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Abstract
Increase in the use of Electronic Health Records
(EHRs) has facilitated advances in predic-
tive healthcare. However, EHR systems lack
a unified code system for representing medi-
cal concepts. Heterogeneous formats of EHR
present a barrier for the training and deploy-
ment of state-of-the-art deep learning models
at scale. To overcome this problem, we intro-
duce Description-based Embedding, DescEmb,
a code-agnostic description-based representa-
tion learning framework for predictive modeling
on EHR. DescEmb takes advantage of the flex-
ibility of neural language models while main-
taining a neutral approach that can be com-
bined with prior frameworks for task-specific
representation learning or predictive modeling.
We test our model’s capacity on various experi-
ments including prediction tasks, transfer learn-
ing and pooled learning. DescEmb shows higher
performance in overall experiments compared
to the code-based approach, opening the door
to a text-based approach in predictive health-
care research that is not constrained by EHR
structure nor special domain knowledge.

Data and Code Availability This paper uses
MIMIC-III and eICU, which are publicly available on
the PhysioNet repository (Johnson et al., 2016; Pol-
lard et al., 2018). More details about datasets can
be found at Section 3.1. Our code implementation is
available is available on Github.1

∗ These authors contributed equally
1. https://github.com/hoon9405/DescEmb

1. Introduction

Increased adoption of electronic health record (EHR)
systems offers great potential for EHR-based pre-
dictive models to improve healthcare quality. Deep
learning models have shown comparable or better
performance in diagnosing or predicting various med-
ical events. (Lipton et al., 2015; Gulshan et al., 2016;
Rank et al., 2020).

However, the heterogeneity of EHR systems among
hospitals presents barriers for applications of EHR-
based deep learning models. Contemporary EHRs
rely on data systems ranging from standardized codes
(e.g. ICD9, LOINC) to free-text entry. Therefore,
modern deep learning approaches are based on learn-
ing the representations of these codes, an approach
we refer to as ‘code-based embedding’. However, this
paradigm does not allow a model to be transferred
from one environment to another nor to be trained
on large EHR data collected from multiple hospitals
that use heterogeneous EHR formats. Consequently,
modern deep learning prediction models are missing
out on the opportunity to be scaled up. This chal-
lenge could be alleviated by mapping codes from one
system to another, or by converting all EHR data to
Common Data Model (e.g. OMOP, FHIR) (Rajko-
mar et al., 2018). However, this requires significant
human effort and domain knowledge and may not
even be possible, depending on the code system at
hand.

In this paper, we suggest code-agnostic text-based
representation learning. Since each medical code has
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Figure 1: CodeEmb and DescEmb concept visualization. (A) CodeEmb: predictive models are
trained with code-base embedding. The code encoders and the prediction layers cannot be shared among
different hospitals due to heterogeneity of the code systems. (B) DescEmb: predictive models are trained
on description-based embeddings derived from the text encoder. Due to the code-agnostic nature of the
text-encoder, both the text encoders and the prediction layers can be transferred between different hospitals,
unlike (A). (C) Learning from pooled data via DescEmb: we can pool heterogeneous hospital data into one
dataset and train jointly, thus increasing the deployment efficiency.

a text description that represents its semantic prop-
erty, we propose Description-based Embedding, De-
scEmb. DescEmb adopts a neural text encoder to
convert medical codes to contextualized embeddings,
allowing us to map medical codes of different formats
to the same text embedding space. Figure 1 gives a
visual summary of our model framework; instead of
directly embedding the medical codes as in (A), the
prediction layer takes a series of vectors represent-
ing code descriptions passed through a neural text
encoder as in (B) and (C). Our principled approach
yields improved predictive performance compared to
the Code-based Embedding, CodeEmb, and makes
it possible to train models on differently formatted
EHR data interchangeably due to its code-agnostic
nature.

We test our framework on two EHR datasets,
the Medical Information Mart for Intensive Care
(MIMIC-III) (Johnson et al., 2016) and eICU Col-
laborative Research Database (Pollard et al., 2018),
which use completely different medical code sys-
tems. Based on extensive experiments using five pre-
diction tasks under diverse settings (e.g. standard
single-domain learning, zero-shot and few-shot trans-
fer learning, pooled learning), the best model of De-
scEmb demonstrates superior or comparable perfor-
mance to the best model of CodeEmb in the vast ma-

jority of cases, outperforming by an average of 2.6%P
AUPRC.

The main contributions of our work can be sum-
marized as follows:

1. DescEmb achieves comparable or superior per-
formance to CodeEmb on a comprehensive set
of common clinical predictive tasks. Detailed re-
sults can be found in Table 1, 2.

2. Two differently structured EHR can be used to
train and test predictive models interchangeably
while rarely sacrificing model performance, often
showing higher performance than when training
on a single EHR. Visualized results can be found
in Figure 4.

3. Two differently structured EHR can be pooled
into one dataset and trained jointly with a
description-based representation without the
need for additional preprocessing or domain
knowledge. For the result, refer to Table 3.

4. DescEmb shows notable performance in overall
experiments, opening the door to a text-based
approach in predictive healthcare research that
is not constrained by EHR structure nor special
domain knowledge.
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2. Related Work

2.1. Neural Text Encoders

Early text embedders encode each word in a vocab-
ulary as a vector whose semantic similarity to other
words is represented by a distance measure (e.g. co-
sine similarity), or distribution of words (Mikolov
et al., 2013; Pennington et al., 2014). Recently, Bidi-
rectional Encoder Representations from Transform-
ers (BERT) and its variants (Devlin et al., 2019; Lan
et al., 2019; Liu et al., 2019; Yang et al., 2019) have
shown improvements on various tasks in natural lan-
guage processing (NLP). They employ a pre-training
strategy, Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP), to learn contextual
text representations that incorporates the complex
relationships within the input text.

In the biomedical domain, several studies have de-
veloped BERT variants further trained on medical
or clinical corpora. These studies have continually
pre-trained their models on research articles from
PubMed (Lee et al., 2019), MIMIC-III clinical text
(Alsentzer et al., 2019), or a combination of the two
(Peng et al., 2019), and scratch trained on articles
from PubMed (Gu et al., 2020).

2.2. Representation Learning for Predictive
Healthcare

Predictive models with EHR data use various archi-
tectures such as autoencoders (Miotto et al., 2016;
Che et al., 2015) and recurrent neural networks
(RNN) (Lipton et al., 2015; Choi et al., 2016b,a).
Other model architectures are also used for predictive
healthcare such as gradient boosted machines (Chen
et al., 2019), convolutional nets (Nguyen et al., 2016;
Landi et al., 2020), and Transformer-based models
(Song et al., 2018; Shang et al., 2019; Choi et al.,
2020).

Previous research approaches are focused on code-
based embedding. Our paper deals with the unifi-
cation of heterogeneous code systems in EHR—and
therefore sits independent to these previous works.
As such, our proposed approach can be combined
with prior frameworks.

3. Methods

3.1. Datasets

We draw on two large, publicly available datasets:
the Medical Information Mart for Intensive Care III

(MIMIC-III) (Johnson et al., 2016), and the eICU
Collaborative Research Database (eICU) (Pollard
et al., 2018). MIMIC-III includes all patients admit-
ted to the intensive care unit (ICU) at Beth Israel
Deaconess Medical Center from 2001 to 2012, and
contains over 60,000 unique ICU stays with millions
of observations. The eICU Collaborative Research
Database is a multi-center database comprised of de-
identified health data associated with over 200,000
ICU stays across the United States between 2014-
2015.

Both MIMIC-III and eICU contain time-stamped
records of medical events such as labs, medications,
and drug inputs for each patient stay. MIMIC-III
and eICU are recorded based on completely different
code structures throughout the data. For example,
the clinical concept “an infusion event of nitroglyc-
erin” is represented in eICU as the string “Nitroglyc-
erin (mcg/min)”. However, the same semantic con-
cept would be represented in MIMIC-III using the
in-house item ID 222056 (a Metavision code, for ”Ni-
troglycerin”); item ID 30049 (a CareVue code, for
”Nitroglycerin”); or item ID 30121 (a CareVue code,
for ”Nitroglycerin-k”). The same goes for all medi-
cal events including diagnosis, medications, labs, etc.
Consequently, we aggregate descriptions and values
for comparability between formats and do not per-
form any within-code string manipulation. Detailed
data preprocessing is provided in Appendix C.

3.2. Structure of Electronic Health Records

In this section, we describe the structure of EHR and
introduce the notations to be used throughout the
paper. Let pi denote the i-th patient in the EHR
data. As our problem setting is focused on individual
patients, we drop the superscript when clear. A single
patient p can be seen as a series of medical events
(c1, c2, . . . , cT ) for ci ∈ C where C denotes the set of
all medical events such as diagnoses or prescriptions.
Each event ci is typically timestamped, giving us the
sequence of time information (t1, t2, . . . , tT ).

A single medical event ci is often associated with a
text description. For example, if ci were a prescrip-
tion event, it could be accompanied by the medica-
tion name (e.g. “Aspirin 300mg Tab.”). If it were
a diagnosis event, it could come with an ICD-9 code
(e.g. 401.9), which in turn has its own description
(“Unspecified essential hypertension”). We use di to
denote this text description, which consists of a se-
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Figure 2: DescEmb model framework. On the top, the patient timeline from the ICU admission is
represented as a line. Each dot on the line is a code ci which can be any medical event. Each code ci can be
converted to its own description di. The neural text encoder Bφ accepts the description di and produces its
latent representation z i. Given all z 1, z 2, . . . , zT , the predictive model Pθ predicts the outcome ŷ.

quence of words (or sub-words) (wi,1, wi,2 . . . , wi,n)
for wi,j ∈ W where W is the entire vocabulary.

Typically, two different medical institutions employ
different C’s, such as when one hospital uses ICD-9
diagnosis codes while another uses SNOMED diagno-
sis codes. The vocabulary W, however, is the same
for all hospitals as long as they use the same lan-
guage. We propose DescEmb, a new framework for
predictive healthcare, based on this observation.

3.3. Model Architecture

Previous deep learning predictive models for EHR
data typically have an embedding layer (or a lookup
table) Eψ with trainable parameters ψ, which con-
verts a single medical event ci to its corresponding
vector representation ci ∈ Ra where a is the dimen-
sion size. Instead of directly converting c1, . . . , cT to
c1, . . . , cT with a trainable lookup table, DescEmb
derives the latent representation of ci, denoted as z i,
based on its text description di. We feed di to the
shared text encoder, Bφ, to obtain the description
representations, z i ∈ Rb where b is the output di-
mension. Repeating this for all events in the given
patient p, we can obtain a sequence of contextualized
medical event representations (z 1, z 2, . . . , zT ), which
in turn is given to the prediction layer Pθ (e.g. RNN)
with trainable parameters θ to make a prediction ŷ

(Fig 2.) The entire process of DescEmb can be sum-
marized as below, with comparison to CodeEmb.

Given a patient record p = (c1, c2, . . . , cT ),

Code-based Embedding :

ci = Eψ(ci)

ŷ = Pθ(c1, c2, . . . , cT ) (1)

Description-based Embedding :

di = (wi,1, wi,2, . . . , wi,n)

z i = Bφ(di) (2)

ŷ = Pθ(z 1, z 2 . . . , zT )

3.4. Text Encoder

The text encoder Bφ in DescEmb can be any model
that can generate a representation z i from a given
description di. We tested two model architectures
for the text encoder: Bi-Directional Recurrent Neu-
ral Networks (Bi-RNN) and Bidirectional Encoder
Representations from Transformers (BERT). For Bi-
RNN, we derived the z i by concatenating the last hid-
den states from each direction. For BERT, we used
the output vector from the [CLS] token as z i. We
conducted experiments on different sizes of models
that are pre-trained on a massive amount of general
text such as Bert-tiny (2-layers), Bert-mini (4-layers),
Bert-small (4-layers), Bert-base (12-layers).
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Figure 3: Various methods of incorporating numeric values. We introduce four value embedding
methods to represent both the code descriptions and the associated numeric values (e.g. “10” in “Tylenol
10 tabs”).

We also conducted experiments on BERTs that are
pre-trained on clinical text, such as BioBERT (Lee
et al., 2019), ClinicalBERT (Alsentzer et al., 2019),
and BlueBERT (Peng et al., 2019). We compared
these models with BERTs that are pre-trained on
the general domain. (results can be found in Ap-
pendix A). Moreover, we further pre-trained the text
encoder on our dataset using Masked Language Mod-
eling (MLM), following the original BERT procedure,
to better fit the text encoder to our dataset. We did
not include values during MLM since predicting val-
ues from descriptions is meaningless considering the
various patient statuses.

3.5. Value Embedding

In the context of drug prescriptions, dosage or rate
of infusion can be useful information to represent the
patient’s status. Hence, values incorporated in a code
description provide rich informative features, poten-
tially leading to an increased predictive performance.
When using DescEmb, both the code description di
and the associated numeric values can be embedded
with the text encoder Bφ.

As shown in Figure 3, we introduce four different
value embedding methods. First, Value Aggregation
(VA) stands for aggregating the code description and
the numeric values together as text. In this setting,
because the BERT tokenizer recognizes each value as

a word, it sometimes tokenizes a given value in an
unnatural way. For example, a number ‘1351’ can be
split into two sub-words ‘13’ and ‘51’, which does not
best reflect the underlying meaning of the number.
Hence, we additionally propose Digit-Split Value Ag-
gregation (DSVA), where we split all numeric values
into each digit first, then aggregate with the code de-
scription as text. In this way, a number is always
tokenized into single digits, but the model still does
not consider the place value. For instance, a number
‘1351’ will be tokenized into ‘1’, ‘3’, ‘5’, ‘1’; the model
recognizes the first ‘1’ and the last ‘1’ as the same
token even though the first ‘1’ represents the thou-
sandth place and the last ‘1’ represents the first place.
To mitigate this misunderstanding, we add learnable
Digit Place Embedding (DPE) to every digit token in-
dicating its place value, named Digit-Split Value Ag-
gregation + Digit Place Embedding (DSVA+DPE).
No further preprocessing was applied for unit mea-
surements such as percent sign (%), mg, ml, and so
on. This can only be applied to a model exploiting
a neural text encoder which can add additional value
embeddings for each digit. Value Concatenated (VC)
embeds description and values separately. Similar to
the other embedding methods, code descriptions and
units of measurement are embedded through the text
encoder, while values are passed through additional
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Table 1: AUPRC of CodeEmbs and DescEmbs in prediction tasks for eICU

Model CodeEmb
DescEmb

BERT RNN

Task Value Embedding RD W2V CLS-FT FT Scr
FT

+ MLM
Scr

Scr
+ MLM

Dx

VA 0.447 0.433 0.501 0.574 0.547 0.586 0.586 0.582
DSVA 0.447 0.433 0.498 0.591 0.567 0.601 0.593 0.584

DSVA+DPE - - - 0.594 0.571 0.602 0.594 0.583
VC 0.562 0.549 0.557 0.562 0.546 0.555 0.557 0.557

Mort

VA 0.112 0.153 0.209 0.177 0.17 0.216 0.237† 0.271
DSVA 0.112 0.153 0.209 0.223 0.215 0.213 0.235 0.247

DSVA+DPE - - - 0.224 0.213 0.217 0.252 0.259
VC 0.24† 0.239† 0.238† 0.23† 0.23† 0.223 0.237† 0.227†

LOS>3

VA 0.47† 0.439 0.533 0.52 0.511 0.514 0.537 0.539
DSVA 0.47† 0.439 0.529 0.53 0.538 0.529 0.539 0.537

DSVA+DPE - - - 0.536 0.537 0.529 0.54 0.537
VC 0.525 0.525 0.528 0.523 0.524 0.523 0.526 0.53

LOS>7

VA 0.157 0.184 0.225 0.196† 0.185 0.196 0.224 0.237
DSVA 0.157 0.184 0.225 0.216 0.222 0.221 0.227 0.233

DSVA+DPE - - - 0.22 0.219 0.221 0.231 0.234
VC 0.231 0.228 0.229 0.216 0.218 0.218 0.222 0.224

ReAdm

VA 0.168 0.15 0.208 0.283 0.205 0.283 0.269 0.279
DSVA 0.168 0.15 0.206 0.284 0.264 0.29 0.28 0.275

DSVA+DPE - - - 0.289† 0.263 0.284 0.28 0.255
VC 0.217† 0.183† 0.194 0.272 0.256 0.267 0.277 0.276

†: standard deviation > 0.02

Multi-Layer Perceptron (MLP) which yields an em-
bedding vector for the values. These two embeddings
are finally concatenated and work as a description
representation z i for input of the predictive model.

3.6. Model Optimization
Both CodeEmb and DescEmb are used for prediction,
therefore we can use any typical prediction loss func-
tion L such as the cross-entropy loss or mean squared
error. For DescEmb, training an entire BERT-like
text encoder Bφ while optimizing predictive model
Pθ requires a significant amount of time and com-
pute resources, which are often inaccessible by small
hospitals. Therefore, we propose the following light-
weight DescEmb method, CLS-finetune. The objec-
tive functions of each model are shown below.

Code-based Embedding argmin
θ,ψ

L(y, ŷ) (3)

Description-based Embedding argmin
θ,φ

L(y, ŷ) (4)

DescEmb CLS-finetune argmin
θ,zCLS

L(y, ŷ) (5)

CLS-finetune, as written in Eq. 5, keeps φ of the
text encoder fixed but allows for fine-tuning only
the medical event embeddings zCLS derived from B.
This can also be seen as initializing the parameters

of the embedding layer Eψ with the values of zCLS ,
instead of initializing with random values. CLS-
finetune does not solely rely on B’s ability to derive
medical event embeddings, but allows flexibility for
the model to adapt to given prediction task with rea-
sonable computation overhead.

4. Results

4.1. Prediction Performance

To assess the general efficacy of the DescEmb frame-
work, we evaluate both DescEmbs and CodeEmbs
across five medical prediction tasks using two sep-
arate datasets. The results are in Table 1 and Ta-
ble 2. Value embedding methods are abbreviated
as explained in the method section. The results for
DSVA + DPE in CodeEmb and CLS-FT are blank
since they cannot use Digit Place Embedding. In
CodeEmb, ‘RD’ represents a randomly initialized em-
bedding layer while ‘W2V’ represents Word2Vec, a
pre-training strategy for CodeEmb embedding layer
(Mikolov et al., 2013). ‘FT’ stands for fine-tuning
where we employ existing pre-trained BERT param-
eters and fine-tune them for the downstream tasks.
‘Scr’ stands for training from scratch where we do
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Table 2: AUPRC of CodeEmb and DescEmb in prediction tasks for MIMIC-III.

CodeEmb
DescEmb

BERT RNN

Task Value Embedding RD W2V CLS-FT FT Scr
FT

+ MLM
Scr

Scr
+ MLM

Dx

VA 0.726 0.704 0.733 0.76 0.747 0.767 0.767 0.762
DSVA 0.726 0.704 0.731 0.77 0.752 0.776 0.77 0.766

DSVA+DPE - - - 0.771 0.752 0.764 0.768 0.763
VC 0.757 0.751 0.752 0.756 0.745 0.75 0.755 0.753

Mort

VA 0.228 0.209 0.346 0.343† 0.31 0.38 0.383 0.398
DSVA 0.228 0.209 0.347 0.377 0.378 0.379 0.394† 0.39

DSVA+DPE - - - 0.378 0.372 0.383 0.4 0.393
VC 0.313† 0.334 0.339 0.336† 0.335† 0.376 0.344† 0.338

LOS>3

VA 0.582 0.585 0.608 0.616 0.601 0.616 0.624 0.63
DSVA 0.582 0.585 0.608 0.624 0.617 0.619 0.631 0.632

DSVA +DPE - - - 0.624 0.616 0.622 0.634 0.628
VC 0.61 0.614 0.616 0.61 0.614 0.612 0.622 0.622

LOS>7

VA 0.269 0.251 0.346 0.338 0.325 0.342 0.349 0.349
DSVA 0.269 0.251 0.348 0.355 0.359 0.356 0.35 0.35

DSVA+DPE - - - 0.36 0.359 0.353 0.352 0.353
VC 0.326 0.342 0.346 0.341 0.339 0.344 0.347 0.352

ReAdm

VA 0.044 0.043 0.042 0.042 0.045† 0.044 0.044 0.043
DSVA 0.044 0.043 0.041 0.043 0.046† 0.044 0.045 0.044

DSVA+DPE - - - 0.043 0.047 0.044 0.041 0.044
VC 0.043 0.043 0.044 0.045 0.047 0.044 0.044 0.044

†: standard deviation > 0.02

not bring the pre-trained BERT but randomly initial-
ize the model. ‘FT + MLM’ is a model that brings
a pre-trained model and conducts Masked Language
Modeling (MLM) on our dataset after which it is fine-
tuned on downstream tasks. ‘Scr + MLM’ is simi-
lar to ‘FT + MLM’ but it does not bring the pre-
trained model parameter. We utilize the BERT-Tiny
architecture for the BERT-based text encoder be-
cause there was no significant performance difference
among BERT variants across sizes and pre-training
techniques specific to clinical domain corpus; detailed
results on this part can be found in Appendix A.

DescEmb models achieve comparable or superior
performance to CodeEmb on nearly every task across
all value embedding methods at an average of 8%P
with 12%P at maximum. Within DescEmb models,
BERT-FT generally outperforms BERT-Scratch, ver-
ifying the effectiveness of pre-training on massive text
corpus. Using the additional Masked Language Mod-
eling (MLM) on our dataset marginally improved per-
formance (+0.3%P AUPRC) for BERT models. We
further test the efficacy of MLM in the transfer learn-
ing setting below. Of note, a Bi-RNN text encoder
generally performs better than BERT-based models.
We speculate that, since the maximum lengths of
sub-tokens for one code description are 46 and 48

for MIMIC-III and eICU respectively, a simple and
light-weighted text encoder model, in this case Bi-
RNN, has enough capacity to grasp the features of
descriptions. In other words, a large and complex
model, in this case BERT, might be an excessively
powerful tool to compute refined representations in
our setting. We further analyzed factors that in-
fluence the most to the prediction, and found that
CodeEmb and DescEmb share the same important
features under the same task. Detailed results can be
found in Appendix E.

Note that CLS-finetune in DescEmb, which re-
quires the same amount of compute and time as
CodeEmb but initializes the embeddings with the
CLS outputs from pre-trained BERT, outperforms
CodeEmb in nearly all cases. This demonstrates that
there is ground to be gained by adopting description-
based embedding compared to the classical code-
based embedding. We also pre-train the CodeEmb’s
embedding layer in Word2Vec manner to have a fair
comparison with the pre-trained DescEmb models.
We observe that Word2Vec results are highly un-
stable, which sometimes underperform 3.4%P at the
worst compared to randomly initialized CodeEmb.
This result implies that pre-training at code-level is
insufficient to fully capture the semantics of each code

7
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Figure 4: Transfer learning performance (Top: MIMIC-III to eICU, Bottom: eICU to MIMIC-
III). The X-axis is the portion of the target dataset used for transfer learning, and the Y-axis is the AUPRC
at test time on the target dataset. Shading represents the standard deviation from ten seed experiments.

and sometimes harms the performance. On the other
hand, all pre-trained DescEmb models consistently
show high performance across all scenarios, verifying
the robustness of pre-training at description-level.

For value embeddings, there is a large discrepancy
between CodeEmbs and DescEmbs in Value Aggrega-
tion (VA) and Digit-Split Value Aggregation (DSVA)
compared to other value embedding methods. We
conjecture the underlying reason is that in VA and
DSVA, the unique number of codes for CodeEmb
explodes since a new code is needed when different
values are used. This raises the curse of dimension-
ality. On the contrary, the unique number of sub-
tokens used in DescEmb does not change significantly
in either setting, resulting in a stable performance.
Hence, DescEmb is a suitable model architecture for
understanding values because it does not require cre-
ating a new code for different values. Value Con-
catenated (VC) performs the best in CodeEmb. In
DescEmb, Digit-Split Value Aggregation with Digit
Place Embedding (DSVA+DPE) shows higher per-
formance on the whole than other value embedding
methods. It suggests that the model has better nu-
meric understanding since DPE explicitly notifies the
model about the place value. For further exper-
iments, we choose CodeEmb RD, FT-BERT, SC-

RNN, SC-RNN + MLM, with VC for CodeEmb and
DSVA+DPE for the DescEmb models.

4.2. Zero-Shot Transfer and Few-Shot
Transfer

Because DescEmb’s embedding space is determined
not by a specific code structure, but rather by the lan-
guage of the underlying text descriptions, our frame-
work lends itself naturally to transfer learning across
all hospitals regardless of their EHR format. On the
other hand, in order to deploy a code-based model on
a target dataset with a different code structure than
the source dataset, the new code embeddings received
by the predictive layer must be randomly initialized,
as Eψ is not shared between hospitals. Consequently,
CodeEmb’s zero-shot transfer can rely only on the
predictive layer parameters whereas DescEmb allows
additional flexibility by relying on the Bφ parame-
ters. Here, we transfer one CodeEmb model and
three DescEmb models: RD, FT-BERT, SC-RNN,
and SC-RNN+MLM trained on the MIMIC-III to
eICU dataset and vice versa on zero shot and multi-
ple few shot ratios. For SC-RNN+MLM, we did not
conduct additional MLM on the target dataset before
the transfer. The results are shown in Figure 4.
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Table 3: AUPRC of the models on the five prediction tasks in the three scenarios: single
domain learning, transfer learning, pooled learning. We compared the AUPRC of code-based em-
bedding model (CodeEmb), pre-trained BERT model (FT-BERT), RNN model (SC-RNN), and RNN model
pre-trained on Masked Language Modeling (SC-RNN+MLM). Based on a t-test, a statistically meaningful
increase and decrease against “Single” is marked with boldface and underline, respectively.

Single
MIMIC-III

Transfer
eICU

→ MIMIC-III

Pooled
MIMIC-III

Single
eICU

Transfer
MIMIC-III
→ eICU

Pooled
eICU

Task Model

Dx

CodeEmb 0.757 0.752** 0.755 0.562 0.558 0.563
FT-BERT 0.771 0.775* 0.777* 0.594 0.608** 0.611*
SC-RNN 0.768 0.762 0.773** 0.594 0.602** 0.589

SC-RNN+MLM 0.763 0.76 0.768 0.583 0.586 0.595*

Mort

CodeEmb 0.313 0.313 0.313 0.24 0.233 0.247
FT-BERT 0.378 0.378 0.376 0.224 0.246* 0.248*
SC-RNN 0.4 0.385 0.401 0.252 0.267* 0.252

SC-RNN+MLM 0.393 0.383 0.402 0.259 0.263 0.253

LOS>3

CodeEmb 0.61 0.606 0.611 0.525 0.531 0.534*
FT-BERT 0.624 0.628* 0.624 0.536 0.542* 0.549*
SC-RNN 0.634 0.632 0.63 0.54 0.543 0.549*

SC-RNN+MLM 0.628 0.627 0.638* 0.537 0.541 0.548*

LOS>7

CodeEmb 0.326 0.333 0.334 0.233 0.235 0.239*
FT-BERT 0.36 0.356 0.354 0.22 0.230* 0.242**
SC-RNN 0.352 0.345 0.35 0.229 0.236* 0.253**

SC-RNN+MLM 0.353 0.342 0.342 0.234 0.235 0.239*

ReAdm

CodeEmb 0.043 0.044 0.049 0.217 0.218 0.232*
FT-BERT 0.043 0.044 0.051 0.289 0.274* 0.281
SC-RNN 0.041 0.045 0.046 0.28 0.263 0.279

SC-RNN+MLM 0.044 0.044 0.044 0.255 0.255 0.275*

* : p value < 0.05, ** : p value < 0.01

We observe predominantly higher performance of
DescEmb over CodeEmb in both the zero-shot and
few-shot transfer setting. When this is the case (that
is, for all tasks except readmission prediction), De-
scEmb gains a particular advantage in zero-shot and
smaller few-shot ratio transfer learnings, especially
for the length-of-stay prediction tasks. This implies
that DescEmb can be transferred to different hospi-
tals while retaining its performance even for hospitals
with a very small amount of data. We may intuitively
understand these results as the uphill battle faced by
the CodeEmb to adjust to a completely unfamiliar set
of code embeddings—a disadvantage alleviated by a
text-based framework and consequently not shared
by DescEmb’s predictive layer. Even with a very
limited amount of (or no) fine-tuning data from the
target dataset, DescEmb can use its knowledge of a
prior dataset’s text descriptions to generate effective
embeddings at the outset.

4.3. Pooled Learning with Distinct EHR
Formats

If we were to deploy a large-scale predictive model
in reality, it is more likely that a single central
server would pool EHR data from multiple institu-
tions and train a large-scale deep learning model,
rather than training many models from individual in-
stitutions and performing transfer learning when nec-
essary. Such pooled learning presents an opportunity
to train a single model to jointly learn information
from all institutions. Applying CodeEmb to pooled
learning, however, requires either substantial effort
to unify code systems (if possible) or relinquishing
control over the code vocabulary. Therefore, there is
limited benefit of pooled learning for CodeEmb since
it consumes a substantial amount of time and labor.
Conversely, given that DescEmb is not restricted by
specific code structures, pooling datasets does not re-
quire any further preprocessing nor extra investment
of time and money.

In order to confirm the efficacy of DescEmb in
the pooled learning scenario, we trained both De-
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Figure 5: PCA visualizations of the ICU representations from the two datasets. The X-axis
and Y-axis correspond to two different principal components. Each dot represents one ICU stay, and the
dot color represents the target label for binary classification tasks. For the diagnosis prediction task (Dx),
labels could not be succinctly annotated due to its multi-label classification nature. Thus, we distinguish
dataset sources by color: yellow being MIMIC-III and blue being eICU.

scEmb and CodeEmb on the pooled training set from
both MIMIC-III and eICU, and tested on the indi-
vidual test set. The results are reported in Table
3, where we compare model performance across var-
ious scenarios: train then evaluate on each dataset
(“Single MIMIC-III” and “Single eICU”), train on
one dataset then fine-tune and evaluate on another
dataset (“Transfer eICU→MIMIC-III” and “Transfer
MIMIC-III→eICU”), and train on the pooled dataset
then evaluate on each dataset (“Pooled MIMIC-III”
and “Pooled eICU”). We include both “Single” and
“Transfer”, both of which require individual model
training on each dataset, to highlight the operational
efficiency of pooled learning, which only requires a
single model training on the pooled dataset.

Within pooled learning, DescEmb outperformed
CodeEmb in all cases (8.9%P at most) except for
readmission prediction for MIMIC-III, which indi-
cates that DescEmb is clearly a more suitable frame-
work for pooled learning. Of note, DescEmb’s pooled
training showed favorable results compared to the
single domain setting as well as transfer learning set-
ting for both MIMIC-III and eICU (more so for eICU
which we analyze below). This indicates the efficiency
of pooled learning with DescEmb on MIMIC-III and
eICU, where only a single model needs to be trained
and maintained, instead of training or transferring
individual models for each dataset. Thanks to this
efficiency, we believe DescEmb can open new doors
for large-scale predictive models in terms of opera-
tional cost in finance and time.

4.4. Representation Distribution and Pooled
Learning Advantages

From Table 3, we can see that eICU generally gained
more performance increase than MIMIC-III from
both pooled learning and transfer learning. We hy-
pothesize that this comes from the data distribu-
tion properties of the two datasets. In order to con-
firm our hypothesis, we conducted Principal Com-
ponent Analysis (PCA) on the ICU stay representa-
tion vectors obtained from the prediction model (the
last hidden layer of the RNN) trained on the pooled
dataset. The results in 5 show that, for some tasks,
the eICU representations are distributed inside the
MIMIC-III representation distributions, especially in
LOS tasks where eICU gained notable performance
increase from transfer and pooled learning compared
to the single-domain learning. We deduce that the
performance increase comes from learning a more
generally distributed dataset, in this case MIMIC-III.

5. Conclusion

In this work we introduced a new predictive modeling
framework for EHR, namely the description-based
embedding (DescEmb), which unifies heterogeneous
code systems by deriving the medical code embed-
dings with a neural text encoder. In a series of exper-
iments with two public EHR datasets and five ICU-
based prediction tasks, we demonstrated DescEmb’s
outperformance of CodeEmb. We also showed im-
proved zero-shot and few-shot transfer learning per-
formance thanks to the code-agnostic nature of De-
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scEmb. Lastly, we showed that DescEmb provides
operational efficiency by enabling us to train a sin-
gle unified predictive model based on MIMIC-III and
eICU, rather than training separate models for each
EHR system. We believe this new framework will
launch a new discussion around large-scale model
training for EHR. Similar to BERT, which has been
pre-trained on large text corpus and shown its ro-
bustness on text-based tasks, future work includes
constructing a large scale EHR pre-trained model
through unifying and pooling various hospitals in het-
erogeneous systems. This pre-trained model can be
applied to any time-series EHR dataset without go-
ing through laborious pre-processing, which is cost-
effective for engineers. Also, incorporating additional
modalities such as clinical notes or radiology images
can be a key direction for future work.
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Appendix A. AUPRC Results from
Pre-Trained Text
Encoders with Different
Sizes and Pre-Training
Techniques

Table 4 and Table 5 show AUPRC results differ-
ing in the size of pre-trained BERTs (BERT-tiny,
BERT-mini, BERT-small, BERT) and in the domain-
specific pre-training techniques (Bio-BERT, Bio-
Clinical-BERT, Blue-BERT) in eICU and MIMIC-III
respectively. In this experiment, we tested CLS-FT
and FT-BERT for verifying the effectiveness of the
variants. From the table, there is no consistent per-
formance tendency among different sizes of BERTs
and pre-training techniques across tasks and models
with very marginal performance differences. Of note,
large text encoders generally underperform smaller
sizes of BERT. Contrary to our expectation, domain-
specialized pre-training techniques rather harm the
model performance compared to smaller sizes of
BERTs. Overall, the size of the text encoder influ-
ences the performance greatly more than how pre-
training techniques are modeled. For the experiments
in the main paper, we choose BERT-tiny since it gen-
erally shows decent performance among other models
and it requires less memory and computation time
compared to the large models.

Appendix B. PCA Results for Varied
Random Seeds

We show the PCA results while varying random
seeds, which results in a differently split dataset. Fig-
ure 6 shows a similar result to Figure 5 in the main
paper.

Appendix C. Detailed preprocessing
method and table
statistics

C.1. Detailed Preprocessing Information

In the following section we provide further detail
about the construction of our datasets. As input
for our predictive models, we employ three sources of
information (we will further denote source of infor-
mation as ‘item’ for simplicity)— laboratory, med-
ication, and infusion—simultaneously for each pa-
tient. The .csv files corresponding to each item

are described in Table 6. Note that when merg-
ing MIMIC-III files ’INPUTEVENTS MV’ and ’IN-
PUTEVENTS CV’, we remove 41 patient histories
which straddle the transition between code systems
and consequently are included partially in each file.

For the sake of comparability, we built patients co-
horts from the full MIMIC-III and eICU databases
based on the following criteria: (1) Medical ICU
(MICU) patients (2) over the age of 18 who (3) re-
main in the ICU for over 12 hours. We operationalize
criterion (1) in MIMIC-III as patients for whom the
first care unit is the last care unit and ICU type is
MICU (i.e. we exclude patients who have transferred
ICUs). For patients with multiple ICU stays, we draw
exclusively on the first stay, and we remove any ICU
stays with fewer than 5 observed codes. Within each
ICU stay, we restrict our sample to the first 150 codes
during the first 12 hours of data, and remove codes
which occur fewer than 5 times in the entire dataset.
Code sequence is determined by the associated time
stamp.

C.2. Predictive Task Labels

We predict patient outcomes across five tasks: read-
mission, mortality, an ICU stay exceeding three or
seven days, and diagnosis prediction. The first four
are binary classification, the last multi-label. The
variable-level criteria to generate these labels is avail-
able in Table 8.

In order to generate diagnosis labels for compari-
son across datasets, we employ the Clinical Classifi-
cations Software (CCS) for ICD-9-CM of the Health-
care Cost and Utilization Project (Cost and , HCUP).
We utilize the highest level representation available of
ICD9 diagnosis, a common code format across EHR.
There are 18 such representations. MIMIC-III and
eICU diagnoses represented by ICD9 codes are simply
mapped using the CCS classification. eICU ICD10
diagnoses are mapped first to ICD9 codes before to
their CCS classification. Finally, for eICU string di-
agnoses (e.g. Infection ... | ... bacterial ... | ... tu-
berculosis), we first search the most granular level for
a string match with ICD9 before proceeding up the
hierarchy for a match.

C.3. Data Statistics

After preprocessing input data, we found that some
patients lack all three items. Consequently, in some
cases the item was left out from the patient dataset.
For example, some patients have all the items in the
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Table 4: Results of BERT variation models on eICU

Task Model BERT-tiny BERT-mini BERT-small BERT Bio-BERT Bio-clinical-BERT Blue-BERT

Dx
CLS-FT 0.557 0.559 0.558 0.556 0.556 0.558 0.559

FT-BERT 0.594 0.595 0.595 0.591 0.59 0.593 0.591

Mort
CLS-FT 0.238 0.242 0.233 0.228 0.231 0.228 0.228

FT-BERT 0.224 0.223 0.22 0.219 0.219 0.215 0.216

LOS¿3
CLS-FT 0.528 0.528 0.526 0.524 0.527 0.525 0.526

FT-BERT 0.536 0.527 0.523 0.523 0.522 0.528 0.526

LOS¿7
CLS-FT 0.229 0.233 0.228 0.222 0.223 0.226 0.228

FT-BERT 0.22 0.218 0.215 0.214 0.213 0.217 0.215

ReAdm
CLS-FT 0.194 0.239 0.238 0.231 0.239 0.223 0.237

FT-BERT 0.289 0.283 0.278 0.276 0.277 0.281 0.275

Table 5: Results of BERT variation models on MIMIC-III

Task Model BERT-tiny BERT-mini BERT-small BERT Bio-BERT Bio-clinical-BERT Blue-BERT

Dx
CLS-FT 0.752 0.754 0.755 0.757 0.755 0.755 0.754

FT-BERT 0.771 0.77 0.77 0.767 0.769 0.769 0.767

Mort
CLS-FT 0.339 0.345 0.34 0.344 0.339 0.338 0.335

FT-BERT 0.378 0.371 0.365 0.362 0.363 0.363 0.364

LOS¿3
CLS-FT 0.616 0.614 0.615 0.615 0.611 0.61 0.608

FT-BERT 0.624 0.623 0.623 0.621 0.626 0.622 0.62

LOS¿7
CLS-FT 0.346 0.344 0.341 0.343 0.344 0.344 0.338

FT-BERT 0.36 0.352 0.342 0.342 0.345 0.345 0.343

ReAdm
CLS-FT 0.044 0.043 0.044 0.045 0.044 0.045 0.044

FT-BERT 0.043 0.043 0.044 0.043 0.045 0.043 0.043

Table 6: File sources for each dataset

Item Source Filename

Lab MIMIC-III LABEVENTS.csv
Lab eICU lab.csv
Med MIMIC-III PRESCRIPTIONS.csv
Med eICU medication.csv
Inf MIMIC-III INPUTEVENTS.csv
Inf eICU infusionDrug.csv

code sequence, while others are included without all
of them. In the MIMIC-III and eICU we use, the size
of the entire dataset is the same as the union shown
in Table 7 for each of the source dataset.

C.4. Hyperparameters

We conducted the hyperparameter searching experi-
ment in CodeEmb and DescEmb on MIMIC-III and
eICU. We swept the hyperparameter space within a
fixed range, presented below, by grid search.

• dropout = [0.1, 0.3, 0.5]

• embedding dimension = [128, 256, 512, 768]

Table 7: Prediction dataset summary statis-
tics

Statistic eICU MIMIC-III

N Observations 12,818 18,536
N ICU Stays 12,818 18,536
N Hospital Adm. 12,818 18,536
N Patients 12,818 18,536
Mean Seq. Length 48.8 65.3
Median Seq. Length 43.0 57.0
N Total Codes 625,594 1,211,107
N Unique Codes 2,018 2,855

• hidden dimension = [128, 256, 512]

• learning rate = [5e-4, 1e-4, 5e-5, 1e-5]

We spent over 72 hours trying to find the best hyper-
parameter set for each case. We noticed that hyper-
parameters did not significantly affect the final result.
For the experiment’s simplicity, we unified one hyper-
parameter set for all cases without greatly harming
each individual model’s performance. The final set
results are dropout of 0.3, embedding dimension and
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Figure 6: PCA visualizations on the ICU Representations for different random seeds.

Table 8: Specific label criteria

Target eICU MIMIC-III

Readmission Count(‘patientUnitStayID’) >1 Count(‘ICUSTAY ID’) >1
Mortality ‘unitDischargeStatus’==‘Expired’ ‘DOD HOSP’ not null
LOS >3 Days ‘unitDischargeOffset’ >3*24*60 LOS >3
LOS >7 Days ‘unitDischargeOffset’ >7*24*60 LOS >7
Diagnosis set(‘diagnosisstring’) per 1 ICU ICD9 CODE-LONG TITLE

hidden dimension for the predictive model as 128 and
256 respectively, and learning rate of 1e-4.

Appendix D. Case visualize in
description embedding

In pooled dataset situation, we conducted PCA on
all text descriptions and explored codes that contain
‘hydrocortisone’ with different unit of measurement
and dosage, which are colored as red in Figure we
attached. The result demonstrates that similar text
descriptions with small variants of measurement and
dosage are located close to each other. The descrip-
tions for the above points are as follows. [‘hydro-
cortisone pf iv push’, ‘hydrocortisone na succ. iv’,
‘hydrocortisone po/ng’, ‘hydrocortisone study drug
*ind* iv’, ‘hydrocortisone cream 1% tp’, ‘hydrocorti-
sone na succinate pf iv’, ‘hydrocortisone sod succinate
iv’, ‘hydrocortisone po’, ‘hydrocortisone rectal 2.5%
cream pr’, ‘hydrocortisone pf iv’]

Figure 7: PCA visualizations on the repre-
sentation of medication with suffix variation
in pooled.
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Figure 8: Top and bottom 20 features for “Disease of respiratory system” and “mortality”
prediction model with DescEmb Scr-RNN.

Appendix E. Qualitative analysis for
features importance in
prediction

E.1. Top and bottom features for diagnosis
and mortality prediction in DescEmb
Scr-RNN model

We used the gradient of backpropagation of each fea-
ture; the larger the gradient, the more impactful the
feature. Figure 8 shows the 20 features most and least
contributing to the prediction for ‘Disease for respi-
ratory system’ in diagnosis prediction (left two) and
‘mortality’ (right two) on MIMIC-III and eICU us-
ing DescEmb RNN-Scratch (further named as RNN-
Scr). For ‘Disease for respiratory system’, we trained
a new model to conduct the binary classification (res-
piratory system vs not respiratory system) instead
of multi-label classification which was presented in
the paper to better analyze the contributing features.
In ‘Disease for respiratory system’, most influential
factors were related to medication whereas in ‘Mor-
tality’, most factors were a combination of medica-
tion and lab values. In ‘Mortality’, we noticed that
medicines often prescribed to those close to death ex-
ist in the top 20.

E.2. Comparison of top features between
different models in diagnosis prediction
tasks

Tables 9, 10, 11, 12 show the most influential fac-
tors for five tasks (Disease of the nervous system and
sense organs, Disease of circulatory system, Disease
of digestive system, Disease of respiratory system)
for DescEmb RNN-Scr, Bert-FT, and CodeEmb on
MIMIC-III and eICU. In ‘Disease of nervous system’,
it mainly contains medications that are consumed in
the department of neurology. In ‘Disease of Circula-
tory’, there are diuretics (‘furosemide’) and machines
that measure blood pressure. There also are blood
transfusions, antithrombotic, antibiotic, and other
heart medicines for those who had operations. For
‘Disease of Respiratory’, most of the factors are an-
tibiotics utilized on pneumonia and lung injury. In
‘Disease of Digestive’, most factors are medicines pre-
scribed for digestive and gastrointestinal inflamma-
tion. In conclusion, the top most influential features
under each task are reasonable and are highly related
to the given task. Also, most features are shared
across models (DescEmb RNN-Scr, BERT-FT, and
CodeEmb) and datasets (MIMIC-III and eICU).
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Table 9: Top features for “Disease of the nervous system and sense organs” prediction models
with DescEmb and CodeEmb

MIMIC-III
DescEmb CodeEmb

RNN-Scr Bert-FT RD

latanoprost 0. 005 % ophth. soln. ou artificial tear ointment ou timolol maleate 0. 5 % both eyes
latanoprost 0. 005 % ophth. soln. left eye brimonidine tartrate 0. 15 % ophth. os carbamazepine

pyridostigmine bromide po latanoprost 0. 005 % ophth. soln. ou carbidopa - levodopa cr 50 - 200 po
erythromycin 0. 5 % ophth oint od topiramate topamax po / ng ropinirole

latanoprost 0. 005 % ophth. soln. right eye carbamazepine topiramate topamax po
carbidopa - levodopa cr 50 - 200 po sumatriptan succinate sc carbamazepine po / ng

brimonidine tartrate 0. 15 % ophth. ou erythromycin 0. 5 % ophth oint ou ciprofloxacin 0. 3 % ophth soln both eyes
gabapentin po ciprofloxacin 0. 3 % ophth soln both eyes sumatriptan succinate sc
phenobarbital timolol maleate 0. 25 % both eyes oxcarbazepine po
prazosin po gabapentin po erythromycin 0. 5 % ophth oint ou

oxcarbazepine po prazosin po losartan potassium po / ng
latanoprost 0. 005 % ophth. soln. both eyes oxcarbazepine po phenobarbital

brimonidine tartrate 0. 15 % ophth. both eyes ropinirole lidocaine 1 % id
carbamide peroxide 6. 5 % ad latanoprost 0. 005 % ophth. soln. right eye valproic acid

artificial tears preserv. free both eyes latanoprost 0. 005 % ophth. soln. both eyes timolol maleate 0. 25 % both eyes
topiramate po brimonidine tartrate 0. 15 % ophth. ou phenobarbital po

hydromorphone - hp ivpca pyridostigmine bromide po ciprofloxacin 0. 3 % ophth soln both eyes
carbamazepine carbamide peroxide 6. 5 % ad artificial tear ointment ou

topiramate topamax po / ng carbidopa - levodopa cr 50 - 200 po topiramate topamax po / ng
ropinirole clozapine po fluvoxamine maleate po

eICU

levetiracetam po levetiracetam po phenytoin
phenytoin phenytoin lactulose oral

lactulose oral levetiracetam ivpb levetiracetam po
naloxone hcl intraven levetiracetam po phenytoin

xanax po phenytoin zolpidem tartrate oral
phenytoin lactulose oral chlorhexidine gluconate mouth rinse
lorazepam xanax po levetiracetam po

lactulose oral naloxone hcl intraven levetiracetam ivpb
zolpidem tartrate oral colace po hydromorphone hcl intraven

seroquel oral levetiracetam po phenylephrine mcg / kg / min
naloxone hcl intraven seroquel oral naloxone hcl intraven

levetiracetam po restoril oral seroquel oral
levetiracetam ivpb hydromorphone hcl intraven restoril oral

phenylephrine mcg / kg / min hydrochlorothiazide oral thiamine po
restoril oral naloxone hcl intraven hydrochlorothiazide oral

hydromorphone hcl intraven phenylephrine mcg / kg / min lorazepam
thiamine po lorazepam midazolam versed iv

anf / ana chlorhexidine gluconate mt mupirocin top
metoprolol tartrate per g tube amlodipine anf / ana

phenylephrine metoclopramide amlodipine
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Unifying Heterogeneous EHR Systems via Text-Based Code Embedding

Table 10: Top features for ”Disease of the circulatory system” prediction models with De-
scEmb and CodeEmb

MIMIC-III
DescEmb CodeEmb

RNN-Scr Bert-FT RD

prazosin po prazosin po prazosin po
500n / s 40meq k + buprenorphine - naloxone 8mg - 2mg sl enoxaparin lovenox

xigris enoxaparin lovenox enema
enema howell - jolly bodies reticulocyte count automated

enoxaparin lovenox 500n / s 40meq k + ethacrynate sodium iv
wright giemsa wright giemsa fibersource hn full

leucovorin calcium iv reticulocyte count automated enoxaparin lovenox
wright giemsa enema levothyroxine sodium ng

howell - jolly bodies thrombosis leucovorin calcium iv
ethacrynate sodium iv insulin - humalog gray top hold plasma

mexiletine po cd23 carafate sucralfate
buprenorphine - naloxone 8mg - 2mg sl mexiletine po xigris

reticulocyte count automated ethacrynate sodium iv wright giemsa
enema fibersource hn full thrombosis

golytely enoxaparin lovenox carafate sucralfate
thrombosis thrombosis nutren pulmonary

iv piggyback gray top hold plasma amikacin
gray top hold plasma buprenorphine - naloxone 8mg - 2mg sl macrophage

carafate sucralfate leucovorin calcium iv mexiletine po
insulin - humalog macrophage buprenorphine - naloxone 8mg - 2mg sl

eICU

hydrochlorothiazide po hydrochlorothiazide po lipitor po
furosemide lasix intravenous hydrochlorothiazide oral hydrochlorothiazide po

hydrochlorothiazide oral lipitor po coreg
furosemide device furosemide lasix intravenous amiodarone bolus ivpb

lipitor po furosemide device digoxin oral
lovenox subcutan alteplase iv hydrochlorothiazide oral

alteplase iv bumetanide furosemide lasix intravenous
coreg coreg furosemide device

bumetanide lovenox subcutan alteplase iv
catheter digoxin oral bumetanide

digoxin oral amiodarone bolus ivpb lovenox subcutan
potassium phosphate dibasic iv phenylephrine mcg / kg / min amiodarone bolus ivpb
metoprolol tartrate per g tube wbcs in body fluid wbcs in body fluid

amiodarone bolus ivpb potassium phosphate dibasic iv metronidazole po
cefepime hcl intravenous digoxin oral digoxin oral

lanoxin oral furosemide device lanoxin oral
atorvastatin calcium per ng tube lanoxin oral tylenol ng tube

tylenol ng tube tylenol ng tube potassium phosphate dibasic iv
cetirizine oral catheter atorvastatin calcium per ng tube

phenylephrine mcg / kg / min atorvastatin calcium per ng tube cefepime hcl intravenous
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Table 11: Top features for “Disease of the respiratory system” prediction models with De-
scEmb and CodeEmb

MIMIC-III
DescEmb CodeEmb

RNN-Scr Bert-FT RD

fluticasone – salmeterol fluticasone - salmeterol diskus 100 / 50 ih albuterol - ipratropium ih
azithromycin albuterol - ipratropium ih fluticasone - salmeterol 100 / 50 ih

azithromycin ng azithromycin aztreonam
fluticasone - salmeterol 100 / 50 ih azithromycin ng azithromycin po

albuterol - ipratropium ih levofloxacin po / ng levofloxacin pb
clozapine po / ng tiotropium bromide ih cefepime

azithromycin po / ng azithromycin po / ng tiotropium bromide ih
fluticasone - salmeterol 250 / 50 ih azithromycin po fluticasone - salmeterol 100 / 50 ih

ipratropium bromide mdi ih fluticasone - salmeterol 100 / 50 ih lansoprazole oral disintegrating tab
fluticasone propionate 110mcg ih aztreonam levofloxacin po / ng

ipratropium bromide neb ih clozapine po / ng metronidazole po
lansoprazole oral disintegrating azithromycin po levofloxacin

tiotropium bromide ih ipratropium bromide neb ih azithromycin
levofloxacin po / ng cefepime azithromycin ng

levofloxacin pb fluticasone - salmeterol 250 / 50 ih nutren pulmonary full
levofloxacin levofloxacin pb ipratropium bromide mdi ih
aztreonam lansoprazole oral disintegrating tab fluticasone propionate 110mcg ih

azithromycin po levofloxacin lansoprazole oral suspension ng
cefepime carafate sucralfate tiotropium bromide ih

lansoprazole oral nutren pulmonary full ipratropium bromide neb ih

eICU

alteplase iv cefepime hcl intravenous alteplase iv
cefepime hcl intravenous furosemide device cefepime hcl intravenous

metronidazole po levofloxacin po pneumococcal im
levofloxacin po alteplase iv ipratropium - albuterol inhl

hydromorphone hcl intraven lovenox subcutan lovenox subcutan
lovenox subcutan hydrochlorothiazide oral levofloxacin

levofloxacin metronidazole po levofloxacin po
furosemide device aspirin chew tab ngt hydromorphone hcl intraven
pneumococcal im hydromorphone hcl intraven vancomycin in ivpb

albuterol sulfate inhl pneumococcal im zolpidem tartrate oral
alteplase injection vancomycin in ivpb hydrochlorothiazide oral

ipratropium - albuterol inhl albuterol sulfate inhl hydromorphone hcl intraven
aspirin chew tab ngt ipratropium - albuterol inhl aspirin chew tab ngt

hydrochlorothiazide oral hydrochlorothiazide oral metronidazole po
vancomycin in ivpb restoril oral cefepime hcl intravenous
metronidazole po lipitor po alteplase injection

lactulose oral metronidazole po bumetanide
lipitor po zolpidem tartrate oral pneumococcal im

vancomycin – random alteplase injection potassium chloride device
metronidazole po vancomycin - random chlorhexidine periogard swish / spit
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Unifying Heterogeneous EHR Systems via Text-Based Code Embedding

Table 12: Top features for “Disease of the digestive system” prediction models with DescEmb
and CodeEmb

MIMIC-III
DescEmb CodeEmb

RNN-Scr Bert-FT RD

omeprazole prilosec omeprazole prilosec promethazine hcl po
ranitidine prophylaxis ranitidine prophylaxis misoprostol po

triamcinolone acetonide 0. 1 % cream tp carafate sucralfate omeprazole prilosec
carafate sucralfate protonix mg / hr carafate sucralfate

promethazine hcl po promethazine hcl po lansoprazole prevacid
dialysate in criticare hn protonix mg / hr

bismuth subsalicylate po bismuth subsalicylate po ranitidine prophylaxis
isosource 1. 5 full deliver 2. 0 pd fluid in

beneprotein probalance full prazosin po
nutren pulmonary full nutren pulmonary isosource 1. 5 full

criticare hn beneprotein nutren 2. 0 full
deliver 2. 0 misoprostol po gray top hold plasma

lupus anticoagulant prazosin po probalance full
lansoprazole prevacid ranitidine prophylaxis fibersource hn full

probalance full pd fluid in nutren pulmonary
peptamen 1. 5 full nutren 2. 0 full peptamen 1. 5 full

misoprostol po isosource 1. 5 full wright giemsa
protonix mg / hr dialysate in pyrimethamine desensitization po

phenytoin free triamcinolone acetonide 0. 1 % cream tp criticare hn
wright giemsa peptamen 1. 5 full lidocaine 5% ointment tp

eICU

famotidine per g tube famotidine per g tube colace po
docusate sodium per ng tube famotidine iv levofloxacin po

colace po docusate sodium per ng tube famotidine per g tube
docusate sodium colace capsule po colace po famotidine iv

famotidine iv docusate sodium colace capsule po docusate sodium colace capsule po
levofloxacin po prolactin docusate sodium per ng tube

hydromorphone hcl intraven levofloxacin po chlorhexidine gluconate mouth rinse
thiamine po lactulose oral metronidazole ivpb

prolactin hydromorphone hcl intraven prolactin
chlorhexidine gluconate mouth rinse chlorhexidine gluconate mouth rinse albumin human iv

lactulose oral albumin human iv hydromorphone hcl intraven
cryoprecipitate thiamine po d5 0.45% ns

albumin human iv metronidazole ivpb thiamine po
metronidazole ivpb lactulose oral vancomycin hcl in dextrose iv

vancomycin hcl in dextrose iv d5. 45ns 40kcl lactulose oral
potassium chloride device pantoprazole iv octreotide

sterile water w / 3 amps bicarb flagyl iv bumetanide
potassium phosphate dibasic iv lanoxin oral cryoprecipitate

zolpidem tartrate oral cryoprecipitate potassium chloride device
tirofiban sterile water w / 3 amps bicarb potassium phosphate dibasic iv
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