 and applies a fixed logic gate hi(a, b) to get its output. The final layer neurons are partitioned
into k disjoint groups Gi. Following Petersen et al. (2022), we implement GroupSum, which computes class scores as
si =

1
τGS

∑
j∈Gi

aj , where aj is the binary activation of neuron j and τGS is a GroupSum temperature parameter. The class
with the highest neuron activation count is predicted.

From Combinatorial Search to Differentiable Training Directly searching for the best discrete gate assignments is
infeasible due to the size of the search space, so Differentiable Logic Gate Networks (Differentiable LGNs) (Petersen et al.,
2022; 2024) introduce a continuous relaxation. Each of the 16 possible binary gates hi(a, b) is replaced by a continuous
surrogate (e.g. AND(a, b) 7→ a · b). In addition, each neuron maintains logits z ∈ R16, which are initialized using a
Gaussian, z ∼ N (0, 1)16. After a softmax, these logits define a probability distribution over gates, and the neuron’s output
is a weighted sum of the 16 gates:

f soft
z (a, b) =

16∑
i=1

exp zi∑
j exp zj

· hi(a, b). (2)

Ensuring each logic gate maps from a continuous domain f : [0, 1]
2 → [0, 1]. This “soft” network can be trained end-to-end

with gradient descent.

Discretization After training, Differentiable LGNs are discretized to LGNs by selecting the logic gate with the highest
logit value, i.e., it uses hi, i = argmaxi zi. We denote Differentiable LGNs evaluated in the differentiable setting (using
Equation (2)) as soft and otherwise as discrete.

Gumbel-Softmax The Gumbel-Softmax trick offers an efficient and effective way to draw samples from a categorical
distribution with class probabilities π ∈ ∆k (Gumbel, 1955; Maddison et al., 2014; Jang et al., 2017; Maddison et al., 2017).
Let g ∼ Gumbel(0, 1) distribution if u ∼ U(0, 1) and g = − log(− log u). We can then draw a sample z from π as the
value for index i given by Equation (3).

i = argmax
j

(gj + log πj), gj ∼ Gumbel(0, 1). (3)

We can make the argmax operation continuous and differentiable with respect to the class probabilities πi, and generate
k-dimensional sample vectors y ∈ Rk using a softmax with temperature τ as below:

πGumbel
i =

exp((log πi + gi)/τ)∑
j exp((log πj + gj)/τ)

, πi =

k∑
i=1

exp zi∑
j exp zj

, zi ∈ R. (4)

B. Related Work
Efficient Neural Architectures A significant body of research has focused on designing neural models that maintain high
performance while operating within limited computational budgets, e.g., for deployment on edge devices (Park et al., 2018;
Liu et al., 2021; Al-Quraan et al., 2023; Mishra & Gupta, 2024; Zhang et al., 2024; Iqbal et al., 2024). These light models
use various methods such as lookup tables (Chatterjee, 2018), binary and quantized neural networks (Zhang et al., 2021; Li
et al., 2022; Frantar et al., 2022; Yuan & Agaian, 2023), and sparse neural networks (Hoefler et al., 2021; Sun et al., 2023;
He & Xiao, 2023; Frantar & Alistarh, 2023; Cheng et al., 2024).

Of particular interest in this context are Differentiable Logic Gate Networks (LGNs), which have recently demonstrated
state-of-the-art performance in image classification tasks (Petersen et al., 2022; 2024), as well as in rule extraction from
observed cellular automata dynamics (Miotti et al., 2025). The convolutional variant’s code is not public; we therefore focus
on the original LGN Petersen et al. (2022). Our proposed improvements target convergence behavior and are orthogonal to
the architectural innovations of the convolutional LGN variant; hence, we expect them to be transferable without loss of
generality. We refrain from comparisons to other efficient neural models, as such benchmarks were already comprehensively
addressed in the works mentioned above by Petersen et al. (2022; 2024).

3At initialization, each neuron randomly picks which two neurons in the previous layer it uses for its inputs.
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Removing the Discretization Gap in DLGNs

Differentiable Neural Architecture Search Neural Architecture Search (NAS) aims to automate the selection of high-
performing model architectures from a large design space (Zoph & Le, 2017; Elsken et al., 2019; Ren et al., 2021).
While early approaches were computationally expensive, subsequent efforts have focused on improving efficiency (Dong
& Yang, 2019; Xie et al., 2020). Several works have addressed the issue of train–test performance discrepancies by
proposing sampling-based training (Chang et al., 2019) or regularization techniques that bias architecture selection toward
configurations with better generalization (Chu et al., 2020).

A seminal contribution in this domain is Differentiable Architecture Search (DARTS) by Liu et al. (2019), which introduces
a softmax-based relaxation over discrete architectural choices, allowing end-to-end optimization through gradient descent.
This principle strongly resonates with the soft gate selection mechanism employed in LGNs.

More recently, Chen & Hsieh (2021) reduced the discretization gap of DARTS by introducing Smooth DARTS, which uses
weight perturbations through uniform noise or adversarial optimization. These were shown to bias the optimization toward so-
lutions with flatter minima and lower Hessian norm. This technique—often referred to as curvature regularization—reduces
sensitivity to sharp local optima and enhances generalization.

Differentiable LGNs as DARTS The works on LGNs by Petersen et al. (2022; 2024) do not explicitly draw connections
to NAS, but the conceptual similarity is high. Both LGNs and DARTS use softmax-based weighting to choose between
multiple candidate functions in a differentiable manner. A key distinction lies in the scale of the search space. Conventional
NAS approaches typically explore search space sizes up to 1018 (Zela et al., 2019; Tu et al., 2022; Chitty-Venkata et al.,
2023),while LGNs operate over exponentially larger spaces—166·64,000 ≈ 10462,382 for MNIST and ≈ 103,699,056 for
CIFAR-10. This scale is enabled by the simplicity of logic operations, which have no learnable parameters. Thus, LGNs
demonstrate the viability of differentiable NAS at previously unexplored scales.

Conventional NAS frameworks often permit a retraining phase after discretizing the architecture, thereby reducing the
discretization gap. LGNs, in contrast, lack such flexibility, as their neurons contain no parameterized operations, and thus
the gap persists.

Moreover, in DARTS and related approaches, this training approach favors operations, such as residual connections (Tian
et al., 2021). Typically, we aim to avoid these residual connections, as they do not increase the models’ expressive power
(Chu et al., 2020). In relation, Petersen et al. (2024) finds that their convolutional method with residual initialization mainly
converges to residual connections.

Sharpness-Aware Minimization A parallel line of research focuses on improving generalization by minimizing the
sharpness of the loss landscape. Motivated by prior theoretical works on generalization and flat minima (Keskar et al.,
2017; Dziugaite & Roy, 2017; Jiang* et al., 2019), Foret et al. (2021) introduced Sharpness-Aware Minimization (SAM)
in Equation (5). This technique explicitly seeks flat minima by optimizing the worst-case loss within a perturbation
neighborhood.

min
w

LSAM
S (w) + λ∥w∥22 where LSAM

S (w) ≜ max
∥ϵ|p≤ρ

LS(w + ϵ), (5)

where LS(w) is a loss function over a training set S of training samples evaluated for model parameters w. p ∈ [1,∞[ is
the p-norm used (usually p = 2) and ρ > 0 is a hyperparameter (Foret et al., 2021). Since its introduction, SAM has inspired
numerous follow-up studies focused on improving computational efficiency (Liu et al., 2022a; Du et al., 2022a;b; Mi et al.,
2022; Liu et al., 2022b; Mueller et al., 2023) as well as providing theoretical insights into its efficacy (Andriushchenko &
Flammarion, 2022; Wang et al., 2023; Wen et al., 2023; Li et al., 2024). We refer to Appendix J for a detailed description of
SAM.

C. Gumbel Logic Gate Networks
We introduce Gumbel Logic Gate Networks (Gumbel LGNs), which employ discrete sampling of logic gates via the
Gumbel-Softmax trick with a straight-through (ST) estimator (Jang et al., 2017; Maddison et al., 2017). While conventional
Differentiable LGNs maintain a convex combination of gates throughout training and prune to hard selections at inference
time, Gumbel LGNs resemble inference-time behavior directly during training by stochastically selecting individual gates per
forward pass. We perturb the gate logits with Gumbel noise and select the most probable gate, following the argmax operation
(cf. Equation (3)). During backpropagation, the non-differentiable argmax is approximated using the Gumbel-Softmax
(Equation (4)), enabling end-to-end training.
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Removing the Discretization Gap in DLGNs

This approach is motivated by two key observations: (1) Implicit smoothening via noise: Injecting Gumbel noise during
the forward pass introduces a form of stochastic smoothing, effectively averaging over local perturbations of the loss
surface. As we show, this process approximates a curvature-penalizing loss that favors flatter minima and smaller Hessian
norm. In addition, this is known to correlate with improved generalization (Foret et al., 2021; Chen & Hsieh, 2021). (2)
Inference-time alignment: In Differentiable LGNs, the training objective is misaligned with inference behavior, as training
relies on weighted combinations of gates that are ultimately discarded. This discrepancy harms generalization. In contrast,
Gumbel LGNs train under the same discrete selection mechanism, which is used at inference.

Training Gumbel LGNs As with Differentiable LGNs, we model each neuron as a distribution over binary, relaxed logic
gates S = {h1, h2, . . . , h16}, where each gate hi : [0, 1]

2 → [0, 1] operates on relaxed Boolean inputs. We associate each
gate i with logit zi, and the gate has weight πGumbel

i from Equation (4). The output of the neuron with inputs (a, b) is then:

f soft
z (a, b) =

16∑
i=1

exp((log πi + gi)/τ)∑
j exp((log πj + gj)/τ)

· hi(a, b) =

16∑
i=1

πGumbel
i · hi(a, b), (6)

τ > 0 is a temperature parameter controlling the sharpness of the distribution. As τ → 0, the distribution increasingly peaks
around the maximum-logit index (Jang et al., 2017). This relaxation enables end-to-end differentiability while encouraging
the network to commit to discrete logic gates during training.

We employ a straight-through (ST) estimator to bridge the discretization gap between the continuous relaxation used during
training and the hard decisions required during inference. In this formulation, each neuron selects a single logic gate in the
forward pass via a hard (non-differentiable) choice, while gradients are estimated through a soft relaxation in the backward
pass. See Appendix K for pseudo-code implementation of the training process.

Concretely, during the forward pass, we sample Gumbel noise g ∼ Gumbel(0, 1)16 and compute:

fdiscrete
z (a, b) = hk(a, b) (7)

using the gate hk with maximum perturbed logit. During the backward pass, we use the soft Gumbel-Softmax relaxation
(Equation (6)) to compute gradients, effectively treating the hard output as if it were differentiable:

∂fdiscrete
z

∂zi
:=

∂f soft
z

∂zi
.

This ST estimator mechanism encourages the network to make discrete decisions and allows end-to-end optimization via
backpropagation. See Figure 1 or Figure 8 in Appendix H for visualizations.

Implicit Gap Reduction via Gumbel Smoothing. We present a theoretical result that supports the use of Gumbel
perturbations during training. Consider a loss function L, logits z ∈ R16, and g with i.i.d entries gi ∼ Gumbel(0, 1).
Adding Gumbel noise with τ ∈ R to the logits can be seen as Monte-Carlo sample of the objective J(z);

J(z) = E [L(softmax((z+ g)/τ)] .

This can be interpreted as a form of stochastic smoothing. This gives us the following lemma:

Lemma C.1 (Gumbel-Smoothing). Let L : R16 → R be twice continuously differentiable (with Lipschitz Hessian), and let
z ∈ R16,g ∼ Gumbel(0, 1)16. Consider J(z)

J(z) = E [L(softmax((z+ g)/τ)]

and set a = z/τ and f(a) = L(softmax(a)), then

J(z) = L(softmax(z/τ)) +
π2

12τ2
tr(Hf (z/τ)) +O(τ−3).

Proof. See Appendix D.
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Removing the Discretization Gap in DLGNs

Intuitively, by injecting Gumbel noise during training, we encourage the optimizer to find parameters that are robust to small
perturbations. This results in flatter loss landscapes and reduces the sensitivity to parameter discretization when switching to
inference mode. The expected loss scales as

π2

12τ2
tr(Hf (z/τ)).

So as the temperature τ increases, the coefficient 1/τ2 decreases, reducing the degree of implicit smoothing. We illustrate
this with two representative choices:

• Small τ (e.g. 0.1) =⇒ 1/τ2 is large =⇒ large smoothing, flat minima.

• Large τ (e.g. 2.0) =⇒ 1/τ2 is small =⇒ almost no smoothing.

As a result, adjusting the temperature τ offers a mechanism to control the strength of this curvature-aware regularization, the
convergence of the model, and to reduce the discretization gap implicitly.

D. Gumbel Smoothing
The proof of Lemma C.1 depends on the translation invariance of the softmax.

Lemma D.1 (Translation-Invariance of Softmax). Consider logits z ∈ Rd, then adding any constant c ∈ R to z, z+ c, does
not change the output of the softmax. Concretely, for any logit zi we have

softmax(zi + c) = softmax(zi)

Proof. Denote z′i := zi + c, then writing the output of our softmax yields

softmax(z′i) =
ez

′
i∑

j e
z′
i

=
ezi+c∑
j e

zi+c

=
ez

′
i∑

j e
z′
i

=
ec · ezi∑
j e

c · ezi

=
ec · ezi

ec ·∑j ·ezi

=
ezi∑
j e

zi
= softmax(zi)

Restating lemma Lemma C.1, we write:

Lemma D.2 (Gumbel-Smoothing). Let L : R16 → R be twice continuously differentiable (with Lipschitz Hessian), and let
z ∈ R16,g ∼ Gumbel(0, 1)16. Consider J(z)

J(z) = E [L(softmax((z+ g)/τ)]

and set a = z/τ and f(a) = L(softmax(a)), then

J(z) = L(softmax(z/τ)) +
π2

12τ2
tr(Hf (a)) +O(τ−3).
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Figure 4. Straight-through (ST) estimator ablation. The Gumbel LGNs uses hard gate choices in the forward pass as shown in (3) called
the ST estimator. On the left, we show the test accuracy over training iterations; on the right, we show the discretization gap. Gumbel
LGNs with ST estimator converge slightly slower in test accuracy, but the discretization gap is smaller.

Proof. Rewriting J(z) in terms of f gives us

J(z) = E
[
f
(
a+

g

τ

)]
Consider a second-order Taylor expansion of f around a

f
(
a+

g

τ

)
= f(a) +∇f(a)⊤

(g
τ

)
+

1

2

(g
τ

)⊤
Hf (a)

(g
τ

)
+O(∥g∥3/τ3)

Taking expectations, and recalling that E [gi] = γ, Var(gi) = π2/6, where γ ≈ 0.57721 is the Euler-Mascheroni constant.
we get

J(z) = f(a) +
(γ
τ

)
∇f(a)⊤1+

1

2τ2

[
γ21⊤Hf (a)1+

π2

6
tr(Hf (a))

]
+O(τ−3)

which follows from E[g2i ] = Var(gi) + E[gi]2 = π2/6 + γ2, E [gigj ] = γ2 for i ̸= j.

E[gg⊤] = γ211⊤ +
π2

6
I

and the following trace-lemma

E
[
g⊤Hf (a)g

]
= tr(Hf (a)E[gg⊤]) = γ21⊤Hf (a)1+

π2

6
tr(Hf (a))

Since the softmax is translation-invariant in its input a, we have ∇f(a)⊤1 = 0 and Hf (a)1 = 0, so all terms depending on
γ drop, finally giving us

J(z) = L(softmax(z/τ)) +
π2

12τ2
tr(Hf (z/τ)) +O(τ−3).

Hence, minimizing our stochastic loss implicitly smoothens the curvature by minimizing the trace of the Hessian.

E. Ablations
E.1. Straight Through Estimator

To better understand the source of gap reduction achieved by the Gumbel-Softmax trick, we perform an ablation to isolate
the contribution of the ST estimator. As discussed previously, Gumbel-Softmax combines (i) ST estimation as seen in
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Figure 5. Ablation over the temperature τ for Gumbel LGNs. Left: Estimated Hessian trace using Hutchinson’s method. The trace
shrinks as τ decreases, indicating fewer large positive eigenvalues, thus suggesting a flatter loss surface, which may reduce the risk of loss
increases when discretizing parameters. Right: Test accuracy for the τ -values. We see a goldilocks zone for the temperature, as if τ is
large (> 1) or small (< 0.1), then the network converges much slower. In the zoomed-in view, we plot the non-discretized view as dashed
lines and see that these are similar to the discretized values, i.e., the discretization gap is low for all. Except for τ = 0.01 and τ = 2, there
is only a small variation in the final accuracy, as seen in Table 1.

Table 1. Maximum and final test accuracy for the tested τ values. The iterations column indicates the number of training iterations (·103)
required to be within 1% of the maximum accuracy. We see that with a medium value of τ ≈ 0.25 the network converges much faster
than for high values > 1.

τ 0.01 0.05 0.10 0.15 0.20 0.25 0.50 1.00 2.00

Max accuracy 0.547 0.566 0.574 0.574 0.566 0.573 0.573 0.578 0.490
Final accuracy 0.546 0.564 0.570 0.571 0.563 0.568 0.572 0.575 0.480
Iterations (·103) 972 602 632 518 472 440 530 918 1342

(3) and (ii) implicit smoothing via Gumbel noise. By disabling the ST path, we aim to identify whether gap reduction
primarily stems from the discrete gradient approximation or the added stochasticity. The setup without ST corresponds to
Differentiable LGNs with noisy logits and is denoted as Soft Gumbel.

In Figure 4, we see that imputing Gumbel noise alone impacts both convergence and discretization compared to Differentiable
LGNs. However, we observe that including the ST estimator delays convergence for a fixed τ , but further reduces the
discretization gap.

E.2. τ -parameter

We evaluate how varying the temperature τ affects optimization dynamics. Recall that higher τ reduces the degree of implicit
smoothing, potentially leading to sharper minima and slower convergence. In our experiment, we test τ ∈ [0.01, 2.0]. We
show the results in Table 1 and Figure 5 where we observe a goldilocks zone for the temperature; if τ is large (> 1) or small
(< 0.1), then the network converges much slower. However, higher temperatures such as 1 seem to converge to slightly
better solutions. Although the difference is minor, < 0.5% when τ = 0.25 goes to τ = 1.

F. Curvature and entropy results
F.1. Hessian Trace Approximations

The Hessian scales quadratically with model size, so direct computations are infeasible for our networks with millions
of parameters. Still, we can use iterative methods to approximate the trace, etc. (Mises & Pollaczek-Geiringer, 1929;
Ipsen, 1997; Hutchinson, 1989; Trefethen & Bau, 2022). We approximate the trace using Hutchinson’s method with 200
Rademacher random vectors, where each coordinate is independently sampled from {−1,+1} with equal probability
(Hutchinson, 1989). Full experimental details are provided in Appendix L.

As shown in Figure 5, decreasing the τ -parameter reduces the estimated Hessian trace. This aligns with the theoretical
insights from Appendix C; lower τ values place greater weight on trace reduction. The trace is negative, this is expected:
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Figure 6. Entropy distribution for neurons in each layer for trained Differentiable LGNs and Gumbel LGNs models. The dashed black
line indicates the expected entropy (cf. Appendix P) of neurons before training, and the shaded region is the 95% interval computed by
sampling. We see that almost all the neurons in Gumbel LGNs have converged, while neurons in early layers of Differentiable LGNs still
have high entropy.

stochastic gradient noise in overparameterized networks tends to systematically lower the expected Hessian trace, biasing
solutions toward flatter regions of the loss landscape that may have negative trace values (Sagun et al., 2016; 2017; Wei &
Schwab, 2019). Large negative eigenvalues often vanish, the trace remains influenced by many small eigenvalues, resulting
in a negative overall trace.

F.2. Entropy over Logic Gates

Petersen et al. (2022) noted that neurons collapse to single gates, but they did not investigate the extent of the collapse. We
examine this through neuron entropy by sampling 100k newly initialized neurons and computing the 95% interval. We
also estimate expected entropy theoretically (see Appendix P), giving us a baseline distribution for neurons that have not
learned. As neurons collapse, their entropy converges to 0. Figure 6 shows that many early Differentiable LGN layers do not
collapse, while Gumbel LGN neurons converge with entropies near 0. Defining unused gates as those with entropy above
the 2.5%-percentile threshold, Gumbel LGNs have 0.00% and Differentiable LGNs have 49.81% unused gates, representing
a 100.00% reduction by Gumbel.

G. Limitations
While Gumbel LGNs demonstrate significant improvements for deeper networks, limitations do remain. Our evaluation
focuses primarily on CIFAR-10, with limited exploration of more complex datasets or problems with many output classes.
We plan to thoroughly evaluate the methods on datasets like CIFAR-100 and ImageNet32 (Krizhevsky & Hinton, 2009;
Chrabaszcz et al., 2017).

The temperature parameter τ requires tuning to balance convergence speed and accuracy. Finally, our theoretical analysis
connects Gumbel noise to Hessian trace minimization under simplifications, but a comprehensive theoretical treatment of
the discretization gap remains an open challenge.
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H. Logic Gate Network Visualizations
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Figure 7. A diagram showing a standard logic gate network (LGN). Each logic gate receives two inputs from the previous layer. The
image is first binarized before being passed into the network, and the output neurons are grouped, and each neuron in a group votes
whether the image belongs to the group/class.
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Figure 8. Forward pass through a Gumbel LGN. The top panel shows neurons producing class scores. Bottom-left: categorical distribution
Cat(p) over relaxed logic gates, parameterized by learnable weights z ∈ R16. Bottom-right (zoom-in): internal view of one neuron.
The signal passes through a single selected relaxed logic gate (colors indicate which gate is chosen).
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I. Distribution over Logic Gates
Gate Distribution by Layer We look in Figure 9 at the distribution of the logic gates in the final network. Our first
observation is that the distributions are far more uniform for Gumbel LGNs in layers 1 to 11 than for Differentiable LGNs.
At the same time, we see a sharp transition for Differentiable LGNs after layer 8. This could match the results in Figure 6,
indicating that neurons in Differentiable LGNs struggle to converge in all but the final layers.

The “1” gate can be seen as a bias towards specific classes. Notably, Gumbel LGN primarily uses this gate type in the last
layer, so we analyze this further.
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Figure 9. Gate distribution for the gates split by layer for a Differentiable LGN and a Gumbel LGN. Interestingly, the distribution is far
more uniform for the Gumbel LGN in layers 1 to 11 than for the Differentiable LGN. In addition, the Gumbel LGN primarily has “1”
gates in the final layer, which can be seen as a constant bias towards certain classes. We analyze this further in Appendix I.

Gate Distribution by Class We see in Figure 10 the gate distribution for each of the 10 classes in the last layer.
Interestingly, the distributions between Softmax and Gumbel are quite different, but the classes are nearly identical. Since
almost all classes have several “1” gates, pruning these would be possible as softmax is translation invariant.

J. Extended Sharpness-Aware Minimization
A parallel line of research focuses on improving generalization by minimizing the sharpness of the loss landscape. Motivated
by prior theoretical works on generalization and flat minima (Keskar et al., 2017; Dziugaite & Roy, 2017; Jiang* et al.,
2019), Foret et al. (2021) introduced Sharpness-Aware Minimization (SAM). This technique explicitly seeks flat minima by
optimizing the worst-case loss within a perturbation neighborhood. Let LS(w) be a loss function over a training set S of
samples from a distribution D evaluated for model parameters w.

min
w

LSAM
S (w) + λ∥w∥22 where LSAM

S (w) ≜ max
∥ϵ|p≤ρ

LS(w + ϵ), (8)

where p ∈ [1,∞[ is the p-norm used (usually p = 2) and ρ > 0 is a hyperparameter (Foret et al., 2021). This optimization
objective arises from the PAC-Bayesian generalization bound shown in Equation (9) (McAllester, 1999), and Foret et al.
(2021) use it to show Equation (10). Below, n = |S|, k is the number of model parameters, P and Q are the prior and
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Figure 10. Gate distribution for each class in the CIFAR-10 classifiers. The gates are from the last layer before the groupsum is applied.

posterior distributions of the model parameters, respectively. Lastly, the equations hold with probability 1− δ.

Ew∼Q[LD(w)] ≤Ew∼Q[LS(w)] +

√
KL(Q||P) + log n

δ

2(n− 1)
, (9)

LD(w) ≤ max
∥ϵ∥2≤ρ

LS(w + ϵ)+

√√√√√√k log

(
1 +

∥w∥2
2

ρ2

(
1 +

√
log(n)

k

)2
)

+ 4 log n
δ + Õ(1)

n− 1
. (10)

Since its introduction, SAM has inspired numerous follow-up studies focused on improving computational efficiency (Liu
et al., 2022a; Du et al., 2022a;b; Mi et al., 2022; Liu et al., 2022b; Mueller et al., 2023) as well as providing theoretical
insights into its efficacy (Andriushchenko & Flammarion, 2022; Wang et al., 2023; Wen et al., 2023; Li et al., 2024).

K. Training GLGNs

Algorithm 1 Training STE-GLGNs
while not converged do

Sample Gumbel noise g ∼ Gumbel(0, 1)
Compute soft sample a′ = softmax((logα+ g)/τ)
Compute hard sample â = one_hot(argmax a′)
Forward pass through logic gate network using â (with stop_grad(â− a′) + a′)
Compute loss L
Backpropagate and update α and other parameters

end while

L. Estimating Hessian of Loss
Computing the full Hessian of the loss function is not computationally feasible due to the quadratic scaling with the number
of parameters. Instead, we use scalable stochastic methods to estimate the trace of the Hessian, which provides useful
curvature information. Specifically, we focus on the trace as our Lemma C.1 directly minimizes the trace of the Hessian.
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Hessian-Vector Products In order to estimate the trace, we will be using Hessian-vector products on the form Hv, where
H = ∇2L(θ) is the Hessian of the loss L with respect to model parameters θ, and v ∈ Rd is an arbitrary vector. While
explicitly forming H would require O(d2) memory and computation, such products can be computed efficiently using
reverse-mode automatic differentiation (also known as Pearlmutter’s trick) in O(d) time and memory (Pearlmutter, 1994).

Given a scalar-valued function L(θ), the Hessian-vector product Hv is defined as:

Hv = ∇2L(θ) v =
d

dϵ
∇L(θ + ϵv)

∣∣∣∣
ϵ=0

.

This formulation allows for efficient computation using automatic differentiation frameworks, without explicitly constructing
the Hessian matrix.

Trace Estimation via Hutchinson’s Method To estimate the trace of the Hessian, we employ Hutchinson’s stochastic
trace estimator (Hutchinson, 1989), which approximates the trace of a matrix H as

tr(H) ≈ 1

m

m∑
i=1

z⊤i Hzi,

where each zi ∈ Rd is a random vector with zero-mean, unit-variance, i.i.d. entries. The choice of distribution for zi’s
affects the variance of our estimator. While both Gaussian and Rademacher distributions satisfy this, Rademacher vectors
(each entry sampled from {−1,+1} with equal probability) lead to a lower-variance estimator. This is formally shown
in (Avron & Toledo, 2011). This makes it especially well-suited for estimating curvature efficiently in high-dimensional
models.

We use m = 200 Rademacher vectors to produce a stable estimate. Each Hessian-vector product Hzi is computed efficiently
using reverse-mode automatic differentiation without explicitly forming the Hessian matrix.

Choice of Evaluation Points Since both trace and eigenvalue estimators are noisy and computationally expensive, we
evaluate them only at selected points during training. Specifically, we choose points that correspond to monotonically
increasing accuracy on the test set.

M. Loss Surface Visualization
Visualizing the geometry of the loss landscape provides insights into the optimization dynamics during training and the
discretization gap. We follow the same procedure as in Li. et al 2018 (Li et al., 2018), which constructs a two-dimensional
slice of the high-dimensional loss surface by perturbing model weights in random directions.

Methodology Let θ ∈ Rd be a parameter vector of a trained model. The goal is to evaluate the loss L(θ′) over a grid of
points

θ′(α, β) = θ + αd1 + βd2

where d1 and d1 are orthogonal directions with α, β ∈ R. We choose α, β such that we probe the model in a unit circle, i.e.
(−1, 1).

Direction Sampling The direction vectors d1 and d2 are generated as follows: Each direction is drawn using a Gaussian
distribution di ∼ N (0, 1)d. We then normalize di = di/∥di∥, such that each perturbation has the same overall scale.

Orthogonalization To ensure that d1, d2 span a meaningful plane, we apply Gram-Schmidt orthogonalization:

d1 ← d2 −
⟨d1, d2⟩
⟨d1, d1⟩

d1

This ensures that we span independent, meaningful axes for visualization. This allwos us to visualize the curvature in
three-dimensions.
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N. Experimental Configuration
N.1. Hyperparameters

Gap Scaling with Depth we use the same hyperparameters for this experiment for Differentiable LGNs and Gumbel
LGNs. Specifically, we fix the width of the network to 256K neurons and train the network over the depths {6, 8, 10, 12}.
We optimize the network using Adam with a learning rate of 0.01. Furthermore, the batch size is set to 128 and the final
parameter in the GroupSum is set to 1/0.01. This mirrors the original experimental setup of Petersen et al. (2022) for
CIFAR-10. Finally, we fix the τ = 1 parameter for the Gumbel noise in the Gumbel LGNs.

A. Default CIFAR-10 Training

Optimizer Adam
Learning rate 0.01
Batch size 128
Depth 12 (unless varied)
Width 256 k neurons
GroupSum scale 1/0.01

B. Gap-Scaling (Depth Ablation)

Depths tested {6, 8, 10, 12}
Width 256k
Other settings same as (A)

C. Ablation Studies

Straight-Through vs Soft depth=12, width=256k, tau=1.0
Temperature sweep tau in {0.01,0.05,0.1,0.15,0.2,0.25,0.5,1,2}

D. Hessian Estimation

Trace estimator Hutchinson, m=200 Rademacher vectors
Top-eigenvalue estimator Power iteration, 200 iterations
Evaluation points checkpoints at monotonic test accuracy

Table 2. All hyperparameter settings, grouped by experiment.

Ablation Studies For both the straight-through and τ -parameter ablations, we use the deepest model from the gap scaling
experiment (depth 12, width 256K) to evaluate each effect in a stress-tested regime. This allows us to isolate the effect of
either variant.

N.2. Implementation

Our code extends the official PyTorch Difflogic library by Felix Petersen, i.e., the reference imple-
mentation provided alongside the Differentiable LGN paper (Petersen et al., 2022). During the for-
ward pass we replace the standard torch.nn.functional.softmax with a hard Gumbel-Softmax,
torch.nn.functional.gumbel_softmax , thereby enabling discrete sampling while maintaining end-to-end
differentiability.

O. Softmax DiffLogic Performance on MNIST-like Baselines
For all datasets, we use the same model and experiment configs.4 The models have six layers and a width of 64k. See
Table 3 for the results.

Besides the classic MNIST (Bottou et al., 1994; LeCun et al., 1998), CIFAR-10, and CIFAR-100 datasets (Krizhevsky &
Hinton, 2009), we also evaluate EMNIST (balanced and letters) (Cohen et al., 2017), FashionMNIST (Xiao et al., 2017),
KMNIST (Clanuwat et al., 2018), and QMNIST (Yadav & Bottou, 2019). These are black and white images, as in MNIST,
but with other or more classes. We refer the reader to the original papers for details and examples.

4Thus, the CIFAR numbers are not representative of the optimal performance.
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Table 3. The table shows the performance of Differentiable LGNs on many datasets. The key takeaway is that the discretization gap for
MNIST-like datasets is minimal. The discretization gap is the difference between the discrete and soft performance. The numbers are
averaged over five runs.

Train Test
Accuracy Accuracy

Dataset Soft Discrete Disc. gap Soft Discrete Disc. gap

CIFAR-10 (Krizhevsky & Hinton, 2009) 100.0 % 100.0 % 0.0 % 52.04 % 50.72 % 1.31 %
CIFAR-100 (Krizhevsky & Hinton, 2009) 83.44 % 80.39 % 3.05 % 23.86 % 23.1 % 0.76 %
EMNIST balanced (Cohen et al., 2017) 95.52 % 94.87 % 0.65 % 84.57 % 84.28 % 0.29 %
EMNIST letters (Cohen et al., 2017) 98.69 % 98.3 % 0.38 % 91.43 % 91.04 % 0.38 %
FashionMNIST (Xiao et al., 2017) 99.02 % 98.17 % 0.85 % 90.37 % 90.0 % 0.36 %
KMNIST (Clanuwat et al., 2018) 100.0 % 100.0 % 0.0 % 97.14 % 97.0 % 0.14 %
MNIST (Bottou et al., 1994) 100.0 % 100.0 % 0.0 % 98.33 % 98.16 % 0.17 %
QMNIST (Yadav & Bottou, 2019) 100.0 % 100.0 % 0.0 % 98.33 % 98.17 % 0.16 %

P. Expected Entropy
Lemma P.1. The expected entropy of a newly initialized neuron in a Differentiable LGN is ≈ log 16− 1

2 ≈ 2.27.

Proof. A neuron has n = 16 gates that it makes a choice over and gate i has (i.i.d.) logit zi ∼ N(0, 1) and probability
pi =

exp zi
C where C =

∑n
j=1 exp zj . For the rest of the proof, we assume the number of gates n is not fixed, and show that

the expected entropy converges to log n− 1
2 .

The expected entropy of p = (p1, p2, ...) is

E[H(p)] = −E
[

n∑
i=1

exp zi
C

log
exp zi
C

]

= E [logC]− E

[
n∑

i=1

zi exp zi
C

]

= E

log n∑
j=1

exp zj

− E

[
n∑

i=1

zi exp zi∑n
j=1 exp zj

]
.

Here, we have as n→∞:

E

[
n∑

i=1

zi exp zi∑n
j=1 exp zj

]
= E

[
1
n

∑n
i=1 zi exp zi

1
n

∑n
j=1 exp zj

]
=

E[zi exp zi]
E[exp zj ]

.

Using E[exp z1] =
√
e and E[z1 exp z1] =

√
e, the above gives us that as n→∞:

E

log n∑
j=1

exp zj

− E

[
n∑

i=1

zi exp zi∑n
j=1 exp zj

]

= log n+ E

log
 1

n

n∑
j=1

exp zj

− E[zi exp zi]
E[exp zj ]

= log n+ logE[exp zj ]−
E[zi exp zi]
E[exp zj ]

= log n+
1

2
− 1 = log n− 1

2
.

We only need to plug in n = 16 to get the last part.
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Table 4. Iterations per hour and the relative change from Differentiable LGNs to Gumbel LGNs.
Iterations per hour

Softmax Gumbel Change

Depth 6 38708 38375 -0.86%
Depth 8 36292 34000 -6.31%
Depth 10 32792 31167 -4.96%
Depth 12 29417 27583 -6.23%

Mean -4.59%

Q. Runtime
In Table 4 the number of iterations per hour Softmax and Gumbel LGNs completed while training models for the results in
Figure 2. We also calculate the relative difference between the two. Gumbel is slightly slower due to the noise sampling;
however, as it converges much faster in terms of iterations, the net effect is that it converges 4.5 times faster in wall-clock
time.

R. Computational Resources
The experiments were done on an internal cluster with RTX 3090s and RTX 2080 Tis. In total, we have logged 1284 GPU
hours for the experiments and testing. A significant part of the compute was spent on exploration.
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