
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING CLUSTERING-BASED PROTOTYPES FOR
COMPOSITIONAL ZERO-SHOT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning primitive (i.e., attribute and object) concepts from seen compositions
is the primary challenge of Compositional Zero-Shot Learning (CZSL). Existing
CZSL solutions typically rely on oversimplified data assumptions, e.g., model-
ing each primitive with a single centroid primitive representation, ignoring the
natural diversities of the attribute (resp. object) when coupled with different ob-
jects (resp. attribute). In this work, we develop CLUSPRO, a robust clustering-
based prototype mining framework for CZSL that defines the conceptual bound-
aries of primitives through a set of diversified prototypes. Specifically, CLUSPRO
conducts within-primitive clustering on the embedding space for automatically
discovering and dynamically updating prototypes. These representative proto-
types are subsequently used to repaint a well-structured and independent primitive
embedding space, ensuring intra-primitive separation and inter-primitive decor-
relation through prototype-based contrastive learning and decorrelation learn-
ing. Moreover, CLUSPRO efficiently performs prototype clustering in a non-
parametric fashion without the introduction of additional learnable parameters or
computational budget during testing. Experiments on three benchmarks demon-
strate CLUSPRO outperforms various top-leading CZSL solutions under both
closed-world and open-world settings. The source code will be released.

1 INTRODUCTION

cat

Tiger

cat

old

old cat

features primitivesprototypes

wet

old

(a) (b)

Figure 1: (a) Previous CZSL methods model all sam-
ples of each primitive concept with only one centroid
primitive presentation, neglecting feature divergence
within each primitive when involved in different com-
positions. (b) Our method represents each primitive as
a set of prototypes to capture primitive diversities.

Humans possess the unique ability to recognize
a potentially infinite number of novel combi-
nations by associating known components [1],
i.e., to make “infinite use of finite means” [2];
for instance, despite never having seen one,
people can easily imagine a unicorn by com-
bining their concept of a horse with the idea
of a single horn. Inspired by such composi-
tional generalization ability of human intelli-
gence [3, 4], Compositional Zero-Shot Learn-
ing (CZSL) [5, 6, 7, 8, 9] is proposed, aiming to
recognize unseen attribute-object compositions
based on learned knowledge from seen ones.

Existing CZSL solutions [10, 11, 12, 13] typi-
cally achieve compositional learning by align-
ing the visual representation from a pre-trained
image encoder backbone with the attribute-object textual representation derived from pre-trained
word embeddings. Rather than learning to align visual and textual representation from scratch, re-
cent approaches [14, 15, 16, 17, 18] have pivoted towards leveraging large-scale pre-trained vision-
language models (e.g., CLIP1 [19]) by treating compositional labels as learnable tokens in a pre-
defined prompt like “a photo of [attribute] [object]”. Though impressive, these methods exhibit two
limitations: First, they struggle to learn visual concepts by modeling an “ideal” primitive (i.e., at-

1Given that CLIP might be exposed to certain unseen compositions during pre-training, we provide detailed
data overlap discussion in §G of Appendix.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

tribute and object), but ignore an essential issue: each visual concept (i.e., attribute-object pairs) can
be semantically similar but visually different. For example, the attribute “broken” combined with
“cord” typically signifies disconnection, but conveys the notion of a rugged landscape when applied
to “valley”. Thus, we argue that a single centroid primitive representation exhibits limited tolerance
to intra-primitive variance (Fig. 1a), and it is essential to incorporate more exemplars to capture
the natural diversities of primitive. Second, they endeavor to explore more effective disentangling
strategies (e.g., contrastive learning [20], knowledge distillation [21] or graph representation learn-
ing [22]) to achieve independent primitive modeling in a multi-branch manner, but typically present
representation disentanglement from a local view (i.e., a few images within a batch [20, 23] or a
small training subset [24]), thus failing to perceive underlying data distribution in the entire dataset.

In light of the above, we present CLUSPRO, a clustering-based prototype mining framework for
CZSL (Fig. 1b). Specifically, we propose to describe each primitive by abstracting it through a set of
representative prototypes, which are automatically discovered by performing within-primitive clus-
tering on the visual representation. Based on these prototypes established across the entire dataset,
we introduce two complementary self-supervised learning strategies to repaint the attribute and ob-
ject embedding spaces, prompting intra-primitive separation and inter-primitive decorrelation.

Specifically, CLUSPRO employs two disentangling adapters to project visual representation, ex-
tracted from a pre-trained image encoder, into separate attribute and object embedding spaces. Then,
each primitive is described by clustering K centroids on primitive-wise features. This process (i.e.,
Local-aware Prototype Assignment) involves assigning the visual feature of each primitive to one
of a set of prototypes that share the same attribute or object category, while considering the in-
trinsic coherence of the feature distribution. For computational efficiency, we opt for Generalized
Conditional Gradient (GCG) algorithm [25] to enable fast prototype assignment. Additionally, to
keep non-learnable prototypes up-to-date, we employ a dynamic Prototype Updating mechanism,
which recomputes prototypes over the entire dataset in each iteration. The attribute embedding and
object embedding, derived from the same visual representation with compositional semantics, in-
herently exhibit entanglement, which is toxic for prototype construction within primitive. To learn
well-structured and independent attribute/object embedding space, we propose two complementary
metric learning mechanisms: i) Prototype-based Contrastive Learning aims to encourage each prim-
itive feature to be similar to its assigned prototype and dissimilar with all other prototypes from the
attribute and object branch. In this way, our model can not only capture intra-primitive discrimina-
tiveness within the group of attributes or objects, but also promote a clear distinction between at-
tributes and objects. ii) Prototype-based Decorrelation Learning is devised to shape an independent
primitive embedding space (i.e., object representation should be invariant to attribute alterations,
and vice versa) by exploring conditional-independence relations between attributes and objects.

CLUSPRO has several appealing merits: First, exploration of of data distribution: By conduct-
ing within-primitive clustering on the visual embedding space across the entire dataset, CLUSPRO
can automatically mine the global data distribution of each primitive from a holistic view. Sec-
ond, explicit supervision of representation disentanglement: The clustering-based prototypes en-
able CLUSPRO to shape well-structured yet independent attribute and object embedding space via
prototype-anchored contrastive learning and decorrelation learning. Third, high efficiency: CLUS-
PRO perform prototype clustering in a non-parametric fashion without any modification of network
architecture or additional computational budget during testing.

To effectively assess our method, we conduct extensive experiments on three gold-standard CZSL
datasets (i.e., MIT-States [26], UT-Zappos [27], and C-GQA [28]). Experimental results demon-
strate that CLUSPRO significantly exceeds existing state-of-the-arts in both Close-world (CW) and
Open-world (OW) settings (§4.3). Concretely, on the CW setting, CLUSPRO achieves +11.8% and
+20.2% AUC gains on UT-Zappos and C-GQA, respectively. On the OW settings, it also yields
solid improvements of +19.7% AUC on UT-Zappos and +11.1% AUC on C-GQA. In §4.4, a set of
ablative studies confirms the power of our idea and the efficacy of core model designs.

2 RELATED WORK

Compositional Zero-shot Learning (CZSL). The goal of CZSL is to recognize unseen attribute-
object compositions by combining learned concept knowledge from seen pairs. Early CZSL solu-
tions can be summarized into two paradigms: the first paradigm [29, 28, 5, 30, 31, 32, 33] directly

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

compose attributes and objects with a transformation function and learn a classifier for recognition;
the second paradigm [23, 34, 20, 22, 35, 36, 21] mainly decomposes attribute and object in the
composition space by well-designed disentangling strategies, e.g., contrastive learning [20], knowl-
edge distillation [21] or graph representation learning [22], and employ two separate classifiers
to identify attributes and objects individually. Recent breakthroughs in Vision-Language Models
(VLM) [37, 38, 19] make it a promising direction to harness knowledge from pre-trained VLM
(e.g., CLIP [19]) for zero-shot and open-vocabulary tasks. Pioneer works [17, 18, 16, 39] build
learnable soft prompts with a combined attribute and object vector representation. To capture the
contextual nuances in the composition space, recent works [14, 15, 24] jointly model the attribute,
object, and composition through vision-language alignments in multiple identification branches.

Despite these advancements, they generally focus on learning one single representative prototype
to model each primitive. This limits their ability to interpret the complex and subtle meanings
that arise from the combination of various visual concepts. Besides, these methods primarily focus
on disentangling attributes and objects with a restricted set of samples, neglecting the potential of
incorporating global information to reshape a well-structured and independent embedding space.

Prototype Learning. Studies in cognitive psychology evidence that people often explore proto-
typical knowledge as a foundation for learning and problem-solving across various domains, such
as natural language understanding and visual scene understanding [40, 41]. Unlike Softmax-based
methods [42, 43, 44], prototype-based classifiers [45, 46, 47, 48] make decisions by computing the
distance between new observations and prototype representations of each class. The prototypes
typically refer to the centroids of all samples belonging to the same category [49]. For its exemplar-
driven nature, a spectrum of recent works attempts to combine deep learning techniques and the
idea of prototype learning, boosting great potential in various learning paradigms, including su-
pervised learning [50, 51, 52], few-shot learning [53, 54], and (compositional) zero-shot learning
[55, 22, 10]. These (compositional) zero-shot learning works [56, 57, 58, 55] extensively explore
prototype learning to enhance feature representation. However, they typically model each class with
only one prototype, and their prototypes are often learnable parameters.

Building upon these successes, we aim to advance CZSL by developing a cluster-based prototype
learning scheme. Different from previous works [20, 22], which employ one single learnable proto-
type for each primitive, CLUSPRO explicitly derives prototypes via clustering primitive features over
the entire dataset, which are subsequently used to repaint attribute and object embedding spaces.

Self-supervised Representation Learning. Self-supervised representation learning (SSRL) meth-
ods [59, 60] aim to construct a well-structured embedding space without requiring extensively anno-
tated datasets. Recently, metric learning [61] has emerged as a prominent technique in SSRL, which
learns a distance function to reflect the relationships between data points based on their semantic
labels. This approach results in more compact, interpretable, and versatile feature representations,
which could benefit subsequent tasks, e.g., classification [62] or clustering [63]. It aligns well with
CLUSPRO that seeks to automatically discover prototypes of primitive concepts by clustering fea-
tures associated with coarse-grained labels. Inspired by this, we raise a disentangled representation
learning strategy that integrates two complementary self-supervised learning strategies to shape a
primitive embedding space with intra-primitive separation and inter-primitive decorrelation.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

Given the attribute set A = {a1, a2, . . . , aM} and the object set O = {o1, o2, . . . , oN}, the com-
positional label set C can be defined as the Cartesian product between A and O, i.e., C = A × O.
Subsequently, C is divided into two disjoint subsets: the seen composition set Cs and the unseen com-
position set Cu, where Cs ∩ Cu = ∅. During training, the model can only access images paired with
labels from the seen composition set Cs, i.e., the training set is defined as T = {(x, c)∣x ∈ X , c ∈ Cs},
where X is the visual space. In the Closed-World (CW) setting, the composition space for testing is
defined as Ct = Cs ∪ Cu, where only the known composition space is required. For the Open-World
(OW) setting, the composition space considers all potential attribute-object pairs, i.e., Ct = C.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

prototype-based

decorrelation

learning

prototype-based

contrast

learning

local-aware

prototype

assignment

prototype

updating

𝑡𝑐

𝑓𝑎

𝑓𝑜

𝑓𝑐

𝑆𝑐

𝑡𝑜𝑆𝑜

𝑡𝑎𝑆𝑎

Image

Encoder

ℎ0

ℎ𝑎

Text

Encoder

features prototypesclusters(a) (b)

(c)

training

samples

attribute

object

pair

Eq. (7), (8) Eq. (9)

LPCL
Eq. (10)

LPDL
Eq. (11)

Lo

Lc

La

ϕtxt

ϕvis

{fa
n}

Na

n=1 {pa
k}

K
k=1

Figure 2: The overview of CLUSPRO. (a) CLUSPRO is built upon a three-path paradigm to jointly recognize
attribute, object, and attribute-object composition (§3.2). (b) To capture the diversity within each primitive,
CLUSPRO describes each primitive with a set of prototypes, and conducts within-primitive clustering across
training data for prototype assignment and updating (§3.3). (c) CLUSPRO imposes two constraints based on
these constructed prototypes to promote intra-primitive separation and inter-primitive decorrelation (§3.4).

3.2 BASELINE ARCHITECTURE

Encoding Visual Representations. Our framework is built upon a three-path paradigm [14, 23, 34],
which jointly recognizes three kinds of semantic components, i.e., attribute, object, and attribute-
object composition. Given an input image X ∈RH×W×3, we adopt a visual encoder ϕvis of CLIP [14]
to obtain visual representation f ∈RD. We consider image representation f as composition visual
representation f c, and adopt attribute adapter ha and object adapter ho [64, 65], each implemented
as a separate MLP, to project f into the discriminative attribute and object spaces respectively:

fa
= ha
(f), fo

= ho
(f), fc

= f , (1)
where fa and fo are visual features extracted for attribute and object, respectively.

Encoding Prompt Representations. Following existing CZSL [18, 14], we construct prompt repre-
sentation via a soft learnable prompt strategy for all candidate compositions, attributes, and objects.
Specifically, for each attribute-object composition ci,j = ⟨ai, oj⟩, we create three prompts for each
branch, i.e., attribute prompt Sa

i = [s
a
1 , . . . ,s

a
l ,v

a
i], object prompt So

j = [s
o
1, . . . ,s

o
l ,v

o
j], and com-

position prompt Sc
i,j = [s

c
1, . . . ,s

c
l ,v

a
i ,v

o
j], where sa1∶l, s

o
1∶l, and sc1∶l are learnable pretix contexts

initialized by “a photo of ”. Additionally, va
i and vo

j are trainable vocabulary tokens for the attribute
ai and object oj , respectively. These prompts are then fed into frozen text encoder ϕtxt of CLIP to
obtain corresponding prompt features, formulated as:

tai = ϕ
txt
(Sa

i), toj = ϕ
txt
(So

j), tci,j = ϕ
txt
(Sc

i,j). (2)

Three-path Learning Objective. Given visual and prompt representations from three branches,
we compute the probabilities for attribute, object, and composition classes, denoted as p(ai∣fn),
p(oj ∣fn), p(ci,j ∣fn), respectively. To recognize primitive concepts and their compositions in each
branch, three cross-entropy loss functions are employed:

L
a
=

1

N
∑

N

n=1
−log p(a∣fn), p(ai∣fn) =

exp(fa
n ⋅ t

a
i /τ)

∑
∣A∣

k=1 exp(f
a
n ⋅ tak/τ)

, (3)

L
o
=

1

N
∑

N

n=1
−log p(o∣fn), p(oj ∣fn) =

exp(fo
n ⋅ t

o
j/τ)

∑
∣O∣

k=1 exp(f
o
n ⋅ tok/τ)

, (4)

L
c
=

1

N
∑

N

n=1
−log p(c∣fn), p(ci,j ∣fn) =

exp(fc
n ⋅ t

c
i,j/τ)

∑
∣C∣

k=1 exp(f
c
n ⋅ tck/τ)

, (5)

where τ ∈ R is pre-defined temperature parameter in CLIP. For simplicity, all the features are ℓ2-
normalized by default. Then, the three-path classification loss can be formulated as:

L
BAS
=λa
L

a
+λo
L

o
+λc
L

c, (6)
where λa, λo, λc are all set to 1, following [14].

Our Main Idea. Though impressive, this three-branch paradigm only achieves implicit feature
disentanglement to a limited extent by using one single image, failing to perceive the potential
structures of the whole dataset. Moreover, it only considers an isolated centroid for each primi-
tive, ignoring rich and diverse intra-primitive patterns. To address this limitation, we propose a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

clustering-based prototype mining framework (i.e., CLUSPRO), as shown in Fig. 2. Our model not
only learns primitive recognition with pre-given semantic labels, but also automatically discovers
diverse and fine-grained sub-primitive patterns across the entire dataset. For training, our algorithm
alternates between two steps: i) perform primitive-wise online clustering to discover sub-primitive
prototypes (§3.3); ii) impose two prototype-anchored constraints to explicitly shape well-structured
and independent attribute/object feature spaces(§3.4). The improved features, in turn, facilitate more
reliable primitive-wise clustering, and eventually boost composition predictions.

3.3 CLUSTERING-BASED PROTOTYPE MINING

To model the natural diversities of primitives, we exploit rich dataset-level context knowledge to
automatically identify informative prototypes within each attribute or object, facilitating primitive
concept representation learning. Specifically, we first assign each attribute (resp. object) visual
feature to the prototypes belonging to the same attribute (resp. object) (i.e., Local-aware Prototype
Assignment), and then continuously update prototypes online according to the assignments (i.e.,
Prototype Updating) with batch training. Such an online clustering strategy forces the model to
mine intra-primitive discriminativeness. Notably, we present the online primitive-wise clustering
process within both the attribute and object embedding spaces, so as to well represent rich and
diverse patterns within each primitive. For clarity, we only explain the prototype construction in the
attribute branch, while the object branch follows the same process.

Local-aware Prototype Assignment. For each attribute a ∈ A, we leverage K prototypes
({pa

k}
K
k=1)

2 to represent its diverse semantic patterns, where pa
k is k-th prototypes of attribute a. To

get informative yet hidden prototypes, we perform clustering within each attribute on the attribute
embedding space. More specifically, for given a set of attribute features F a = {fa

n}
Na

n=1 ∈ RD×Na

associated with attribute a, where fa
n is n-th attribute features of attribute a and Na is the number

of attribute features, our goal is to assign these attribute features to the K prototypes P a={pa
k}

K
k=1∈

RD×K . The mapping matrix from F a to P a can be denoted as La= [lan]
Na

n=1 ∈ {0,1}
K×Na

, where
lan ∈ {0,1}

K is an one-hot assignment vector of n-th attribute features over K prototypes. Let
Sa ∈RNa

×Na

denote cosine similarity among these attribute features F a ∈RD×Na

in the attribute
embedding space. Thus, the clustering within each attribute can be achieved by the optimization
of the assignment matrix La, i.e., maximizing the similarity Qa between attribute features F a and
the prototypes P a (i.e., Qa = Softmax(P a⊺F a) ∈RK×Na

), while considering intrinsic coherence
structure of features:

min
La∈La

⟨La⊺,− logQa
⟩ + κΩ(La⊺

), (7)

where ⟨⋅⟩ is the Frobenius dot-product. Note that Ω(La⊺) = −⟨Sa, (La⊙Qa)⊺(La⊙Qa)⟩ is local
coherent regularized term, and κ>0 is the strength of the regularization, where ⊙ denotes element-
wise multiplication. Different from the classical formulation in [50, 66], i.e., Optimal Transport
with entropic constraints, our local-aware prototype assignment can produce superior assignments
by fully considering the intrinsic coherence structure of attribute feature distribution, i.e., intra-
distribution coherence. Specifically, this term promotes assigning higher weights to La

k,i and La
k,j

if the i-th and j-th attribute feature are highly similar (indicated by a high value of Sa
i,j) and both

exhibit a strong similarity, as measured by Qa
k,i and Qa

k,j , to the k-th prototype of attribute a.

As in [63], we relax La to an element of transportation polytopes, i.e., La∈RK×Na

+
. Unlike offline

clustering [67, 68] requiring multiple passes over the entire dataset, we cast prototype assignment as
an optimal transport problem, so as to scale our algorithm to massive data by online clustering:

L
a
={La

∈RK×Na

+ ∣La⊺1K =1Na ,La1Na =
Na

K
1K}, (8)

where 1K denotes the vector of all ones in dimension K. La⊺1K =1Na is the assignment constraint
ensuring each attribute feature is assigned to exactly one prototype, and La1Na = Na

K
1K is the

equipartition constraint, guaranteeing that, on average, each prototype is selected an equal number of
times in the batch. With differentiable regularized term and soft assignment relaxation, the solution
of Prob. (8) can be given by efficient GCG algorithm [25], which relies on a few matrix-vector
multiplications via iterative Dykstra algorithm [69].

2For clarity, we slightly reuse a and o to define a certain attribute and object concept, respectively.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Prototype Updating. During iterative network training, primitive representations evolve continu-
ously, necessitating offline clustering to recompute sub-primitive prototypes over the entire dataset
after each batch, which incurs substantial computational costs. To address this, we propose an online
clustering approach with momentum updates, where prototypes are dynamically updated using the
embeddings within the current mini-batch. In particular, after each training iteration, each prototype
pa
k of the attribute a ∈ A is updated as:

pa
k ← µpa

k + (1 − µ)f̄
a
k , (9)

where µ ∈ [0,1] is a momentum coefficient, and f̄a
k ∈ RD is the mean vector of the attribute fea-

tures assigned to the prototype pa
k by clustering. As such, the prototype updating scheme (Eq. 9)

iteratively refines the prototype values in response to the evolving primitive feature representations,
thereby facilitating a smoother training process. This online clustering strategy enables our model
to effectively discover rich sub-primitive patterns over massive training data.

3.4 PROTOTYPE-ANCHORED PRIMITIVE REPRESENTATION LEARNING

By performing online within-primitive clustering separately in the attribute and object embedding
spaces, we construct a set of prototypes for each attribute, i.e., {pa

k}
K
k=1, and each object, i.e.,

{po
k}

K
k=1, to represent diverse sub-primitive patterns. Therefore, the following question naturally

arises: what should a well-structured and independent embedding with discriminative prototypes be
like? To answer this, we enhance the three-path classification loss (Eq. 6) by incorporating two com-
plementary loss constraints based on these constructed prototypes: Prototype-based Contrastive
Learning and Prototype-based Decorrelation Learning, which fully exploits the relationships
between primitive features and sub-primitive centers in the embedding space.

Prototype-based Contrastive Learning. Our prototype-based contrastive learning strategy con-
trasts the similarities between each primitive feature, i.e., fn ∈ F

a ∪F o, where fn is n-th primitive
features, i.e., P a ∪ P o. This strategy encourages each primitive feature fn to be similar to its as-
signed prototype p+ and dissimilar to all other K(M +N)−1 irrelevant prototypes P−. Different
from only using K(M+N−1) irrelevant prototypes from other primitives as negative samples, our
strategy not only ensures inter-primitive separation to some extent, but also guarantee intra-primitive
separation. The corresponding training objective for each features fn is defined as:

LPCL=−log
exp(f⊺n ⋅ p+/τ)

exp(f⊺n ⋅ p+/τ)+∑p−∈P−
exp(f⊺n ⋅ p−/τ)

), (10)

where τ >0 is a temperature hyper-parameter. Notably, we treat both attributes and objects equally
as primitives to increase the scale and diversity of negative samples.

Our prototype-based contrastive learning exhibits two primary advantages: ❶ Traditional contrastive
learning approaches often rely on sophisticated negative sampling strategies to form contrasting
pairs, but inevitably yield negative pairs that share similar semantic meaning and should be closer
in the embedding space. In contrast, CLUSPRO avoids this long-standing challenge by construct-
ing positive and negative pairs using clustering-based representative prototypes, thus effectively
shaping the embedding space by leveraging dataset-level contextual knowledge. ❷ Unlike previous
contrastive learning-based CZSL models [20, 70], which necessitate the extra processing for posi-
tive and negative feature extraction, our model leverages already constructed prototypes for contrast
computation, without incurring extra computational and storage budget.

Prototype-based Decorrelation Learning. By leveraging prototype-based contrastive learning,
CLUSPRO can effectively distinguish primitive prototypes by maximizing their distance to enhance
the independence of linear relationships. But, in CZSL, it is also essential to maintain independence
between the embeddings of attributes and objects, i.e., inter-primitive decorrelation; for instance,
apple should be distinguished from specific attributes, no matter whether apple is red or green.
Thus, we propose a prototype-based decorrelation learning to enforce a distinct separation between
attribute and object prototypes, ensuring promising disentanglement results. Based on constructed
primitive prototypes, the conditional-independence relations can be captured by the following prop-
erties: i) fa á po and ii) fo á pa, where á denotes the independence between samples. Here, fa

and fo are disentangled attribute and object features, respectively, with po and pa representing the
corresponding sub-primitive prototypes entangled with these features.

Specifically, we minimize the correlation between attribute and object embedding spaces by using
the Hilbert-Schmidt Independence Criterion (HSIC) [71]. HSIC is a non-parametric, kernel-based

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Quantitative results(§4.3) on MIT-States [26], UT-Zappos [27] and C-GQA [28] within CW setting.

Closed-World MIT-States UT-Zappos C-GQA
Method Backbone Seen↑ Unseen↑ HM↑ AUC↑ Seen↑ Unseen↑ HM↑ AUC↑ Seen↑ Unseen↑ HM↑ AUC↑

CLIP [19][ICML2021] ViT-L 30.2 46.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4
CoOp [74][IJCV2022] ViT-L 34.4 47.6 29.8 13.5 52.1 49.3 34.6 18.8 20.5 26.8 17.1 4.4
PCVL [39][Arxiv2022] ViT-L 48.5 47.2 35.3 18.3 64.4 64.0 46.1 32.2 - - - -

CSP [17][ICLR2023] ViT-L 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0 28.8 26.8 20.5 6.2
DFSP(i2t) [18][CVPR2023] ViT-L 47.4 52.4 37.2 20.7 64.2 66.4 45.1 32.1 35.6 29.3 24.3 8.7

DFSP(BiF) [18][CVPR2023] ViT-L 47.1 52.8 37.7 20.8 63.3 69.2 47.1 33.5 36.5 32.0 26.2 9.9
DFSP(t2i) [18][CVPR2023] ViT-L 46.9 52.0 37.3 20.6 66.7 71.7 47.2 36.0 38.2 32.0 27.1 10.5

GIPCOL [75][WACV2024] ViT-L 48.5 49.6 36.6 19.9 65.0 68.5 48.8 36.2 31.9 28.4 22.5 7.1
CDS-CZSL [15][CVPR2024] ViT-L 50.3 52.9 39.2 22.4 63.9 74.8 52.7 39.5 38.3 34.2 28.1 11.1

Troika [14][CVPR2024] ViT-L 49.0 53.0 39.3 22.1 66.8 73.8 54.6 41.7 41.0 35.7 29.4 12.4
PLID [16][ECCV2024] ViT-L 49.7 52.4 39.0 22.1 67.3 68.8 52.4 38.7 38.8 33.0 27.9 11.0

CLUSPRO (Ours) ViT-L 52.1±0.6 54.0±0.3 40.7±0.2 23.8±0.2 70.7±1.0 76.0±1.2 58.5±0.6 46.6±0.5 44.3±0.2 37.8±0.2 32.8±0.2 14.9±0.1

statistical measure that evaluates the independence between two continuous random variables, yield-
ing a value of zero if and only if the two variables are statistically independent in the infinite-sample
limit. Thus, our prototype-based decorrelation learning strategy can be achieved by minimizing:

L
PDL
=HSIC(fa,po

) +HSIC(fo,pa
). (11)

A similar approach is also adopted by [36]; however, our decorrelation strategy benefits from the
use of prototypes, which capture the intrinsic characteristics of primitives, thus more effectively
disentangling attribute features and object features in the compositional space.

Overall Training Objective. The final learning target of CLUSPRO combines the three-path clas-
sification loss LBAS (Eq. 6) with prototype-based loss constraints LPCL (Eq. 10) and LPDL (Eq. 11):

L=L
BAS
+αLPCL

+βLPDL, (12)
where the coefficients α and β are empirically set: α=0.2, β=0.5.

Inference for CSZL. During testing, the test image x is fed into CLUSPRO to obtain prediction
scores for attribute p(ai∣x), object p(oi∣x), and composition prediction p(ci,j ∣x). Then the final
composition class can be predicted by incorporating three branch prediction results:

ĉ = argmax
ci,j∈C

t

p(ci,j ∣x) + p(ai∣x) ⋅ p(oj ∣x). (13)

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on three widely-used CZSL benchmarks: MIT-States [26], UT-
Zappos [27], and C-GQA [28]. MIT-States consists of 53,753 natural images in total, with 115 states
and 245 objects. UT-Zappos contains 50,025 fine-grain shoe images with 16 states, 12 objects and
116 state-object compositions. C-GQA is the most extensive CZSL dataset, containing 453 states
and 870 objects for 39,298 images in total and over 9,500 state-object compositions. More details
are provided in Table 5 (cf. §A in Appendix).

Evaluation Metric. Following the official evaluation protocol [28, 30, 15, 14], four metrics are
adopted for evaluation, i.e., best-Seen accuracy (Seen), best-Unseen accuracy (Unseen), best Har-
monic Mean (HM), and Area Under the Curve (AUC). Among them, AUC is the priority as it
evaluates the model comprehensively. Please see [72, 30] for full details about metrics.

4.2 IMPLEMENTATION DETAILS

Network Architecture. CLUSPRO adopts pre-trained CLIP ViT-L/14 model [19], serving as the
image and text encoder. The adapters of attribute ha and object ho are implemented by two indi-
vidual MLPs. We group the features of each primitive into K prototypes to describe intra-primitive
diversity. The number of prototypes K and the momentum coefficient µ in Eq. 9 are empirically set
to 5 and 0.99, respectively (ablation study in Table 4a and 4b). We follow [73] to set κ=1 in Eq. 7.

Training. CLUSPRO is trained end-to-end for 15 epochs with Adam optimizer [76]. To manage the
learning rate, we initialize it at 1e−4 for all datasets and set weight decay to 5e−5. The coefficients
α and β in overall training objective (Eq. 13) are empirically set to 0.2 and 0.5, respectively (related
experiments in §D of Appendix). In Eq. 10, the temperature parameter τ is maintained at 0.1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Quantitative results(§4.3) on MIT-States [26], UT-Zappos [27] and C-GQA [28] within OW setting .

Open-World MIT-States UT-Zappos C-GQA
Method Backbone Seen↑ Unseen↑ HM↑ AUC↑ Seen↑ Unseen↑ HM↑ AUC↑ Seen↑ Unseen↑ HM↑ AUC↑

CLIP [19][ICML2021] ViT-L 30.1 14.3 12.8 3.0 15.7 20.6 11.2 2.2 7.5 4.6 4.0 0.3
CoOp [74][IJCV2022] ViT-L 34.6 9.3 12.3 2.8 52.1 31.5 28.9 13.2 21.0 4.6 5.5 0.7
PCVL [39][Arxiv2021] ViT-L 48.5 16.0 17.7 6.1 64.6 44.0 37.1 21.6 - - - -

CSP [17][ICLR2023] ViT-L 46.3 15.7 17.4 5.7 64.1 44.1 38.9 22.7 28.7 5.2 6.9 1.2
DFSP(i2t) [18][CVPR2023] ViT-L 47.2 18.2 19.1 6.7 64.3 53.8 41.2 26.4 35.6 6.5 9.0 2.0

DFSP(BiF) [18][CVPR2023] ViT-L 47.1 18.1 19.2 6.7 63.5 57.2 42.7 27.6 36.4 7.6 10.6 2.4
DFSP(t2i) [18][CVPR2023] ViT-L 47.5 18.5 19.3 6.8 66.8 60.0 44.0 30.3 38.3 7.2 10.4 2.4

GIPCOL [75][WACV2024] ViT-L 48.5 16.0 17.9 6.3 65.0 45.0 40.1 23.5 31.6 5.5 7.3 1.3
CDS-CZSL [15][CVPR2024] ViT-L 49.4 21.8 22.1 8.5 64.7 61.3 48.2 32.3 37.6 8.2 11.6 2.7

Troika [14][CVPR2024] ViT-L 48.8 18.7 20.1 7.2 66.4 61.2 47.8 33.0 40.8 7.9 10.9 2.7
PLID [16][ECCV2024] ViT-L 49.1 18.7 20.0 7.3 67.6 55.5 46.6 30.8 39.1 7.5 10.6 2.5

CLUSPRO (Ours) ViT-L 51.2±0.4 22.1±0.2 23.0±0.1 9.3±0.2 71.0±1.1 66.2±1.0 54.1±0.7 39.5±0.8 41.6±0.3 8.3±0.2 11.6±0.3 3.0±0.1

Testing. Following previous works [17, 75], we apply the post-training calibration to filter out in-
feasible compositions in the open-world setting during testing. Note that, during model deployment,
there is no any network architectural modification or extra inference cost introduced to the base
model. The primitive prototypes, P a and P o, are directly discarded after network training.

Reproducibility. CLUSPRO is implemented in PyTorch. All experiments are conducted on one
NVIDIA RTX 4090 GPU. To guarantee reproducibility, full source code will be released.

4.3 COMPARISON TO STATE-OF-THE-ARTS

In this section, we compare our method CLUSPRO with top-leading CZSL solutions on three dataset
(i.e., MIT-States [26], UT-Zappos [27], and C-GQA [28]) in CW and OW settings.

Performance on CW Setting. As summarized in Table 1, our approach CLUSPRO outperforms
recent state-of-the-art (SOTA) CZSL algorithms across all datasets [26, 27, 28] on CW setting.
Concretely, in terms of AUC which is the priority metric for evaluating the model comprehensively,
CLUSPRO yields +1.4, +4.9, and +2.5 AUC score gains compared with SOTA methods on MIT-
States, UT-Zappos, and C-GQA, respectively. Besides, CLUSPRO boosts HM to 40.7 (+3.6%) on
MIT-States, 58.5 (+7.1%) on UT-Zappos, and 32.8 (+11.6%) on C-GQA. Moreover, CLUSPRO
earns consistent best Seen Accuracy (Seen) and Unseen Accuracy (Unseen) improvement. These
consistency improvements are attributed to the fact that our algorithm captures diverse sub-primitive
patterns, i.e., intra-primitive variations, which improves generalization on unseen compositions.

Performance on OW Setting. Table 2 reports comparison results on OW setting. As seen, most
CZSL methods suffer a substantial performance drop due to vast search space in OW setting. In
contrast, our method CLUSPRO still surpasses all published competitors across three datasets [26,
27, 28]. In particular, CLUSPRO attains the highest AUC scores: 9.3 (+9.4%) on MIT-States, 39.5
(+19.7%) on UT-Zappos, and 3.0 (+11.1%) on C-GQA. Furthermore, CLUSPRO brings considerable
HM gains, with the increase of +0.9, +5.9 on MIT-States and UT-Zappos, respectively. In terms of
best Seen Accuracy (Seen) and Unseen Accuracy (Unseen), CLUSPRO still achieves the best results.
This reinforces our belief that learning a group of discriminative prototypes for each primitive helps
our model to recognize unseen compositions, even within challenging OW setting.

4.4 DIAGNOSTIC EXPERIMENT

To evaluate our algorithm designs and gain further insights, we conduct ablation studies on UT-
Zappos [26] and C-GQA [28] in CW settings.

Key Component Analysis. We first investigate the effectiveness of our core idea, i.e., clustering-
based prototype learning. To make use of discovered rich sub-primitive prototypes to shape attribute
and object embedding spaces, two key training objectives are proposed, i.e., Prototype-based Con-
trast LPCL (Eq.10) and Decorrelation LPDL (Eq.11). As shown in Table 3, we build BASELINE that
trains in the three-branch paradigm, without within-primitive prototype clustering (i.e., prototype
assignment and updating). We can find that, adding LPCL or LPDL individually leads to a substantial
performance gain, e.g., +4.9/+2.8 AUC on UT-Zappos [26], and +2.4/+1.9 AUC on C-GQA [28].
This verifies the efficacy of explicitly promoting inter-primitive prototype separation and attribute-
object independence. Last, by combining LPCL and LPDL, our full model yields the best results,
confirming the complementarity and effectiveness of our overall algorithmic designs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Analysis of core components(§4.4) onUT-Zappos[27] andC-GQA[28] within CW setting.

LPCL LPDL UT-Zappos C-GQA
(Eq.10) (Eq.11) Seen↑ Unseen↑ HM↑ AUC↑ Seen↑ Unseen↑ HM↑ AUC↑

BASELINE (w/o Clustering) 66.2 74.6 54.1 41.0 40.5 33.4 29.7 11.8
Prototype-bsaed Contrast ✓ 69.9 74.7 57.1 45.9 43.6 36.7 32.1 14.2

Prototype-bsaed Decorrelation ✓ 67.6 75.2 56.5 43.8 43.1 36.1 31.4 13.7
Contrast + Decorrelation ✓ ✓ 70.7 76.0 58.5 46.6 44.3 37.8 32.8 14.9

Table 4: A set of ablation studies on UT-Zappos [27] (§4.4). The adopted network designs are marked in red.

UT-ZapposPrototype K Seen↑ Unseen↑ HM↑ AUC↑
K = 1 68.9 73.6 55.2 42.8
K = 3 70.6 74.6 56.9 45.1
K = 5 70.7 76.0 58.5 46.6
K = 10 69.9 75.4 58.3 46.0
K = 20 70.1 75.2 58.0 45.9

(a) Per-primitive Prototype Number

UT-ZapposCoefficient µ Seen↑ Unseen↑ HM↑ AUC↑
µ = 0 67.2 74.1 54.9 42.6
µ = 0.5 69.8 75.1 56.0 43.3
µ = 0.9 70.5 74.9 58.1 46.0
µ = 0.99 70.7 76.0 58.5 46.6
µ = 0.999 70.5 74.7 57.0 45.1

(b) Prototype Updating Coefficient µ
Clustering Branch UT-Zappos
Attribute Object Seen↑ Unseen↑ HM↑ AUC↑

66.2 74.6 54.1 41.0
✓ 69.7 74.3 56.5 44.3

✓ 69.5 73.6 56.4 44.1
✓ ✓ 70.7 76.0 58.5 46.6

(c) Clustering Branch

UT-ZapposClustering Strategy Seen↑ Unseen↑ HM↑ AUC↑
None 66.2 74.6 54.1 41.0

Cosine Similarity 68.9 74.7 57.7 45.0
Classical OT 70.1 75.2 58.2 45.8

Ours 70.7 76.0 58.5 46.6

(d) Clustering Strategy

Prototype Number Per Primitive K. We next investigate the impact of the prototype number per
primitive. The results are reported in Table 4a. Note that for K = 1, each primitive is directly
represented by the mean embedding of primitive features in the current batch without prototype
clustering. As shown in Table 4a, this baseline yields the HM score of 55.2 and AUC score of
42.8 on UT-Zappos [26], respectively. When representing one primitive concept with a group of
prototypes, we observe that our model CLUSPRO gains stable improvements (i.e., HM: 55.2→58.5,
AUC: 42.8→46.6) as the number of prototypes grows (i.e., K = 5). This supports our hypothesis that
leveraging a set of diversified prototypes to describe a primitive concept can capture diverse intra-
primitive patterns. However, too many prototypes above K = 5 results in negative gains. This may
be because CLUSPRO suffers from insignificant sub-primitive patterns produced by over-clustering.

Momentum Coefficient µ. Table 4b probes the impact of momentum coefficient µ (Eq.9), which
controls the speed of primitive prototype updating. We can clearly observe that, our algorithm
performs better with a relatively large coefficient (i.e., µ = 0.99), verifying that slow updating is
beneficial, but not too slow (i.e., µ = 0.999). When µ is too small, the performance decreases. In
particular, our algorithm encounters a large decrease at the extreme of no momentum (i.e., µ = 0).

Multi-branch Clustering. In Table 4c, we study the impact of attribute and object clustering
branches by removing one or more specific branches. Removing one branch clustering means that,
we discard primitive-wise clustering to mine sub-primitive patterns in the corresponding branch,
and remove the corresponding training objectives from Eq. 10 and 11. As shown in Table 4c, us-
ing attribute or object clustering branches individually only yields limited performance gains, e.g.,
+3.3/+3.1 AUC score. By unifying the two clustering branches together, our full model achieves the
best performance across four metrics, confirming their complementarity.

Clustering Strategy. We examine the impact of our proposed local-aware clustering strategy
(cf. Eq.7) by contrasting it with the model without primitive-wise clustering, the cosine similarity
updating [77], and classical Optional Transport (OT) [78, 79]. As shown in Table 4d, our local-
aware clustering strategy proves to be more effective: it outperforms the model without clustering,
the cosine similarity, and classical OT across all metrics, e.g., +4.7, +1.6, and +0.8 AUC scores on
UT-Zappos, respectively. This study confirms that considering the intrinsic coherence structure of
attribute/object feature distribution is beneficial for superior prototype assignment.

4.5 QUALITY ANALYSIS

Success Cases. The first four columns of Fig. 3 present success cases of our method CLUSPRO for
both seen and unseen compositions on UT-Zappos [27] and C-GQA [28]. As seen, compared with
the base model without primitive-wise prototype clustering, CLUSPRO works much better. Even for
the complex C-GQA dataset, CLUSPRO still correctly predicts labels. For example, CLUSPRO can

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Baseline

Ours

Ground Truth

UT-Zappos

Leather Slippers

Leather Slippers

Suede Shoes.Loafers

Suede Boots.Mid-Calf

Suede Boots.Mid-Calf

Suede Boots.Knee.High Leather Sandals

Satin Sandals

Satin Sandals

Suede Boots.Ankle

Sheepskin Boots.Ankle

Sheepskin Boots.Ankle

Leather Shoes.Heels

Satin Shoes.Heels

Satin Sandals

Suede Shoes.Loafers

Wool Slippers

Leather Slippers

Baseline

Ours

Ground Truth

CGQA

Eaten Pizza

Sliced Pizza

Sliced Pizza

Large Sheep

White Sheep

White Sheep

Orange Umbrella

Yellow Umbrella

Orange Umbrella

Tiled Floor

Tiled Floor

Square Floor Metal Spoon

Silver Utensil

Silver Fork

Green Plant

Green Vegetable

Miniature Vegetable

Success cases Failure cases

Figure 3: Case study on UT-Zappos [27] and C-GQA [28]. We compare CLUSPRO with baseline without
primitive-wise prototype clustering. Correct and incorrect predictions are marked in green and red, respectively.

Canvas Hair.CalfPatent.Leather Suede SatinLeather Ankle Mid-CalfSandals Shoes.Oxfords Shoes.HeelsSlippers

Baseline BaselineOurs Ours
（a）Attribute （b）Object

Figure 4: Visualization of attribute and object features learned by baseline and CLUSPRO on UT-Zappos [27].

calibrate Suede to Leather (materials) and Yellow to Orange (colors). This demonstrates CLUSPRO
can capture fine-grained primitive patterns (e.g., various materials and colors) by representing each
primitive as a set of prototypes. Moreover, benefiting from prototype clustering across the whole
dataset, CLUSPRO automatically mines the global data distribution of each primitive, leading to
generalizing well to unseen compositions. More success cases are provided in §E of Appendix.

Failure Cases and Limitations. The last two columns of Fig. 3 show failure cases, where the
attribute and object of images are highly entangled and visually confusing. However, CLUSPRO
still identifies the part of attribute-object compositions. In addition, though making mistakes on
attribute predictions (e.g., Green Vegetable in column 6, row 2), such wrong predictions interpret
another attribute (i.e., the color) of Miniature Vegetable. Thus we will make use of large language
models to generate informative descriptions for each composition in the future, so as to emphasize
primary primitives. More failure cases are provided in §E of Appendix.

Feature Distributions of Attribute and Object. We visualize learned features of attribute and
object by LBAS (Eq. 6) and L (Eq. 13) in Fig. 4. We observe that, after considering clustering-based
prototype mining, learned attribute and object features become more compact and better separated.
This demonstrates that CLUSPRO can shape well-structured attribute/object embedding spaces by
clustering-based analysis across the whole dataset, hence ensuring better visual disentanglement.

5 CONCLUSION

In this work, we present CLUSPRO, a clustering-based prototype mining framework for Composi-
tional Zero-Shot Learning. This framework aims to learn a well-structured and independent em-
bedding space with multiple discriminative prototypes for each primitive, which alternates between
two steps: 1) within-primitive online clustering for automatically discovering and dynamically
updating prototypes; 2) prototype-based primitive representation learning for promoting intra-
primitive separation and inter-primitive decorrelation. Experimental results on three gold-standard
datasets demonstrate the superiority of our clustering-based scheme against existing methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

[1] Martin N Hebart, Charles Y Zheng, Francisco Pereira, and Chris I Baker. Revealing the multi-
dimensional mental representations of natural objects underlying human similarity judgements.
Nature human behaviour, 4(11):1173–1185, 2020. 1

[2] Noam Chomsky. Aspects of the Theory of Syntax. Number 11. MIT press, 2014. 1

[3] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40:e253, 2017. 1

[4] Yuval Atzmon, Jonathan Berant, Vahid Kezami, Amir Globerson, and Gal Chechik. Learning
to generalize to new compositions in image understanding. arXiv preprint arXiv:1608.07639,
2016. 1

[5] Ishan Misra, Abhinav Gupta, and Martial Hebert. From red wine to red tomato: Composition
with context. In CVPR, pages 1792–1801, 2017. 1, 2, 18

[6] Zhe Liu, Yun Li, Lina Yao, Xiaojun Chang, Wei Fang, Xiaojun Wu, and Abdulmotaleb El Sad-
dik. Simple primitives with feasibility-and contextuality-dependence for open-world compo-
sitional zero-shot learning. IEEE TPAMI, 2023. 1

[7] Yong-Lu Li, Yue Xu, Xiaohan Mao, and Cewu Lu. Symmetry and group in attribute-object
compositions. In CVPR, pages 11316–11325, 2020. 1, 18

[8] Hanjae Kim, Jiyoung Lee, Seongheon Park, and Kwanghoon Sohn. Hierarchical visual primi-
tive experts for compositional zero-shot learning. In ICCV, pages 5675–5685, 2023. 1

[9] Massimiliano Mancini, Muhammad Ferjad Naeem, Yongqin Xian, and Zeynep Akata. Open
world compositional zero-shot learning. In CVPR, pages 5222–5230, 2021. 1, 18, 20

[10] Xiaoming Hu and Zilei Wang. Leveraging sub-class discimination for compositional zero-shot
learning. In AAAI, volume 37, pages 890–898, 2023. 1, 3

[11] Chenyi Jiang and Haofeng Zhang. Revealing the proximate long-tail distribution in composi-
tional zero-shot learning. In AAAI, volume 38, pages 2498–2506, 2024. 1

[12] Qingsheng Wang, Lingqiao Liu, Chenchen Jing, Hao Chen, Guoqiang Liang, Peng Wang, and
Chunhua Shen. Learning conditional attributes for compositional zero-shot learning. In CVPR,
pages 11197–11206, 2023. 1, 18, 19

[13] Tian Zhang, Kongming Liang, Ruoyi Du, Xian Sun, Zhanyu Ma, and Jun Guo. Learning
invariant visual representations for compositional zero-shot learning. In ECCV, pages 339–
355, 2022. 1

[14] Siteng Huang, Biao Gong, Yutong Feng, Min Zhang, Yiliang Lv, and Donglin Wang. Troika:
Multi-path cross-modal traction for compositional zero-shot learning. In CVPR, pages 24005–
24014, 2024. 1, 3, 4, 7, 8, 16, 17, 18, 19

[15] Yun Li, Zhe Liu, Hang Chen, and Lina Yao. Context-based and diversity-driven specificity in
compositional zero-shot learning. In CVPR, pages 17037–17046, 2024. 1, 3, 7, 8, 17, 18, 20

[16] Wentao Bao, Lichang Chen, Heng Huang, and Yu Kong. Prompting language-informed distri-
bution for compositional zero-shot learning. arXiv preprint arXiv:2305.14428, 2023. 1, 3, 7,
8, 18

[17] Nihal V Nayak, Peilin Yu, and Stephen Bach. Learning to compose soft prompts for composi-
tional zero-shot learning. In ICLR, 2023. 1, 3, 7, 8, 17, 18, 20

[18] Xiaocheng Lu, Song Guo, Ziming Liu, and Jingcai Guo. Decomposed soft prompt guided
fusion enhancing for compositional zero-shot learning. In CVPR, pages 23560–23569, 2023.
1, 3, 4, 7, 8, 17, 18, 20

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[19] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable
visual models from natural language supervision. In ICML, pages 8748–8763, 2021. 1, 3, 7,
8, 16, 17, 18, 20

[20] Xiangyu Li, Xu Yang, Kun Wei, Cheng Deng, and Muli Yang. Siamese contrastive embedding
network for compositional zero-shot learning. In CVPR, pages 9326–9335, 2022. 2, 3, 6, 18,
19

[21] Yun Li, Zhe Liu, Saurav Jha, and Lina Yao. Distilled reverse attention network for open-world
compositional zero-shot learning. In ICCV, pages 1782–1791, 2023. 2, 3

[22] Frank Ruis, Gertjan Burghouts, and Doina Bucur. Independent prototype propagation for zero-
shot compositionality. In NeurIPS, volume 34, pages 10641–10653, 2021. 2, 3

[23] Shaozhe Hao, Kai Han, and Kwan-Yee K Wong. Learning attention as disentangler for com-
positional zero-shot learning. In CVPR, pages 15315–15324, 2023. 2, 3, 4, 18, 19, 20

[24] Chenchen Jing, Yukun Li, Hao Chen, and Chunhua Shen. Retrieval-augmented primitive rep-
resentations for compositional zero-shot learning. In AAAI, volume 38, pages 2652–2660,
2024. 2, 3, 17, 20

[25] Alain Rakotomamonjy, Rémi Flamary, and Nicolas Courty. Generalized conditional gradient:
analysis of convergence and applications. arXiv preprint arXiv:1510.06567, 2015. 2, 5

[26] Phillip Isola, Joseph J Lim, and Edward H Adelson. Discovering states and transformations in
image collections. In CVPR, pages 1383–1391, 2015. 2, 7, 8, 9, 16, 18, 19, 21

[27] Aron Yu and Kristen Grauman. Fine-grained visual comparisons with local learning. In CVPR,
pages 192–199, 2014. 2, 7, 8, 9, 10, 16, 17, 18, 19, 21

[28] Muhammad Ferjad Naeem, Yongqin Xian, Federico Tombari, and Zeynep Akata. Learning
graph embeddings for compositional zero-shot learning. In CVPR, pages 953–962, 2021. 2, 7,
8, 9, 10, 16, 18, 19, 20, 21

[29] Tushar Nagarajan and Kristen Grauman. Attributes as operators: factorizing unseen attribute-
object compositions. In ECCV, pages 169–185, 2018. 2, 18, 19

[30] Senthil Purushwalkam, Maximilian Nickel, Abhinav Gupta, and Marc’Aurelio Ranzato. Task-
driven modular networks for zero-shot compositional learning. In ICCV, pages 3593–3602,
2019. 2, 7, 18

[31] Muhammad Umer Anwaar, Zhihui Pan, and Martin Kleinsteuber. On leveraging variational
graph embeddings for open world compositional zero-shot learning. In ACM MM, pages 4645–
4654, 2022. 2, 18, 19

[32] Massimiliano Mancini, Muhammad Ferjad Naeem, Yongqin Xian, and Zeynep Akata. Learn-
ing graph embeddings for open world compositional zero-shot learning. IEEE TPAMI,
46(3):1545–1560, 2022. 2, 18

[33] Muhammad Gul Zain Ali Khan, Muhammad Ferjad Naeem, Luc Van Gool, Alain Pagani, Di-
dier Stricker, and Muhammad Zeshan Afzal. Learning attention propagation for compositional
zero-shot learning. In WACV, pages 3828–3837, 2023. 2, 18, 19

[34] Nirat Saini, Khoi Pham, and Abhinav Shrivastava. Disentangling visual embeddings for at-
tributes and objects. In CVPR, pages 13658–13667, 2022. 3, 4, 19, 20

[35] Muli Yang, Cheng Deng, Junchi Yan, Xianglong Liu, and Dacheng Tao. Learning unseen
concepts via hierarchical decomposition and composition. In CVPR, pages 10248–10256,
2020. 3

[36] Yuval Atzmon, Felix Kreuk, Uri Shalit, and Gal Chechik. A causal view of compositional
zero-shot recognition. In NeurIPS, volume 33, pages 1462–1473, 2020. 3, 7

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

[37] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and generation. In ICML, pages 12888–
12900, 2022. 3

[38] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-
Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision. In ICML, pages 4904–4916, 2021. 3

[39] Guangyue Xu, Parisa Kordjamshidi, and Joyce Chai. Prompting large pre-trained vision-
language models for compositional concept learning. arXiv preprint arXiv:2211.05077, 2022.
3, 7, 8, 18

[40] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI communications, 7(1):39–59, 1994. 3

[41] Yi Yang, Yueting Zhuang, and Yunhe Pan. Multiple knowledge representation for big data
artificial intelligence: framework, applications, and case studies. Frontiers of Information
Technology & Electronic Engineering, 22(12):1551–1558, 2021. 3

[42] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pages 770–778, 2016. 3, 18

[43] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV,
pages 10012–10022, 2021. 3

[44] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In ICLR, 2015. 3

[45] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE TIT, 13(1):21–27,
1967. 3

[46] Salvador Garcia, Joaquin Derrac, Jose Cano, and Francisco Herrera. Prototype selection for
nearest neighbor classification: Taxonomy and empirical study. IEEE TPAMI, 34(3):417–435,
2012. 3

[47] Jacob Goldberger, Geoffrey E Hinton, Sam Roweis, and Russ R Salakhutdinov. Neighbour-
hood components analysis. In NeurIPS, volume 17, 2004. 3

[48] Xiaofei He, Deng Cai, Shuicheng Yan, and Hong-Jiang Zhang. Neighborhood preserving
embedding. In ICCV, volume 2, pages 1208–1213, 2005. 3

[49] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning.
In NeurIPS, volume 30, 2017. 3

[50] Tianfei Zhou, Wenguan Wang, Ender Konukoglu, and Luc Van Gool. Rethinking semantic
segmentation: A prototype view. In CVPR, pages 2582–2593, 2022. 3, 5

[51] Tuo Feng, Wenguan Wang, Xiaohan Wang, Yi Yang, and Qinghua Zheng. Clustering based
point cloud representation learning for 3d analysis. In ICCV, pages 8283–8294, 2023. 3

[52] Zheyun Qin, Cheng Han, Qifan Wang, Xiushan Nie, Yilong Yin, and Lu Xiankai. Unified 3d
segmenter as prototypical classifiers. In NeuIPS, volume 36, pages 46419–46432, 2023. 3

[53] Mingcheng Hou and Issei Sato. A closer look at prototype classifier for few-shot image clas-
sification. In NeurIPS, volume 35, pages 25767–25778, 2022. 3

[54] Hao Zhu and Piotr Koniusz. Transductive few-shot learning with prototype-based label prop-
agation by iterative graph refinement. In CVPR, pages 23996–24006, 2023. 3

[55] Wenjia Xu, Yongqin Xian, Jiuniu Wang, Bernt Schiele, and Zeynep Akata. Attribute prototype
network for zero-shot learning. In NeurIPS, volume 33, pages 21969–21980, 2020. 3

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

[56] Chaoqun Wang, Shaobo Min, Xuejin Chen, Xiaoyan Sun, and Houqiang Li. Dual progressive
prototype network for generalized zero-shot learning. In NeurIPS, volume 34, pages 2936–
2948, 2021. 3

[57] Wenjin Hou, Shiming Chen, Shuhuang Chen, Ziming Hong, Yan Wang, Xuetao Feng, Salman
Khan, Fahad Shahbaz Khan, and Xinge You. Visual-augmented dynamic semantic prototype
for generative zero-shot learning. In CVPR, pages 23627–23637, 2024. 3

[58] Delong Chen, Zhao Wu, Fan Liu, Zaiquan Yang, Shaoqiu Zheng, Ying Tan, and Erjin Zhou.
Protoclip: Prototypical contrastive language image pretraining. IEEE TNNLS, 2023. 3

[59] Longlong Jing and Yingli Tian. Self-supervised visual feature learning with deep neural net-
works: A survey. IEEE TPAMI, 43(11):4037–4058, 2020. 3

[60] Linus Ericsson, Henry Gouk, Chen Change Loy, and Timothy M Hospedales. Self-supervised
representation learning: Introduction, advances, and challenges. IEEE Signal Processing Mag-
azine, 39(3):42–62, 2022. 3

[61] Mahmut Kaya and Hasan Şakir Bilge. Deep metric learning: A survey. Symmetry, 11(9):1066,
2019. 3

[62] Andrew Zhai and Hao-Yu Wu. Classification is a strong baseline for deep metric learning.
arXiv preprint arXiv:1811.12649, 2018. 3

[63] Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling via simultaneous
clustering and representation learning. ICLR, 2020. 3, 5

[64] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for nlp. In ICML, pages 2790–2799, 2019. 4, 17

[65] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. ICLR,
2022. 4, 17

[66] Guangyi Chen, Weiran Yao, Xiangchen Song, Xinyue Li, Yongming Rao, and Kun Zhang.
Prompt learning with optimal transport for vision-language models. 2022. 5

[67] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for
unsupervised learning of visual features. In ECCV, pages 132–149, 2018. 5

[68] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand
Joulin. Unsupervised learning of visual features by contrasting cluster assignments. In
NeurIPS, volume 33, pages 9912–9924, 2020. 5, 18, 19

[69] Richard L Dykstra. An algorithm for restricted least squares regression. Journal of the Ameri-
can Statistical Association, 78(384):837–842, 1983. 5

[70] Yanhua Yang, Rui Pan, Xiangyu Li, Xu Yang, and Cheng Deng. Dual-stream contrastive
learning for compositional zero-shot recognition. IEEE TMM, 26:1909–1919, 2023. 6

[71] Arthur Gretton, Kenji Fukumizu, Choon Teo, Le Song, Bernhard Schölkopf, and Alex Smola.
A kernel statistical test of independence. In NeurIPS, volume 20, 2007. 6

[72] Wei-Lun Chao, Soravit Changpinyo, Boqing Gong, and Fei Sha. An empirical study and
analysis of generalized zero-shot learning for object recognition in the wild. In ECCV, pages
52–68, 2016. 7

[73] Wanxing Chang, Ye Shi, and Jingya Wang. Csot: Curriculum and structure-aware optimal
transport for learning with noisy labels. In NeurIPS, volume 36, pages 8528–8541, 2023. 7,
20

[74] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for
vision-language models. IJCV, 130(9):2337–2348, 2022. 7, 8, 18

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

[75] Guangyue Xu, Joyce Chai, and Parisa Kordjamshidi. Gipcol: Graph-injected soft prompting
for compositional zero-shot learning. In WACV, pages 5774–5783, 2024. 7, 8, 18

[76] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 7

[77] Guiyang Chan, Pengcheng Zhang, Hai Dong, Shunhui Ji, and Bainian Chen. Scribble-
supervised semantic segmentation with prototype-based feature augmentation. In ICML, 2024.
9

[78] Leonid V Kantorovich. On the translocation of masses. Journal of mathematical sciences,
133(4), 2006. 9

[79] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In NeurIPS,
volume 26, 2013. 9

[80] Shyamgopal Karthik, Massimiliano Mancini, and Zeynep Akata. Kg-sp: Knowledge guided
simple primitives for open world compositional zero-shot learning. In CVPR, pages 9336–
9345, 2022. 18

[81] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pages 248–255, 2009. 18

[82] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In NeurIPS, volume 26, 2013. 18,
19

[83] Meitar Ronen, Shahaf E Finder, and Oren Freifeld. Deepdpm: Deep clustering with an un-
known number of clusters. In CVPR, pages 9861–9870, 2022. 20

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

This appendix provides additional details for the ICLR 2025 submission, titled “Learning
Clustering-based Prototypes for Compositional Zero-shot Learning”. The appendix is organized
as follows:

• §A Detailed data split statistics

• §B Algorithm overview

• §C More details about baseline model

• §D More quantitative results

• §E More qualitative visualization

• §F The pseudo-code of prototype assignment and updating

• §G More discussions

A DETAILED DATA SPLIT STATISTICS

We conduct experiments on three widely-used CZSL benchmarks: MIT-States [26], UT-
Zappos [27], and C-GQA [28]. MIT-States consists of 53,753 natural images in total, with 115 states
and 245 objects. Following conventional procedures, 1,962 available compositions in the dataset
are split into 1,262 seen and 300/400 unseen compositions for train/validation/test, re-
spectively. UT-Zappos contains 50,025 fine-grain shoe images with 16 states, 12 objects and
116 state-object compositions. Following standard practices, the compositions are split into 83
seen compositions, 15 seen and 15 unseen compositions, 18 seen and 18 unseen compositions for
train/validation/test splits. C-GQA is the most extensive CZSL dataset, containing 453
states and 870 objects for 39,298 images in total and over 9,500 state-object compositions. The
dataset is divided into 5,592 seen compositions for train, 1,252 seen and 1,040 unseen com-
positions for validation, and 888 and 923 unseen compositions for test. The detailed data
split statistics is provided in Table 5. Here ∣Cs∣ and ∣Cu∣ indicate the number of seen and unseen
compositions, respectively. ∣X ∣ represents the number of images.

Table 5: The detailed data split statistics (§A) on MIT-States [26], UT-Zappos [27] and C-GQA [28].

train validation test
Dataset ∣A∣ ∣O∣ ∣Cs∣ ∣X ∣ ∣Cs∣ ∣Cu∣ ∣X ∣ ∣Cs∣ ∣Cu∣ ∣X ∣

MIT-States [26] 115 245 1262 30k 300 300 10k 400 400 13k
UT-Zappos [27] 16 12 83 23k 15 15 3k 18 18 3k
C-GQA [28] 413 674 5592 27k 1252 1040 7k 888 923 5k

B ALGORITHM OVERVIEW

Fig. 2 presents the architecture of our CLUSPRO. It takes a batch of images and all the semantic
labels (i.e., attributes, objects, and compositions) as input. CLUSPRO first utilizes the visual en-
coder of CLIP [19] along with attribute and object adapters to obtain attribute features F a, object
features F o, and composition features F (Eq. 1). Besides, CLUSPRO constructs attribute, object,
and composition prompt representations (Eq. 2) via a soft learnable prompt strategy [14] based on
pre-given semantic labels. Based on these visual and prompt representations from three branches,
the three-path classification loss (i.e., LBAS) in Eq. 6 are employed to recognize primitive concepts
and their compositions. Meanwhile, based on the obtained attribute and object visual feature rep-
resentation (i.e., F a and F o), CLUSPRO learn prototypes by within-primitive clustering (§3.3) and
then propose two complementary metric learning mechanisms (i.e., LPCL and LPDL) based on these
prototypes, so as to explicitly shape well-structured and independent primitive embedding space
(§3.4). Finally, we assemble the three-path classification loss LBAS and our proposed prototype-
based loss constraints (i.e., LPCL and LPDL) as our final learning objective. Our algorithm not only
learns primitive recognition with pre-given semantic labels, but also automatically discovers diverse
and fine-grained intra-primitive patterns via a set of prototypes across the entire dataset.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C MORE DETAILS ABOUT BASELINE MODEL

Visual Feature Extraction. Following [14, 15, 24], we adopt the visual encoder ϕvis of CLIP [19]
to splits the input image X ∈RH×W×3 into Np = HW /P patches, where P is the resolution of each
patch. Note that we following [14, 24] to tune the image encoder of CLIP with LoRA [64, 65], a
lightweight parameter efficient fine-tuning (PEFT) strategy. The encoder ϕvis projects these patches
into patch tokens along with a [cls] token, and then updates these tokens via Transformer blocks.
Finally, the [cls] token serves as the image representation f c. We adopt attribute adapter ha and
object adapter ho [64, 65], each implemented as a separate MLP, to project f c into the discriminative
attribute feature fa and object feature fo, respectively.

Prompt Feature Extraction. We follow existing CZSL [18, 14] to employ an independent prompt
prefix for each branch. Specifically, for each attribute-object composition ci,j = ⟨ai, oj⟩, we create
three prompts for each branch, i.e., attribute prompt Sa

i = [s
a
1 , . . . ,s

a
l ,v

a
i], object prompt So

j =

[so1, . . . ,s
o
l ,v

o
j], and composition prompt Sc

i,j = [s
c
1, . . . ,s

c
l ,v

a
i ,v

o
j], where sa1∶l, s

o
1∶l, and sc1∶l are

learnable pretix contexts initialized by “a photo of ”. Then these prompts are then fed into the frozen
text encoder of CLIP [19] to obtain prompt features.

Training Loss LBAS. Following previous CZSL approaches [14, 15, 24], the parameters θ of the
baseline model are learned by minimizing the three-path classification loss (Eq. 6) on the training
dataset. Note that we have omitted the weight decay in Eq. 6 for simplicity. We just follow [14] set
the weight decay as 5e−5 for all our experiments.

Feasibility Calibration for Open-World Setting. Following [17, 14, 24], we adopt post-training
feasibility calibration to filter out infeasible compositions that might be present in the open-world
setting. The calibration relies on the assumption that similar objects tend to share similar attributes,
while dissimilar objects are unlikely to exhibit shared attributes. Therefore, given a candidate pair
c = ⟨a, o⟩, We calculate the feasibility compositions by computing the relationships between the
objects and the attributes. First, we compute the similarities between the objects:

ρo(a, o) = max
ô∈Ose

ϕ(o) ⋅ ϕ(ô)

∥ϕ(o)∥∥ϕ(ô)∥
, (14)

where ô is the other objects paired with the attribute a in seen compositions, and ϕ(⋅) is an em-
bedding function that maps the primitive to a pre-trained embedding. We calculate the similari-
ties ρa(a, o) between attributes as same. Next, we combine the two similarities (i.e., ρo(a, o) and
ρa(a, o)) with a pooling function to obtain ρ(a, o).

Finally, we filter out infeasible compositions by only considering compositions above a threshold
ρ(a, o) > T on the validation set to make the prediction:

ĉ = argmax
ci,j∈C

tgt,ρ(ai,oj)>T

p(ci,j ∣x) + p(ai∣x) ⋅ p(oj ∣x). (15)

D MORE QUANTITATIVE RESULTS

Loss Coefficients α and β. We further study the effect of loss coefficients α and β for loss functions
LPCL (cf. Eq.10) andLPDL (cf. Eq.11) on UT-Zappos [27]. In Table 6a, after fixing the loss coefficient
β, CLUSPRO achieves the best performance when α is set to 0.2. Additionally, in Table 6b, we fix
α and set β with different values to test the impact of LPDL. We observe that setting β as 0.5 leads
to the best results across all metrics. Accordingly, we set α=0.2 and β=0.5 in the training stage.

Table 6: The impact of loss Coefficients α and β (§D).

UT-ZapposCoefficient α
Seen↑ Uneen↑ HM↑ AUC↑

α = 0.1 70.5 74.2 57.0 45.1
α = 0.2 70.7 76.0 58.5 46.6
α = 0.3 70.6 75.3 58.6 46.3
α = 0.4 70.4 75.2 58.2 46.2
α = 0.5 70.5 74.7 58.2 45.9

(a) Loss Coefficient α

UT-ZapposCoefficient β
Seen↑ Uneen↑ HM↑ AUC↑

β = 0 67.2 74.1 54.9 42.6
β = 0.5 70.7 76.0 58.5 46.6
β = 1 70.7 75.0 58.0 45.9
β = 5 70.3 74.9 56.7 44.6
β = 10 67.6 74.0 54.8 41.7

(b) Loss Coefficient β

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

More Comparison Results with Existing CZSL Methods. Apart from CLIP-based methods, we
further compare our algorithm CLUSPRO with existing CZSL methods [29, 30, 7, 9, 32, 28, 20, 12,
31, 5] with a pre-trained ResNet18 [42] backbone across three datasets [26, 27, 28]. Table 7 and Ta-
ble 8 report additional comparison results within CW and OW settings, respectively. As can be seen,
CLIP-based methods significantly outperform traditional vision-based methods. This evidences that
CLIP-based CZSL methods have stronger compositionality for zero-shot generalization. Notably,
CLUSPRO surpasses all other methods and achieves state-of-the-art performance.

Table 7: More comparison results(§D) on MIT-States [26], UT-Zappos [27] and C-GQA [28] within CW
setting.

Closed-World MIT-States UT-Zappos C-GQA
Method Seen↑ Unseen↑ HM↑ AUC↑ Seen↑ Unseen↑ HM↑ AUC↑ Seen↑ Unseen↑ HM↑ AUC↑
Traditional vision-based methods
AoP [29] 14.3 17.4 9.9 1.6 59.8 54.2 40.8 25.9 17.0 5.6 5.9 0.7
LE+ [5] 15.0 20.1 10.7 2.0 53.0 61.9 41.0 25.7 18.1 5.6 6.1 0.8
TMN [30] 20.2 20.1 13.0 2.9 58.7 60.0 45.0 29.3 23.1 6.5 7.5 1.1
SymNet [7] 24.2 25.2 16.1 3.0 49.8 57.4 40.4 23.4 26.8 10.3 11.0 2.1
CompCos [9] 25.3 24.6 16.4 4.5 59.8 62.5 43.1 28.1 28.1 11.2 12.4 2.6
CGE [28] 28.7 25.3 17.2 5.1 56.8 63.6 41.2 26.4 28.1 10.1 11.4 2.3
Co-CGE [32] 27.8 25.2 17.5 5.1 58.2 63.3 44.1 29.1 29.3 11.9 12.7 2.8
SCEN [20] 29.9 25.2 18.4 5.3 63.5 63.1 47.8 32.0 28.9 12.1 12.4 2.9
CVGAE [31] 28.5 25.5 18.2 5.3 65.0 62.4 49.8 34.6 28.2 11.9 13.9 2.8
CANet [12] 29.0 26.2 17.9 5.4 61.0 66.3 47.3 33.1 30.0 13.2 14.5 3.3
CAPE [33] 30.5 26.2 19.1 5.8 60.4 67.4 45.5 31.3 32.9 15.6 16.3 4.2
CLIP-based methods
CLIP [19] 30.2 46.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4
CoOp [74] 34.4 47.6 29.8 13.5 52.1 49.3 34.6 18.8 20.5 26.8 17.1 4.4
PCVL [39] 48.5 47.2 35.3 18.3 64.4 64.0 46.1 32.2 - - - -
CSP [17] 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0 28.8 26.8 20.5 6.2
DFSP(i2t) [18] 47.4 52.4 37.2 20.7 64.2 66.4 45.1 32.1 35.6 29.3 24.3 8.7
DFSP(BiF) [18] 47.1 52.8 37.7 20.8 63.3 69.2 47.1 33.5 36.5 32.0 26.2 9.9
DFSP(t2i) [18] 46.9 52.0 37.3 20.6 66.7 71.7 47.2 36.0 38.2 32.0 27.1 10.5
GIPCOL [75] 48.5 49.6 36.6 19.9 65.0 68.5 48.8 36.2 31.9 28.4 22.5 7.1
CDS-CZSL [15] 50.3 52.9 39.2 22.4 63.9 74.8 52.7 39.5 38.3 34.2 28.1 11.1
Troika [14] 49.0 53.0 39.3 22.1 66.8 73.8 54.6 41.7 41.0 35.7 29.4 12.4
PLID [16] 49.7 52.4 39.0 22.1 67.3 68.8 52.4 38.7 38.8 33.0 27.9 11.0
CLUSPRO (Ours) 52.1±0.6 54.0±0.3 40.7±0.2 23.8±0.2 70.7±1.0 76.0±1.2 58.5±0.6 46.6±0.5 44.3±0.2 37.8±0.2 32.8±0.2 14.9±0.1

Table 8: More comparison results(§D) on MIT-States [26], UT-Zappos [27] and C-GQA [28] within OW
setting.

Open-World MIT-States UT-Zappos C-GQA
Method Seen↑ Unseen↑ HM↑ AUC↑ Seen↑ Unseen↑ HM↑ AUC↑ Seen↑ Unseen↑ HM↑ AUC↑
Traditional vision-based methods
AoP [29] 16.6 5.7 4.7 0.7 50.9 34.2 29.4 13.7 - - - -
LE+ [5] 14.2 2.5 2.7 0.3 60.4 36.5 30.5 16.3 19.2 0.7 1.0 0.1
TMN [30] 12.6 0.9 1.2 0.1 55.9 18.1 21.7 8.4 - - - -
SymNet [7] 21.4 7.0 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.4
CompCos [9] 25.4 10.0 8.9 1.6 59.3 46.8 36.9 21.3 28.4 1.8 2.8 0.4
CGE [28] 29.6 4.0 4.9 0.7 58.8 46.5 38.0 21.5 28.3 1.3 2.2 0.3
Co-CGE [32] 26.4 10.4 10.1 2.0 60.1 44.3 38.1 21.3 28.7 1.6 2.6 0.4
KG-SP [80] 28.4 7.5 7.4 1.3 61.8 52.1 42.3 26.5 31.5 2.9 4.7 0.8
CVGAE [31] 27.3 9.9 10.0 1.8 58.6 48.4 41.7 22.2 26.6 2.9 6.4 0.7
CLIP-based methods
CLIP [19] 30.1 14.3 12.8 3.0 15.7 20.6 11.2 2.2 7.5 4.6 4.0 0.3
CoOp [74] 34.6 9.3 12.3 2.8 52.1 31.5 28.9 13.2 21.0 4.6 5.5 0.7
PCVL [39] 48.5 16.0 17.7 6.1 64.6 44.0 37.1 21.6 - - - -
CSP [17] 46.3 15.7 17.4 5.7 64.1 44.1 38.9 22.7 28.7 5.2 6.9 1.2
DFSP(i2t) [18] 47.2 18.2 19.1 6.7 64.3 53.8 41.2 26.4 35.6 6.5 9.0 2.0
DFSP(BiF) [18] 47.1 18.1 19.2 6.7 63.5 57.2 42.7 27.6 36.4 7.6 10.6 2.4
DFSP(t2i) [18] 47.5 18.5 19.3 6.8 66.8 60.0 44.0 30.3 38.3 7.2 10.4 2.4
GIPCOL [75] 48.5 16.0 17.9 6.3 65.0 45.0 40.1 23.5 31.6 5.5 7.3 1.3
CDS-CZSL [15] 49.4 21.8 22.1 8.5 64.7 61.3 48.2 32.3 37.6 8.2 11.6 2.7
Troika [14] 48.8 18.7 20.1 7.2 66.4 61.2 47.8 33.0 40.8 7.9 10.9 2.7
PLID [16] 49.1 18.7 20.0 7.3 67.6 55.5 46.6 30.8 39.1 7.5 10.6 2.5
CLUSPRO (Ours) 51.2±0.4 22.1±0.2 23.0±0.1 9.3±0.2 71.0±1.1 66.2±1.0 54.1±0.7 39.5±0.8 41.6±0.3 8.3±0.2 11.6±0.3 3.0±0.1

Evaluation results for models pre-trained on datasets with no overlap. To further highlight the
robustness and superiority of our approach, we additionally present results under CW setting that
utilize ViT-B backbone pre-trained with DINO [68] on ImageNet [81] in a self-supervised manner as
ADE [23] instead of CLIP model [19]. Besides, we encode text representation with word2vec [82]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

as [23, 12, 28] instead of the text encoder of CLIP. Table 9 reports the comparison results on UT-
Zappos [27] and CGQA [28]. As seen, our algorithm also demonstrates better performance than the
baseline and SOTA non-CLIP methods [20, 31, 33, 23].

Table 9: More comparison results(§D) on UT-Zappos [27] and C-GQA [28] within CW setting. Our algorithm
utilizes ViT-B backbone pre-trained with DINO [68] as the visual encoder and word2vec [82] as the text encoder
for a fair comparison with non-CLIP methods.

UT-Zappos C-GQAMethod Seen↑ Unseen↑ HM↑ AUC↑ Seen↑ Unseen↑ HM↑ AUC↑
AoP [29] 59.8 54.2 40.8 25.9 17.0 5.6 5.9 0.7
SCEN [20] 63.5 63.1 47.8 32.0 28.9 12.1 12.4 2.9
CVGAE [31] 65.0 62.4 49.8 34.6 28.2 11.9 13.9 2.8
CANet [12] 61.0 66.3 47.3 33.1 30.0 13.2 14.5 3.3
CAPE [33] 60.4 67.4 45.5 31.3 32.9 15.6 16.3 4.2
ADE [23] 63.0 64.3 51.1 35.1 35.0 17.7 18.0 5.2
CGE [28] - - - - 38.0 17.1 18.5 5.4
OADis [34] - - - - 38.3 19.8 20.1 7.0
Baseline 61.0 62.9 45.1 31.9 34.6 15.9 16.6 4.5
CLUSPRO (Ours) 65.1 68.0 52.3 37.2 39.3 23.0 22.3 7.6

Efficiency Analysis. The efficiency comparison results with the state-of-the-art Trokia [14] and
our baseline are reported in Table 10. Note that, CLUSPRO conducts within-primitive prototype
clustering in a nonparametric manner and discards these learned sub-primitive prototypes during the
testing phase. Thus, as shown in Table 10, CLUSPRO neither requires additional trainable parameters
nor causes any inference delay during testing compared to the base model. Though efficient in terms
of parameters and inference speed, our online clustering algorithm brings slight training delay (
∼ 11.5% on UT-Zappos [27]). Moreover, the effective clustering algorithm allows CLUSPRO to
outperform the state-of-the-art Trokia in terms of classification accuracy, trainable parameters, and
inference speed.

Table 10: Efficiency comparison on UT-Zappos [27]. Here, we report trainable parameters, training
time per epoch, and inference speed for each model. See in §D for more details.

Method Params↓ Memory↓ Training time↓ Inference Speed↓ AUC↑
Troika [14] 21.7M 19.9G 4.1min 14.9ms 41.9

Baseline 8.7M 18.2G 4.0min 14.6ms 41.0

CLUSPRO (ours) 8.7M 18.5G 4.6min 14.6ms 46.6

Number of Prototypes K. In Table 11, we conduct the experiment by setting the number K of
prototypes based on the proportion of training samples for each primitive. In UT-zappos [27] dataset,
training samples per primitive range from 0.2% to over 20%. Thus, we assign K =1 to the primitive
with 0.2 ∼ 5% training samples, K = 2 to the primitive with 5 ∼ 10% training samples, K = 3 to the
primitive with 10 ∼ 15% training samples, K = 4 to the primitive with 15 ∼ 20% training samples,
and K =5 to the primitive with over 20% training samples. As seen, this approach results in slightly
better performance than setting a fixed value for all the primitives.

Table 11: Ablative experiments regarding varying K on UT-Zappos [27]. See §D for more details.

UT-Zappos
K range

Seen↑ Uneen↑ HM↑ AUC↑
unique value 5 70.7 76.0 58.5 46.6
[1,5] 71.0 76.0 58.6 46.8

E MORE QUALITATIVE VISUALIZATION

More Case Study. We provide additional success and failure cases of our method CLUSPRO across
three CZSL benchmarks, i.e., MIT-States [26] in Fig. 5, UT-Zappos [27] in Fig. 6 and C-GQA [28]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

in Fig. 7. We also compare our approach CLUSPRO with baseline without within-primitive cluster-
ing. As seen, by mining rich sub-primitive patterns via within-primitive clustering, CLUSPRO can
produce more accurate composition predictions, even recognizing fine-grained primitives, such as
various materials and colors. For failure cases, where the attribute and object of images are highly
entangled, CLUSPRO still identifies the part of the attribute-object composition.

F PSEUDO CODE OF PROTOTYPE ASSIGNMENT AND UPDATING

Algorithm 1 provides the pseudo-code of “Local-aware Prototype Assignment” and “Prototype Up-
dating”. To guarantee reproducibility, full code will be released.

G DISCUSSION

Data Overlap Analysis. Given that CLIP [19] is trained on millions of text-image pairs sourced
from the web, it is hard to know whether CLIP has been exposed to certain unseen compositions
during its pre-training, which violates the zero-shot learning setting factually. Most current re-
searches [18, 17, 15, 24] in CZSL, including our work, report the performance in the Generalized
Zero-shot Learning [9] for both CW and OW settings, where test samples include both seen and
unseen compositions. Hence, it naturally brings up the question: whether CLIP meets the definition
of Generalized Zero-shot Learning. Based on the data overlap analysis on 35 datasets as reported
in [19], there is a median overlap of 2.2% and an average overlap of 3.2%. Due to this small amount
of overlap, the overall accuracy shift is less than 0.1% with the largest shift as 0.6%. As such, CLIP is
only exposed to a very small number of unseen compositions during pre-training, and the impact on
the performance is limited. However, the potential composition leaking in the pre-training of CLIP
indeed leads to an unfair comparison with other non-CLIP methods [23, 28, 34]. Thus, we argue that
it is important to emphasize the comparisons with other CLIP-based methods that share the same
pre-training (comparison results in Table 1 and 2). Moreover, where possible, it is also advisable to
report performance metrics for non-CLIP variants to ensure a comprehensive evaluation.

Limitation. One limitation of our algorithm is that it needs extra within-primitive prototype clus-
tering from the perspective of optimal transport after each training iteration, leading to increasing
time complexity. However, in practice, our clustering algorithm only brings slight training delay
attributed to efficient GCG algorithm [73] for solving such clustering problem. Additionally, our
mined sub-primitive prototypes are subject to the data distribution of the training dataset. Thus rare
primitive concepts in the dataset (i.e., long-tail distribution), like many previous state-of-the-arts,
pose significant challenges for primitive-wise clustering to discover diverse sub-primitive patterns,
thus resulting in poor performance on unseen compositions about these primitives. Also, the number
of prototypes for each primitive currently is set to a fixed value, which may not be optimal given that
intra-primitive variability varies across primitives. Thus it is interesting to find ways to automatically
determine K [83] for different primitives, which may further boost performance.

Border Impact. This work introduces CLUSPRO, a powerful clustering-based framework for Com-
positional Zero-Shot Learning via exploring dataset-level context, which overcomes the limitations
of previous solutions relying on single or paired images for visual disentanglement. This model pro-
vides a feasible way to discover diverse sub-primitive patterns in massive training data, and directly
shape well-structured embedding space based on these mined patterns. On the positive side, CLUS-
PRO pushes the boundary of CZSL algorithms, and can benefit a number of potential real-world
applications, e.g., autonomous driving and robotics. For the potential negative societal impacts, our
CLUSPRO struggles in handling very rare primitives in the dataset, which is a common issue of
current CZSL algorithms, thus leading to inaccurate decisions or planning of systems. To avoid this
potential problem, it is crucial to develop a security protocol in case our approach fails to perform
as expected in real-world scenarios.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Baseline

Ours

Ground Truth

MIT-States

Weathered Clock

Ancient Clock

Ancient Clock

Empty Highway

Barren Road

Barren Road

Folded Knife

Bent Blade

Bent Blade

Straight Sword

Blunt Sword

Blunt Sword

Baseline

Ours

Ground Truth

Sharp Knife

Chipped Knife

Chipped Ceramic

Narrow Cabinet

Unpainted Furniture

Broken Furniture

MIT-States

Broken Handle

Broken Bottle

Broken Bottle

Pressed Cookie

Browned Butter

Browned Butter

Shiny Bronze

Brushed Copper

Brushed Copper

Caramelized Chocolate

Caramelized Bread

Caramelized Bread

Pressed Sandwich

Molten Cheese

Browned Cheese

Pressed Wool

Brushed Wool

Brushed Velvet

Success cases Failure cases

Figure 5: More case studies on MIT-States [26]. We compare CLUSPRO with baseline without primitive-wise
prototype clustering. Correct and incorrect predictions are marked in green and red, respectively.

Baseline

Ours

Ground Truth

UT-Zappos

Leather Boots.Mid-Calf

Suede Boots.Mid-Calf

Suede Boots.Mid-Calf

Suede Shoes.Heels

Hair.Calf Shoes.Heels

Hair.Calf Shoes.Heels

Leather Boots.Mid-Calf

Suede Boots.Mid-Calf

Suede Boots.Mid-Calf

Suede Shoes.Loafers

Suede Slippers

Suede Slippers

Baseline

Ours

Ground Truth

UT-Zappos

Leather Sandals

Satin Sandals

Satin Sandals

Leather Boots.Ankle

Synthetic Boots.Ankle

Synthetic Boots.Ankle

Suede Boots.Knee.High

Synthetic Boots.Mid-Calf

Synthetic Boots.Mid-Calf

Patent.Leather Shoes.Loafers

Patent.Leather Shoes.Flats

Patent.Leather Shoes.Flats

Leather Boots.Knee.High

Leather Boots.Mid-Calf

Suede Boots.Mid-Calf

Suede Shoes.Loafers

Canvas Shoes.Loafers

Canvas Shoes.Clogs-Mules

Synthetic Boots.Mid-Calf

Rubber Boots.Ankle

Leather Boots.Ankle

Synthetic Shoes.Heels

Satin Shoes.Heels

Satin Sandals

Success cases Failure cases

Figure 6: More case studies on UT-Zappos [27]. We compare CLUSPRO with baseline without primitive-wise
prototype clustering. Correct and incorrect predictions are marked in green and red, respectively.

Baseline

Ours

Ground Truth

CGQA

Colorful Jacket

Colorful Shirt

Colorful Shirt

Wood Horse

Brown Horse

Brown Horse

White Tree

Bare Tree

Bare Tree

Brown Counter

Gray Counter

Gray Counter

Baseline

Ours

Ground Truth

CGQA

Blue car

Green Bush

Green Bush

White Truck

White Car

White Car

Blue Floor

Blue Carpet

Blue Carpet

Shaggy Tail

Furry Ear

Furry Ear

Purple Knife

Gray Spoon

Silver Spoon

Pink Shirt

Pink Dress

Orange Dress

Round Bread

Brown Bread

Brown Cake

White Train

Concrete Station

Light Station

Success cases Failure cases

Figure 7: More case studies on C-GQA [28]. We compare CLUSPRO with baseline without primitive-wise
prototype clustering. Correct and incorrect predictions are marked in green and red, respectively.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 1 Pseudo-code of prototype assignment and updating in a PyTorch-like style.

"""
P: primitive prototypes (C x K x D)
F: primitive feature embeddings (N x D)
y: labels for primitive features F (N)

C: number of attribute or object primitives
K: number of prototypes for each primitive
N: batch size
mu: momentum coefficient (Eq.8)
"""

#======= local-aware prototype assignment =======#
def prototype assignment(F, label):

prototype assignment for each primitive feature (Eq.7)
Q = torch.einsum(’nd,ckd->nkc’, F, P)
S = torch.einsum(’nd,nd->nn’, F, F) # primitive self-similarity matrix

for c in range(C):
init_q = Q[...,c]
init_l = local online clustering(init_q, S) # one-hot matrix

prototype assignments for features in primitive c
l_c = Q[label == c]
f_c = F[label == c, ...]

find features that are assigned to each sub-primitive prototype
l_c_tile = torch.einsum(l_c, tile=K)
l_q = init_l * l_c_tile

find features with primitive c that are correctly classified
f_c_tile = repeat(l_c, tile=f_c.shape[-1])
f_c_q = f_c * f_c_tile

new cluster features for primitive c
a = torch.mm(l_q.transpose(),f_c_q)

momentum updating for each primitive prototype (Eq.8)
prototype updating(l_q, a, c)

#======= prototype updating =======#
def prototype updating(l_q, a, c):

num assignments for each prototype of primitive c
n = torch.sum(l_q, dim=0)
a = normalize(a)

prototype updating
if torch.sum(n) > 0:

P_c = P[c, n != 0,:] * mu + a[n != 0,:] * (1 - mu)
P[c, n != 0, :] = P_c

22

